
AN490/0592 1/20

APPENDIX D

APPLICATION NOTE

PROGRAMMING
FLASH MEMORY OF THE ST10F166

INTRODUCTION

The ST10F166 high end microcontroller with on-
chip Flash Memory fulfills the requirements of ap-
plications requiring an update to a part or all the
program code. The block erase capability is also
of use during the application development stage
or for program updating. For data acquisition, the
ST10F166 allows the programming of 16 or 32
bits data independently.
Operations on the Flash memory are under soft-
ware control. Erasure or programming is a simple
procedure, however precautions must be taken to
prevent damage to the ST10F166.

This application note describes the basic charac-
teristics of the Flash memory cell, and the different
algorithms used for erasure and programming.

FUNDAMENTALS OF FLASH MEMORY

The Flash memory included in the ST10F166
combines the EPROM programming mechanism
with electrical erasability (like EEPROM) to create
a highly reliable and cost effective memory. A
Flash memory cell consists of a single transistor
with a floating gate for charge storage like
EPROM, the main difference being that Flash
memory uses a thinner gate oxide.

Figure 1. SGS-THOMSON Flash Cell VS Eprom Cell

FLASH CELL

PROGRAMMATION: HOT e INJECTION

ERASURE: THROUGH TUNNEL OXIDE
F N MECHANISM

BULK ERASURE OF ENTIRE

MEMORY IN 1 SEC RANGE

EPROM CELL

PROGRAMMATION: HOT e INJECTION

ERASURE: UV

N+ N+N+ N+

SOURCE DRAIN SOURCE

CONTROL GATE

FLOATING GATE

DRAIN

by S. Fruhauf, G. Petrosino

PROGRAMMING FLASH MEMORY

2/20

The programming mechanism of a cell is based on
hot electron injection. This means that the cell
control gate and drain are set to a high voltage
and the cell source is grounded. The high voltage
on the drain generates ”hot” electrons through the
channel, and the high voltage on the control gate
traps the free electrons into the floating gate.
The cell erase mechanism is based on ”Fowler-
Nordheim” tunnelling. This means that the cell

control gate is grounded, the cell drain is discon-
nected and the high voltage is applied to the cell
source. The high electric field between the floating
gate and the source removes electrons from the
floating gate.

Unlike standard EEPROM memory, where individ-
ual bytes can be erased, the Flash memory of the
ST10F166 performs erase on blocks where the
high voltage is applied to all cells simultaneously.

Figure 2. Flash Memory Cell Programming Mechanism

Figure 3. Flash Memory Cell Erase Mechanism

SOURCE DRAIN

P- SUBSTRATE

VD ≤ VPP

VCG = VPPCONTROL GATE

FLOATING GATE

e- e-

SOURCE DRAIN

P- SUBSTRATE

VS = VPP

CONTROL GATE

FLOATING GATE

FN

e-e-

FUNDAMENTALS OF FLASH MEMORY (Cont’d)

PROGRAMMING FLASH MEMORY

3/20

A difficulty with Flash memory concerns the re-
quirement to set all the cells of a block to a mini-
mum threshold level suitable for programming and
erase operations. Applying a new erasing pulse to
a block with a different storage level on each cell
(a different threshold level), can be very danger-
ous for the functionality of the Flash memory.
A fast erasing cell may have a threshold voltage
too low or negative, in this case the transistor is al-
ways on and is read at ”one”. This has the effect of
leakage on other cells placed on the same array
column. Thus all cells of the column will be read at
”one” instead of ”zero”.
To avoid this, the user must equalize the amount
of charge on each cell by performing a program-
ming operation before every erasure.
For increased reliability, the SGS-THOMSON
Flash memory technology, combined with the use
of the Erase-verify PRESTO F algorithm, provides
a tight erase threshold voltage distribution, gener-
ating sufficient margin to the faster erasing cell
and the minimum threshold level required to read
a ”one” data value.

ERASE & PROGRAMMING CONTROL

To simplify control of the Flash operation modes,
the ST10F166 Flash memory includes a Flash
Control Register (FCR) used for all programming
or erase operations. Mapped virtually into the
Flash address space, FCR is not accessible dur-
ing normal memory access modes and must be
unlocked by a special instruction sequence.
To avoid unpredictable programming or erase op-
eration on the Flash memory, the ST10F166 pro-
vides several levels of security:
First level : the user must perform a special se-
quence to enable the FCR and to enter into the
program mode.
Second leve l: to operate on the Flash memory,
two steps are necessary. First the user must set
up the FCR in the desired configuration, second
the operation begins ONLY with the appropriate
command.

Third level : during the program mode, two bits of
FCR (VPPRIV & FCVPP) indicate to the user the
status of VPP (the high voltage) before and during
an operation. It is advisable for the user to test
them in the erase or programming routine.

Figure 4. Flash Erasure

VERY SMALL DISPERSION

erasing curves

TIME ms

CELL THRESHOLD

~ 6 V

ERASING A CELL SET TO 1 = PROBLEM

ALL CELLS MUST BE SET TO 0 BEFORE ERASING

FORBIDDEN AREA

CELL SET TO 1 (erased)

CELL SET TO 0

programming curve

FUNDAMENTALS OF FLASH MEMORY (Cont’d)

PROGRAMMING FLASH MEMORY

4/20

THE PRESTO F PROGRAM WRITE ALGORITHM

The following section explains the Presto F Program Write Algorithm shown in figure 5 for a better under-
standing of the user. For high reliability, it is necessary to follow this algorithm to program the Flash mem-
ory.
It is considered that the EBC1/VPP pin has been switched to the VPP supply after reset, and the program
mode has been unlocked.
Before performing the unlock sequence, remember that the interrupts should be disabled, bit IEN of PSW
cleared. After exiting the write mode, bit IEN should be set, to enable the interrupts again.

– READ VPPRIV
After setting the writing mode, a delay of 10 µs must be inserted to allow the device to set its internal high
voltage signals. Then, before starting the proper programming operation, the VPP level must be checked.
VPPRIV is at the ”one” level if VPP is correct. If it is not the programming algorithm must be held until
VPP reaches its correct value or until the VPP supply is set correctly.

mov fcrrd, FCR ; read FCR

jnb vppriv, vpp_fail ; test if VPP is high

– PCOUNT = 0
Initialization of PCOUNT variable to zero. The Presto F Program Write algorithm consist of applying sev-
eral pulses to each word until a correct verify occurs. The maximum number of programming pulses is
fixed and depends on the CPU clock. The maximum cumulated programming time is 2.5 ms for the
ST10F166B. If this limit is reached the word will never be programmed.

In case of several words to program, an Address variable can be initialized.
mov lpcnt, #ALL0 ; reset algo. loop counter

– Write Programming Setup command into FCR
First step for programming:
Set FCR with the desired value.
Set FWE bit to enable programming operation.

Clear CKCTL0 & CKCTL1 bits to define the programming pulse width: 6.4 µs at 20MHz CPU clock.

Choose the configuration:
Set WDWW bit for double word programming.
Clear WDWW bit for word programming.
Set FWMSET bit for program mode.

Take care at this point as this step prepares the device for programming but does not activate the process.

mov fcrval, #ALL0 ; reset FCR data value

bset fwe ; FWE=1 define programming operation

bclr ckctl0 ; CKCTL0=0)

bclr ckctl1 ; CKCTL1=0) define the pulse width

bset wdww ; WDWW=1 define 32-bit configuration

bset fwmset ; FWMSET=1 confirm write mode

mov FCR, fcrval ; load FCR with the desired value

PROGRAMMING FLASH MEMORY

5/20

Figure 5. PRESTO F Program Write Algorithm

= 0

PCOUNT=PNmax?

PCOUNT=PCOUNT+1

VR02057A

THE PRESTO F PROGRAM WRITE ALGORITHM (Cont’d)

PROGRAMMING FLASH MEMORY

6/20

– Write valid data address
The following command starts automatically the programming process.

For word programming:
mov [addrev],datal ; programming command

For double word programming:
mov [addrev],data l ; programming command, even word

mov [addrev],datah ; programming command, odd word

– WAIT PT
The programming time (PT) depends on the bits CKCTL0 & CKCTL1 of FCR (see setting of FCR). The
end of programming can be detected by polling on the FBUSY bit of FCR.
FBUSY set to ”1” indicates programming is in progress.
FBUSY cleared indicates programming has ended

waitpr: mov fcrrd, FCR ; read FCR

jb busy, waitpr ; jump if programming is not ended

– FCVPP = ”0” ?
To have awell programmed word, it is important to check if VPP wasat the correct value during programming.
This is indicated by the status of the FCVPP bit of FCR.

If FCVPP = ”0” there was no problem, continue with the algorithm.

If FCVPP = ”1” VPP was not enough high during programming, jump to the user defined VPP-fail routine.
An example of this routine could be a reset of FCR, then a new test of the VPPRIV bit and, if all is correct,
redo a programming operation, otherwise exit the programming routine.

jb fcvpp, vpp_fail ; jump if FCVPP is set

– PROGRAM VERIFY READ
To check if the word is correctly programmed, a comparison must be performed with the data expected.
A Program Verify Read will check the cell margin of the word.

Perform twice the same reading instruction separated by a time of 4 µs.
This sequence must be made to get a correct reading of the word. This time corresponds to an internal
switching of signals.

THE PRESTO F PROGRAM WRITE ALGORITHM (Cont’d)

PROGRAMMING FLASH MEMORY

7/20

– COMPARE WITH DATA EXPECTED
This step can be merged with the Program Verify Read step as the comparison instruction is a read in-
struction. If the data programmed at the address given is different from the data expected, an extra pro-
gramming operation must be performed (the next step).

cmp datal, [addrev] ; first instruction for PVM (even)

calla cc_UC, wait4 ; 4 µs

cmp datal, [addrev] ; second instruction for PVM

jmpr cc_NZ, prog ; jump if the word is not correctly

; programmed, restart programming

cmp datah, [addrod] ; first instruction for PVM (odd)

calla cc_UC, wait4 ; 4 µs

cmp datah, [addrod] ; second instruction for PVM

jmpr cc_NZ, prog ; jump if the word is not correctly

; programmed, restart programming

– PCOUNT = PN max
For each new programming operation the PCOUNT variable must be incremented; at this point, it must be
tested to verify whether the PN max limit has been reached or not. If yes, the word will never be pro-
grammed and the algorithm should be exited from. In this case a possible solution is to change the ad-
dress of the word to program.

add lpcnt, #01h ; increment the algo. loop counter

cmp lpcnt, #MAXLOOP1 ; compare to the limit

jmpr cc_Z, prg_fail ; jump if limit has been reached

– LAST ADDRESS
In case of consecutives words to program, check the address variable to know if the last address has
been reached. If not, increment the address variable and start another programming operation from the
beginning of the algorithm.

– WRITE FWE = ”0”
All the words are programmed, exit the presto F program Write algorithm. All programming or Program
Verify Read operation are stopped by a reset of FCR register (especially FWE bit cleared). Normal read-
ing of the Flash memory can be performed only after this step.

mov fcrval, #ALLO

mov FCR, fcrval ; reset FCR and exit program mode

THE PRESTO F PROGRAM WRITE ALGORITHM (Cont’d)

PROGRAMMING FLASH MEMORY

8/20

THE PRESTO F ERASE ALGORITHM

The following section explains the Presto F Erase Algorithm shown in figure 6 but all parts already de-
scribed in the previous section will not be explained again. Note that an entire block will be erased instead
of one or two words as programming.

– ALL WORDS AT 0000h
Prior to erasure, program all block addresses to 0000h. This step equalizes the charge on each memory
cell of the block. Erasure removes charge from all memory cells regardless of their previous state, and not
performing this programming will drive cells previously at a ”one” to be stuck at ”one” (as explained in the
Fundamentals of Flash memory section).
The Presto F Program Write Algorithm must be used for this block programming. (refer to the previous
section).

– VARIABLE INITIALIZATION
Initialize two variables:

PCOUNT = 0 for the pulse count, and the address variable to the first address of the block. N can be in-
cremented from 0 to EN max. The maximum cumulated erase time is 30s.
Note : with each pulse, all the block will be erased.

– WRITE ERASE SETUP COMMAND INTO FCR
As for programming, this step only prepares the device for erasure.

Set FWE,FEE bits to enable erasure.
Clear CKCTL0 & set CKCTL1 bits to define a the erasing pulse width: 1.64ms at 20MHz CPU clock.

Choose the block configuration for erasure (BE0,BE1).
Clear WDWW bit.
Set FWMSET bit for write mode.

– WRITE ERASE COMMAND
Perform the specific instruction to start automatically the erase process.

mov [fl_scan],fl_scan ; erase command, erasure start

– WAIT ET
The erasing time (ET) depends on the bits CKCTL0 & CKCTL1 of FCR (see setting of FCR). The end of
erasure can be detected by polling on the FBUSY bit of FCR.
FBUSY set to ”1” indicates erase is in progress.
FBUSY cleared indicates erase has ended.

– FCVPP = ”0” ?
Test VPP to detect any discontinuity in VPP during erasure (see previous section).

PROGRAMMING FLASH MEMORY

9/20

Figure 6. PRESTO F Erase algorithm

= 0

PCOUNT=ENmax?

PCOUNT=PCOUNT+1

VR02057B

THE PRESTO F ERASE ALGORITHM (Cont’d)

PROGRAMMING FLASH MEMORY

10/20

– ERASE VERIFY READ
This mode, equivalent to the Program Verify Read, guarantees a improved cell margin of a word.
Read the data at the address given by the address variable twice with the same instruction separated by
a time of 4 µs.

– COMPARE DATA = FFFFh
Compare the data read to FFFFh. If it equals FFFFh, this address has been erased; continue verification
until the last address of the block has been verified. If not, increment PCOUNT variable. Apply a new
erasing pulse to the block, and continue until the data is correctly checked or the maximum erasing pulse
count has been reached.

read_ff: cmp all1, [fl_scan] ; first instruction for EVM

calla cc_UC, wait4 ; 4 µs

cmp all1, [fl_scan] ; second instruction for EVM

jmpr cc_NZ, erase ; jump if the word is not erased

– LAST ADDRESS
Check the address variable to see if the last address of the block has been reached. If not, increment the
address variable and start another
Erase Verify Read.

add fl_scan,#02h ; increment the bank pointer

cmp fl_scan,#FL_SIZE ; compare to the last bank address

jmpr cc_NZ, read_ff ; jump to verify the next address

– WRITE FWE = ”0”
All the block is erased, exit the Presto F Erase algorithm stopping all erasure or Erase Verify Read oper-
ations with a reset of FCR register (especially FWE, FEE bits cleared)

Normal reading of Flash memory can be performed only after this step.

THE PRESTO F ERASE ALGORITHM (Cont’d)

PROGRAMMING FLASH MEMORY

11/20

RULES FOR USING THE FLASH MEMORY

– Follow the Presto F Algorithm and verify its cor-
rect implementation. This will ensure that all the
block has been programmed before erasure to
minimize internal stresses on the memory cells,
and to perform writing operation in a fast and re-
liable way.

– Verify VPP status before and after every writing
operation.

BASIC ROUTINES FOR ERASURE AND
PROGRAMMING

This section describes basic routines which can
be helpful for the user.
Erasure, 32-bit programming and 16-bit program-
ming routines are written as subroutines to allow
easy inclusion in a user program.

The following routines are written in a way to clar-
ify the operations as well as possible.

The initial conditions are described at the head of
the routine, if needed.

Table 1. Recommended CKCTL values depending on the CPU clock used

FCPU
CKCTL TPRG N MAX

PROG. ERASE PROG. ERASE PROG. ERASE

1MHz 00 01 128µs 2.05ms 19 14648

10 MHz 00 10 12.8µs 3.28ms 195 9157

16 MHz 00 10 8µs 2.05ms 312 14648

20 MHz 00 10 6.4µs 1.64ms 390 18315

PROGRAMMING FLASH MEMORY

12/20

; VARIABLE DEFINITIONS FOR THE FLASH MEMORY ROUTINES

ALL0 equ 00000h ;constant 0

ALL1 equ 0FFFFh ;constant FFFF

BLK_START equ 03000h ;first address of bank 1

FL_SIZE equ 03000h ;size of bank 1

FCR equ 07FFEh ;dummy address chosen for FCR

ADDREV equ 0000Ch ;address even (least significant bit)

ADDROD equ 0000Eh ;address odd (most significant bit)

DATAH equ 09753h ;data to program to odd address

DATAL equ 08642h ;data to program to even address

MAXLOOP1 equ 00186h ;limit of the programming loop

MAXLOOP2 equ 0478Bh ;limit of the erase loop

UNLOCK equ 01000h ;data to unlock the program mode

WAIT4 equ 0000Bh ;loop 4 µs

WAIT10 equ 0001Fh ;loop 10 µs

addrev LIT ’R0’ ;even address pointer

fcrval LIT ’R1’ ;register for FCR writing

addrod LIT ’R2’ ;odd address pointer

datal LIT ’R3’ ;register with first data

datah LIT ’R4’ ;register with second data

lpcnt LIT ’R5’ ;algorithm loop counter

all1 LIT ’R6’ ;register used in EVM

unlock LIT ’R7’ ;register used to unlock

val10u LIT ’R8’ ;counter 10 µs

val4u LIT ’R9’ ;counter 4 µs

wait_cnt LIT ’R10’ ;register to control wait loop

fl_scan LIT ’R13’ ;bank address pointer

fcrrd LIT ’R15’ ;register for FCR reading

fwe LIT ’R1.0’ ;FCR FWE bit

fee LIT ’R1.1’ ;FCR FEE bit

ckctl0 LIT ’R1.5’ ;FCR CKCTL0 bit

ckctl1 LIT ’R1.6’ ;FCR CKCTL1 bit

wdww LIT ’R1.7’ ;FCR WDWW bit

be0 LIT ’R1.8’ ;FCR BE0 bit

be1 LIT ’R1.9’ ;FCR BE1 bit

busy LIT ’R15.2’ ;FCR BUSY bit

fcvpp LIT ’R15.3’ ;FCR FCVPP bit

vppriv LIT ’R15.4’ ;FCR VPPRIV bit

PROGRAMMING FLASH MEMORY

13/20

;ERASE ROUTINE: erasure of bank 1, this routine assumes that the bank

;______________ was previously programmed to 0000h before erasure

;************* INITIAL CONDITIONS: ***************** *********************

;

; ALL WORDS IN BANK 1 HAVE TO BE PROGRAMMED AT ”ZERO”

; WITH THE PRESTO F PROGRAM WRITE ALGORITHM

;

;*** ******************************

f_erase:

;

; REGISTERS INITIALIZATION

;

mov lpcnt, #ALL0 ; reset algo. loop counter

mov fcrval, #ALL0 ; reset FCR data value

mov unlock, #UNLOCK ; load unlock data

mov val10u, #WAIT10 ; load 10 µs loop data

mov val4u, #WAIT4 ; load 4 µs loop data

mov wait_cnt,#ALL0 ; reset wait loop counter

mov all1, #ALL1 ; set R2 to FFFFh

mov fl_scan,#BLK_START ; load first bank address

;

; UNLOCK SEQUENCE FOR ENTERING IN THE PROGRAM MODE

;

mov FCR, unlock ; first instruction

mov [unlock],unlock ; second instruction of unlock

; sequence to enter in the program mode

calla cc_UC, wait10 ; time out 10 µs to set internal signals

;

; FCR SET UP FOR ERASURE

;

bset fwe ; FWE=1) these two instructions

bset fee ; FEE=1) define the erasure

bclr ckctl0 ; CKCTL0=0)

bset ckctl1 ; CKCTL1=1) define the pulse

bclr wdww ; WDWW=0

bset be0 ; BE0=1)

bclr be1 ; BE1=0) select bank 1

bset fwmset ; FWMSET=1 enable program mode

mov FCR, fcrval ; load FCR set up

PROGRAMMING FLASH MEMORY

14/20

;

; TEST VPP

;

mov fcrrd, FCR ; read FCR

jnb vppriv, vpp_fail ; test if VPP is high

;

; FLASH ERASURE

;

erase:

add lpcnt, #01h ; increment the algo. loop counter

cmp lpcnt, #MAXLOOP2 ; compare to the limit

jmpr cc_Z, eras_fail ; jump if limit has been reached

mov [fl_scan],fl_scan ; erase command, erasure start

waiter: mov fcrrd, FCR ; read FCR

jb busy, waiter ; jump if erasure is not ended

;

; TEST VPP

;

jb fcvpp, vpp_fail ; jump if FCVPP is set, to know if

; a fail occured because VPP did not

; have the correct value during

; erasure

;

; ERASE VERIFY MODE

;

read_ff:cmp all1, [fl_scan] ; first instruction for EVM

calla cc_UC, wait4 ; time out 4 µs

cmp all1, [fl_scan] ; second instruction for EVM

jmpr cc_NZ, erase ; jump if the word is not erased

add fl_scan,#02h ; increment the bank pointer

cmp fl_scan,#FL_SIZE ; compare to the last bank address

jmpr cc_NZ, read_ff ; jump to verify the next address

;

; EXIT OF PROGRAM MODE

;

mov FCR, #ALL0 ; reset FCR and exit program mode

ret ; return to main program

PROGRAMMING FLASH MEMORY

15/20

;32-BIT PROGRAMMING ROUTINE: programming of address 0000Ch with 08642h

;____________________________ and address 0000Eh with 09753h

bit32prg:

;

; REGISTER INITIALIZATION

;

mov lpcnt, #ALL0 ; reset algo. loop counter

mov fcrval, #ALL0 ; reset FCR data value

mov unlock, #UNLOCK ; load unlock data

mov val10u, #WAIT10 ; load 10 µs loop data

mov val4u, #WAIT4 ; load 4 µs loop data

mov wait_cnt,#ALL0 ; reset wait loop counter

mov all1, #ALL1 ; set R2 to FFFF

mov datal, #DATAL ; load data for even address

mov datah, #DATAH ; load data for odd address

mov addrev, #ADDREV ; load even address

mov addrod, #ADDROD ; load odd address

;

; UNLOCK SEQUENCE FOR ENTERING IN THE PROGRAM MODE

;

mov FCR, unlock ; first instruction

mov [unlock],unlock ; second instruction of unlock

; sequence to enter in the program mode

calla cc_UC, wait10 ; time out 10 µs to set internal signals

;

; FCR SET UP FOR PROGRAMMING

;

bset fwe ; FWE=1 define programming operation

bclr ckctl0 ; CKCTL0=0)

bclr ckctl1 ; CKCTL1=0) define the pulse width

bset wdww ; WDWW=1 define 32-bit configuration

bset fwmset ; FWMSET=1 confirm program mode

mov FCR, fcrval ; load FCR set up

;

; TEST VPP

;

mov fcrrd, FCR ; read FCR

jnb vppriv, vpp_fail ; test if VPP is high

PROGRAMMING FLASH MEMORY

16/20

; FLASH PROGRAMMING

;

prog:

add lpcnt, #01h ; increment the algo. loop counter

cmp lpcnt, #MAXLOOP1 ; compare to the limit

jmpr cc_Z, prg_fail ; jump if limit has been reached

mov [addrev],datal ; programming command, even word

mov [addrev],datah ; programming command, odd word

waitpr:mov fcrrd, FCR ; read FCR

jb busy, waitpr ; jump if programming is not ended

;

; TEST VPP

;

jb fcvpp, vpp_fail ; jump if FCVPP is set, to know if

; a fail occured because VPP did not

; have the correct value during

; programming

;

; PROGRAM VERIFY MODE

;

cmp datal, [addrev] ; first instruction for PVM (even)

calla cc_UC, wait4 ; time out 4 µs

cmp datal, [addrev] ; second instruction for PVM

jmpr cc_NZ, prog ; jump if the word is not correctly

; programmed, restart programming

cmp datah, [addrod] ; first instruction for PVM (odd)

calla cc_UC, wait4 ; time out 4 µs

cmp datah, [addrod] ; second instruction for PVM

jmpr cc_NZ, prog ; jump if the word is not correctly

; programmed, restart programming

;

; EXIT OF PROGRAM MODE

;

mov FCR, #ALL0 ; reset FCR and exit program mode

ret ; return to main program

PROGRAMMING FLASH MEMORY

17/20

;16-BIT PROGRAMMING ROUTINE: programming of address 0000Ch with 08642h

;____________________________

bit16prg:

;

; REGISTERS INITIALIZATION

;

mov lpcnt, #ALL0 ; reset algo. loop counter

mov fcrval, #ALL0 ; reset FCR data value

mov unlock, #UNLOCK ; load unlock data

mov val10u, #WAIT10 ; load 10 µs loop data

mov val4u, #WAIT4 ; load 4 µs loop data

mov wait_cnt,#ALL0 ; reset wait loop counter

mov all1, #ALL1 ; set R2 to FFFF

mov datal, #DATAL ; load data

mov addrev, #ADDREV ; load address

;

; UNLOCK SEQUENCE FOR ENTERING IN THE PROGRAM MODE

;

mov FCR, unlock ; first instruction

mov [unlock],unlock ; second instruction of unlock

; sequence to enter into the program mode

calla cc_UC, wait10 ; time out 10 µs to set internal signals

;

; FCR SET UP FOR PROGRAMMING

;

bset fwe ; FWE=1 define programming operation

bclr ckctl0 ; CKCTL0=0)

bclr ckctl1 ; CKCTL1=0) define the pulse width

bclr wdww ; WDWW=0 define 16-bit configuration

bset fwmset ; FWMSET=1 confirm program mode

mov FCR, fcrval ; load FCR set up

;

; TEST VPP

;

mov fcrrd, FCR ; read FCR

jnb vppriv, vpp_fail ; test if VPP is high

PROGRAMMING FLASH MEMORY

18/20

; FLASH PROGRAMMING

;

progw:

add lpcnt, #01h ; increment the algo. loop counter

cmp lpcnt, #MAXLOOP1 ; compare to the limit

jmpr cc_Z, prg_fail ; jump if limit has been reached

mov [addrev], datal ; programming command

waitprw:mov fcrrd, FCR ; read FCR

jb busy, waitprw ; jump if programming is not ended

;

; TEST VPP

;

jb fcvpp, vpp_fail ; jump if FCVPP is set, to know if

; a fail occured because VPP did not

; have the correct value during

; programming

;

; PROGRAM VERIFY MODE

;

cmp datal, [addrev] ; first instruction for PVM

calla cc_UC, wait4 ; time out 4 µs

cmp datal, [addrev] ; second instruction for PVM

jmpr cc_NZ, progw ; jump if the word is not correctly

; programmed, restart programming

;

; EXIT OF PROGRAM MODE

;

mov FCR, #ALL0 ; reset FCR and exit program mode

ret ; return to main program

PROGRAMMING FLASH MEMORY

19/20

SUBROUTINES USED IN WRITING OPERATION

___________________ __________________

wait4:add wait_cnt,#01h ; increment counter

cmp wait_cnt,val4u ; compare with final value

jmpr cc_NZ, wait4 ; jump if not equal

mov wait_cnt,#ALL0 ; reset counter

ret

wait10:add wait_cnt,#01h ; increment counter

cmp wait_cnt,val10u ; compare with final value

jmpr cc_NZ, wait10 ; jump if not equal

mov wait_cnt,#ALL0 ; reset counter

ret

vpp_fail:

; VPP FAIL ROUTINE DEFINED BY THE USER

prg_fail:

; PROGRAM FAIL ROUTINE DEFINED BY THE USER

eras_fail:

; ERASE FAIL ROUTINE DEFINED BY THE USER

PROGRAMMING FLASH MEMORY

20/20

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-THOMSON SHALL NOT
BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT
TO ANY CLAIMS ARISING FROM USE OF THE SOFTWARE.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no
responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights
of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice.
This publication supersedes and replaces all information previously supplied.<R> SGS-THOMSON Microelectronics
products are not authorized for use as critical components in life support devices or systems without the express written
approval of SGS-THOMSON Microelectronics.

 1995 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I2C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I2C Patent.
Rights to use these components in an I2C system is granted provided that the system conforms to the I2C Standard Spec-

ification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

