

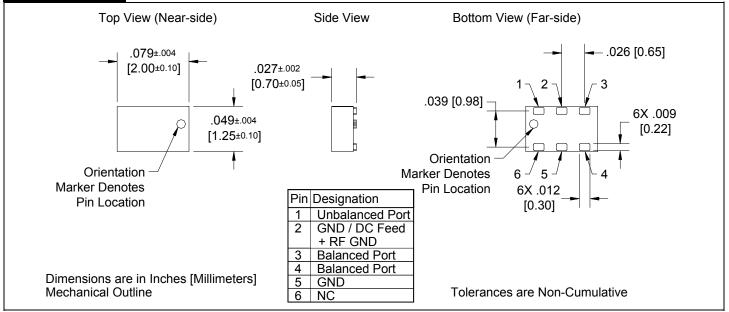






# **Ultra Low Profile 0805 Balun** 50Ω to 50Ω Balanced

### **Description**


The BD2130J5050A00 is a low profile sub-miniature balanced to unbalanced transformer designed for differential inputs and output locations on next generation wireless chipsets in an easy to use surface mount package covering 802.11b+g+n. The BD2130J5050A00 is ideal for high volume manufacturing and is higher performance than traditional ceramic and lumped element baluns. The BD2130J5050A00 has an unbalanced port impedance of  $50\Omega$  and a  $50\Omega$  balanced port impedance. This transformation enables single ended signals to be applied to differential ports on modern semiconductors. The output ports have equal amplitude (-3dB) with 180 degree phase differential. The BD2130J5050A00 is available on tape and reel for pick and place high volume manufacturing.

**Detailed Electrical Specifications\*:** Specifications subject to change without notice.

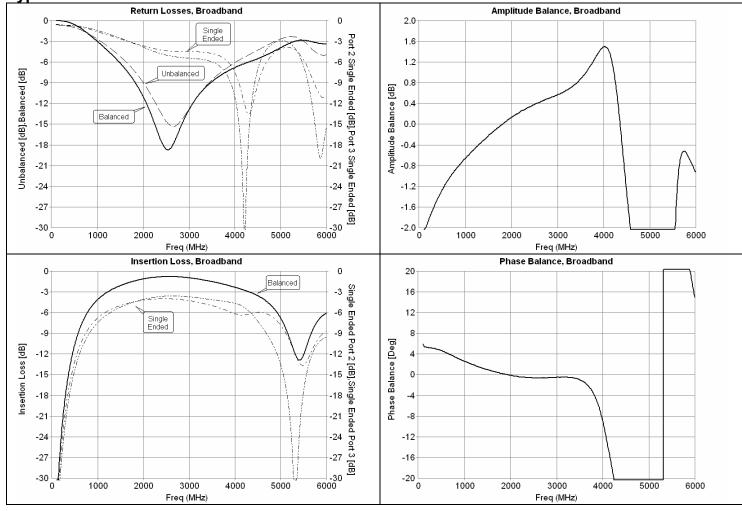
| Features:                                                                                  |                       | ROOM (25°C) |      |      |      |      |     |         |
|--------------------------------------------------------------------------------------------|-----------------------|-------------|------|------|------|------|-----|---------|
| • 2.1 – 3.0 GHz                                                                            | Parameter             | Min.        | Тур. | Max  | Min. | Тур. | Max | Unit    |
| 0.7mm Height Profile     50.0hm to 2 x 25.0hm                                              | Frequency             | 2.4         |      | 2.5  | 2.1  |      | 3.0 | GHz     |
| <ul> <li>50 Ohm to 2 x 25 Ohm</li> <li>802.11 b &amp; g +n Compliant</li> </ul>            | Unbalanced Port Imp.  |             | 50   |      |      | 50   |     | Ω       |
| • Low Insertion Loss                                                                       | Balanced Port Imp.**  |             | 50   |      |      | 50   |     | Ω       |
| • DCS, PCS & UMTS                                                                          | Return Loss           | 12          | 17   |      | 10   | 12   |     | dB      |
| • Input to Output DC Isolation                                                             | Insertion Loss***     |             | 0.75 | 0.9  |      | 1.0  | 1.2 | dB      |
| <ul><li>Surface Mountable</li><li>Tape &amp; Reel</li><li>Non-conductive Surface</li></ul> | Amplitude Balance     |             | 0.45 | 0.65 |      | 0.7  | 1.0 | dB      |
|                                                                                            | Phase Balance         |             | 2    | 5    |      | 2    | 5   | Degrees |
| RoHS Compliant                                                                             | Power Handling        |             |      | 2    |      |      | 2   | Watts   |
|                                                                                            | Operating Temperature | -55         |      | +85  | -55  |      | +85 | °C      |

<sup>\*</sup> Insertion Loss stated at room temperature (Insertion Loss is approximately 0.1 dB higher at +85 °C)

## **Outline Drawing**







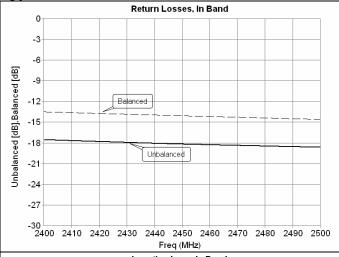

Available on Tape and Reel for Pick and Place Manufacturing.

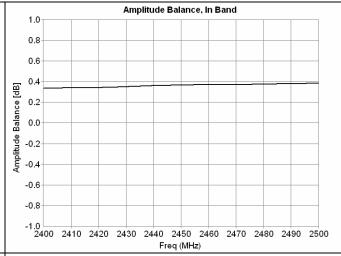
USA/Canada: (315) 432-8909 Toll Free: (800) 411-6596 +44 2392-232392 Europe:

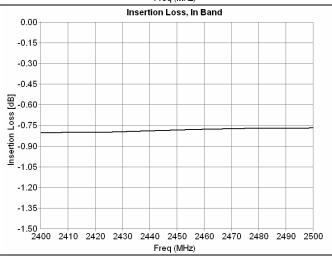


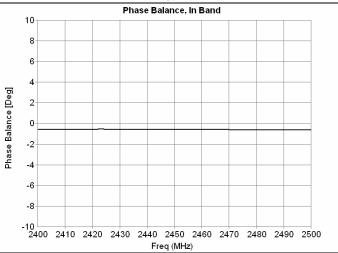
Typical Broadband Performance: 0 GHz. to 6.0 GHz.






Typical Performance: 2400 MHz. to 2500 MHz.









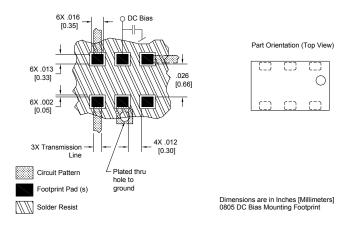


Rev A



### **Mounting Configuration:**

In order for Xinger surface mount components to work optimally, the proper impedance transmission lines must be used to connect to the RF ports. If this condition is not satisfied, insertion loss, Isolation and VSWR may not meet published specifications.


All of the Xinger components are constructed from ceramic filled PTFE composites which possess excellent electrical and mechanical stability having X and Y thermal coefficient of expansion (CTE) of 17 ppm/°C.

An example of the PCB footprint used in the testing of these parts is shown below. An example of a DC-biased footprint is also shown below. In specific designs, the transmission line widths need to be adjusted to the unique dielectric coefficients and thicknesses as well as varying pick and place equipment tolerances.

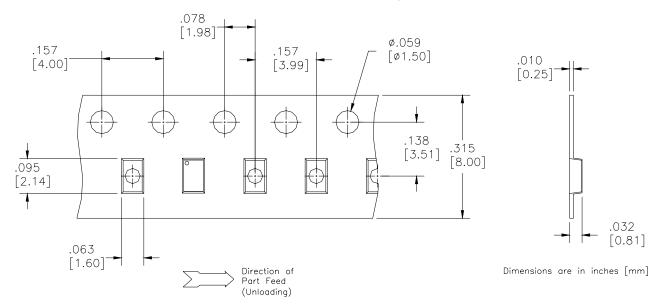
### **No Bias Footprint**

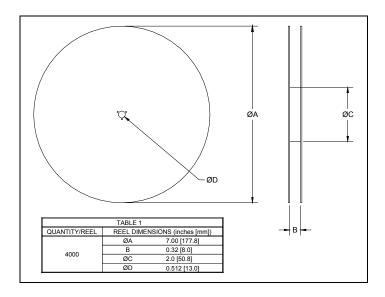
# Part Orientation (Top View) 6X .011 [0.27] 6X .002 [0.05] Plated thru hole to ground Circuit Pattern Footprint Pad (s) Dimensions are in Inches [Millimeters] 0805 Standard Mounting Footprint

### **DC Bias Footprint**



USA/Canada: Toll Free: Europe: (315) 432-8909 (800) 411-6596 +44 2392-232392


Available on Tape and Reel for Pick and Place Manufacturing.






### **Packaging and Ordering Information**

Parts are available in reel and are packaged per EIA 481-2. Parts are oriented in tape and reel as shown below. Minimum order quantities are 4000 per reel. See Model Numbers below for further ordering information.









# BD 2425 J 50 100 A 00

| Function                                                                                                                                       | Frequency                                                                                                                                                                                                                                                                                                                                                                                      | Package<br>Dimensions                                                                                                                                                                        | Unbalanced<br>Impedance    | Balanced Impedance<br>+ Coupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Plating<br>Finish        | Codes |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|
| B = Balun<br>BD = Balun + DC<br>F = Filter<br>FB = Filter / Balun<br>C = 3dB Coupler<br>DC = Directional<br>J = RF Jumper<br>X = RF cross over | 0110 = 100 - 1000 MHz<br>0810 = 800 - 1000 MHz<br>0922 = 950 - 2150 MHz<br>0826 = 800 - 6200 MHz<br>1222 = 1200 - 2200 MHz<br>1416 = 1400 - 1600 MHz<br>1722 = 1700 - 2200 MHz<br>2326 = 2300 - 2600 MHz<br>2425 = 2400 - 2500 MHz<br>3150 = 3100 - 5000 MHz<br>3436 = 3400 - 3600 MHz<br>4859 = 4800 - 5900 MHz<br>5153 = 5100 - 5300 MHz<br>5159 = 5100 - 5900 MHz<br>5759 = 5700 - 5900 MHz | A = 150 x 150 mils (4mm × 4mm) C = 120 x 120 mils (3mm × 3mm) E = 100 x 80 mils (2.5mm × 2mm) J = 80 x 50 mils (2mm × 1.25mm) L = 60 x 30 mils (1.5mm × 0.75mm) N = 40 x 40 mils (1mm × 1mm) | 50 = 50 Ohm<br>75 = 75 Ohm | $25 = 25~\Omega~Balanced \\ 30 = 30~\Omega~Balanced \\ 50 = 50~\Omega~Balanced \\ 75 = 75~\Omega~Balanced \\ 100 = 100~\Omega~Balanced \\ 200 = 200~\Omega~Balanced \\ 200 = 200~\Omega~Balanced \\ 300 = 300~\Omega~Balanced \\ 400 = 400~\Omega~Balanced \\ 400 = 30Balanced \\ 20 = 20Balanced \\ 30 = 30Balanced \\ 30 = 30Balanced \\ 30 = 30Balanced \\ 30 = 30Balanced \\ 30 = 20Balanced \\ 30 = 30Balanced \\ 30 = 30B$ | A = Gold<br>P = Tin-Lead |       |

USA/Canada: Toll Free: Europe:

(315) 432-8909 (800) 411-6596 +44 2392-232392



