
March 2000 1/5

AN1259
APPLICATION NOTE

M8813F2Y FLASH+PSD and
M48T35Y TIMEKEEPER Demonstration

FLASH+PSD, from STMicroelectronics, is a family of Flash memory based programmable system devices
(PSDs) for 8 bit micro-controllers. The M8813F2Y-90K1 is an 8-bit FLASH+PSD with 128Kx8 bit of
primary Flash memory, 8Kx8 bit of secondary boot Flash memory, 2Kx8 bit of SRAM, 27 I/O port pins, and
a JTAG interface for in system programming (ISP).

The 80C32-based M8DK8051 Evaluation Board, shown in Figure 1, illustrates the versatility of the
FLASH+PSD. For example, it illustrates its extensibility to include extra battery backed SRAM, and a real
time clock (RTC), in its address space. This has been added in the form of a 32KX8 bit CMOS
TIMEKEEPER SRAM, the M48T35Y-70PC1. This has an on-chip RTC, which allows the time of day to be
read continuously out to the liquid crystal display on the evaluation board. This document describes how
this can be achieved.

Figure 1. Layout of the 80C32-based M8DK8051-K52-110 Evaluation Board

Prototype
Area

LCD Display

Serial
Port

P
3

P
4

Reset

CSI active
CSI non-active

JTAG, P2

co
nn

ec
to

r,
O

P
C

1

co
nn

ec
to

r,
O

P
C

2

U2

1 1

U3

TP_PS

TP1

TP_GND

JP2

P5

JP1
NORMAL

MEAS uA
MEAS ma

JTAG
NO JTAG

JTAG, P1

no chain
chain

on off

psd rst
supv rst

9V Battery
Holder

U5

JP4

INT
EXTS3

JP3

JP1

JP3

S2 S1

DS2DS3

P
1

P
2

M48T35
TIMEKEEPER

80C32
MCU

 M8813F2Y

AI03762

AN1259 - APPLICATION NOTE

2/5

The evaluation board is delivered with C code already embedded. This can be modified, as described
next.

First, a file can be created, called timekeeper.h, in which to define the following variables and a function
prototype:

uchar xdata myear _at_ 0x7fff;

uchar xdata mmonth _at_ 0x7ffe;

uchar xdata mdate _at_ 0x7ffd;

uchar xdata mday _at_ 0x7ffc;

uchar xdata mhour _at_ 0x7ffb;

uchar xdata mminutes _at_ 0x7ffa;

uchar xdata mseconds _at_ 0x7ff9;

uchar xdata mcontrol _at_ 0x7ff8;

void gettimekeeper (void);

The data type xdata is one that the Keil C compiler recognizes for the 80C31. It stands for external data.
The variables are defined for the registers of the M48T35 (as shown in Table 1) and are used in the
gettimekeeper() function.

Table 1. M48T35 Register Map

Notes: 1. S = Sign bit
2. FT = Frequency Test bit (must be reset to 0 for normal clock operation when powered-up
3. R = Read bit
4. W = Write bit
5. ST = Stop bit
6. 0 = must be reset to 0

Address
Data

Function
Range

(in BCD
Format)D7 D6 D5 D4 D3 D2 D1 D0

7FFFh 10 Years Year Year 00-99

7FFEh 0 0 0 10M Month Month 01-12

7FFDh 0 0 10 Date Date Date 01-31

7FFCh 0 FT 0 0 0 Day Day 01-7

7FFBh 0 0 10 Hours Hours Hour 00-23

7FFAh 0 10 Minutes 10 Minutes Minute 00-59

7FF9h ST 10 Seconds Seconds Second 00-59

7FF8h W R S Calibration Control

3/5

AN1259 - APPLICATION NOTE

The first code fragment was added to evaltest.c:

lcd_clear();

lcd_string_display(0,0,”The time is:”);

while(1)

{

gettimekeeper();

}

The LCD is a 2x16 character display. It accepts and displays ASCII characters. The lcd_clear() function
clears the display by writing the space character (0x20h) to all 32 locations of the LCD display, and is
already supplied with the source code for the board. The function lcd_string_display(0,0,”The time is:”);
writes “The time is:” to the first line of the display at the first position. The program then goes into an infinite
loop in which the function gettimekeeper(), to get and display the time, is called over and over again. This
infinite loop gives the display the appearance of a digital clock.

The next code fragment defines the function gettimekeeper(), and can be added to the other functions in
evl_io.c:

void gettimekeeper(void)

{

uchar chr;

chr=(mhour&0xf0)/0x10|0x30;

lcd_char_display(1,0,chr);

chr=(mhour&0x0f)|0x30;

lcd_char_display(1,1,chr);

lcd_char_display(1,2, ’:’);

chr=(mminutes&0xf0)/0x10|0x30;

lcd_char_display(1,3,chr);

chr=(mminutes&0x0f)|0x30;

lcd_char_display(1,4,chr);

lcd_char_display(1,5, ’:’);

chr=(mseconds&0xf0)/0x10|0x30;

lcd_char_display(1,6,chr);

chr=(mseconds&0x0f)|0x30;

lcd_char_display(1,7,chr);

}

This routine reads the TIMEKEEPER registers, converts the values to ASCII characters, ready to be sent
to the appropriate position on the LCD display. For example, the first line of this function reads the hour
byte from location 0x7FFBh. This byte contains the hour of the day, which consists of two binary coded
decimal digits in the upper and lower nibbles of the byte. The first digit is converted to an ASCII character
by ANDing it with 0xF0. The data is then shifted right four places by dividing the byte by 16 (0x10). Finally
the byte is ORed with 0x30 to form the ASCII byte to be sent to the display. The lower nibble is converted

AN1259 - APPLICATION NOTE

4/5

to ASCII in the same way except it is masked, by ANDing it with 0x0F, and does not need any shifting
right. After each conversion, the byte is sent to the bottom row of the display in the right position using the
lcd_char_display() function that comes with the source for the board. The remaining digits are sent to the
display in the same manner. The colons (:) are sent to the display to give the format of the time the correct
appearance.

Figure 2 shows the memory map for this application. The program is stored in, and executed from,
CSBOOT0.

Figure 2. Memory Map for the 80C32

There is one additional change that needs to be made to the abel file. The SRAM registers are based at
0x7FF0 in the C code. This means they must be mapped into the address space in the abel file for the
project. This can be achieved by adding a term to the chip select (cs_ram) equation in the abel file.

Appearance of the equation before the change has been made:

cs_ram_ = ((address >= ^h0000) & (address <= ^h3FFF) & (page == X) & !es0 & es1)

#((address >= ^h8000) & (address <= ^hBFFF) & (page == X)& !(!es0 & es1))

Appearance of the equation after the change has been made:

cs_ram_ = ((address >= ^h0000) & (address <= ^h3FFF) & (page == X) & !es0 & es1)

#((address >= ^h8000) & (address <= ^hBFFF) & (page == X)& !(!es0 & es1))

#((address >= ^h7FF0) & (address <= ^h7FFF) & (page == X));

0000

2000

FFFF

4000

E000

CSBOOT1
8 KByte

CSBOOT0
8 KByte

C000

8000

A000

80C32 boots from here

Program
Memory

FS7

16 KByte

External
SRAM

16 KByte

Data
Memory

4A00

4B00

4100

Devices

CSIOP regs

LCD

PSD
RAM

2 KByte

4200

AI03761

5/5

AN1259 - APPLICATION NOTE

For current information on M88 FLASH+PSD products, please consult our pages on the world wide web:
www.st.com/flashpsd

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.flashpsd@st.com (for application support on FLASH+PSD)

apps.nvram@st.com (for application support on TIMEKEEPER)

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

 2000 STMicroelectronics - All Rights Reserved

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain -
Sweden - Switzerland - United Kingdom - U.S.A.

http:// www.st.com

