
21-S3-CK215/FK215-092002

USER'S MANUAL

S3CK215/FK215
CalmRISC

8-Bit CMOS
Microcontroller

Revision 1

S3CK215/FK215 PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

OVERVIEW

The S3CK215/FK215 single-chip CMOS microcontroller is designed for high performance using Samsung's new
8-bit CPU core, CalmRISC.

CalmRISC is an 8-bit low power RISC microcontroller. Its basic architecture follows Harvard style, that is, it has
separate program memory and data memory. Both instruction and data can be fetched simultaneously without
causing a stall, using separate paths for memory access. Represented below is the top block diagram of the
CalmRISC microcontroller.

PRODUCT OVERVIEW S3CK215/FK215

1-2

BBUS[7:0]

20

Program Memory Address
Generation Unit

PC[19:0]

Hardware
Stack

HS[0]

HS[15]

8

8

R0

R3

R1

R2

ALU

ABUS[7:0]

ALUL ALUR

PA[19:0]

PD[15:0]

IDL0

IDL1

SR0SR1

ILHILX ILL

SPR

IDH

DO[7:0]

DI[7:0]

GPR

Data Memory
 Address

Generation Unit
DA[15:0]

20

Flag

RBUS

TBH TBL

Figure 1-1. Top Block Diagram

S3CK215/FK215 PRODUCT OVERVIEW

1-3

The CalmRISC building blocks consist of:

— An 8-bit ALU

— 16 general purpose registers (GPR)

— 11 special purpose registers (SPR)

— 16-level hardware stack

— Program memory address generation unit

— Data memory address generation unit

Sixteen GPRs are grouped into four banks (Bank0 to Bank3), and each bank has four 8-bit registers (R0, R1, R2,
and R3). SPRs, designed for special purposes, include status registers, link registers for branch-link instructions,
and data memory index registers. The data memory address generation unit provides the data memory address
(denoted as DA[15:0] in the top block diagram) for a data memory access instruction. Data memory contents are
accessed through DI[7:0] for read operations and DO[7:0] for write operations. The program memory address
generation unit contains a program counter, PC[19:0], and supplies the program memory address through
PA[19:0] and fetches the corresponding instruction through PD[15:0] as the result of the program memory
access. CalmRISC has a 16-level hardware stack for low power stack operations as well as a temporary storage
area.

Instruction Fetch
(IF)

Instruction Decode/
Data Memory Access

(ID/MEM)

Execution/Writeback
(EXE/WB)

Figure 1-2. CalmRISC Pipeline Diagram

CalmRISC has a 3-stage pipeline as described below:

As can be seen in the pipeline scheme, CalmRISC adopts a register-memory instruction set. In other words, data
memory where R is a GPR can be one operand of an ALU instruction as shown below:

The first stage (or cycle) is the Instruction fetch stage (IF for short), where the instruction pointed by the program
counter, PC[19:0] , is read into the Instruction Register (IR for short). The second stage is the Instruction Decode
and Data Memory Access stage (ID/MEM for short), where the fetched instruction (stored in IR) is decoded and
data memory access is performed, if necessary. The final stage is the Execute and Write-back stage (EXE/WB),
where the required ALU operation is executed and the result is written back into the destination registers.

Since CalmRISC instructions are pipelined, the next instruction fetch is not postponed until the current instruction
is completely finished but is performed immediately after completing the current instruction fetch. The pipeline
stream of instructions is illustrated in the following diagram.

PRODUCT OVERVIEW S3CK215/FK215

1-4

 EXE/WBIF

IF

IF

IF IF

IF

IF

ID/MEM

ID/MEM

ID/MEM

ID/MEM

ID/MEM

ID/MEM

 EXE/WB

 EXE/WB

 EXE/WB

 EXE/WB

 EXE/WB

/ 1

/ 2

/ 3

/ 4

/ 6

/ 5

Figure 1-3. CalmRISC Pipeline Stream Diagram

Most CalmRISC instructions are 1-word instructions, while same branch instructions such as long “call” and “jp”
instructions are 2-word instructions. In Figure 1-3, the instruction, I4, is a long branch instruction, and it takes two
clock cycles to fetch the instruction. As indicated in the pipeline stream, the number of clocks per instruction
(CPI) is 1 except for long branches, which take 2 clock cycles per instruction.

S3CK215/FK215 PRODUCT OVERVIEW

1-5

FEATURES

CPU

• CalmRISC core (8-bit RISC architecture)

Memory

• ROM: 8K-word (16K-byte)

• RAM: 1024-byte (excluding LCD data RAM)

Stack

• Size: maximum 16 word-level

39 I/O Pins

• 39 configurable I/O pins

Basic Timer

• Overflow signal makes a system reset

• Watchdog function

16-bit Timer/Counter 0

• Programmable 16-bit timer

• Interval, capture, PWM mode

• Match/capture, overflow interrupt

16-bit Timer/Counter 1

• Programmable 16-bit timer

• Match interrupt generator

8-bit Timer/Counter 2

• Programmable 8-bit timer

• Interval, capture, PWM mode

• Match/capture, overflow interrupt

8-bit Timer/Counter 3

• Programmable 8-bit timer

• Match interrupt/carrier frequency generator

Watch Timer

• Real-time and interval time measurement

• Clock generation for LCD

• Four frequency outputs for buzzer sound
(0.5/1/2/4 kHz at 32.768 kHz)

LCD Controller/Driver

• 30 segments and 4 common terminals

• Static, 1/2 duty, 1/3 duty, 1/4 duty

Voltage Regulator and Booster

• LCD display voltage supply

• Capacitor/Resistor bias selectable

• 3.0 V drive

Battery Level Detector

• Programmable detection voltage
(2.4 V, 3.0 V, 4.0 V)

8-Bit Serial I/O Interface

• 8-bit transmit/receive mode

• 8-bit receive mode

• LSB-first/MSB-first transmission selectable

• Internal/external clock source

A/D Converter

• Eight analog input channels

• 25 µs conversion speed at 8 MHz

• 10-bit conversion resolution

• Operating voltage: 2.7 V to 5.5 V

D/A Converter

• One analog output channel

• 9-bit conversion resolution (R-2R)

• Operating voltage: 2.7 V to 5.5 V

Oscillation Sources

• Crystal, ceramic, RC for main clock

• Crystal for sub clock

• Main clock frequency 0.4–8 MHz

• Sub clock frequency: 32.768 kHz

• CPU clock divider circuit
(divided by 1, 2, 4, 8, 16, 32, 64 or 128)

PRODUCT OVERVIEW S3CK215/FK215

1-6

Two Power-Down Modes

• Idle (only CPU clock stops)

• Stop (System clock stops)

Interrupts

• 2 Vectors, 13 interrupts

Instruction Execution Times

• 125 ns at 8 MHz (main clock)

• 30.5 µs at 32.768 kHz (sub clock)

Operating Temperature Range

• - 25 °C to 85 °C

Operating Voltage Range

• 2.0 V to 5.5 V at 2 MHz (2MIPS)

• 2.4 V to 5.5 V at 4 MHz (4MIPS)

• 3.0 V to 5.5 V at 8 MHz (8MIPS)

Two Amplifiers

• Microphone and filter

8 ×× 8 Multiplication

• Signed by signed, unsigned by unsigned

Package Type

• 80-pin QFP-1420

S3CK215/FK215 PRODUCT OVERVIEW

1-7

BLOCK DIAGRAM

RESET

OSC,
Reset

LCD
Driver

Voltage
Detector

CB
CA

VBLDIN

P4.0-P4.7/
SEG16-SEG23

16-Bit Timer/
Counter 0

10-Bit A/D
Converter

P0.0-P0.3/
INT0-INT3

I/O Port 1

XIN, XTIN

COM0-COM3

SEG0-SEG15

SEG16-SEG29/
P4.0-P5.5

16-Bit Timer/
Counter 1

8-Bit Timer/
Counter 2

8-Bit Timer/
Counter 3

I/O Port 0

I/O Port 2

I/O Port 3

9-Bit D/A
Converter

T0OUT/T0PWM/P1.0
T0CLK/P1.1
T0CAP/P1.2

T2OUT/T2PWM/P3.1
T2CLK/P3.2
T2CAP/P3.3

T3PWM/P3.0

P1.0-P1.7

AVREF

AVSS

P2.0-P2.7/
AD0-AD7

P3.0-P3.3
P3.4 (CLKOUT)

DAO

I/O Port and Interrupt Control

Calm8 RISC CPU

1024 Byte
Register File

16-KByte
ROM

Basic
Timer

Watch
Timer

XOUT, XTOUT

BUZ/P1.4

Voltage
Booster

Serial
I/O Port

I/O Port 4

I/O Port 5

8 × 8
Multiplication

Two
Amplifiers

VLC0-VLC2

FILIN, MICIN, Vref

FILOUT, MICOUT

P5.0-P5.5/
SEG24-SEG29

SO/P1.5
SCK/P1.6

SI/P1.7

Figure 1-4. Block Diagram

PRODUCT OVERVIEW S3CK215/FK215

1-8

PIN ASSIGNMENT

SEG24/P5.0
SEG25/P5.1
SEG26/P5.2
SEG27/P5.3
SEG28/P5.4
SEG29/P5.5

P3.0/T3PWM
P3.1/T2OUT/T2PWM

P3.2/T2CLK
P3.3/T2CAP

P3.4/CLKOUT
VDD

VSS

XOUT

XIN

TEST
XTIN

XTOUT

RESET
DAO

FILIN
FILOUT

Vref
MICIN

S
E

G
23

/P
4.

7
S

E
G

22
/P

4.
6

S
E

G
21

/P
4.

5
S

E
G

20
/P

4.
4

S
E

G
19

/P
4.

3
S

E
G

18
/P

4.
2

S
E

G
17

/P
4.

1
S

E
G

16
/P

4.
0

S
E

G
15

S
E

G
14

S
E

G
13

S
E

G
12

S
E

G
11

S
E

G
10

S
E

G
9

S
E

G
8

M
IC

O
U

T
P

0.
0/

IN
T

0
P

0.
1/

IN
T

1
P

0.
2/

IN
T

2
P

0.
3/

IN
T

3
P

1.
0/

T
0O

U
T

/T
0P

W
M

P
1.

1/
T

0C
LK

P
1.

2/
T

0C
A

P
P

1.
3

P
1.

4/
B

U
Z

P
1.

5/
S

O
P

1.
6/

S
C

K
P

1.
7/

S
I

P
2.

0/
A

D
0

P
2.

1/
A

D
1

P
2.

2/
A

D
2

SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM3
COM2
COM1
COM0
VLC2

VLC1

VLC0

CA
CB
AVSS

AVREF

P2.7/AD7/VBLDIN

P2.6/AD6
P2.5/AD5
P2.4/AD4
P2.3/AD3

S3CK215/S3FK215

(80-QFP)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

Figure 1-5. Pin Assignment (80-QFP)

S3CK215/FK215 PRODUCT OVERVIEW

1-9

PIN DESCRIPTIONS

Table 1-1. Pin Descriptions

Pin
Names

Pin
Type

Pin
Description

Circuit
Type

Pin
Numbers

Share
Pins

P0.0
P0.1
P0.2
P0.3

I/O I/O port with bit programmable pins;
Schmitt trigger input or output mode
selected by software; software
assignable pull-up resistors.
(with noise filter and interrupt control).

D-4 26
27
28
29

INT0
INT1
INT2
INT3

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

I/O I/O port with bit programmable pins;
Schmitt trigger input or output mode
selected by software; Open-drain output
mode can be selected by software;
software assignable pull-up resistors.

E-4 30
31
32
33
34
35
36
37

T0OUT/T0PWM
T0CLK
T0CAP

-
BUZ
SO

SCK
SI

P2.0-P2.6
P2.7

I/O I/O port with bit programmable pins;
normal input or output mode selected by
software; software assignable pull-up
resistors.

F-10
F-18

38-44
45

AD0-AD6
VBLDIN/AD7

P3.0
P3.1
P3.2
P3.3
P3.4

I/O I/O port with bit programmable pins;
Schmitt trigger input or push-pull output
with software assignable pull-up
resistors.

D-3 7-11 T3PWM
T2OUT/T2PWM

T2CLK
T2CAP

CLKOUT

P4.0-P4.7 I/O I/O port with bit programmable pins;
Push-pull or open-drain output and input
with software assignable pull-up
resistors.

H-14 73-80 SEG16-SEG23

P5.0-P5.5 I/O Have the same characteristic as port 4. H-14 1-6 SEG24-SEG29

AD0-AD6
AD7

I/O A/D converter analog input channels F-10
F-18

38-44
45

P2.0-P2.6
P2.7/VBLDIN

AVREF – A/D converter reference voltage – 46 –

AVSS – A/D converter ground – 47 –

INT0-INT3 I/O External interrupt input pins D-4 26-29 P0.0-P0.3

RESET I System reset pin B 19 –

TEST I Test signal input
(must be connected to VSS)

– 16 –

PRODUCT OVERVIEW S3CK215/FK215

1-10

Table 1-1. Pin Descriptions (Continued)

Pin
Names

Pin
Type

Pin
Description

Circuit
Type

Pin
Numbers

Share
Pins

VDD, VSS – Main power supply and ground – 12,13 –

XOUT, XIN – Main oscillator pins – 14,15 –

SO, SCK, SI I/O Serial I/O interface clock signal E-4 35-37 P1.5-P1.7

VBLDIN I/O Voltage detector reference voltage
input

F-18 45 P2.7/AD7

T3PWM I/O Timer 3 PWM output D-3 7 P3.0

T2OUT/T2PWM I/O Timer 2 output and PWM output D-3 8 P3.1

T2CLK I/O Timer 2 external clock input D-3 9 P3.2

T2CAP I/O Timer 2 capture input D-3 10 P3.3

T0OUT/T0PWM I/O Timer 0 output and PWM output E-4 30 P1.0

T0CLK I/O Timer 0 external clock input E-4 31 P1.1

T0CAP I/O Timer 0 capture input E-4 32 P1.2

COM0-COM3 O LCD common signal output H 53-56 –

SEG0-SEG15 O LCD segment output H 57-72 –

SEG16-SEG23 I/O LCD segment output H-14 73-80 P4.0-P4.7

SEG24-SEG29 I/O LCD segment output H-14 1-6 P5.0-P5.5

VLC0-VLC2 O LCD power supply – 50-52 –

BUZ I/O 0.5,1,2 or 4 kHz frequency output for
buzzer sound with 4.19 MHz main
system clock or 32768 Hz subsystem
clock

E-4 34 P1.4

CA, CB – Capacitor terminal for voltage booster – 48, 49 –

CLKOUT I/O Main oscillator clock output D-3 11 P3.4

DAO – DA converter output – 20 –

FILIN, FILOUT – Filter amp input and output – 21,22 –

MICIN, MICOUT – MIC amp input and output – 24,25 –

Vref – Reference voltage input for filter amp
and MIC amp

– 23 –

S3CK215/FK215 PRODUCT OVERVIEW

1-11

PIN CIRCUITS

In

VDD

Figure 1-6. Pin Circuit Type B (RESETRESET)

I/O
Output

Disable

Data
Circuit
Type C

Pull-up
Enable

VDD

P-Channel

Figure 1-7. Pin Circuit Type D-3 (P3)

P-CH

N-CH

VDD

Out

Output
Disable

Data

Figure 1-8. Pin Circuit Type C

I/O
Output

Disable

Data
Circuit
Type C

Pull-up
Enable

VDD

Noise
Filter

Ext. INT

Input
Normal

Figure 1-9. Pin Circuit Type D-4 (P0)

PRODUCT OVERVIEW S3CK215/FK215

1-12

VDD

Output
Disable

Data

Pull-up
 Resistor

VDD

I/O

P-CH

N-CH

Open drain
Enable

Figure 1-10. Pin Circuit Type E-4 (P1)

I/OOutput
Disable

Data
Circuit
Type C

Pull-up
Enable

VDD

ADC
Enable

To ADC

Data

Figure 1-11. Pin Circuit Type F-10 (P2.0-P2.6)

I/O
Output

Disable

Data
Circuit
Type C

Pull-up
Enable

VDD

ADC&VLD
Enable

To ADC

Data

VBLDIN

Figure 1-12. Pin Circuit Type F-18 (P2.7/VBLDIN)

Out

VLC1

SEG/
COM

VLC0

VLC2

Figure 1-13. Pin Circuit Type H (SEG/COM)

S3CK215/FK215 PRODUCT OVERVIEW

1-13

OutSEG

VLC2

VLC1

VLC0

Output
Disable

Figure 1-14. Pin Circuit Type H-4

VDD

Output
Disable

Data

Pull-up
 Enable

VDD

I/O

P-CH

N-CH

Open Drain
Enable

Circuit
Type H-14

SEG

LCD
Out

Enable

Figure 1-15. Pin Circuit Type H-14 (P4, P5)

PRODUCT OVERVIEW S3CK215/FK215

1-14

NOTES

S3CK215/FK215 ADDRESS SPACES

2-1

2 ADDRESS SPACES

OVERVIEW

CalmRISC has 20-bit program address lines, PA[19:0], which supports up to 1M words of program memory. The
1M word program memory space is divided into 256 pages and each page is 4K word long as shown in the next
page. The upper 8 bits of the program counter, PC[19:12], points to a specific page and the lower 12 bits,
PC[11:0], specify the offset address of the page.

CalmRISC also has 16-bit data memory address lines, DA[15:0], which supports up to 64K bytes of data memory.
The 64K byte data memory space is divided into 256 pages and each page has 256 bytes. The upper 8 bits of the
data address, DA[15:8], points to a specific page and the lower 8 bits, DA[7:0], specify the offset address of the
page.

PROGRAM MEMORY (ROM)

000H

FFFH

256 page

1 Mword

4 Kword

FFFH

000H

Figure 2-1. Program Memory Organization

ADDRESS SPACES S3CK215/FK215

2-2

For example, if PC[19:0] = 5F79AH, the page index pointed to by PC is 5FH and the offset in the page is 79AH.
If the current PC[19:0] = 5EFFFH and the instruction pointed to by the current PC, i.e., the instruction at the
address 5EFFFH is not a branch instruction, the next PC becomes 5E000H, not 5F000H. In other words, the
instruction sequence wraps around at the page boundary, unless the instruction at the boundary (in the above
example, at 5EFFFH) is a long branch instruction. The only way to change the program page is by long branches
(LCALL, LLNK, and LJP), where the absolute branch target address is specified. For example, if the current
PC[19:0] = 047ACH (the page index is 04H and the offset is 7ACH) and the instruction pointed to by the current
PC, i.e., the instruction at the address 047ACH, is "LJP A507FH" (jump to the program address A507FH), then
the next PC[19:0] = A507FH, which means that the page and the offset are changed to A5H and 07FH,
respectively. On the other hand, the short branch instructions cannot change the page indices.

Suppose the current PC is 6FFFEH and its instruction is "JR 5H" (jump to the program address PC + 5H). Then
the next instruction address is 6F003H, not 70003H. In other words, the branch target address calculation also
wraps around with respect to a page boundary. This situation is illustrated below:

000H

001H

002H

003H

004H

005H

FFEH

FFFH

Page 6FH

JR 5H

Figure 2-2. Relative Jump Around Page Boundary

Programmers do not have to manually calculate the offset and insert extra instructions for a jump instruction
across page boundaries. The compiler and the assembler for CalmRISC are in charge of producing appropriate
codes for it.

S3CK215/FK215 ADDRESS SPACES

2-3

00000H

FFFFFH

Vector and
Option Area

~~~~

00020H
0001FH

Program Memory Area
(4K words x 256 page = 1 Mword)

8K words
(16K bytes)

NOTE:   For S3CK215, total size of program memory area is 8K words (16K bytes).

1FFFH

Figure 2-3. Program Memory Layout

From 00000H to 00004H addresses are used for the vector address of exceptions, and 0001EH, 0001FH are
used for the option only. Aside from these addresses others are reserved in the vector and option area. Program
memory area from the address 00020H to FFFFFH can be used for normal programs.

The Program memory size of S3CK215 is 8K word (16K byte), so from the address 00020H to 1FFFH are the
program memory area.



ADDRESS SPACES S3CK215/FK215

2-4

ROM CODE OPTION (RCOD_OPT)

Just after power on, the ROM data located at 0001EH and 0001FH is used as the ROM code option.
S3CK215 has ROM code options like the Reset value of Basic timer and Watchdog timer enable.

For example, if you program as below:

RCOD_OPT 1EH, 0x0000

RCOD_OPT 1FH, 0xbfff

 fxx/32 is used as Reset value of basic timer (by bit.14, 13, 12)

 Watchdog timer is enabled (by bit.11)

If you don't program any values in these option areas, then the default value is "1".

In these cases, the address 0001EH would be the value of "FFFFH".



S3CK215/FK215 ADDRESS SPACES

2-5

ROM_Code Option (RCOD_OPT)
ROM Address: 0001FH

Reset value of basic timer
clock selection bits
(WDTCON.6, .5, .4):
000 = fxx/2
001 = fxx/4
010 = fxx/16
011 = fxx/32
100 = fxx/128
101 = fxx/256
110 = fxx/1024
111 = fxx/2048

Not used

Watchdog timer enable selection bit:
0 = Disable WDT
1 = Enable WDT

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Not used

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Not used

.15 .14 .13 .12 .11 .10 .9 .8MSB LSB

ROM Address: 0001EH

.15 .14 .13 .12 .11 .10 .9 .8MSB LSB

Not used

Not used

Figure 2-4. ROM Code Option (RCOD_OPT)



ADDRESS SPACES S3CK215/FK215

2-6

DATA MEMORY ORGANIZATION

The total data memory address space is 64K bytes, addressed by DA[15:0], and divided into 256 pages, Each
page consists of 256 bytes as shown below.

00H

FFH

256 page

64K bytes

00H

FFFH

256 Byte

FFH

00H

FFH

4 page

Figure 2-5. Data Memory Map

The data memory page is indexed by SPR and IDH. In data memory index addressing mode, 16-bit data memory
address is composed of two 8-bit SPRs, IDH[7:0] and IDL0[7:0] (or IDH[7:0] and IDL1[7:0]). IDH[7:0] points to a
page index, and IDL0[7:0] (or IDL1[7:0]) represents the page offset. In data memory direct addressing mode, an
8-bit direct address, adr[7:0], specifies the offset of the page pointed to by IDH[7:0] (See the details for direct
addressing mode in the instruction sections). Unlike the program memory organization, data memory address
does not wrap around. In other words, data memory index addressing with modification performs an addition or a
subtraction operation on the whole 16-bit address of IDH[7:0] and IDL0[7:0] (or IDL1[7:0]) and updates IDH[7:0]
and IDL0[7:0] (or IDL1[7:0]) accordingly. Suppose IDH[7:0] is 0FH and IDL0[7:0] is FCH and the modification on
the index registers, IDH[7:0] and IDL0[7:0], is increment by 5H, then, after the modification (i.e., 0FFCH + 5 =
1001H), IDH[7:0]  and IDL0[7:0] become 10H and 01H, respectively.



S3CK215/FK215 ADDRESS SPACES

2-7

The S3CK215 has 1024 bytes of data register address from 0080H to 047FH.
The area from 0000H to 007FH is for peripheral control, and LCD RAM area is from 0480H to 008EH.

Data Memory

Control Register

Page 0

7FH
80H

80H

FFH
in Byte

7FH

00H

LCD RAM

8 Bits

8EH

Page 4

Page1
Page 2

Page 3

00H

Figure 2-6. Data Memory Map



ADDRESS SPACES S3CK215/FK215

2-8

NOTES



S3CK215/FK215 REGISTERS

3-1

3 REGISTERS

OVERVIEW

The registers of CalmRISC are grouped into 2 parts: general purpose registers and special purpose registers.

Table 3-1. General and Special Purpose Registers

Registers Mnemonics Description Reset Value

General Purpose R0 General Register 0 Unknown

Registers (GPR) R1 General Register 1 Unknown

R2 General Register 2 Unknown

R3 General Register 3 Unknown

Special Purpose Group 0 (SPR0) IDL0 Lower Byte of Index Register 0 Unknown

Registers (SPR) IDL1 Lower Byte of Index Register 1 Unknown

IDH Higher Byte of Index Register Unknown

SR0 Status Register 0 00H

Group 1 (SPR1) ILX Instruction Pointer Link Register for
Extended Byte

Unknown

ILH Instruction Pointer Link Register for
Higher Byte

Unknown

ILL Instruction Pointer Link Register for
Lower Byte

Unknown

SR1 Status Register 1 Unknown

GPR's can be used in most instructions such as ALU instructions, stack instructions, load instructions, etc (See
the instruction set sections). From the programming standpoint, they have almost no restriction whatsoever.
CalmRISC has 4 banks of GPR's and each bank has 4 registers, R0, R1, R2, and R3. Hence, 16 GPR's in total
are available. The GPR bank switching can be done by setting an appropriate value in SR0[4:3] (See SR0 for
details). The ALU operations between GPR's from different banks are not allowed.

SPR's are designed for their own dedicated purposes. They have some restrictions in terms of instructions that
can access them. For example, direct ALU operations cannot be performed on SPR's. However, data transfers
between a GPR and an SPR are allowed and stack operations with SPR's are also possible (See the instruction
sections for details).



REGISTERS S3CK215/FK215

3-2

INDEX REGISTERS: IDH, IDL0 AND IDL1

IDH in concatenation with IDL0 (or IDL1) forms a 16-bit data memory address. Note that CalmRISC's data
memory address space is 64 K byte (addressable by 16-bit addresses). Basically, IDH points to a page index and
IDL0 (or IDL1) corresponds to an offset of the page. Like GPR's, the index registers are 2-way banked. There are
2 banks in total, each of which has its own index registers, IDH, IDL0 and IDL1. The banks of index registers can
be switched by setting an appropriate value in SR0[2] (See SR0 for details). Normally, programmers can reserve
an index register pair, IDH and IDL0 (or IDL1), for software stack operations.

LINK REGISTERS: ILX, ILH AND ILL

The link registers are specially designed for link-and-branch instructions (See LNK and LRET instructions in the
instruction sections for details). When an LNK instruction is executed, the current PC[19:0] is saved into ILX, ILH
and ILL registers, i.e., PC[19:16] into ILX[3:0], PC[15:8] into ILH [7:0], and PC[7:0] into ILL[7:0], respectively.
When an LRET instruction is executed, the return PC value is recovered from ILX, ILH, and ILL, i.e., ILX[3:0] into
PC[19:16], ILH[7:0] into PC[15:8] and ILL[7:0] into PC[7:0], respectively. These registers are used to access
program memory by LDC/LDC+ instructions. When an LDC or LDC+ instruction is executed, the (code) data
residing at the program address specified by ILX:ILH:ILL will be read into TBH:TBL. LDC+ also increments ILL
after accessing the program memory.

There is a special core input pin signal, nP64KW, which is reserved for indicating that the program memory
address space is only 64 K word. By grounding the signal pin to zero, the upper 4 bits of PC, PC[19:16], is
deactivated and therefore the upper 4 bits, PA[19:16], of the program memory address signals from CalmRISC
core are also deactivated. By doing so, power consumption due to manipulating the upper 4 bits of PC can be
totally eliminated (See the core pin description section for details). From the programmer’s standpoint, when
nP64KW is tied to the ground level, then PC[19:16] is not saved into ILX for LNK instructions and ILX is not read
back into PC[19:16] for LRET instructions. Therefore, ILX is totally unused in LNK and LRET instructions when
nP64KW = 0.



S3CK215/FK215 REGISTERS

3-3

STATUS REGISTER 0: SR0

SR0 is mainly reserved for system control functions and each bit of SR0 has its own dedicated function.

Table 3-2. Status Register 0 configuration

Flag Name Bit Description

 eid 0 Data memory page selection in direct addressing

 ie 1 Global interrupt enable

 idb 2 Index register banking selection

  grb[1:0] 4,3 GPR bank selection

 exe 5 Stack overflow/underflow exception enable

 ie0 6 Interrupt 0 enable

 ie1 7 Interrupt 1 enable

SR0[0] (or eid) selects which page index is used in direct addressing. If eid = 0, then page 0 (page index = 0) is
used. Otherwise (eid = 1), IDH of the current index register bank is used for page index. SR0[1] (or ie) is the
global interrupt enable flag. As explained in the interrupt/exception section, CalmRISC has 3 interrupt sources
(non-maskable interrupt, interrupt 0, and interrupt 1) and 1 stack exception. Both interrupt 0 and interrupt 1 are
masked by setting SR0[1] to 0 (i.e., ie = 0). When an interrupt is serviced, the global interrupt enable flag ie is
automatically cleared. The execution of an IRET instruction (return from an interrupt service routine)
automatically sets ie = 1. SR0[2] (or idb) and SR0[4:3] (or grb[1:0]) selects an appropriate bank for index registers
and GPR's, respectively as shown below:

R3

R0

R2

R1

R3

R0

R2

R1

R3

R0

R2

R1

R3

R0

R2

R1
IDH IDL0

IDL1IDH IDL0

IDL1Bank 0

Bank 1

Bank 2

Bank 3
11

10

01

00

grb [1:0]

0

1

idb

Figure 3-1. Bank Selection by Setting of GRB Bits and IDB Bit

SR0[5] (or exe) enables the stack exception, that is, the stack overflow/underflow exception. If exe = 0, the stack
exception is disabled. The stack exception can be used for program debugging in the software development
stage. SR0[6] (or ie0) and SR0[7] (or ie1) are enabled, by setting them to 1. Even though ie0 or ie1 are enabled,
the interrupts are ignored (not serviced) if the global interrupt enable flag ie is set to 0.



REGISTERS S3CK215/FK215

3-4

STATUS REGISTER 1: SR1

SR1 is the register for status flags such as ALU execution flag and stack full flag.

Table 3-3. Status Register 1: SR1

Flag Name Bit Description

C 0 Carry flag

V 1 Overflow flag

Z 2 Zero flag

N 3 Negative flag

SF 4 Stack Full flag

– 5,6,7 Reserved

SR1[0] (or C) is the carry flag of ALU executions. SR1[1] (or V) is the overflow flag of ALU executions. It is set to
1 if and only if the carry-in into the 8-th bit position of addition/subtraction differs from the carry-out from the 8-th
bit position. SR1[2] (or Z) is the zero flag, which is set to 1 if and only if the ALU result is zero. SR1[3] (or N) is
the negative flag. Basically, the most significant bit (MSB) of ALU results becomes N flag. Note a load instruction
into a GPR is considered an ALU instruction. However, if an ALU instruction touches the overflow flag (V) like
ADD, SUB, CP, etc, N flag is updated as exclusive-OR of V and the MSB of the ALU result. This implies that
even if an ALU operation results in overflow, N flag is still valid. SR1[4] (or SF) is the stack overflow flag. It is set
when the hardware stack is overflowed or under flowed. Programmers can check if the hardware stack has any
abnormalities by the stack exception or testing if SF is set (See the hardware stack section for great details).

NOTE

When an interrupt occurs, SR0 and SR1 are not saved by hardware, so SR0, and SR1 register values
must be saved by software.



S3CK215/FK215 MEMORY MAP

4-1

4 MEMORY MAP

OVERVIEW

To support the control of peripheral hardware, the address for peripheral control registers are memory-mapped to
page 0 of the RAM. Memory mapping lets you use a mnemonic as the operand of an instruction in place of the
specific memory location.
In this section, detailed descriptions of the control registers are presented in an easy-to-read format.
You can use this section as a quick-reference source when writing application programs.

This memory area can be accessed with the whole method of data memory access.

— If SR0 bit 0 is "0" then the accessed register area is always page 0.

— If SR0 bit 0 is "1" then the accessed register page is controlled by the proper IDH register's value.

So if you want to access the memory map area, clear the SR0.0 and use the direct addressing mode.
This method is used for most cases.
This control register is divided into five areas. Here, the system control register area is same in every device.

7FH

00H

Control Register

System Control Register Area

Port Data Register Area

Peripheral Control Register (4 x  8)

Peripheral Control Register ( 1x 16 or 2 x 8)

0FH
10H

Port Control Register Area (4 x 8)

1FH
20H

3FH
40H

6FH
70H

Standard exhortative area

Standard  area

Figure 4-1. Memory Map Area



MEMORY MAP S3CK215/FK215

4-2

Table 4-1. Registers

Register Name Mnemonic Decimal Hex Reset R/W

Locations 16H-1FH are not mapped

Port 5 data register P5 21 15H 00H R/W

Port 4 data register P4 20 14H 00H R/W

Port 3 data register P3 19 13H 00H R/W

Port 2 data register P2 18 12H 00H R/W

Port 1 data register P1 17 11H 00H R/W

Port 0 data register P0 16 10H 00H R/W

Locations 0EH-0FH are not mapped.

Watchdog timer control register WDTCON 13 0DH X0H R/W

Basic timer counter BTCNT 12 0CH 00H R

Interrupt ID register 1 IIR1 11 0BH – R/W

Interrupt priority register 1 IPR1 10 0AH – R/W

Interrupt mask register 1 IMR1 9 09H 00H R/W

Interrupt request register 1 IRQ1 8 08H – R

Interrupt ID register 0 IIR0 7 07H – R/W

Interrupt priority register 0 IPR0 6 06H – R/W

Interrupt mask register 0 IMR0 5 05H 00H R/W

Interrupt request register 0 IRQ0 4 04H – R

Oscillator control register OSCCON 3 03H 00H R/W

Power control register PCON 2 02H 04H R/W

Locations 00H-01H are not mapped.

NOTES:
1. '–' means undefined.
2. If you want to clear the bit of IRQx, then write the number that you want to clear to IIRx. For example, when clear 

IRQ0.4 then LD Rx, #04H and LD IIR0, Rx.



S3CK215/FK215 MEMORY MAP

4-3

Table 4-1. Registers (continued)

Register Name Mnemonic Decimal Hex Reset R/W

Timer 2 counter T2CNT 82 52H – R

Timer 2 data register T2DATA 81 51H FFH R/W

Timer 2 control register T2CON 80 50H 00H R/W

Locations 4DH-4FH are not mapped

Timer 1 counter (low byte) T1CNTL 76 4CH – R

Timer 1 counter (high byte) T1CNTH 75 4BH – R

Timer 1 data register (low byte) T1DATAL 74 4AH FFH R/W

Timer 1 data register (high byte) T1DATAH 73 49H FFH R/W

Timer 1 count register T1CON 72 48H 00H R/W

Locations 45H-47H are not mapped

Timer 0 counter (low byte) T0CNTL 68 44H – R

Timer 0 counter (high byte) T0CNTH 67 43H – R

Timer 0 data register (low byte) T0DATAL 66 42H FFH R/W

Timer 0 data register (high byte) T0DATAH 65 41H FFH R/W

Timer 0 count register T0CON 64 40H 00H R/W

Location 36H-3FH are not mapped

Port 5 control register (low byte) P5CONL 53 35H 00H R/W

Port 5 control register (high byte) P5CONH 52 34H 00H R/W

Location 32H-33H are not mapped

Port 4 control register (low byte) P4CONL 49 31H 00H R/W

Port 4 control register (high byte) P4CONH 48 30H 00H R/W

Locations 2EH-2FH are not mapped

Port 3 control register (low byte) P3CONL 45 2DH 00H R/W

Port 3 control register (high byte) P3CONH 44 2CH 00H R/W

Locations 2AH-2BH are not mapped

Port 2 control register (low byte) P2CONL 41 29H 00H R/W

Port 2 control register (high byte) P2CONH 40 28H 00H R/W

Locations 24H-27H are not mapped

Port 1 pull-up register P1PUR 35 23H 00H R/W

Port 1 control register (low byte) P1CONL 34 22H 00H R/W

Port 1 control register (high byte) P1CONH 33 21H 00H R/W

Port 0 control register P0CON 32 20H 00H R/W



MEMORY MAP S3CK215/FK215

4-4

Table 4-1. Registers (continued)

Register Name Mnemonic Decimal Hex Reset R/W

Locations 7DH-7FH are not mapped

Multiplication result (low byte) MRL 124 7CH 00H R

Multiplication result (high byte) MRH 123 7BH 00H R

Multiplier Y input register MYINP 122 7AH 00H R/W

Multiplier X input register MXINP 121 79H 00H R/W

Multiplier control register MULCON 120 78H 00H R/W

OP amp control register OPCON 119 77H 00H R/W

D/A converter data register (low byte) DADATAL 118 76H 00H R/W

D/A converter data register (high byte) DADATAH 117 75H 00H R/W

D/A converter control register DACON 116 74H 00H R/W

Locations 73H is not mapped

Main system clock output control register CLOCON 114 72H 00H R/W

Battery level detector register BLDCON 113 71H 00H R/W

Watch timer control register WTCON 112 70H 00H R/W

Location 62H-6FH are not mapped

LCD mode register LMOD 97 61H 00H R/W

LCD control register LCON 96 60H 00H R/W

Location 5FH is not mapped

A/D converter data register (low byte) ADDATAL 94 5EH – R

A/D converter data register (high byte) ADDATAH 93 5DH – R

A/D converter control register ADCON 92 5CH 00H R/W

Locations 5BH is not mapped

Serial I/O data register SIODATA 90 5AH 00H R/W

Serial I/O pre-scale register SIOPS 89 59H 00H R/W

Serial I/O control register SIOCON 88 58H 00H R/W

Timer 3 counter T3CNT 87 57H – R

Timer 3 data register (low byte) T3DATAL 86 56H FFH R/W

Timer 3 data register (high byte) T3DATAH 85 55H FFH R/W

Timer 3 control register T3CON 84 54H 00H R/W

Locations 53H is not mapped



S3CK215/FK215 HARDWARE STACK

5-1

5 HARDWARE STACK

OVERVIEW

The hardware stack in CalmRISC has two usages:

— To save and restore the return PC[19:0] on LCALL, CALLS, RET, and IRET instructions.

— Temporary storage space for registers on PUSH and POP instructions.

When PC[19:0] is saved into or restored from the hardware stack, the access should be 20 bits wide. On the
other hand, when a register is pushed into or popped from the hardware stack, the access should be 8 bits wide.
Hence, to maximize the efficiency of the stack usage, the hardware stack is divided into 3 parts: the extended
stack bank (XSTACK, 4-bits wide), the odd bank (8-bits wide), and the even bank (8-bits wide).

3 0 7 0 7 0

Level 0

Level 1

Level 2

Level 14

Level 15

XSTACK Odd Bank Even Bank

Hardware Stack

015

Stack Pointer
SPTR [5:0]

Odd or Even
Bank Selector

Stack Level
Pointer

Figure 5-1. Hardware Stack



HARDWARE STACK S3CK215/FK215

5-2

The top of the stack (TOS) is pointed to by a stack pointer, called sptr[5:0]. The upper 5 bits of the stack pointer,
sptr[5:1], points to the stack level into which either PC[19:0] or a register is saved. For example, if sptr[5:1] is 5H
or TOS is 5, then level 5 of XSTACK is empty and either level 5 of the odd bank or level 5 of the even bank is
empty. In fact, sptr[0], the stack bank selection bit, indicates which bank(s) is empty. If sptr[0] = 0, both level 5 of
the even and the odd banks are empty. On the other hand, if sptr[0] = 1, level 5 of the odd bank is empty, but
level 5 of the even bank is occupied. This situation is well illustrated in the figure below.

Level 0

Level 1

Level 2

Level 15

XSTACK Odd Bank Even Bank

0

15
SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 3

Level 4
Level 5

0 0 11 0

0

Level 0

Level 1

Level 2

Level 15

XSTACK Odd Bank Even Bank

0

15
SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 3

Level 4
Level 5

0 0 11 1

0

Figure 5-2. Even and Odd Bank Selection Example

As can be seen in the above example, sptr[5:1] is used as the hardware stack pointer when PC[19:0] is pushed or
popped and sptr[5:0] as the hardware stack pointer when a register is pushed or popped. Note that XSTACK is
used only for storing and retrieving PC[19:16]. Let us consider the cases where PC[19:0] is pushed into the
hardware stack (by executing LCALL/CALLS instructions or by interrupts/exceptions being served) or is retrieved
from the hardware stack (by executing RET/IRET instructions). Regardless of the stack bank selection bit
(sptr[0]), TOS of the even bank and the odd bank store or return PC[7:0] or PC[15:8], respectively. This is
illustrated in the following figures.



S3CK215/FK215 HARDWARE STACK

5-3

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

001 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 5

011 000

Level 6

0

PC[7:0]

Stack Level
Pointer

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

101 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Level 5

111 000

Level 6

0

by Executing RET, IRET
by Executing CALL, CALLS
or Interrupts/Exceptions

Stack Level
Pointer

Stack Level
Pointer

PC[19:16] PC[15:8]

PC[15:8]

PC[19:16] PC[7:0]

by Executing RET, IRET
by Executing CALL, CALLS
or Interrupts/Exceptions

Figure 5-3. Stack Operation with PC [19:0]

As can be seen in the figures, when stack operations with PC[19:0] are performed, the stack level pointer
sptr[5:1] (not sptr[5:0]) is either incremented by 1 (when PC[19:0] is pushed into the stack) or decremented by 1
(when PC[19:0] is popped from the stack). The stack bank selection bit (sptr[0]) is unchanged. If a CalmRISC
core input signal nP64KW is 0, which signifies that only PC[15:0] is meaningful, then any access to XSTACK is
totally deactivated from the stack operations with PC. Therefore, XSTACK has no meaning when the input pin
signal, nP64KW, is tied to 0. In that case, XSTACK doesn’t have to even exist. As a matter of fact, XSTACK is
not included in CalmRISC core itself and it is interfaced through some specially reserved core pin signals
(nPUSH, nSTACK, XHSI[3:0], XSHO[3:0]), if the program address space is more than 64 K words (See the core
pin signal section for details).

With regards to stack operations with registers, a similar argument can be made. The only difference is that the
data written into or read from the stack are a byte. Hence, the even bank and the odd bank are accessed
alternately as shown below.



HARDWARE STACK S3CK215/FK215

5-4

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

001 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 5

101 100

Level 6

0

Register

Stack Level
Pointer

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

101 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Level 5

011 000

Level 6

0

Register

POP Register PUSH Register

Stack Level
Pointer

Stack Level
Pointer

POP Register PUSH Register

Figure 5-4. Stack Operation with Registers

When the bank selection bit (sptr[0]) is 0, then the register is pushed into the even bank and the bank selection
bit is set to 1. In this case, the stack level pointer is unchanged. When the bank selection bit (sptr[0]) is 1, then
the register is pushed into the odd bank, the bank selection bit is set to 0, and the stack level pointer is
incremented by 1. Unlike the push operations of PC[19:0], any data are not written into XSTACK in the register
push operations. This is illustrated in the example figures.  When a register is pushed into the stack, sptr[5:0] is
incremented by 1 (not the stack level pointer sptr[5:1]). The register pop operations are the reverse processes of
the register push operations. When a register is popped out of the stack, sptr[5:0] is decremented by 1 (not the
stack level pointer sptr[5:1]).

Hardware stack overflow/underflow happens when the MSB of the stack level pointer, sptr[5], is 1. This is obvious
from the fact that the hardware stack has only 16 levels and the following relationship holds for the stack level
pointer in a normal case.

Suppose the stack level pointer sptr[5:1] = 15 (or 01111B in binary format) and the bank selection bit sptr[0] = 1.
Here if either PC[19:0] or a register is pushed, the stack level pointer is incremented by 1. Therefore, sptr[5:1] =
16 (or 10000B in binary format) and sptr[5] = 1, which implies that the stack is overflowed. The situation is
depicted in the following.



S3CK215/FK215 HARDWARE STACK

5-5

Level 0

Level 15

XSTACK Odd Bank Even Bank

PUSH Register

111 110
15

SPTR [5:0]
0

Level 1

Level 14

Level 0

Level 15

XSTACK Odd Bank Even Bank

000 001
15

SPTR [5:0]
0

Level 1

Level 14

Level 0

Level 15

100 001
15

SPTR [5:0]
0

Level 1

Level 14

XSTACK Odd Bank Even Bank

PUSH PC [19:0]

Register PC[19:16] PC[15:8]

PC[7:0]

Figure 5-5. Stack Overflow



HARDWARE STACK S3CK215/FK215

5-6

The first overflow happens due to a register push operation. As explained earlier, a register push operation
increments sptr[5:0] (not sptr[5:1]) , which results in sptr[5] = 1, sptr[4:1] = 0 and sptr[0] = 0. As indicated by
sptr[5] = 1, an overflow happens. Note that this overflow doesn’t overwrite any data in the stack. On the other
hand, when PC[19:0] is pushed, sptr[5:1] is incremented by 1 instead of sptr[5:0], and as expected, an overflow
results. Unlike the first overflow, PC[7:0] is pushed into level 0 of the even bank and the data that has been there
before the push operation is overwritten.  A similar argument can be made about stack underflows. Note that any
stack operation, which causes the stack to overflow or underflow, doesn’t necessarily mean that any data in the
stack are lost, as is observed in the first example.

In SR1, there is a status flag, SF (Stack Full Flag), which is exactly the same as sptr[5]. In other words, the value
of sptr[5] can be checked by reading SF (or SR1[4]). SF is not a sticky flag in the sense that if there was a stack
overflow/underflow but any following stack access instructions clear sptr[5] to 0, then SF = 0 and programmers
cannot tell whether there was a stack overflow/underflow by reading SF. For example, if a program pushes a
register 64 times in a row, sptr[5:0] is exactly the same as sptr[5:0] before the push sequence. Therefore, special
attention should be paid.

Another mechanism to detect a stack overflow/underflow is through a stack exception. A stack exception
happens only when the execution of any stack access instruction results in SF = 1 (or sptr[5] = 1). Suppose a
register push operation makes SF = 1 (the SF value before the push operation doesn’t matter). Then the stack
exception due to the push operation is immediately generated and served If the stack exception enable flag (exe
of SR0) is 1. If the stack exception enable flag is 0, then the generated interrupt is not served but pending.
Sometime later when the stack exception enable flag is set to 1, the pending exception request is served even if
SF = 0. More details are available in the stack exception section.



S3CK215/FK215 EXCEPTIONS

6-1

6 EXCEPTIONS

OVERVIEW

Exceptions in CalmRISC are listed in the table below. Exception handling routines, residing at the given
addresses in the table, are invoked when the corresponding exception occurs. The start address of each
exception routine is specified by concatenation 0H (leading 4 bits of 0) and the 16-bit data in the exception vector
listed in the table. For example, the interrupt service routine for IRQ[0] starts from 0H:PM[00002H]. Note that
":"means concatenation and PM[*] stands for the 16-bit content at the address * of the program memory. Aside
from the exception due to reset release, the current PC is pushed in the stack on an exception. When an
exception is executed due to IRQ[1:0]/IEXP, the global interrupt enable flag, ie bit (SR0[1]), is set to 0, whereas
ie is set to 1 when IRET or an instruction that explicitly sets ie is executed.

Table 6-1. Exceptions

Name Address Priority Description

Reset 00000H 1st Exception due to reset release.

– 00001H – Reserved

IRQ[0] 00002H 3rd Exception due to nIRQ[0] signal. Maskable by setting ie/ie0.

IRQ[1] 00003H 4th Exception due to nIRQ[1] signal. Maskable by setting ie/ie1.

IEXP 00004H 2nd Exception due to stack full. Maskable by setting exe.

– 00005H – Reserved.

– 00006H – Reserved.

– 00007H – Reserved.

NOTE: Break mode due to BKREQ has a higher priority than all the exceptions above. That is, when BKREQ is active,
 even the exception due to reset release is not executed.

HARDWARE RESET

When Hardware Reset is active (the reset input signal pin nRES = 0), the control pins in the CalmRISC core are
initialized to be disabled, and SR0 and sptr (the hardware stack pointer) are initialized to be 0. Additionally, the
interrupt sensing block is cleared. When Hardware Reset is released (nRES = 1), the reset exception is executed
by loading the JP instruction in IR (Instruction Register) and 0h:0000h in PC. Therefore, when Hardware Reset is
released, the "JP {0h:PM[00000h]}" instruction is executed.



EXCEPTIONS S3CK215/FK215

6-2

IRQ[0] EXCEPTION

When a core input signal nIRQ[0] is low, SR0[6] (ie0) is high, and SR0[1] (ie) is high, IRQ[0] exception is
generated, and this will load the CALL instruction in IR (Instruction Register) and 0h:0002h in PC. Therefore, on
an IRQ[0] exception, the "CALL {0h:PM[00002h]}" instruction is executed. When the IRQ[0] exception is
executed, SR0[1] (ie) is set to 0.

IRQ[1] EXCEPTION (LEVEL-SENSITIVE)

When a core input signal nIRQ[1] is low, SR0[7] (ie1) is high, and SR0[1] (ie) is high, IRQ[1] exception is
generated, and this will load the CALL instruction in IR (Instruction Register) and 0h:0003h in PC. Therefore, on
an IRQ[1] exception, the "CALL {0h:PM[00003h]}" instruction is executed. When the IRQ[1] exception is
executed, SR0[1] (ie) is set to 0.

HARDWARE STACK FULL EXCEPTION

A Stack Full exception occurs when a stack operation is performed and as a result of the stack operation sptr[5]
(SF) is set to 1. If the stack exception enable bit, exe (SR0[5]), is 1, the Stack Full exception is served. One
exception to this rule is when nNMI causes a stack operation that sets sptr[5] (SF), since it has higher priority.

Handling a Stack Full exception may cause another Stack Full exception.  In this case, the new exception is
ignored. On a Stack Full exception, the CALL instruction is loaded in IR (Instruction Register) and 0h:0004h in
PC. Therefore, when the Stack Full exception is activated, the "CALL {0h:PM[00004h]}" instruction is executed.
When the exception is executed, SR0[1] (ie) is set to 0.

BREAK EXCEPTION

Break exception is reserved only for an in-circuit debugger. When a core input signal, BKREQ, is high, the
CalmRISC core is halted or in the break mode, until BKREQ is deactivated. Another way to drive the CalmRISC
core into the break mode is by executing a break instruction, BREAK. When BREAK is fetched, it is decoded in
the fetch cycle (IF stage) and the CalmRISC core output signal nBKACK is generated in the second cycle
(ID/MEM stage). An in-circuit debugger generates BKREQ active by monitoring nBKACK to be active. BREAK
instruction is exactly the same as the NOP (no operation) instruction except that it does not increase the program
counter and activates nBKACK in the second cycle (or ID/MEM stage of the pipeline). There, once BREAK is
encountered in the program execution, it falls into a deadlock. BREAK instruction is reserved for in-circuit
debuggers only, so it should not be used in user programs.



S3CK215/FK215 EXCEPTIONS

6-3

EXCEPTIONS (or INTERRUPTS)

Timer 0 match/capture

Timer 0 overflow

INT 3

Timer 2 overflow

Timer 3 match

SIO INT

IVEC0 00002H

IVEC1 00003H Watch timer

INT 0

INT 1

INT 2

Stack Full INT00004HSF_EXCEP

-

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W

NOTES:
1.    RESET has the highest priority for an interrupt level, followed by SF_EXCEP, IVEC0 and IVEC1.
2.    In the case of IVEC0 and IVEC1, one interrupt vector has several interrupt sources.
       The priority of the sources is controlled by setting the IPR register.
3.    External interrupts are triggered by rising or falling edge, depending on the corresponding control
       register setting.
4.    After system reset, the IPR register is in unknown status, so user must set the IPR register with
       proper value.
5.    The pending bit is cleared by hardware when CPU reads the IIR registser value.

H/W, S/W

VECTOR SOURCELEVEL RESET (CLEAR)

RESETRESET 00000H -

Timer 1 match

Timer 2 match/capture

H/W, S/W

H/W, S/W

H/W, S/W

00001H Not usedNMI

Basic Timer overflow H/W, S/W

Figure 6-1. Interrupt Structure



EXCEPTIONS S3CK215/FK215

6-4

IPR0
Logic

IIR0

CPU

IVEC0

IPR0

IMR0
Logic

IMR0

STOP & IDLE

Release

IMR1
Logic

IMR1 IPR1

IPR1
Logic

IVEC1

IIR1

IRQ1.0

IRQ1.1

IRQ1.2

IRQ1.3

IRQ1.4

IRQ1.5

IRQ1.6

IRQ1.7

 NOTE: The IRQ register value is cleared by H/W when the IIR register is read by the programmer in an interrupt
service routine. However, if you want to clear by S/W, then write the proper value to the IIR register like
as in the example above. To clear all the bits of IRQx register at one time write "#08h" to the IIRx register.

Clear (when writing clear bit value to bit.2. 1. 0)

Clear (when writing clear bit value to bit.2. 1. 0)

LD R0, #x5H
LD IIR0, R0        IRQ0.5 is cleared

ex)

LD R0, #x2H
LD IIR1, R0        IRQ1.2 is cleared

ex)

IRQ0.0

IRQ0.1

IRQ0.2

IRQ0.3

IRQ0.4

IRQ0.5

IRQ0.6

IRQ0.7

Timer 0 overflow

Timer 0 match/capture

Timer 1 match

Timer 2 match/capture

Timer 3 match

Timer 2 overflow

SIO

Basic timer overflow

Not used

INT3

Not used

Not used

Watch timer

INT0

INT1

INT2

Figure 6-2. Interrupt Structure



S3CK215/FK215 EXCEPTIONS

6-5

INTERRUPT MASK REGISTERS

.7 .6 .5 .4 .3 .2 .1 .0

Interrupt Mask Register0 (IMR0)
05H, R/W, Reset: 00H

IRQ0.0

IRQ0.1

IRQ0.2

IRQ0.3

IRQ0.4

IRQ0.5

IRQ0.6

IRQ0.7

Interrupt request enable bits:
0 = Disable interrupt request
1 = Enable interrupt request

NOTE: If you want to change the value of the IMR register, then you first
make disable global INT by DI instruction, and change the value
of the IMR register.

.7 .6 .5 .4 .3 .2 .1 .0

Interrupt Mask Register1 (IMR1)
09H, R/W, Reset: 00H

IRQ1.0

IRQ1.1

IRQ1.2

IRQ1.3

IRQ1.4

Not used

Not used

Not used

Figure 6-3. Interrupt Mask Register



EXCEPTIONS S3CK215/FK215

6-6

INTERRUPT PRIORITY REGISTER

GROUP A
0 = IRQ0 > IRQ1
1 = IRQ1 > IRQ0

Interrupt Priority Registers
(IPR0:06H,IPR1:0AH, R/W )

IPR
GROUP A

NOTE: If you want to change the value of the IPR register, then you first
make disable global INT by DI instruction, and change the value
of the IPR register. After reset, IPR register is unknown status,
so user must set the IPR register with proper value.

IPR
GROUP B

IPR
GROUP C

IRQ0 IRQ1 IRQ2 IRQ3 IRQ4 IRQ5 IRQ6 IRQ7

GROUP B
0 = IRQ2 > (IRQ3,IRQ4)
1 = (IRQ3,IRQ4) > IRQ2

SUBGROUP B
0 = IRQ3 > IRQ4
1 = IRQ4 > IRQ3

GROUP C
0 = IRQ5 > (IRQ6,IRQ7)
1 = (IRQ6,IRQ7) > IRQ5

SUBGROUP C
0 = IRQ6 > IRQ7
1 = IRQ7 > IRQ6

.7 .6 .5 .4 .3 .2 .1 .0

0  0  0
0  0  1
0  1  0
0  1  1
1  0  0
1  0  1
1  1  0
1  1  1

Not used
B>C>A
A>B>C
B>A>C
C>A>B
C>B>A
A>C>B
Not used

.7 .4 .1

Group priority:

Figure 6-4. Interrupt Priority Register



S3CK215/FK215 EXCEPTIONS

6-7

++PROGRAMMING TIP — Interrupt Programming Tip 1

Jumped from vector 2

PUSH SR1
PUSH R0
LD R0, IIR00
CP R0, #03h
JR ULE, LTE03
CP R0, #05h
JR ULE, LTE05
CP R0, #06h
JP EQ, IRQ6_srv
JP T, IRQ7_srv

LTE05 CP R0, #04
JP EQ, IRQ4_srv
JP T, IRQ5_srv

LTE03 CP R0, #01
JR ULE, LTE01
CP R0, #02
JP EQ, IRQ2_srv
JP T, IRQ3_srv

LTE01 CP R0, #00h
JP EQ, IRQ0_srv
JP T, IRQ1_srv

IRQ0_srv ; →   service for IRQ0
•
POP R0
POP SR1
IRET

IRQ1_srv ; →   service for IRQ1
•

•
POP R0
POP SR1
IRET
•

•
IRQ7_srv ; →   service for IRQ7

•

•
POP R0
POP SR1
IRET

NOTE

If the SR0 register is changed in the interrupt service routine, then the SR0 register must be pushed and
popped in the interrupt service routine.



EXCEPTIONS S3CK215/FK215

6-8

++PROGRAMMING TIP — Interrupt Programming Tip 2

Jumped from vector 2

PUSH SR1
PUSH R0
PUSH R1
LD R0, IIR00
SL R0
LD R1, < TBL_INTx
ADD R0, > TBL_INTx
PUSH R1
PUSH R0
RET

TBL_INTx LJP IRQ0_svr
LJP IRQ1_svr
LJP IRQ2_svr
LJP IRQ3_svr
LJP IRQ4_svr
LJP IRQ5_svr
LJP IRQ6_svr
LJP IRQ7_svr

IRQ0_srv ; →   service for IRQ0
•

•
POP R1
POP R0
POP SR1
IRET

IRQ1_srv ; →   service for IRQ1
•

•
POP R1
POP R0
POP SR1
IRET
•

•
IRQ7_srv ; →   service for IRQ7

•

•
POP R1
POP R0
POP SR1
IRET

NOTE

1. If the SR0 register is changed in the interrupt service routine, then the SR0 register must be pushed
 and popped in the interrupt service routine.
2. Above example is assumed that ROM size is less than 64K-word and all the LJP instructions in the
 jump table (TBL_INTx) is in the same page.



S3CK215/FK215 INSTRUCTION SET

7-1

7 INSTRUCTION SET

OVERVIEW

GLOSSARY

This chapter describes the CalmRISC instruction set and the details of each instruction are listed in alphabetical
order. The following notations are used for the description.

Table 7-1. Instruction Notation Conventions

Notation Interpretation

<opN> Operand N. N can be omitted if there is only one operand. Typically, <op1> is the
destination (and source) operand and <op2> is a source operand.

GPR General Purpose Register

SPR Special Purpose Register (IDL0, IDL1, IDH, SR0, ILX, ILH, ILL, SR1)

adr:N N-bit address specifier

@idm Content of memory location pointed by ID0 or ID1

(adr:N) Content of memory location specified by adr:N

cc:4 4-bit condition code. Table 7-6 describes cc:4.

imm:N N-bit immediate number

& Bit-wise AND

| Bit-wise OR

~ Bit-wise NOT

^ Bit-wise XOR

N**M Mth power of N

(N)M M-based number N

As additional note, only the affected flags are described in the tables in this section. That is, if a flag is not
affected by an operation, it is NOT specified.



INSTRUCTION SET S3CK215/FK215

7-2

INSTRUCTION SET MAP

Table 7-2.Overall Instruction Set Map

IR [12:10]000 001 010 011 100 101 110 111

[15:13,7:2]

000 xxxxxx

ADD GPR,
#imm:8

SUB
GPR,

#imm:8

CP GPR,
#imm8

LD GPR,
#imm:8

TM GPR,
#imm:8

AND
GPR,

#imm:8

OR GPR,
#imm:8

XOR
GPR,

#imm:8

001 xxxxxx ADD GPR,
@idm

SUB
GPR,
@idm

CP GPR,
@idm

LD GPR,
@idm

LD @idm,
GPR

AND
GPR,
@idm

OR GPR,
@idm

XOR
GPR,
@idm

010 xxxxxx ADD GPR,
adr:8

SUB
GPR,
adr:8

CP GPR,
adr:8

LD GPR,
adr:8

BITT adr:8.bs BITS adr:8.bs

011 xxxxxx ADC GPR,
adr:8

SBC
GPR,
adr:8

CPC
GPR,
adr:8

LD adr:8,
GPR

BITR adr:8.bs BITC adr:8.bs

100 000000 ADD GPR,
GPR

SUB
GPR,
GPR

CP GPR,
GPR

BMS/BM
C

LD SPR0,
#imm:8

AND
GPR,
adr:8

OR GPR,
adr:8

XOR
GPR,
adr:8

100 000001 ADC GPR,
GPR

SBC
GPR,
GPR

CPC
GPR,
GPR

invalid

100 000010 invalid invalid invalid invalid

100 000011 AND GPR,
GPR

OR GPR,
GPR

XOR
GPR,
GPR

invalid

100 00010x SLA/SL/
RLC/RL/
SRA/SR/
RRC/RR/

GPR

INC/INCC
/DEC/
DECC/
COM/

COM2/
COMC
GPR

invalid invalid

100 00011x LD SPR,
GPR

LD GPR,
SPR

SWAP
GPR,
SPR

LD
TBH/TBL,

GPR

100 00100x PUSH SPR POP SPR invalid invalid

100 001010 PUSH
GPR

POP GPR LD GPR,
GPR

LD GPR,
TBH/TBL



S3CK215/FK215 INSTRUCTION SET

7-3

Table 7-2. Overall Instruction Set Map (Continued)

IR [12:10]000 001 010 011 100 101 110 111

100 001011 POP invalid LDC invalid LD SPR0,
#imm:8

AND
GPR,
adr:8

OR GPR,
adr:8

XOR
GPR,
adr:8

100 00110x RET/LRET/
IRET/NOP/

BREAK

invalid invalid invalid

100 00111x invalid invalid invalid invalid

100 01xxxx LD
GPR:bank,
GPR:bank

AND
SR0,

#imm:8

OR SR0,
#imm:8

BANK
#imm:2

100 100000

100 110011

invalid invalid invalid invalid

100 1101xx LCALL cc:4, imm:20 (2-word instruction)

100 1110xx LLNK cc:4, imm:20 (2-word instruction)

100 1111xx LJP cc:4, imm:20 (2-word instruction)

[15:10]
101 xxx

JR cc:4, imm:9

110 0xx CALLS imm:12

110 1xx LNKS imm:12

111 xxx CLD GPR, imm:8 / CLD imm:8, GPR / JNZD GPR, imm:8 / SYS #imm:8 / COP #imm:12

NOTE:  “invalid” - invalid instruction.



INSTRUCTION SET S3CK215/FK215

7-4

Table 7-3. Instruction Encoding

Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD GPR, #imm:8 000 000 GPR imm[7:0]

SUB GPR, #imm:8 001

CP GPR, #imm:8 010

LD GPR, #imm:8 011

TM GPR, #imm:8 100

AND GPR, #imm:8 101

OR GPR, #imm:8 110

XOR GPR, #imm:8 111

ADD GPR, @idm 001 000 GPR idx mod offset[4:0]

SUB GPR, @idm 001

CP GPR, @idm 010

LD GPR, @idm 011

LD @idm, GPR 100

AND GPR, @idm 101

OR GPR, @idm 110

XOR GPR, @idm 111

ADD GPR, adr:8 010 000 GPR adr[7:0]

SUB GPR, adr:8 001

CP GPR, adr:8 010

LD GPR, adr:8 011

BITT adr:8.bs 10 bs

BITS adr:8.bs 11

ADC GPR, adr:8 011 000 GPR adr[7:0]

SBC GPR, adr:8 001

CPC GPR, adr:8 010

LD adr:8, GPR 011

BITR adr:8.bs 10 bs

BITC adr:8.bs 11



S3CK215/FK215 INSTRUCTION SET

7-5

 Table 7-3. Instruction Encoding (Continued)

Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD GPRd, GPRs 100 000 GPRd 000000 GPRs

SUB GPRd, GPRs 001

CP GPRd, GPRs 010

BMS/BMC 011

ADC GPRd, GPRs 000 000001

SBC GPRd, GPRs 001

CPC GPRd, GPRs 010

invalid 011

invalid ddd 000010

AND GPRd, GPRs 000 000011

OR GPRd, GPRs 001

XOR GPRd, GPRs 010

invalid 011

ALUop1 000 GPR 00010 ALUop1

ALUop2 001 GPR ALUop2

invalid 010–011 xx xxx

LD SPR, GPR 000 GPR 00011 SPR

LD GPR, SPR 001 GPR SPR

SWAP GPR, SPR 010 GPR SPR

LD TBL, GPR 011 GPR x 0 x

LD TBH, GPR x 1 x

PUSH SPR 000 xx 00100 SPR

POP SPR 001 xx SPR

invalid 010–011 xx xxx

PUSH GPR 000 GPR 001010 GPR

POP GPR 001 GPR GPR

LD GPRd, GPRs 010 GPRd GPRs

LD GPR, TBL 011 GPR 0 x

LD GPR, TBH 1 x

POP 000 xx 001011 xx

LDC @IL 010 0 x

LDC @IL+ 1 x

Invalid 001, 011 xx

NOTE:  "x" means not applicable.



INSTRUCTION SET S3CK215/FK215

7-6

Table 7-3. Instruction Encoding (Concluded)

Instruction 15-13 12 11 10 9 8 7 6 5 4 3 2 1 0 2nd word

MODop1 100 000 xx 00110 MODop1 –

Invalid 001–011 xx xxx

Invalid 000 xx 01 xxxxxx

AND SR0, #imm:8 001 imm[7:6] imm[5:0]

OR SR0, #imm:8 010 imm[7:6]

BANK #imm:2 011 xx x imm

[1:0]

xxx

Invalid 0 xxxx 10000000-11001111

LCALL cc, imm:20 cc 1101 imm[19:16] imm[15:0]

LLNK cc, imm:20

LJP cc, imm:20

LD SPR0, #imm:8 1 00 SPR0 IMM[7:0] –

AND GPR, adr:8 01 GPR ADR[7:0]

OR GPR, adr:8 10

XOR GPR, adr:8 11

JR cc, imm:9 101 imm

[8]

cc imm[7:0]

CALLS imm:12 110 0 imm[11:0]

LNKS imm:12 1

CLD GPR, imm:8 111 0 00 GPR imm[7:0]

CLD imm:8, GPR 01 GPR

JNZD GPR, imm:8 10 GPR

SYS #imm:8 11 xx

COP #imm:12 1 imm[11:0]

NOTES: 
1. "x" means not applicable.
2. There are several MODop1 codes that can be used, as described in table 7-9.
3. The operand 1(GPR) of the instruction JNZD is Bank 3’s register.



S3CK215/FK215 INSTRUCTION SET

7-7

Table 7-4. Index Code Information (“idx”)

Symbol Code Description

ID0 0 Index 0 IDH:IDL0

ID1 1 Index 1 IDH:IDL1

Table 7-5. Index Modification Code Information (“mod”)

Symbol Code Function

@IDx + offset:5 00 DM[IDx], IDx ← IDx + offset

@[IDx - offset:5] 01 DM[IDx + (2’s complement of offset:5)],

IDx ← IDx + (2’s complement of offset:5)

@[IDx + offset:5]! 10 DM[IDx + offset], IDx ← IDx

@[IDx - offset:5]! 11 DM[IDx + (2’s complement of offset:5)], IDx ← IDx

NOTE: Carry from IDL is propagated to IDH. In case of @[IDx - offset:5] or @[IDx - offset:5]!, the assembler should convert
offset:5 to the 2’s complement format to fill the operand field (offset[4:0]).
Furthermore, @[IDx - 0] and @[IDx - 0]! are converted to @[IDx + 0] and @[IDx + 0]!, respectively.

Table 7-6. Condition Code Information (“cc”)

Symbol (cc:4) Code Function

Blank 0000 always

NC or ULT 0001 C = 0, unsigned less than

C or UGE 0010 C = 1, unsigned greater than or equal to

Z or EQ 0011 Z = 1, equal to

NZ or NE 0100 Z = 0, not equal to

OV 0101 V = 1, overflow - signed value

ULE 0110 ~C | Z, unsigned less than or equal to

UGT 0111 C & ~Z, unsigned greater than

ZP 1000 N = 0, signed zero or positive

MI 1001 N = 1, signed negative

PL 1010 ~N & ~Z, signed positive

ZN 1011 Z | N, signed zero or negative

SF 1100 Stack Full

EC0-EC2 1101-1111 EC[0] = 1/EC[1] = 1/EC[2] = 1

NOTE: EC[2:0] is an external input (CalmRISC core’s point of view) and used as a condition.



INSTRUCTION SET S3CK215/FK215

7-8

Table 7-7. “ALUop1” Code Information

Symbol Code Function

SLA 000 arithmetic shift left

SL 001 shift left

RLC 010 rotate left with carry

RL 011 rotate left

SRA 100 arithmetic shift right

SR 101 shift right

RRC 110 rotate right with carry

RR 111 rotate right

 Table 7-8. “ALUop2” Code Information

Symbol Code Function

INC 000 increment

INCC 001 increment with carry

DEC 010 decrement

DECC 011 decrement with carry

COM 100 1’s complement

COM2 101 2’s complement

COMC 110 1’s complement with carry

– 111 reserved

Table 7-9. “MODop1” Code Information

Symbol Code Function

LRET 000 return by IL

RET 001 return by HS

IRET 010 return from interrupt (by HS)

NOP 011 no operation

BREAK 100 reserved for debugger use only

– 101 reserved

– 110 reserved

– 111 reserved



S3CK215/FK215 INSTRUCTION SET

7-9

QUICK REFERENCE

Operation op1 op2 Function Flag # of word / cycle

AND

OR

XOR

ADD

SUB

CP

GPR adr:8

#imm:8

GPR

@idm

op1 ← op1 & op2

op1 ← op1 | op2

op1 ←  op1 ^ op2

op1 ← op1 + op2

op1 ← op1 + ~op2 + 1

op1 + ~op2 + 1

z,n

z,n

z,n

c,z,v,n

c,z,v,n

c,z,v,n

1W1C

ADC

SBC

CPC

GPR GPR

adr:8

op1 ← op1 + op2 + c

op1 ← op1 + ~op2 + c

op1 + ~op2 + c

c,z,v,n

c,z,v,n

c,z,v,n

TM GPR #imm:8 op1 & op2 z,n

BITS

BITR

BITC

BITT

R3 adr:8.bs op1 ← (op2[bit] ← 1)

op1 ← (op2[bit] ← 0)

op1 ← ~(op2[bit])

z ← ~(op2[bit])

z

z

z

z

BMS/BMC – – TF ← 1 / 0 –

PUSH

POP

GPR – HS[sptr] ← GPR, (sptr ← sptr + 1)

GPR ← HS[sptr - 1], (sptr ← sptr - 1)

–

z,n

PUSH

POP

SPR – HS[sptr] ← SPR, (sptr ← sptr + 1)

SPR ← HS[sptr - 1], (sptr ← sptr - 1)

–

POP – – sptr ← sptr – 2 –

SLA

SL

RLC

RL

SRA

SR

RRC

RR

INC

INCC

DEC

DECC

COM

COM2

COMC

GPR – c ← op1[7], op1 ← {op1[6:0], 0}

c ← op1[7], op1 ← {op1[6:0], 0}

c ← op1[7], op1 ← {op1[6:0], c}

c ← op[7], op1 ← {op1[6:0], op1[7]}

c ← op[0], op1 ← {op1[7],op1[7:1]}

c ← op1[0], op1 ← {0, op1[7:1]}

c ← op1[0], op1 ← {c, op1[7:1]}

c ← op1[0], op1 ← {op1[0], op1[7:1]}

op1 ← op1 + 1

op1 ← op1 +  c

op1 ←  op1 + 0FFh

op1 ← op1 + 0FFh + c

op1 ← ~op1

op1 ← ~op1 + 1

op1 ← ~op1 + c

c,z,v,n

c,z,n

c,z,n

c,z,n

c,z,n

c,z,n

c,z,n

c,z,n

c,z,v,n

c,z,v,n

c,z,v,n

c,z,v,n

z,n

c,z,v,n

c,z,v,n



INSTRUCTION SET S3CK215/FK215

7-10

QUICK REFERENCE (Continued)

Operation op1 op2 Function Flag # of word / cycle

LD GPR
:bank

GPR
:bank

op1 ← op2 z,n 1W1C

LD SPR0 #imm:8 op1 ← op2 –

LD GPR GPR
SPR
adr:8
@idm

#imm:8
TBH/TBL

op1 ← op2 z,n

LD SPR
TBH/TBL

GPR op1 ← op2 –

LD adr:8 GPR op1 ← op2 –

LD @idm GPR op1 ← op2 –

LDC @IL
@IL+

– (TBH:TBL) ← PM[(ILX:ILH:ILL)],
ILL++ if @IL+

– 1W2C

AND

OR

SR0 #imm:8 SR0 ← SR0 & op2
SR0 ← SR0 | op2

– 1W1C

BANK #imm:2 – SR0[4:3] ← op2 –

SWAP GPR SPR op1 ← op2, op2 ← op1 (excluding
SR0/SR1)

–

LCALL cc imm:20 – If branch taken, push XSTACK,
HS[15:0] ← {PC[15:12],PC[11:0] + 2} and
PC ← op1
else PC[11:0] ← PC[11:0] + 2

– 2W2C

LLNK cc imm:20 – If branch taken, IL[19:0] ← {PC[19:12],
PC[11:0] + 2} and PC ← op1
else PC[11:0] ← PC[11:0] + 2

–

CALLS imm:12 – push XSTACK, HS[15:0] ← {PC[15:12],
PC[11:0] + 1} and PC[11:0] ← op1

– 1W2C

LNKS imm:12 – IL[19:0] ← {PC[19:12], PC[11:0] + 1} and
PC[11:0] ← op1

–

JNZD Rn imm:8 if (Rn == 0) PC ← PC[delay slot] - 2’s
complement of imm:8, Rn--
else PC ← PC[delay slot]++, Rn--

–

LJP cc imm:20 – If branch taken, PC ← op1

else PC[11:0] < PC[11:0] + 2

– 2W2C

JR cc imm:9 – If branch taken, PC[11:0] ← PC[11:0] + op1

else PC[11:0] ← PC[11:0] + 1

– 1W2C

NOTE: op1 - operand1, op2 - operand2, 1W1C - 1-Word 1-Cycle instruction, 1W2C - 1-Word 2-Cycle instruction, 2W2C - 
2-Word 2-Cycle instruction. The Rn of instruction JNZD is Bank 3’s GPR.



S3CK215/FK215 INSTRUCTION SET

7-11

QUICK REFERENCE (Concluded)

Operation op1 op2 Function Flag # of word / cycle

LRET

RET

IRET

NOP

BREAK

– – PC ← IL[19:0]

PC ← HS[sptr - 2], (sptr ← sptr - 2)

PC ← HS[sptr - 2], (sptr ← sptr - 2)

no operation

no operation and hold PC

– 1W2C

1W2C

1W2C

1W1C

1W1C

SYS #imm:8 – no operation but generates SYSCP[7:0] and
nSYSID

– 1W1C

CLD imm:8 GPR op1 ← op2, generates SYSCP[7:0], nCLDID,
and CLDWR

–

CLD GPR imm:8 op1 ← op2, generates SYSCP[7:0], nCLDID,
and CLDWR

z,n

COP #imm:12 – generates SYSCP[11:0] and nCOPID –

NOTES:
1. op1 - operand1, op2 - operand2, sptr - stack pointer register, 1W1C - 1-Word 1-Cycle instruction, 1W2C - 1-Word 

2-Cycle instruction
2. Pseudo instructions

— SCF/RCF
                  Carry flag set or reset instruction

— STOP/IDLE
                  MCU power saving instructions

— EI/DI
                  Exception enable and disable instructions

— JP/LNK/CALL
    If JR/LNKS/CALLS commands (1 word instructions) can access the target address, there is no conditional  code
    in the case of CALL/LNK, and the JP/LNK/CALL commands are assembled to JR/LNKS/CALLS in linking time, or
    else the JP/LNK/CALL commands are assembled to LJP/LLNK/LCALL (2 word instructions) instructions.



INSTRUCTION SET S3CK215/FK215

7-12

INSTRUCTION GROUP SUMMARY

ALU INSTRUCTIONS

“ALU instructions” refer to the operations that use ALU to generate results. ALU instructions update the values in
Status Register 1 (SR1), namely carry (C), zero (Z), overflow (V), and negative (N), depending on the operation
type and the result.

ALUop GPR, adr:8

Performs an ALU operation on the value in GPR and the value in DM[adr:8] and stores the result into GPR.
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPR+(not DM[adr:8])+1 is performed.
adr:8 is the offset in a specific data memory page.

The data memory page is 0 or the value of IDH (Index of Data Memory Higher Byte Register), depending on the
value of eid in Status Register 0 (SR0).

Operation

GPR ← GPR ALUop DM[00h:adr:8] if eid = 0
GPR ← GPR ALUop DM[IDH:adr8] if eid = 1
Note that this is an 7-bit operation.

Example

ADD R0, 80h // Assume eid = 1 and IDH = 01H
// R0 ← R0 + DM[0180h]

ALUop GPR, #imm:8

Stores the result of an ALU operation on GPR and an 7-bit immediate value into GPR.
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPR+(not #imm:8)+1 is performed.
#imm:8 is an 7-bit immediate value.

Operation

GPR ← GPR ALUop #imm:8

Example

ADD R0, #7Ah // R0 ← R0 + 7Ah



S3CK215/FK215 INSTRUCTION SET

7-13

ALUop GPRd, GPRs

Store the result of ALUop on GPRs and GPRd into GPRd.
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPRd + (not GPRs) + 1 is performed.
GPRs and GPRd need not be distinct.

Operation

GPRd ← GPRd ALUop GPRs
GPRd - GPRs when ALUop = CP (comparison only)

Example

ADD R0, R1 // R0 ← R0 + R1

ALUop GPR, @idm

Performs ALUop on the value in GPR and DM[ID] and stores the result into GPR. Index register ID is IDH:IDL
(IDH:IDL0 or IDH:IDL1).
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPR+(not DM[idm])+1 is performed.
idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]!
(IDx = ID0 or ID1)

Operation

GPR - DM[idm] when ALUop = CP (comparison only)
GPR ← GPR ALUop DM[IDx], IDx ← IDx + offset:5 when idm = IDx + offset:5
GPR ← GPR ALUop DM[IDx - offset:5], IDx ← IDx - offset:5 when idm = [IDx - offset:5]
GPR ← GPR ALUop DM[IDx + offset:5] when idm = [IDx + offset:5]!
GPR ← GPR ALUop DM[IDx - offset:5] when idm = [IDx - offset:5]!

When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH.

Example

ADD R0, @ID0+2 // assume ID0 = 02FFh
// R0 ← R0 + DM[02FFh], IDH ← 03h and IDL0 ← 01h

ADD R0, @[ID0-2] // assume ID0 = 0201h
// R0 ← R0 + DM[01FFh], IDH ← 01h and IDL0 ← FFh

ADD R0, @[ID1+2]! // assume ID1 = 02FFh
// R0 ← R0 + DM[0301], IDH ← 02h and IDL1 ← FFh

ADD R0, @[ID1-2]! // assume ID1 = 0200h
// R0 ← R0 + DM[01FEh], IDH ← 02h and IDL1 ← 00h



INSTRUCTION SET S3CK215/FK215

7-14

ALUopc GPRd, GPRs

Performs ALUop with carry on GPRd and GPRs and stores the result into GPRd.
ALUopc = ADC, SBC, CPC
GPRd and GPRs need not be distinct.

Operation

GPRd ← GPRd + GPRs + C when ALUopc = ADC
GPRd ← GPRd + (not GPRs) + C when ALUopc = SBC
GPRd + (not GPRs) + C when ALUopc = CPC (comparison only)

Example

ADD R0, R2 // assume R1:R0 and R3:R2 are 16-bit signed or unsigned numbers.
ADC R1, R3 // to add two 16-bit numbers, use ADD and ADC.

SUB R0, R2 // assume R1:R0 and R3:R2 are 16-bit signed or unsigned numbers.
SBC R1, R3 // to subtract two 16-bit numbers, use SUB and SBC.

CP R0, R2 // assume both R1:R0 and R3:R2 are 16-bit unsigned numbers.
CPC R1, R3 // to compare two 16-bit unsigned numbers, use CP and CPC.

ALUopc GPR, adr:8

Performs ALUop with carry on GPR and DM[adr:8].

Operation

GPR ← GPR + DM[adr:8] + C when ALUopc = ADC
GPR ← GPR + (not DM[adr:8]) + C when ALUopc = SBC
GPR + (not DM[adr:8]) + C when ALUopc = CPC (comparison only)

CPLop GPR (Complement Operations)

CPLop = COM, COM2, COMC

Operation

COM GPR not GPR (logical complement)
COM2 GPR not GPR + 1 (2’s complement of GPR)
COMC GPR not GPR + C (logical complement of GPR with carry)

Example

COM2 R0 // assume R1:R0 is a 16-bit signed number.
COMC R1 // COM2 and COMC can be used to get the 2’s complement of it.



S3CK215/FK215 INSTRUCTION SET

7-15

IncDec GPR (Increment/Decrement Operations)

IncDec = INC, INCC, DEC, DECC

Operation

INC GPR Increase GPR, i.e., GPR ← GPR + 1
INCC GPR Increase GPR if carry = 1, i.e., GPR ← GPR + C

DEC GPR Decrease GPR, i.e., GPR ← GPR + FFh
DECC GPR Decrease GPR if carry = 0, i.e., GPR ← GPR + FFh + C

Example

INC R0 // assume R1:R0 is a 16-bit number
INCC R1 // to increase R1:R0, use INC and INCC.

DEC R0 // assume R1:R0 is a 16-bit number
DECC R1 // to decrease R1:R0, use DEC and DECC.



INSTRUCTION SET S3CK215/FK215

7-16

SHIFT/ROTATE INSTRUCTIONS

Shift (Rotate) instructions shift (rotate) the given operand by 1 bit. Depending on the operation performed, a
number of Status Register 1 (SR1) bits, namely Carry (C), Zero (Z), Overflow (V), and Negative (N), are set.

SL GPR

Operation

C

7 0

0

GPR

Carry (C) is the MSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

SLA GPR

Operation

C

7 0

0

GPR

Carry (C) is the MSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) will be 1 if the MSB of the result is different from C. Z will be 1 if the result is 0.

RL GPR

Operation

C

7 0

GPR

Carry (C) is the MSB of GPR before rotating. Negative (N) is the MSB of GPR after rotatin/g.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

RLC GPR

Operation

C

7 0

GPR

Carry (C) is the MSB of GPR before rotating, Negative (N) is the MSB of GPR after rotating.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.



S3CK215/FK215 INSTRUCTION SET

7-17

SR GPR

Operation

C

7 0

0

GPR

Carry (C) is the LSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

SRA GPR

Operation

C

7 0

GPR

Carry (C) is the LSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) is not affected. Z will be 1 if the result is 0.

RR GPR

Operation

C

7 0

GPR

Carry (C) is the LSB of GPR before rotating. Negative (N) is the MSB of GPR after rotating.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

RRC GPR

Operation

C

7 0

GPR

Carry (C) is the LSB of GPR before rotating, Negative (N) is the MSB of GPR after rotating.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.



INSTRUCTION SET S3CK215/FK215

7-18

LOAD INSTRUCTIONS

Load instructions transfer data from data memory to a register or from a register to data memory, or assigns an
immediate value into a register. As a side effect, a load instruction placing a value into a register sets the Zero
(Z) and Negative (N) bits in Status Register 1 (SR1), if the placed data is 00h and the MSB of the data is 1,
respectively.

LD GPR, adr:8

Loads the value of DM[adr:8] into GPR. Adr:8 is offset in the page specified by the value of eid in Status Register
0 (SR0).

Operation

GPR ← DM[00h:adr:8] if eid = 0
GPR ← DM[IDH:adr:8] if eid = 1

Note that this is an 7-bit operation.

Example

LD R0, 80h // assume eid = 1 and IDH= 01H
// R0 ← DM[0180h]

LD GPR, @idm

Loads a value from the data memory location specified by @idm into GPR.
idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]!
(IDx = ID0 or ID1)

Operation

GPR ← DM[IDx], IDx ← IDx + offset:5 when idm = IDx + offset:5
GPR ← DM[IDx - offset:5], IDx ← IDx - offset:5 when idm = [IDx - offset:5]
GPR ← DM[IDx + offset:5] when idm = [IDx + offset:5]!
GPR ← DM[IDx - offset:5] when idm = [IDx - offset:5]!

When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH.

Example

LD R0, @[ID0 + 03h]! // assume IDH:IDL0 = 0270h
// R0 ← DM[0273h], IDH:IDL0 ← 0270h



S3CK215/FK215 INSTRUCTION SET

7-19

LD REG, #imm:8

Loads an 7-bit immediate value into REG. REG can be either GPR or an SPR0 group register - IDH (Index of
Data Memory Higher Byte Register), IDL0 (Index of Data Memory Lower Byte Register)/ IDL1, and Status
Register 0 (SR0). #imm:8 is an 7-bit immediate value.

Operation

REG ← #imm:8

Example

LD R0 #7Ah // R0 ← 7Ah
LD IDH, #03h // IDH ← 03h

LD GPR:bs:2, GPR:bs:2

Loads a value of a register from a specified bank into another register in a specified bank.

Example

LD R0:1, R2:3 // R0 in bank 1, R2 in bank 3

LD GPR, TBH/TBL

Loads the value of TBH or TBL into GPR. TBH and TBL are 7-bit long registers used exclusively for LDC
instructions that access program memory. Therefore, after an LDC instruction, LD GPR, TBH/TBL instruction will
usually move the data into GPRs, to be used for other operations.

Operation

GPR ← TBH (or TBL)

Example

LDC @IL // gets a program memory item residing @ ILX:ILH:ILL
LD R0, TBH
LD R1, TBL

LD TBH/TBL, GPR

Loads the value of GPR into TBH or TBL. These instructions are used in pair in interrupt service routines to save
and restore the values in TBH/TBL as needed.

Operation

TBH (or TBL) ← GPR

LD GPR, SPR

Loads the value of SPR into GPR.

Operation

GPR ← SPR

Example

LD R0, IDH // R0 ← IDH



INSTRUCTION SET S3CK215/FK215

7-20

LD SPR, GPR

Loads the value of GPR into SPR.

Operation

SPR ← GPR

Example

LD IDH, R0 // IDH ← R0

LD adr:8, GPR

Stores the value of GPR into data memory (DM). adr:8 is offset in the page specified by the value of eid in
Status Register 0 (SR0).

Operation

DM[00h:adr:8] ← GPR if eid = 0
DM[IDH:adr:8] ← GPR if eid = 1

Note that this is an 7-bit operation.

Example

LD 7Ah, R0 // assume eid = 1 and IDH = 02h.
// DM[027Ah] ← R0

LD @idm, GPR

Loads a value into the data memory location specified by @idm from GPR.
idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]!
(IDx = ID0 or ID1)

Operation

DM[IDx] ← GPR, IDx ← IDx + offset:5 when idm = IDx + offset:5
DM[IDx - offset:5] ← GPR, IDx ← IDx - offset:5 when idm = [IDx - offset:5]
DM[IDx + offset:5] ← GPR when idm = [IDx + offset:5]!
DM[IDx - offset:5] ← GPR when idm = [IDx - offset:5]!

When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH.

Example

LD @[ID0 + 03h]!, R0 // assume IDH:IDL0 = 0170h
// DM[0173h] ← R0, IDH:IDL0 ← 0170h



S3CK215/FK215 INSTRUCTION SET

7-21

BRANCH INSTRUCTIONS

Branch instructions can be categorized into jump instruction, link instruction, and call instruction. A jump
instruction does not save the current PC, whereas a call instruction saves (“pushes”) the current PC onto the
stack and a link instruction saves the PC in the link register IL. Status registers are not affected. Each instruction
type has a 2-word format that supports a 20-bit long jump.

JR cc:4, imm:9

imm:9 is a signed number (2’s complement), an offset to be added to the current PC to compute the target
(PC[19:12]:(PC[11:0] + imm:9)).

Operation

PC[11:0] ← PC[11:0] + imm:9 if branch taken (i.e., cc:4 resolves to be true)
PC[11:0] ← PC[11:0] + 1 otherwise

Example

L18411: // assume current PC = 18411h.
JR Z, 107h // next PC is 18518 (18411h + 107h) if Zero (Z) bit is set.

LJP cc:4, imm:20

Jumps to the program address specified by imm:20. If program size is less than 64K word, PC[19:16] is not
affected.

Operation

PC[15:0] ← imm[15:0] if branch taken and program size is less than 64K word
PC[19:0] ← imm[19:0] if branch taken and program size is equal to 64K word or more
PC [11:0] ← PC[11:0] + 1 otherwise

Example

L18411: // assume current PC = 18411h.
LJP Z, 10107h // next instruction’s PC is 10107h If Zero (Z) bit is set

JNZD Rn, imm:8

Jumps to the program address specified by imm:8 if the value of the bank 3 register Rn is not zero. JNZD
performs only backward jumps, with the value of Rn automatically decreased. There is one delay slot following
the JNZD instruction that is always executed, regardless of whether JNZD is taken or not.

 Operation

If (Rn == 0) PC ← PC[delay slot] (-) 2’s complement of imm:8, Rn ← Rn - 1
else PC ← PC[delay slot] + 1, Rn ← Rn - 1.



INSTRUCTION SET S3CK215/FK215

7-22

Example

LOOP_A: // start of loop body
•

•

•
JNZD R0, LOOP_A          // jump back to LOOP_A if R0 is not zero
ADD R1, #2                // delay slot, always executed (you must use one cycle instruction only)

CALLS imm:12

Saves the current PC on the stack (“pushes” PC) and jumps to the program address specified by imm:12. The
current page number PC[19:12] is not changed. Since this is a 1-word instruction, the return address pushed onto
the stack is (PC + 1). If nP64KW is low when PC is saved, PC[19:16] is not saved in the stack.

Operation

HS[sptr][15:0] ← current PC + 1 and sptr ← sptr + 2 (push stack) if nP64KW = 0
HS[sptr][19:0] ← current PC + 1 and sptr ← sptr + 2 (push stack) if nP64KW = 1
PC[11:0] ← imm:12

Example

L18411: // assume current PC = 18411h.
CALLS 107h // call the subroutine at 18107h, with the current PC pushed

// onto the stack (HS ← 18412h) if nP64KW = 1.

LCALL cc:4, imm:20

Saves the current PC onto the stack (pushes PC) and jumps to the program address specified by imm:20. Since
this is a 2-word instruction, the return address saved in the stack is (PC + 2). If nP64KW, a core input signal is
low when PC is saved, 0000111111PC[19:16] is not saved in the stack and PC[19:16] is not set to imm[19:16].

Operation

HS[sptr][15:0] ← current PC + 2 and sptr + 2 (push stack)   if branch taken and nP64KW = 0
HS[sptr][19:0] ← current PC + 2 and sptr + 2 (push stack)   if branch taken and nP64KW = 1
PC[15:0] ← imm[15:0] if branch taken and nP64KW = 0
PC[19:0] ← imm[19:0] if branch taken and nP64KW = 1
PC[11:0] ← PC[11:0] + 2   otherwise

Example

L18411: // assume current PC = 18411h.
LCALL NZ, 10107h // call the subroutine at 10107h with the current PC pushed

// onto the stack (HS ← 18413h)



S3CK215/FK215 INSTRUCTION SET

7-23

LNKS imm:12

Saves the current PC in IL and jumps to the program address specified by imm:12. The current page number
PC[19:12] is not changed. Since this is a 1-word instruction, the return address saved in IL is (PC + 1). If the
program size is less than 64K word when PC is saved, PC[19:16] is not saved in ILX.

Operation

IL[15:0] ← current PC + 1 if program size is less than 64K word
IL[19:0] ← current PC + 1 if program size is equal to 64K word or more
PC[11:0] ← imm:12

Example

L18411: // assume current PC = 18411h.
LNKS 107h // call the subroutine at 18107h, with the current PC saved

// in IL (IL[19:0] ← 18412h) if program size is 64K word or more.

LLNK cc:4, imm:20

Saves the current PC in IL and jumps to the program address specified by imm:20. Since this is a 2-word
instruction, the return address saved in IL is (PC + 2). If the program size is less than 64K word when PC is
saved, PC[19:16] is not saved in ILX.

Operation

IL[15:0] ← current PC + 2   if branch taken and program size is less than 64K word
IL[19:0] ← current PC + 2   if branch taken and program size is 64K word or more
PC[15:0] ← imm[15:0] if branch taken and program size is less than 64K word
PC[19:0] ← imm[19:0] if branch taken and program size is 64K word or more
PC[11:0] ← PC[11:0] + 2   otherwise

Example

L18411: // assume current PC = 18411h.
LLNK NZ, 10107h // call the subroutine at 10107h with the current PC saved

// in IL (IL[19:0] ← 18413h) if program size is 64K word or more

RET, IRET

Returns from the current subroutine. IRET sets ie (SR0[1]) in addition. If the program size is less than 64K word,
PC[19:16] is not loaded from HS[19:16].

Operation

PC[15:0] ← HS[sptr - 2] and sptr ← sptr - 2 (pop stack) if program size is less than 64K word
PC[19:0] ← HS[sptr - 2] and sptr ← sptr - 2 (pop stack) if program size is 64K word or more

Example

RET // assume sptr = 3h and HS[1] = 18407h.
// the next PC will be 18407h and sptr is set to 1h



INSTRUCTION SET S3CK215/FK215

7-24

LRET

Returns from the current subroutine, using the link register IL. If the program size is less than 64K word,
PC[19:16] is not loaded from ILX.

Operation

PC[15:0] ← IL[15:0] if program size is less than 64K word
PC[19:0] ← IL[19:0] if program size is 64K word or more

Example

LRET // assume IL = 18407h.
// the next instruction to execute is at PC = 18407h

   // if program size is 64K word or more

JP/LNK/CALL

JP/LNK/CALL instructions are pseudo instructions. If JR/LNKS/CALLS commands (1 word instructions) can
access the target address, there is no conditional code in the case of CALL/LNK and the JP/LNK/CALL
commands are assembled to JR/LNKS/CALLS in linking time or  else the JP/LNK/CALL commands are
assembled to LJP/LLNK/LCALL (2 word instructions) instructions.



S3CK215/FK215 INSTRUCTION SET

7-25

BIT MANIPULATION INSTRUCTIONS

BITop adr:8.bs

Performs a bit operation specified by op on the value in the data memory pointed by adr:8 and stores the result
into R3 of current GPR bank or back into memory depending on the value of TF bit.

BITop = BITS, BITR, BITC, BITT
BITS: bit set
BITR: bit reset
BITC: bit complement
BITT: bit test (R3 is not touched in this case)
bs: bit location specifier, 0 - 7.

Operation

R3 ← DM[00h:adr:8] BITop bs if eid = 0
R3 ← DM[IDH:adr:8] BITop bs if eid = 1 (no register transfer for BITT)
Set the Zero (Z) bit if the result is 0.

Example

BITS 25h.3 // assume eid = 0. set bit 3 of DM[00h:25h] and store the result in R3.
BITT 25h.3 // check bit 3 of DM[00h:25h] if eid = 0.

BMC/BMS

Clears or sets the TF bit, which is used to determine the destination of BITop instructions. When TF bit is clear,
the result of BITop instructions will be stored into R3 (fixed); if the TF bit is set, the result will be written back to
memory.

 Operation

TF ← 0 (BMC)
TF ← 1 (BMS)

TM GPR, #imm:8

Performs AND operation on GPR and imm:8 and sets the Zero (Z) and Negative (N) bits. No change in GPR.

Operation

Z, N flag ← GPR & #imm:8

BITop GPR.bs

Performs a bit operation on GPR and stores the result in GPR.
Since the equivalent functionality can be achieved using OR GPR, #imm:8, AND GPR, #imm:8, and XOR GPR,
#imm:8, this instruction type doesn’t have separate op codes.



INSTRUCTION SET S3CK215/FK215

7-26

AND SR0, #imm:8/OR SR0, #imm:8

Sets/resets bits in SR0 and stores the result back into SR0.

Operation

SR0 ← SR0 & #imm:8
SR0 ← SR0 | #imm:8

BANK #imm:2

Loads SR0[4:3] with #imm[1:0].

Operation

SR0[4:3] ← #imm[1:0]

MISCELLANEOUS INSTRUCTION

SWAP GPR, SPR

Swaps the values in GPR and SPR. SR0 and SR1 can NOT be used for this instruction.
No flag is updated, even though the destination is GPR.

Operation

temp ← SPR
SPR ← GPR
GPR ← temp

Example

SWAP R0, IDH // assume IDH = 00h and R0 = 08h.
// after this, IDH = 08h and R0 = 00h.

PUSH REG

Saves REG in the stack (Pushes REG into stack).
REG = GPR, SPR

Operation

HS[sptr][7:0] ← REG and sptr ← sptr + 1

Example

PUSH R0 // assume R0 = 08h and sptr = 2h
// then HS[2][7:0] ← 08h and sptr ← 3h



S3CK215/FK215 INSTRUCTION SET

7-27

POP REG

Pops stack into REG.
REG = GPR, SPR

Operation

REG ← HS[sptr-1][7:0] and sptr ← sptr – 1

Example

POP R0 // assume sptr = 3h and HS[2] = 18407h
// R0 ← 07h and sptr ← 2h

POP

Pops 2 bytes from the stack and discards the popped data.

NOP

Does no work but increase PC by 1.

BREAK

Does nothing and does NOT increment PC. This instruction is for the debugger only. When this instruction is
executed, the processor is locked since PC is not incremented. Therefore, this instruction should not be used
under any mode other than the debug mode.

SYS #imm:8

Does nothing but increase PC by 1 and generates SYSCP[7:0] and nSYSID signals.

CLD GPR, imm:8

GPR ← (imm:8) and generates SYSCP[7:0], nCLDID, and nCLDWR signals.

CLD imm:8, GPR

(imm:8) ← GPR and generates SYSCP[7:0], nCLDID, and nCLDWR signals.

COP #imm:12

Generates SYSCP[11:0] and nCOPID signals.



INSTRUCTION SET S3CK215/FK215

7-28

LDC

Loads program memory item into register.

Operation

[TBH:TBL] ← PM[ILX:ILH:ILL] (LDC @IL)
[TBH:TBL] ← PM[ILX:ILH:ILL], ILL++ (LDC @IL+)

TBH and TBL are temporary registers to hold the transferred program memory items. These can be accessed
only by LD GPR and TBL/TBH instruction.

Example

LD ILX, R1 // assume R1:R2:R3 has the program address to access
LD ILH, R2
LD ILL, R3
LDC @IL // get the program data @(ILX:ILH:ILL) into TBH:TBL



S3CK215/FK215 INSTRUCTION SET

7-29

PSEUDO INSTRUCTIONS

EI/DI

Exceptions enable and disable instruction.

Operation

SR0 ← OR   SR0,#00000010b (EI)
SR0 ← AND SR0,#11111101b (DI)

Exceptions are enabled or disabled through this instruction. If there is an EI instruction, the SR0.1 is set and
reset, when DI instruction.

Example

DI
•

•

•
EI

SCF/RCF

Carry flag set and reset instruction.

Operation

CP R0,R0 (SCF)
AND R0,R0 (RCF)

Carry flag is set or reset through this instruction. If there is an SCF instruction, the SR1.0 is set and reset, when
RCF instruction.

Example

SCF
RCF

STOP/IDLE

MCU power saving instruction.

Operation

SYS #0Ah (STOP)
SYS #05h (IDLE)

The STOP instruction stops the both CPU clock and system clock and causes the microcontroller to enter STOP
mode. The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue.

Example

STOP(or IDLE)
NOP
NOP
NOP
•

•

•



INSTRUCTION SET S3CK215/FK215

7-30

ADC — Add with Carry

Format: ADC <op1>, <op2>
<op1>: GPR
<op2>: adr:8, GPR

Operation: <op1> ← <op1> + <op2> + C
ADC adds the values of <op1> and <op2> and carry (C) and stores the result back into <op1>

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.

. N:   exclusive OR of V and MSB of result.

Example:
 ADC R0, 80h // If eid = 0, R0 ← R0 + DM[0080h] + C

// If eid = 1, R0 ← R0 + DM[IDH:80h] + C

ADC R0, R1 // R0 ← R0 + R1 + C

ADD R0, R2
ADC R1, R3

In the last two instructions, assuming that register pair R1:R0 and R3:R2 are 16-bit signed or
unsigned numbers. Even if the result of “ADD R0, R2” is not zero, Z flag can be set to ‘1’ if the
result of “ADC R1,R3” is zero. Note that zero (Z) flag do not exactly reflect result of 16-bit
operation. Therefore when programming 16-bit addition, take care of the change of Z flag.



S3CK215/FK215 INSTRUCTION SET

7-31

ADD — Add

Format: ADD <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> + <op2>

ADD adds the values of <op1> and <op2> and stores the result back into <op1>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.

. N:   exclusive OR of V and MSB of result.

Example: Given: IDH:IDL0 = 80FFh, eid = 1

ADD R0, 80h // R0 ← R0 + DM[8080h]

ADD R0, #12h // R0 ← R0 + 12h

ADD R1, R2 // R1 ← R1 + R2

ADD R0, @ID0 + 2 // R0 ← R0 + DM[80FFh], IDH ← 81h, IDL0 ← 01h
ADD R0, @[ID0 – 3] // R0 ← R0 + DM[80FCh], IDH ← 80h, IDL0 ← FCh
ADD R0, @[ID0 + 2]! // R0 ← R0 + DM[8101h], IDH ← 80h, IDL0 ← FFh
ADD R0, @[ID0 – 2]! // R0 ← R0 + DM[80FDh], IDH ← 80h, IDL0 ← FFh

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



INSTRUCTION SET S3CK215/FK215

7-32

AND — Bit-wise AND

Format: AND <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> & <op2>

AND performs bit-wise AND on the values in <op1> and <op2> and stores the result in <op1>.

Flags: Z:   set if result is zero. Reset if not.
N:   set if the MSB of result is 1. Reset if not.

Example: Given: IDH:IDL0 = 01FFh, eid = 1

AND R0, 7Ah // R0 ← R0 & DM[017Ah]

AND R1, #40h // R1 ← R1 & 40h

AND R0, R1 // R0 ← R0 & R1

AND R1, @ID0 + 3 // R1 ← R1 & DM[01FFh], IDH:IDL0 ← 0202h
AND R1, @[ID0 – 5] // R1 ← R1 & DM[01FAh], IDH:IDL0 ← 01FAh
AND R1, @[ID0 + 7]! // R1 ← R1 & DM[0206h], IDH:IDL0 ← 01FFh
AND R1, @[ID0 – 2]! // R1 ← R1 & DM[01FDh], IDH:IDL0 ← 01FFh

In the first instruction, if eid bit in SR0 is zero, register R0 has garbage value because data
memory DM[0051h-007Fh] are not mapped in S3CB519/S3FB519. In the last two instructions,
the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed explanation about this
addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



S3CK215/FK215 INSTRUCTION SET

7-33

AND SR0 — Bit-wise AND with SR0

Format: AND SR0, #imm:8

Operation: SR0 ← SR0 & imm:8

AND SR0 performs the bit-wise AND operation on the value of SR0 and imm:8 and stores the
result in SR0.

Flags: –

Example: Given: SR0 = 11000010b

nIE EQU          ~02h
nIE0 EQU          ~40h
nIE1 EQU          ~80h

AND          SR0, #nIE | nIE0 | nIE1

AND          SR0, #11111101b

In the first example, the statement “AND SR0, #nIE|nIE0|nIE1” clear all of bits of the global
interrupt, interrupt 0 and interrupt 1. On the contrary, cleared bits can be set to ‘1’ by instruction
“OR SR0, #imm:8”. Refer to instruction OR SR0 for more detailed explanation about enabling bit.

In the second example, the statement “AND SR0, #11111101b” is equal to instruction DI, which
is disabling interrupt globally.

 



INSTRUCTION SET S3CK215/FK215

7-34

BANK — GPR Bank selection

Format: BANK #imm:2

Operation: SR0[4:3] ← imm:2

Flags: –

NOTE: For explanation of the CalmRISC banked register file and its usage, please refer to chapter 3.

Example:
 BANK #1 // Select register bank 1

LD R0, #11h // Bank1’s R0 ← 11h

BANK #2 // Select register bank 2
LD R1, #22h // Bank2’s R1 ← 22h



S3CK215/FK215 INSTRUCTION SET

7-35

BITC — Bit Complement

Format: BITC adr:8.bs

bs: 3-digit bit specifier

Operation: R3 ← ((adr:8) ^ (2**bs))        if (TF == 0)

(adr:8) ← ((adr:8) ^ (2**bs))    if (TF == 1)

BITC complements the specified bit of a value read from memory and stores the result in R3 or 
back into memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction.

Flags: Z:   set if result is zero. Reset if not.

NOTE: Since the destination register R3 is fixed, it is not specified explicitly.

Example: Given: IDH = 01, DM[0180h] = FFh, eid = 1

BMC // TF ← 0
BITC 80h.0 // R3 ← FEh, DM[0180h] = FFh

BMS // TF ← 1
BITC 80h.1 // DM[0180h] ← FDh



INSTRUCTION SET S3CK215/FK215

7-36

BITR — Bit Reset

Format: BITR adr:8.bs

bs: 3-digit bit specifier

Operation: R3 ← ((adr:8) & ((11111111)2 - (2**bs)))        if (TF == 0)

(adr:8) ← ((adr:8) & ((11111111)2 - (2**bs)))    if (TF == 1)

BITR resets the specified bit of a value read from memory and stores the result in R3 or back 
into memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction.

Flags: Z:   set if result is zero. Reset if not.

NOTE: Since the destination register R3 is fixed, it is not specified explicitly.

Example: Given: IDH = 01, DM[0180h] = FFh, eid = 1

BMC // TF ← 0
BITR 80h.1 // R3 ← FDh, DM[0180h] = FFh

BMS // TF ← 1
BITR 80h.2 // DM[0180h] ← FBh



S3CK215/FK215 INSTRUCTION SET

7-37

BITS — Bit Set

Format: BITS adr:8.bs

bs: 3-digit bit specifier.

Operation: R3 ← ((adr:8) | (2**bs))        if (TF == 0)

(adr:8) ← ((adr:8) | (2**bs))    if (TF == 1)

BITS sets the specified bit of a value read from memory and stores the result in R3 or back into 
memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction.

Flags: Z:  set if result is zero. Reset if not.

NOTE: Since the destination register R3 is fixed, it is not specified explicitly.

Example: Given: IDH = 01, DM[0180h] = F0h, eid = 1

BMC // TF ← 0
BITS 80h.1 // R3 ← 0F2h, DM[0180h] = F0h

BMS // TF ← 1
BITS 80h.2 // DM[0180h] ← F4h



INSTRUCTION SET S3CK215/FK215

7-38

BITT — Bit Test

Format: BITT adr:8.bs

bs: 3-digit bit specifier.

Operation: Z ← ~((adr:8) & (2**bs))

BITT tests the specified bit of a value read from memory.

Flags: Z:  set if result is zero. Reset if not.

Example: Given: DM[0080h] = F7h, eid = 0

BITT 80h.3 // Z flag is set to ‘1’
JR Z, %1 // Jump to label %1 because condition is true.
•

•

•
%1 BITS 80h.3

NOP
•

•

•



S3CK215/FK215 INSTRUCTION SET

7-39

BMC/BMS – TF bit clear/set

Format: BMS/BMC

Operation: BMC/BMS clears (sets) the TF bit.

TF ← 0  if BMC

TF ← 1  if BMS

TF is a single bit flag which determines the destination of bit operations, such as BITC, BITR,
and BITS.

Flags: –

NOTE: BMC/BMS are the only instructions that modify the content of the TF bit.

Example:
 BMS // TF ← 1

BITS 81h.1

BMC // TF ← 0
BITR 81h.2
LD R0, R3



INSTRUCTION SET S3CK215/FK215

7-40

CALL — Conditional Subroutine Call (Pseudo Instruction)

Format: CALL cc:4, imm:20
CALL imm:12

Operation: If CALLS can access the target address and there is no conditional code (cc:4), CALL command is 
assembled to CALLS (1-word instruction) in linking time, else the CALL is assembled to LCALL (2-word 
instruction).

Example:
CALL C, Wait // HS[sptr][15:0] ← current PC + 2, sptr ← sptr + 2
• // 2-word instruction
•

•
 CALL 0088h // HS[sptr][15:0] ← current PC + 1, sptr ← sptr + 2

• // 1-word instruction
•

•
Wait: NOP // Address at 0088h

NOP
 NOP
 NOP
 NOP

RET



S3CK215/FK215 INSTRUCTION SET

7-41

CALLS — Call Subroutine

Format: CALLS imm:12

Operation: HS[sptr][15:0] ← current PC + 1, sptr ← sptr + 2 if the program size is less than 64K word.

HS[sptr][19:0] ← current PC + 1, sptr ← sptr + 2 if the program size is equal to or over 64K word.

PC[11:0] ← imm:12
CALLS unconditionally calls a subroutine residing at the address specified by imm:12.

Flags: –

Example:
CALLS Wait
•

•

•
Wait: NOP

NOP
NOP
RET

Because this is a 1-word instruction, the saved returning address on stack is (PC + 1).



INSTRUCTION SET S3CK215/FK215

7-42

CLD — Load into Coprocessor

Format: CLD imm:8, <op>

<op>: GPR

Operation: (imm:8) ← <op>

CLD loads the value of <op> into (imm:8), where imm:8 is used to access the external
coprocessor's address space.

Flags: –

Example:
AH EQU 00h
AL EQU 01h
BH EQU 02h
BL EQU 03h

•

•

•
CLD AH, R0 // A[15:8] ← R0
CLD AL, R1 // A[7:0] ← R1

CLD BH, R2 // B[15:8] ← R2
CLD BL, R3 // B[7:0] ← R3

The registers A[15:0] and B[15:0] are Arithmetic Unit (AU) registers of MAC816.
 Above instructions generate SYSCP[7:0], nCLDID and CLDWR signals to access MAC816.



S3CK215/FK215 INSTRUCTION SET

7-43

CLD — Load from Coprocessor

Format: CLD <op>, imm:8

<op>: GPR

Operation: <op> ← (imm:8)

CLD loads a value from the coprocessor, whose address is specified by imm:8.

Flags: Z:   set if the loaded value in <op1> is zero. Reset if not.
N:   set if the MSB of the loaded value in <op1> is 1. Reset if not.

Example:
AH EQU 00h
AL EQU 01h
BH EQU 02h
BL EQU 03h

•

•

•
CLD R0, AH // R0 ← A[15:8]
CLD R1, AL // R1 ← A[7:0]

CLD R2, BH // R2 ← B[15:8]
CLD R3, BL // R3 ← B[7:0]

 The registers A[15:0] and B[15:0] are Arithmetic Unit (AU) registers of MAC816.
 Above instructions generate SYSCP[7:0], nCLDID and CLDWR signals to access MAC816.



INSTRUCTION SET S3CK215/FK215

7-44

COM — 1's or Bit-wise Complement

Format: COM <op>

<op>: GPR

Operation: <op> ← ~<op>

COM takes the bit-wise complement operation on <op> and stores the result in <op>.

Flags: Z:   set if result is zero. Reset if not.
N:   set if the MSB of result is 1. Reset if not.

Example: Given: R1 = 5Ah

 COM R1 // R1 ← A5h, N flag is set to ‘1’



S3CK215/FK215 INSTRUCTION SET

7-45

COM2 — 2's Complement

Format: COM2 <op>

<op>: GPR

Operation: <op> ← ~<op> + 1

COM2 computes the 2's complement of <op> and stores the result in <op>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative.

Example: Given: R0 = 00h, R1 = 5Ah

COM2 R0 // R0 ← 00h, Z and C flags are set to ‘1’.

COM2 R1 // R1 ← A6h, N flag is set to ‘1’.



INSTRUCTION SET S3CK215/FK215

7-46

COMC — Bit-wise Complement with Carry

Format: COMC <op>

<op>: GPR

Operation: <op> ← ~<op> + C

COMC takes the bit-wise complement of <op>, adds carry and stores the result in <op>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: If register pair R1:R0 is a 16-bit number, then the 2’s complement of R1:R0 can be obtained by
 COM2 and COMC as following.

 COM2 R0
COMC R1

Note that Z flag do not exactly reflect result of 16-bit operation. For example, if 16-bit register
pair R1: R0 has value of FF01h, then 2’s complement of R1: R0 is made of 00FFh by COM2 and
COMC.  At this time, by instruction COMC, zero (Z) flag is set to ‘1’ as if the result of 2’s
complement for 16-bit number is zero. Therefore when programming 16-bit comparison, take
care of the change of Z flag.



S3CK215/FK215 INSTRUCTION SET

7-47

COP — Coprocessor

Format: COP #imm:12

Operation: COP passes imm:12 to the coprocessor by generating SYSCP[11:0] and nCOPID signals.

Flags: –

Example:
COP #0D01h // generate 1 word instruction code(FD01h)
COP #0234h // generate 1 word instruction code(F234h)

The above two instructions are equal to statement “ELD A, #1234h” for MAC816 operation. The
microcode of MAC instruction “ELD A, #1234h” is “FD01F234”, 2-word instruction. In this, code
‘F’ indicates ‘COP’ instruction.



INSTRUCTION SET S3CK215/FK215

7-48

CP — Compare

Format: CP <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> + ~<op2> + 1

CP compares the values of <op1> and <op2> by subtracting <op2> from <op1>. Contents of
<op1> and <op2> are not changed.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero (i.e., <op1> and <op2> are same). Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: R0 = 73h, R1 = A5h, IDH:IDL0 = 0123h, DM[0123h] = A5, eid = 1

CP R0, 80h // C flag is set to ‘1’

CP R0, #73h // Z and C flags are set to ‘1’

CP R0, R1 // V flag is set to ‘1’

CP R1, @ID0 // Z and C flags are set to ‘1’
CP R1, @[ID0 – 5]
CP R2, @[ID0 + 7]!
CP R2, @[ID0 – 2]!

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



S3CK215/FK215 INSTRUCTION SET

7-49

CPC — Compare with Carry

Format: CPC <op1>, <op2>

<op1>: GPR
<op2>: adr:8, GPR

Operation: <op1> ← <op1> + ~<op2> + C

CPC compares <op1> and <op2> by subtracting <op2> from <op1>. Unlike CP, however, CPC
adds (C - 1) to the result. Contents of <op1> and <op2> are not changed.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.

 N:   set if result is negative. Reset if not.

Example: If register pair R1:R0 and R3:R2 are 16-bit signed or unsigned numbers, then use CP and CPC
 to compare two 16-bit numbers as follows.

CP R0, R1
CPC R2, R3

Because CPC considers C when comparing <op1> and <op2>, CP and CPC can be used in pair
to compare 16-bit operands. But note that zero (Z) flag do not exactly reflect result of 16-bit
operation. Therefore when programming 16-bit comparison, take care of the change of Z flag.



INSTRUCTION SET S3CK215/FK215

7-50

DEC — Decrement

Format: DEC <op>

<op>: GPR

Operation: <op> ← <op> + 0FFh

DEC decrease the value in <op> by adding 0FFh to <op>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: R0 = 80h, R1 = 00h

DEC R0 // R0 ← 7Fh, C, V and N flags are set to ‘1’

DEC R1 // R1 ← FFh, N flags is set to ‘1’



S3CK215/FK215 INSTRUCTION SET

7-51

DECC — Decrement with Carry

Format: DECC <op>

<op>: GPR

Operation: <op> ← <op> + 0FFh + C

DECC decrease the value in <op> when carry is not set. When there is a carry, there is no
change in the value of <op>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: If register pair R1:R0 is 16-bit signed or unsigned number, then use DEC and DECC to
decrement 16-bit number as follows.

DEC R0
DECC R1

Note that zero (Z) flag do not exactly reflect result of 16-bit operation. Therefore when
programming 16-bit decrement, take care of the change of Z flag.



INSTRUCTION SET S3CK215/FK215

7-52

DI — Disable Interrupt (Pseudo Instruction)

Format: DI

Operation: Disables interrupt globally. It is same as “AND SR0, #0FDh” .
DI instruction sets bit1 (ie: global interrupt enable) of SR0 register to “0”

Flags: –

Example: Given: SR0 = 03h

DI // SR0 ← SR0 & 11111101b

DI instruction clears SR0[1] to ‘0’, disabling interrupt processing.



S3CK215/FK215 INSTRUCTION SET

7-53

EI — Enable Interrupt (Pseudo Instruction)

Format: EI

Operation: Enables interrupt globally. It is same as “OR SR0, #02h” .
EI instruction sets the bit1 (ie: global interrupt enable) of SR0 register to “1”

Flags: –

Example: Given: SR0 = 01h

EI // SR0 ← SR0 | 00000010b

The statement “EI” sets the SR0[1] to ‘1’, enabling all interrupts.



INSTRUCTION SET S3CK215/FK215

7-54

IDLE — Idle Operation (Pseudo Instruction)

Format: IDLE

Operation: The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue.
Idle mode can be released by an interrupt or reset operation.
The IDLE instruction is a pseudo instruction. It is assembled as “SYS #05H”, and this generates
the SYSCP[7-0] signals. Then these signals are decoded and the decoded signals execute the
idle operation.

Flags: –

NOTE: The next instruction of IDLE instruction is executed, so please use the NOP instruction after the IDLE
instruction.

Example:
 IDLE
 NOP
 NOP
 NOP
 •

 •

 •

The IDLE instruction stops the CPU clock but not the system clock.



S3CK215/FK215 INSTRUCTION SET

7-55

INC — Increment

Format: INC <op>

<op>: GPR

Operation: <op> ← <op> + 1

INC increase the value in <op>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: R0 = 7Fh, R1 = FFh

INC R0 // R0 ← 80h, V flag is set to ‘1’

INC R1 // R1 ← 00h, Z and C flags are set to ‘1’



INSTRUCTION SET S3CK215/FK215

7-56

INCC — Increment with Carry

Format: INCC <op>

<op>: GPR

Operation: <op> ← <op> + C

INCC increase the value of <op> only if there is carry. When there is no carry, the value of
<op> is not changed.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   exclusive OR of V and MSB of result.

Example: If register pair R1:R0 is 16-bit signed or unsigned number, then use INC and INCC to increment
16-bit number as following.

INC R0
INCC R1

Assume R1:R0 is 0010h, statement “INC R0” increase R0 by one without carry and statement
“INCC R1” set zero (Z) flag to ‘1’ as if the result of 16-bit increment is zero. Note that zero (Z)
flag do not exactly reflect result of 16-bit operation. Therefore when programming 16-bit
increment, take care of the change of Z flag.



S3CK215/FK215 INSTRUCTION SET

7-57

IRET — Return from Interrupt Handling

Format: IRET

Operation: PC ← HS[sptr - 2], sptr ← sptr - 2

IRET pops the return address (after interrupt handling) from the hardware stack and assigns it to
PC. The ie (i.e., SR0[1]) bit is set to allow further interrupt generation.

Flags: –

NOTE: The program size (indicated by the nP64KW signal) determines which portion of PC is updated.
When the program size is less than 64K word, only the lower 16 bits of PC are updated
(i.e., PC[15:0] ← HS[sptr – 2]).
When the program size is 64K word or more, the action taken is PC[19:0] ← HS[sptr - 2].

Example:

 SF_EXCEP: NOP // Stack full exception service routine
  •

•

•
IRET



INSTRUCTION SET S3CK215/FK215

7-58

JNZD — Jump Not Zero with Delay slot

Format: JNZD <op>, imm:8

<op>: GPR (bank 3’s GPR only)

imm:8 is an signed number

Operation: PC ← PC[delay slot] - 2’s complement of imm:8

<op> ← <op> - 1

JNZD performs a backward PC-relative jump if <op> evaluates to be non-zero. Furthermore,
JNZD decrease the value of <op>. The instruction immediately following JNZD (i.e., in delay slot)
is always executed, and this instruction must be 1 cycle instruction.

Flags: –

NOTE: Typically, the delay slot will be filled with an instruction from the loop body. It is noted, however,
that the chosen instruction should be “dead” outside the loop for it executes even when the loop
is exited (i.e., JNZD is not taken).

Example: Given: IDH = 03h, eid = 1

BANK #3
 LD R0, #0FFh // R0 is used to loop counter

 LD R1, #0
%1 LD IDL0, R0

JNZD R0, %B1 // If R0 of bank3 is not zero, jump to %1.
 LD @ID0, R1 // Clear register pointed by ID0
 •

•

•

This example can be used for RAM clear routine. The last instruction is executed even if the loop
is exited.



S3CK215/FK215 INSTRUCTION SET

7-59

JP — Conditional Jump (Pseudo Instruction)

Format: JP cc:4 imm:20
JP cc:4 imm:9

Operation: If JR can access the target address, JP command is assembled to JR (1 word instruction) in
linking time, else the JP is assembled to LJP (2 word instruction) instruction.
There are 16 different conditions that can be used, as described in table 7-6.

Example:
%1 LD R0, #10h // Assume address of label %1 is 020Dh

•

•

•
JP Z, %B1 // Address at 0264h

JP C, %F2 // Address at 0265h
•

•

•
%2 LD R1, #20h // Assume address of label %2 is 089Ch

 •

•

•

In the above example, the statement “JP Z, %B1” is assembled to JR instruction. Assuming that
current PC is 0264h and condition is true, next PC is made by PC[11:0] ← PC[11:0] + offset,
offset value is “64h + A9h” without carry. ‘A9’ means 2’s complement of offset value to jump
backward. Therefore next PC is 020Dh. On the other hand, statement “JP C, %F2” is assembled
to LJP instruction because offset address exceeds the range of imm:9.



INSTRUCTION SET S3CK215/FK215

7-60

 JR — Conditional Jump Relative

Format: JR cc:4 imm:9

cc:4: 4-bit condition code

Operation: PC[11:0] ← PC[11:0] + imm:9 if condition is true. imm:9 is a signed number, which is sign-
extended to 12 bits when added to PC.
There are 16 different conditions that can be used, as described in table 7-6.

Flags: –

NOTE: Unlike LJP, the target address of JR is PC-relative. In the case of JR, imm:9 is added to PC to
compute the actual jump address, while LJP directly jumps to imm:20, the target.

Example:
JR Z, %1 // Assume current PC = 1000h
•

•

•
%1 LD R0, R1 // Address at 10A5h

•

•

•

After the first instruction is executed, next PC has become 10A5h if Z flag bit is set to ‘1’. The
range of the relative address is from +255 to –256 because imm:9 is signed number.



S3CK215/FK215 INSTRUCTION SET

7-61

LCALL — Conditional Subroutine Call

Format: LCALL cc:4, imm:20

Operation: HS[sptr][15:0] ← current PC + 2, sptr ← sptr + 2, PC[15:0] ← imm[15:0] if the condition holds 
and the program size is less than 64K word.

HS[sptr][19:0] ← current PC + 2, sptr ← sptr + 2, PC[19:0] ← imm:20 if the condition holds and 
the program size is equal to or over 64K word.

PC[11:0] ← PC[11:0] + 2 otherwise.
LCALL instruction is used to call a subroutine whose starting address is specified by imm:20.

Flags: –

Example:
LCALL L1

LCALL C, L2

Label L1 and L2 can be allocated to the same or other section. Because this is a 2-word
instruction, the saved returning address on stack is (PC + 2).



INSTRUCTION SET S3CK215/FK215

7-62

LD adr:8 — Load into Memory

Format: LD adr:8, <op>

<op>: GPR

Operation: DM[00h:adr:8] ← <op> if eid = 0
DM[IDH:adr:8] ← <op> if eid = 1

LD adr:8 loads the value of <op> into a memory location. The memory location is determined by
the eid bit and adr:8.

Flags: –

Example: Given: IDH = 01h

LD 80h, R0

If eid bit of SR0 is zero, the statement “LD 80h, R0” load value of R0 into DM[0080h], else eid bit
was set to ‘1’, the statement “LD 80h, R0” load value of R0 into DM[0180h]



S3CK215/FK215 INSTRUCTION SET

7-63

LD @idm — Load into Memory Indexed

Format: LD @idm, <op>

<op>: GPR

Operation: (@idm) ← <op>

LD @idm loads the value of <op> into the memory location determined by @idm. Details of the
@idm format and how the actual address is calculated can be found in chapter 2.

Flags: –

Example: Given R0 = 5Ah, IDH:IDL0 = 8023h, eid = 1

LD @ID0, R0 // DM[8023h] ← 5Ah
LD @ID0 + 3, R0 // DM[8023h] ← 5Ah, IDL0 ← 26h
LD @[ID0-5], R0 // DM[801Eh] ← 5Ah, IDL0 ← 1Eh
LD @[ID0+4]!, R0 // DM[8027h] ← 5Ah, IDL0 ← 23h
LD @[ID0-2]!, R0 // DM[8021h] ← 5Ah, IDL0 ← 23h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



INSTRUCTION SET S3CK215/FK215

7-64

LD — Load Register

Format: LD <op1>, <op2>

<op1>: GPR
<op2>: GPR, SPR, adr:8, @idm, #imm:8

Operation: <op1> ← <op2>

LD loads a value specified by <op2> into the register designated by <op1>.

Flags: Z:   set if result is zero. Reset if not.
N:   exclusive OR of V and MSB of result.

Example: Given: R0 = 5Ah, R1 = AAh, IDH:IDL0 = 8023h, eid = 1

LD R0, R1 // R0 ← AAh

 LD R1, IDH // R1 ← 80h

 LD R2, 80h // R2 ← DM[8080h]

 LD R0, #11h // R0 ← 11h

LD R0, @ID0+1 // R0 ← DM[8023h], IDL0 ← 24h
LD R1, @[ID0-2] // R1 ← DM[8021h], IDL0 ← 21h
LD R2, @[ID0+3]! // R2 ← DM[8026h], IDL0 ← 23h
LD R3, @[ID0-5]! // R3 ← DM[801Eh], IDL0 ← 23h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



S3CK215/FK215 INSTRUCTION SET

7-65

LD — Load GPR:bankd, GPR:banks

Format: LD <op1>, <op2>

<op1>: GPR: bankd
<op2>: GPR: banks

Operation: <op1> ← <op2>

LD loads a value of a register in a specified bank (banks) into another register in a specified bank
(bankd).

Flags: Z:   set if result is zero. Reset if not.
N:   exclusive OR of V and MSB of result.

Example:
 LD R2:1, R0:3 // Bank1’s R2 ← bank3’s R0

LD R0:0, R0:2 // Bank0’s R0 ← bank2’s R0



INSTRUCTION SET S3CK215/FK215

7-66

LD — Load GPR, TBH/TBL

Format: LD <op1>, <op2>

<op1>: GPR
<op2>: TBH/TBL

Operation: <op1> ← <op2>

LD loads a value specified by <op2> into the register designated by <op1>.

Flags: Z:   set if result is zero. Reset if not.
N:   exclusive OR of V and MSB of result.

Example: Given: register pair R1:R0 is 16-bit unsigned data.

 LDC @IL // TBH:TBL ← PM[ILX:ILH:ILL]
LD R1, TBH // R1 ← TBH
LD R0, TBL // R0 ← TBL



S3CK215/FK215 INSTRUCTION SET

7-67

LD — Load TBH/TBL, GPR

Format: LD <op1>, <op2>

<op1>: TBH/TBL
<op2>: GPR

Operation: <op1> ← <op2>

LD loads a value specified by <op2> into the register designated by <op1>.

Flags: –

Example: Given: register pair R1:R0 is 16-bit unsigned data.

 LD TBH, R1 // TBH ← R1
LD TBL, R0 // TBL ← R0



INSTRUCTION SET S3CK215/FK215

7-68

LD SPR — Load SPR

Format: LD <op1>, <op2>

<op1>: SPR
<op2>: GPR

Operation: <op1> ← <op2>

LD SPR loads the value of a GPR into an SPR.
 Refer to Table 3-1 for more detailed explanation about kind of SPR.

Flags: –

Example: Given: register pair R1:R0 = 1020h

 LD ILH, R1 // ILH ← 10h
LD ILL, R0 // ILL ← 20h



S3CK215/FK215 INSTRUCTION SET

7-69

LD SPR0 — Load SPR0 Immediate

Format: LD SPR0, #imm:8

Operation: SPR0 ← imm:8

LD SPR0 loads an 7-bit immediate value into SPR0.

Flags: –

Example: Given: eid = 1, idb = 0 (index register bank 0 selection)

LD IDH, #80h // IDH point to page 80h
LD IDL1, #44h
LD IDL0, #55h
LD SR0, #02h

The last instruction set ie (global interrupt enable) bit to ‘1’.
 Special register group 1 (SPR1) registers are not supported in this addressing mode.



INSTRUCTION SET S3CK215/FK215

7-70

LDC — Load Code

Format: LDC <op1>

<op1>: @IL, @IL+

Operation: TBH:TBL ← PM[ILX:ILH:ILL]

ILL ← ILL + 1 (@IL+ only)

LDC loads a data item from program memory and stores it in the TBH:TBL register pair.

@IL+ increase the value of ILL, efficiently implementing table lookup operations.

Flags: –

Example:
 LD ILX, R1

LD ILH, R2
LD ILL, R3
LDC @IL // Loads value of PM[ILX:ILH:ILL] into TBH:TBL

LD R1, TBH // Move data in TBH:TBL to GPRs for further processing
LD R0, TBL

 The statement “LDC @IL” do not increase, but if you use statement “LDC @IL+”, ILL register is
 increased by one after instruction execution.



S3CK215/FK215 INSTRUCTION SET

7-71

LJP — Conditional Jump

Format: LJP cc:4, imm:20

cc:4: 4-bit condition code

Operation: PC[15:0] ← imm[15:0] if condition is true and the program size is less than 64K word. If the
program is equal to or larger than 64K word, PC[19:0] ← imm[19:0] as long as the condition is
true. There are 16 different conditions that can be used, as described in table 7-6.

Flags: –

NOTE: LJP cc:4 imm:20 is a 2-word instruction whose immediate field directly specifies the target
address of the jump.

Example:
 LJP C, %1 // Assume current PC = 0812h

•

•

•
            %1 LD R0, R1 // Address at 10A5h

•

•

•

After the first instruction is executed, LJP directly jumps to address 10A5h if condition is true.



INSTRUCTION SET S3CK215/FK215

7-72

LLNK — Linked Subroutine Call Conditional

Format: LLNK cc:4, imm:20

cc:4: 4-bit condition code

Operation: If condition is true, IL[19:0] ← {PC[19:12], PC[11:0] + 2}.

Further, when the program is equal to or larger than 64K word, PC[19:0] ← imm[19:0] as long as
the condition is true. If the program is smaller than 64K word, PC[15:0] ← imm[15:0].
There are 16 different conditions that can be used, as described in table 7-6.

Flags: –

NOTE: LLNK is used to conditionally to call a subroutine with the return address saved in the link register
(IL) without stack operation. This is a 2-word instruction.

Example:
 LLNK Z, %1 // Address at 005Ch, ILX:ILH:ILL ← 00:00:5Eh

NOP // Address at 005Eh
•

•

•
%1 LD R0, R1

•

•

•
LRET



S3CK215/FK215 INSTRUCTION SET

7-73

LNK — Linked Subroutine Call (Pseudo Instruction)

Format: LNK cc:4, imm:20
LNK imm:12

Operation: If LNKS can access the target address and there is no conditional code (cc:4), LNK command is 
assembled to LNKS (1 word instruction) in linking time, else the LNK is assembled to LLNK (2 
word instruction).

Example:
 LNK Z, Link1 // Equal to “LLNK Z, Link1”

LNK Link2 // Equal to “LNKS Link2”
NOP
•

•

•
Link2: NOP

•

•

•
 LRET

Subroutines section CODE, ABS 0A00h
Subroutines

Link1: NOP
•

•

•
LRET



INSTRUCTION SET S3CK215/FK215

7-74

LNKS — Linked Subroutine Call

Format: LNKS imm:12

Operation: IL[19:0] ← {PC[19:12], PC[11:0] + 1} and PC[11:0] ← imm:12
LNKS saves the current PC in the link register and jumps to the address specified by imm:12.

Flags: –

NOTE: LNKS is used to call a subroutine with the return address saved in the link register (IL) without
stack operation.

Example:
 LNKS Link1 // Address at 005Ch, ILX:ILH:ILL ← 00:00:5Dh

NOP // Address at 005Dh
•

•

•

Link1: NOP
•

•

•
LRET



S3CK215/FK215 INSTRUCTION SET

7-75

LRET — Return from Linked Subroutine Call

Format: LRET

Operation: PC ← IL[19:0]
LRET returns from a subroutine by assigning the saved return address in IL to PC.

Flags: –

Example:
LNK Link1

Link1: NOP
•

•

•
LRET ; PC[19:0] ← ILX:ILH:ILL



INSTRUCTION SET S3CK215/FK215

7-76

NOP — No Operation

Format: NOP

Operation: No operation.

 When the instruction NOP is executed in a program, no operation occurs. Instead, the instruction
 time is delayed by approximately one machine cycle per each NOP instruction encountered.

Flags: –

Example:
NOP



S3CK215/FK215 INSTRUCTION SET

7-77

OR — Bit-wise OR

Format: OR <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> | <op2>
OR performs the bit-wise OR operation on <op1> and <op2> and stores the result in <op1>.

Flags: Z:   set if result is zero. Reset if not.
N:   exclusive OR of V and MSB of result.

Example: Given: IDH:IDL0 = 031Eh, eid = 1

 OR R0, 80h // R0 ← R0 | DM[0380h]

OR R1, #40h // Mask bit6 of R1

 OR R1, R0 // R1 ← R1 | R0

 OR R0, @ID0 // R0 ← R0 | DM[031Eh], IDL0 ← 1Eh
 OR R1, @[ID0-1] // R1 ← R1 | DM[031Dh], IDL0 ← 1Dh
 OR R2, @[ID0+1]! // R2 ← R2 | DM[031Fh], IDL0 ← 1Eh
 OR R3, @[ID0-1]! // R3 ← R3 | DM[031Dh], IDL0 ← 1Eh

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



INSTRUCTION SET S3CK215/FK215

7-78

OR SR0 — Bit-wise OR with SR0

Format: OR SR0, #imm:8

Operation: SR0 ← SR0 | imm:8

OR SR0 performs the bit-wise OR operation on SR0 and imm:8 and stores the result in SR0.

Flags: –

Example: Given: SR0 = 00000000b

 EID EQU          01h
IE EQU          02h
IDB1 EQU          04h
IE0 EQU          40h
IE1 EQU          80h

OR            SR0, #IE | IE0 | IE1

OR            SR0, #00000010b

In the first example, the statement “OR SR0, #EID|IE|IE0” set global interrupt(ie), interrupt 0(ie0)
and interrupt 1(ie1) to ‘1’ in SR0. On the contrary, enabled bits can be cleared with instruction
“AND SR0, #imm:8”. Refer to instruction AND SR0 for more detailed explanation about disabling
bit.

In the second example, the statement “OR SR0, #00000010b” is equal to instruction EI, which is
enabling interrupt globally.



S3CK215/FK215 INSTRUCTION SET

7-79

POP — POP

Format: POP

Operation: sptr ← sptr – 2

POP decrease sptr by 2. The top two bytes of the hardware stack are therefore invalidated.

Flags: –

Example: Given: sptr[5:0] = 001010b

POP

This POP instruction decrease sptr[5:0] by 2. Therefore sptr[5:0] is 001000b.



INSTRUCTION SET S3CK215/FK215

7-80

POP — POP to Register

Format: POP <op>

<op>: GPR, SPR

Operation: <op> ← HS[sptr - 1], sptr ← sptr - 1

POP copies the value on top of the stack to <op> and decrease sptr by 1.

Flags: Z:   set if the value copied to <op> is zero. Reset if not.
N:   set if the value copied to <op> is negative. Reset if not.

           When <op> is SPR, no flags are affected, including Z and N.

Example:
POP R0 // R0 ← HS[sptr-1], sptr  ← sptr-1

POP IDH // IDH ← HS[sptr-1], sptr  ← sptr-1

In the first instruction, value of HS[sptr-1] is loaded to R0 and the second instruction “POP IDH”
load value of HS[sptr-1] to register IDH. Refer to chapter 5 for more detailed explanation about
POP operations for hardware stack.



S3CK215/FK215 INSTRUCTION SET

7-81

PUSH — Push Register

Format: PUSH <op>

<op>: GPR, SPR

Operation: HS[sptr] ← <op>, sptr ← sptr + 1

PUSH stores the value of <op> on top of the stack and increase sptr by 1.

Flags: –

Example:
 PUSH R0 // HS[sptr] ← R0, sptr ← sptr + 1

PUSH IDH // HS[sptr] ← IDH, sptr ← sptr + 1

In the first instruction, value of register R0 is loaded to HS[sptr-1] and the second instruction
“PUSH IDH” load value of register IDH to HS[sptr-1]. Current HS pointed by stack point sptr[5:0]
be emptied. Refer to chapter 5 for more detailed explanation about PUSH operations for
hardware stack.



INSTRUCTION SET S3CK215/FK215

7-82

RET — Return from Subroutine

Format: RET

Operation: PC ← HS[sptr - 2], sptr ← sptr – 2

RET pops an address on the hardware stack into PC so that control returns to the subroutine call
site.

Flags: –

Example: Given: sptr[5:0] = 001010b

 CALLS Wait // Address at 00120h
 •

•

•
 Wait: NOP // Address at 01000h

NOP
 NOP
 NOP

NOP
RET

After the first instruction CALLS execution, “PC+1”, 0121h is loaded to HS[5] and hardware stack
pointer sptr[5:0] have 001100b and next PC became 01000h. The instruction RET pops value
0121h on the hardware stack HS[sptr-2] and load to PC then stack pointer sptr[[5:0] became
001010b.



S3CK215/FK215 INSTRUCTION SET

7-83

RL — Rotate Left

Format: RL <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], <op>[7]}

RL rotates the value of <op> to the left and stores the result back into <op>.
The original MSB of <op> is copied into carry (C).

Flags: C:   set if the MSB of <op> (before rotating) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R0 = 01001010b, R1 = 10100101b

RL R0 // N flag is set to ‘1’, R0 ← 10010100b

RL R1 // C flag is set to ‘1’, R1 ← 01001011b



INSTRUCTION SET S3CK215/FK215

7-84

RLC — Rotate Left with Carry

Format: RLC <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], C}

RLC rotates the value of <op> to the left and stores the result back into <op>.
The original MSB of <op> is copied into carry (C), and the original C bit is copied into <op>[0].

Flags: C:   set if the MSB of <op> (before rotating) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R2 = A5h, if C = 0

RLC R2 // R2 ← 4Ah, C flag is set to ‘1’

RL R0
RLC R1

In the second example, assuming that register pair R1:R0 is 16-bit number, then RL and RLC are
used for 16-bit rotate left operation. But note that zero (Z) flag do not exactly reflect result of 16-
bit operation. Therefore when programming 16-bit decrement, take care of the change of Z flag.



S3CK215/FK215 INSTRUCTION SET

7-85

RR — Rotate Right

Format: RR <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {<op>[0], <op>[7:1]}

RR rotates the value of <op> to the right and stores the result back into <op>. The original LSB
of <op> is copied into carry (C).

Flags: C:   set if the LSB of <op> (before rotating) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R0 = 01011010b, R1 = 10100101b

RR R0 // No change of flag, R0 ← 00101101b

RR R1 // C and N flags are set to ‘1’, R1 ← 11010010b



INSTRUCTION SET S3CK215/FK215

7-86

RRC — Rotate Right with Carry

Format: RRC <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {C, <op>[7:1]}

RRC rotates the value of <op> to the right and stores the result back into <op>. The original LSB
of <op> is copied into carry (C), and C is copied to the MSB.

Flags: C:   set if the LSB of <op> (before rotating) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R2 = A5h, if C = 0

RRC R2 // R2 ← 52h, C flag is set to ‘1’

RR R0
RRC R1

In the second example, assuming that register pair R1:R0 is 16-bit number, then RR and RRC
are used for 16-bit rotate right operation. But note that zero (Z) flag do not exactly reflect result of
16-bit operation. Therefore when programming 16-bit decrement, take care of the change of Z
flag.



S3CK215/FK215 INSTRUCTION SET

7-87

SBC — Subtract with Carry

Format: SBC <op1>, <op2>

<op1>: GPR
<op2>: adr:8, GPR

Operation: <op1> ← <op1> + ~<op2> + C

SBC computes (<op1> - <op2>) when there is carry and (<op1> - <op2> - 1) when there is no
carry.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated.
N:   set if result is negative. Reset if not.

Example:
 SBC R0, 80h // If eid = 0, R0 ← R0 + ~DM[0080h] + C

// If eid = 1, R0 ← R0 + ~DM[IDH:80h] + C

SBC R0, R1 // R0 ← R0 + ~R1 + C

SUB R0, R2
SBC R1, R3

In the last two instructions, assuming that register pair R1:R0 and R3:R2 are 16-bit signed or
unsigned numbers. Even if the result of “ADD R0, R2” is not zero, zero (Z) flag can be set to ‘1’ if
the result of “SBC R1,R3” is zero. Note that zero (Z) flag do not exactly reflect result of 16-bit
operation. Therefore when programming 16-bit addition, take care of the change of Z flag.



INSTRUCTION SET S3CK215/FK215

7-88

SL — Shift Left

Format: SL <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], 0}

SL shifts <op> to the left by 1 bit. The MSB of the original <op> is copied into carry (C).

Flags: C:   set if the MSB of <op> (before shifting) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after shifting) is 1. Reset if not.

Example: Given: R0 = 01001010b, R1 = 10100101b

SL R0 // N flag is set to ‘1’, R0 ← 10010100b

SL R1 // C flag is set to ‘1’, R1 ← 01001010b



S3CK215/FK215 INSTRUCTION SET

7-89

SLA — Shift Left Arithmetic

Format: SLA <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], 0}

SLA shifts <op> to the left by 1 bit. The MSB of the original <op> is copied into carry (C).

Flags: C:   set if the MSB of <op> (before shifting) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if the MSB of the result is different from C. Reset if not.
N:   set if the MSB of <op> (after shifting) is 1. Reset if not.

Example: Given: R0 = AAh

SLA R0 // C, V, N flags are set to ‘1’, R0 ← 54h



INSTRUCTION SET S3CK215/FK215

7-90

SR — Shift Right

Format: SR <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {0, <op>[7:1]}

SR shifts <op> to the right by 1 bit. The LSB of the original <op> (i.e., <op>[0]) is copied into
carry (C).

Flags: C:   set if the LSB of <op> (before shifting) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after shifting) is 1. Reset if not.

Example: Given: R0 = 01011010b, R1 = 10100101b

SR R0 // No change of flags, R0 ← 00101101b

SR R1 // C flag is set to ‘1’, R1 ← 01010010b



S3CK215/FK215 INSTRUCTION SET

7-91

SRA — Shift Right Arithmetic

Format: SRA <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {<op>[7], <op>[7:1]}

SRA shifts <op> to the right by 1 bit while keeping the sign of <op>. The LSB of the original <op>
(i.e., <op>[0]) is copied into carry (C).

Flags: C:   set if the LSB of <op> (before shifting) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after shifting) is 1. Reset if not.

NOTE: SRA keeps the sign bit or the MSB (<op>[7]) in its original position. If SRA is executed ‘N’ times, N
significant bits will be set, followed by the shifted bits.

Example: Given: R0 = 10100101b

SRA R0 // C, N flags are set to ‘1’, R0 ← 11010010b
SRA R0 // N flag is set to ‘1’, R0 ← 11101001b
SRA R0 // C, N flags are set to ‘1’, R0 ← 11110100b
SRA R0 // N flags are set to ‘1’, R0 ← 11111010b



INSTRUCTION SET S3CK215/FK215

7-92

STOP — Stop Operation (pseudo instruction)

Format: STOP

Operation: The STOP instruction stops the both the CPU clock and system clock and causes the
microcontroller to enter the STOP mode. In the STOP mode, the contents of the on-chip CPU
registers, peripheral registers, and I/O port control and data register are retained. A reset
operation or external or internal interrupts can release stop mode. The STOP instruction is a
pseudo instruction. It is assembled as “SYS #0Ah”, which generates the SYSCP[7-0] signals.
These signals are decoded and stop the operation.

NOTE: The next instruction of STOP instruction is executed, so please use the NOP instruction after the
STOP instruction.

Example:
STOP
NOP
NOP
NOP
•

•

•

In this example, the NOP instructions provide the necessary timing delay for oscillation
stabilization before the next instruction in the program sequence is executed. Refer to the timing
diagrams of oscillation stabilization, as described in Figure 17-3, 17-4



S3CK215/FK215 INSTRUCTION SET

7-93

SUB — Subtract

Format: SUB <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> + ~<op2> + 1

SUB adds the value of <op1> with the 2's complement of <op2> to perform subtraction on
<op1> and <op2>

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: IDH:IDL0 = 0150h, DM[0143h] = 26h, R0 = 52h, R1 = 14h, eid = 1

SUB R0, 43h // R0 ← R0 + ~DM[0143h] + 1 = 2Ch

SUB R1, #16h // R1 ← FEh, N flag is set to ‘1’

SUB R0, R1 // R0 ← R0 + ~R1 + 1 = 3Eh

SUB R0, @ID0+1 // R0 ← R0 + ~DM[0150h] + 1, IDL0 ← 51h
SUB R0, @[ID0-2] // R0 ← R0 + ~DM[014Eh] + 1, IDL0 ← 4Eh
SUB R0, @[ID0+3]! // R0 ← R0 + ~DM[0153h] + 1, IDL0 ← 50h
SUB R0, @[ID0-2]! // R0 ← R0 + ~DM[014Eh] + 1, IDL0 ← 50h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed
explanation about this addressing mode.  The example in the SBC description shows how SUB and
SBC can be used in pair to subtract a 16-bit number from another.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



INSTRUCTION SET S3CK215/FK215

7-94

SWAP — Swap

Format: SWAP <op1>, <op2>

<op1>: GPR
<op2>: SPR

Operation: <op1> ← <op2>, <op2> ← <op1>

SWAP swaps the values of the two operands.

Flags: –

NOTE: Among the SPRs, SR0 and SR1 can not be used as <op2>.

Example: Given: IDH:IDL0 = 8023h, R0 = 56h, R1 = 01h

SWAP R1, IDH // R1 ← 80h, IDH ← 01h
SWAP R0, IDL0 // R0 ← 23h, IDL0 ← 56h

After execution of instructions, index registers IDH:IDL0 (ID0) have address 0156h.



S3CK215/FK215 INSTRUCTION SET

7-95

SYS — System

Format: SYS #imm:8

Operation: SYS generates SYSCP[7:0] and nSYSID signals.

Flags: –

NOTE: Mainly used for system peripheral interfacing.

Example:
SYS #0Ah

SYS #05h

In the first example, statement “SYS #0Ah” is equal to STOP instruction and second example
“SYS #05h” is equal to IDLE instruction. This instruction does nothing but increase PC by one
and generates SYSCP[7:0] and nSYSID signals.



INSTRUCTION SET S3CK215/FK215

7-96

TM — Test Multiple Bits

Format: TM <op>, #imm:8

<op>: GPR

Operation: TM performs the bit-wise AND operation on <op> and imm:8 and sets the flags. The content of
<op> is not changed.

Flags: Z:   set if result is zero. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: R0 = 01001101b

TM R0, #00100010b // Z flag is set to ‘1’



S3CK215/FK215 INSTRUCTION SET

7-97

XOR — Exclusive OR

Format: XOR <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> ^ <op2>

XOR performs the bit-wise exclusive-OR operation on <op1> and <op2> and stores the result in
<op1>.

Flags: Z:   set if result is zero. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: IDH:IDL0 = 8080h, DM[8043h] = 26h, R0 = 52h, R1 = 14h, eid = 1

XOR R0, 43h // R0 ← 74h

XOR R1, #00101100b // R1 ← 38h

XOR R0, R1 // R0 ← 46h

XOR R0, @ID0 // R0 ← R0 ^ DM[8080h], IDL0 ← 81h
XOR R0, @[ID0-2] // R0 ← R0 ^ DM[807Eh], IDL0 ← 7Eh
XOR R0, @[ID0+3]! // R0 ← R0 ^ DM[8083h], IDL0 ← 80h
XOR R0, @[ID0-5]! // R0 ← R0 ^ DM[807Bh], IDL0 ← 80h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed
explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



INSTRUCTION SET S3CK215/FK215

7-98

NOTES



S3CK215/FK215 CLOCK CIRCUIT

8-1

8 CLOCK CIRCUIT

SYSTEM CLOCK CIRCUIT

The system clock circuit has the following components:

— External crystal, ceramic resonator, or RC oscillation source (or an external clock source)

— Oscillator stop and wake-up functions

— Programmable frequency divider for the CPU clock (fOSC divided by 1, 2, 4, 8, 16, 32, 64, 128)

— System clock control register, PCON

— Oscillator control register, OSCCON

— Main oscillator clock output control register, CLOCON

XIN

XOUT

C1

C2

S3CK215

Figure 8-1. Main Oscillator Circuit (Crystal or Ceramic Oscillator)



CLOCK CIRCUIT S3CK215/FK215

8-2

XIN

XOUT

S3CK215

Figure 8-2. Main Oscillator Circuit (RC Oscillator)

XTIN

XTOUT

C1

C2

S3CK215

Figure 8-3. Sub Oscillator Circuit (Crystal or Ceramic Oscillator)



S3CK215/FK215 CLOCK CIRCUIT

8-3

Basic Timer,
Timer/Counter 0,1,2,3
Watch Timer
LCD Controller
BLD
SIO
A/D Converter
D/A Converter
Amplifiers

INT
Stop Release

1/1 - 1/4096

Frequency
Dividing
Circuit

1/1 1/16 1/32 1/64 1/1281/2 1/4 1/8

Stop Release
INT

Main-System
Oscillator

Circuit

Selector 1

fx fxt
Sub-System

Oscillator
Circuit

Stop

OSCCON.2
Stop

fxx

Selector 2

Oscillator
Control
Circuit

CPU Stop Signal
by Idle or Stop

CPU

PCON.2 - .0

OSCCON.3

OSCCON.0

Watch Timer
LCD Controller

SYS #05H      Idle
SYS #0AH      Stop

Figure 8-4. System Clock Circuit Diagram



CLOCK CIRCUIT S3CK215/FK215

8-4

Power Control Register (PCON)
02H, R/W, Reset: 04H

MSB LSB

Not used System clock selection bits:
000 = fxx/128
001 = fxx/64
010 = fxx/32
011 = fxx/16
100 = fxx/8
101 = fxx/4
110 = fxx/2
111 = fxx/1

.7 .6 .5 .4 .3 .2 .1 .0

Figure 8-5. Power Control Register (PCON)

Oscillator Control Register (OSCCON)
03H, R/W, Reset: 00H

MSB LSB

Not used

Main oscillator control bit:
0 = Main oscillator RUN
1 = Main oscillator STOP

Not used

System clock source selection bit:
0 = Main oscillator select
1 = Sub oscillator select

.7 .6 .5 .4 .3 .2 .1 .0

Sub oscillator control bit:
0 = Sub oscillator RUN
1 = Sub oscillator STOP

Figure 8-6. Oscillator Control Register (OSCCON)   



S3CK215/FK215 CLOCK CIRCUIT

8-5

MUX

P3CONH.0-1

P3.4/CLKOUT

CLOCON.0

fx

Figure 8-7. Main Oscillator Clock Output Functional Block Diagram

Main Oscillator Clock Output Control Register (CLOCON)
72H, R/W, Reset: 00H

MSB LSB

Not used

Main oscillator clock level selection bit:
0 = fx level select
1 = Inverted fx level select

.7 .6 .5 .4 .3 .2 .1 .0

Figure 8-8. Main Oscillator Clock Output Control Register (CLOCON)



CLOCK CIRCUIT S3CK215/FK215

8-6

NOTES



S3CK215/FK215 RESET AND POWER-DOWN

9-1

9 RESET AND POWER-DOWN

OVERVIEW

During a power-on reset, the voltage at VDD goes to High level and the RESET pin is forced to Low level. The

RESET signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This
procedure brings MCU into a known operating status.

For the time for CPU clock oscillation to stabilize, the RESET pin must be held to low level for a minimum time
interval after the power supply comes within tolerance. For the minimum time interval, see the electrical
characteristics.

In summary, the following sequence of events occurs during a reset operation:

— All interrupts are disabled.

— The watchdog function (basic timer) is enabled.

— Ports are set to input mode.

— Peripheral control and data registers are disabled and reset to their default hardware values.

— The program counter (PC) is loaded with the program reset address in the ROM, 00000H.

— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM
location 00000H is fetched and executed.

NOTE

To program the duration of the oscillation stabilization interval, make the appropriate settings to the
watchdog timer control register, WDTCON, before entering STOP mode.



RESET AND POWER-DOWN S3CK215/FK215

9-2

NOTES



S3CK215/FK215 I/O PORT

10-1

10 I/O PORTS

PORT 0

Port 0 Control Register(P0CON)
20H, R/W, Reset:00H

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Schmit trigger input mode; pull-up; interrupt on falling edge
Schmit trigger input mode; interrupt on rising edge
Schmit trigger input mode; interrupt on rising or falling edge
Output mode, push-pull

P0CON bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

P0.3/
INT3

P0.2/
INT2

P0.1/
INT1

P0.0/
INT0

Figure 10-1. Port 0 Control Register (P0CON)



I/O PORT S3CK215/FK215

10-2

PORT 1

Port 1 Control Register, High Byte (P1CONH)
21H, R/W, Reset: 00H

MSB LSB

P1.5/SO P1.4/BUZ

.7 .6 .5 .4 .3 .2 .1 .0

P1.7/SI P1.6/SCK

Input mode (SCK, SI)
Output mode, open-drain
Alternative function (BUZ, SO, SCK)
Output mode, push-pull

P1CONH bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

Figure 10-2. Port 1 High-byte Control Register (P1CONH)

Port 1 Control Register, Low Byte (P1CONL)
22H, R/W, Reset: 00H

MSB LSB

Input mode (T0CLK, T0CAP)
Output mode, open-drain
Alternative function (T0OUT/T0PWM)
Output mode, push-pull

P1CONL bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

P1.3 P1.2/T0CAP P1.1/T0CLK P1.0/T0OUT/T0PWM

.7 .6 .5 .4 .3 .2 .1 .0

Figure 10-3. Port 1 Low-byte Control Register (P1CONL)



S3CK215/FK215 I/O PORT

10-3

Port 1 Pull-Up Control Register (P1PUR)
27H,R/W, Reset: 00H

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Disable Pull-Up Resistor
Enable Pull-Up Resistor

P1 pull-up resistor settings:

0
1

P1.1

P1.0

P1.2

P1.3

P1.5

P.4

P1.7

P1.6

Figure 10-4. Port 1 Pull-Up Control Register (P1PUR)



I/O PORT S3CK215/FK215

10-4

PORT 2

Port 2 High-Byte Control Register (P2CONH)
28H, R/W, Reset: 00H

MSB LSB

Input mode
Input mode, pull-up
Alternative function (AD4, AD5, AD6, AD7/VBLDIN)
Output mode, push-pull

P2CONH bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

P2.7/AD7/VBLDIN P2.6/AD6 P2.5/AD5 P2.4/AD4

.7 .6 .5 .4 .3 .2 .1 .0

Figure 10-5. Port 2 High-Byte Control Register (P2CONH)

Port 2 Low-Byte Control Register (P2CONL)
29H, R/W, Reset: 00H

MSB LSB

Input mode
Input mode, pull-up
Alternative function (AD0, AD1, AD2, AD3)
Output mode, push-pull

P2CONL bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

P2.3/AD3 P2.2/AD2 P2.1/AD1 P2.0/AD0

.7 .6 .5 .4 .3 .2 .1 .0

Figure 10-6. Port 2 Low-Byte Control Register (P2CONL)



S3CK215/FK215 I/O PORT

10-5

PORT 3

Port 3 High-Byte Control Register (P3CONH)
2CH, R/W, Reset: 00H

MSB LSB

Input mode
Input mode, pull-up
Alternative function (CLKOUT)
Output mode, push-pull

P3CONH bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

Not used P3.4

.7 .6 .5 .4 .3 .2 .1 .0

Figure 10-7. Port 3 High-Byte Control Register (P3CONH)

Port 3 Low-Byte Control Register (P3CONL)
2DH, R/W, Reset: 00H

MSB LSB

Input mode (T2CLK, T2CAP)
Input mode, pull-up (T2CAP)
Alternative function (T3PWM,T2OUT/T2PWM)
Output mode, push-pull

P3CONL bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

P3.3/T2CAP P3.2/T2CLK P3.1/T2OUT
/T2PWM

P3.0/T3PWM

.7 .6 .5 .4 .3 .2 .1 .0

Figure 10-8. Port 3 Low-Byte Control Register (P3CONL)



I/O PORT S3CK215/FK215

10-6

PORT 4

Port 4 High-Byte Control Register (P4CONH)
30H, R/W, Reset: 00H

MSB LSB

Input mode
Input mode, pull-up
Open-drain output mode
Output mode, push-pull

P4CONH bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

P4.7/SEG23 P4.6/SEG22 P4.5/SEG21 P4.4/SEG20

.7 .6 .5 .4 .3 .2 .1 .0

Figure 10-9. Port 4 High-Byte Control Register (P4CONH)

Port 4 Low-Byte Control Register (P4CONL)
31H, R/W, Reset: 00H

MSB LSB

Input mode
Input mode, pull-up
Open-drain output mode
Output mode, push-pull

P4CONL bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

P4.3/SEG19 P4.2/SEG18 P4.1/SEG17 P4.0/SEG16

.7 .6 .5 .4 .3 .2 .1 .0

Figure 10-10. Port 4 Low-Byte Control Register (P4CONL)



S3CK215/FK215 I/O PORT

10-7

PORT 5

Port 5 High-Byte Control Register (P5CONH)
34H, R/W, Reset: 00H

MSB LSB

Input mode
Input mode, pull-up
Open-drain output mode
Output mode, push-pull

P5CONH bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

Not used P5.5/SEG29 P5.4/SEG28

.7 .6 .5 .4 .3 .2 .1 .0

Figure 10-11. Port 5 High-Byte Control Register (P5CONH)

Port 5 Low-Byte Control Register (P5CONL)
35H, R/W, Reset: 00H

MSB LSB

Input mode
Input mode, pull-up
Open-drain output mode
Output mode, push-pull

P5CONL bit-pair pin configuration settings:

0  0
0  1
1  0
1  1

P5.3/SEG27 P5.2/SEG26 P5.1/SEG25 P5.0/SEG24

.7 .6 .5 .4 .3 .2 .1 .0

Figure 10-12. Port 5 Low-Byte Control Register (P5CONL)



I/O PORT S3CK215/FK215

10-8

NOTES



S3CK215/FK215 BASIC TIMER/WATCHDOG TIMER

11-1

11 BASIC TIMER/WATCHDOG TIMER

OVERVIEW

WDTCON controls basic timer clock selection and watchdog timer clear bit.

Basic timer is used in two different ways:

• As a clock source to watchdog timer to provide an automatic reset mechanism in the event of a system
malfunction (When watchdog function is enabled in ROM code option)

• To signal the end of the required oscillation stabilization interval after a reset or stop mode release.

The reset value of basic timer clock selection bits is decided by the ROM code option. (see the section on ROM
code option for details). After reset, programmer can select the basic timer input clock using WDTCON.

When watchdog function is enabled by the ROM code option, programmer must set WDTCON.0 periodically
within every 2048 × basic timer input clock time to prevent system reset.

MSB LSB

Watchdog Timer Control Register (WDTCON)
0DH, R/W, Reset: X0H

Not used

.7 .6 .5 .4 .3 .2 .1 .0

Basic timer counter clock selection bits:
000 = fxx/2
001 = fxx/4
010 = fxx/16
011 = fxx/32
100 = fxx/128
101 = fxx/256
110 = fxx/1024
111 = fxx/2048

Not used

Watchdog timer clear bit:
0 = don't care
1 = clear watchdog timer counter

Basic timer counter clear bit:
0 = don't care
1 = clear basic timer counter

Figure 11-1.  Watchdog Timer Control Register (WDTCON)



BASIC TIMER/WATCHDOG TIMER S3CK215/FK215

11-2

BLOCK DIAGRAM

NOTE: CPU start signal (Bit 5 = 1/fb x 32) (Power down release)

Clear

Reset

3-Bit Watchdog
Timer Counter

STOP

8-Bit Basic Timer
Counter (Read Only)

MUX

MUXRESET

WDTCON.6, .5, .4

Data Bus RCOD_OPT .14, .13, .12

Reset or Stop

Data Bus

Clear

BT INTBT OVF

Bit 5 (NOTE)

RCOD_OPT.11

OVF (System Reset)

WDTCON.0

fb

IDLE

fxx/2

fxx/16

fxx/4

fxx/32

fxx/256

fxx/128

fxx/2048

fxx/1024

IRQ0.7

Figure 11-2. Basic Timer & Watchdog Timer Functional Block Diagram



S3CK215/FK215 WATCH TIMER

12-1

12 WATCH TIMER

OVERVIEW

The source of watch timer is fx/128 (main osc.) or fxt (sub osc.). The interval of watch timer interrupt can be
selected by WTCON.3-2.

Table 12-1. Watch Timer Control Register (WTCON): 8-Bit R/W

Bit Name Values Function Address

WTCON.7 - .6 – Not used. 70H

WTCON.5-.4 0 0 0.5 kHz buzzer (BUZ) signal output

0 1 1 kHz buzzer (BUZ) signal output

1 0 2 kHz buzzer (BUZ) signal output

1 1 4 kHz buzzer (BUZ) signal output

WTCON.3 - .2 0 0 Set watch timer interrupt to 1 sec.

0 1 Set watch timer interrupt to 0.5 sec.

1 0 Set watch timer interrupt to 0.25 sec.

1 1 Set watch timer interrupt to 3.91 msec.

WTCON.1 0 Select fx/128 as the watch timer clock.

1 Select fxt (sub osc) as the watch timer clock.

WTCON.0 0 Disable watch timer: clear frequency dividing circuits.

1 Enable watch timer.

NOTES:
1. The main clock frequency (fx) is assumed to be 4.19 MHz.
2. The watch timer clock frequency (fw) is assumed to be 32.768 kHz.



WATCH TIMER S3CK215/FK215

12-2

WATCH TIMER CIRCUIT DIAGRAM

Frequency
Dividing
Circuit

fxt

fx = Main clock (4.19 MHz)
fxt = Sub clock (32.768 kHz)
fw = Watch timer clock

WTCON .4-.5

Buzzer Output

Overflow
IRQ1.0

WTCON .1 WTCON .2-.3

fx/128

fw

WTCON .0

Clock
Selector

Selector
Circuit

fw/26 (0.5 kHz)

MUX

fw/25 (1 kHz)

fw/24 (2 kHz)

fw/23 (4 kHz)

WT INT

fw/27

fw/213

fw/214

fw/215 (1 kHz)

Figure 12-1. Watch Timer Circuit Diagram



S3CK215/FK215 16-BIT TIMER 0

13-1

13 16-BIT TIMER 0

OVERVIEW

The 16-bit timer 0 is an 16-bit general-purpose timer/counter. Timer 0 has three operating modes, one of which
you select using the appropriate T0CON setting:

— Interval timer mode (Toggle output at T0OUT pin)

— Capture input mode with a rising or falling edge trigger at the T0CAP pin

— PWM mode (T0PWM)

Timer 0 has the following functional components:

— Clock frequency divider (fxx divided by 1024, 256, 64, 8 or 1) with multiplexer

— External clock input pin (T0CLK)

— 16-bit counter (T0CNTH/L), 16-bit comparator, and 16-bit reference data register (T0DATAH/L)

— I/O pins for capture input (T0CAP), or PWM or match output (T0PWM, T0OUT)

— Timer 0 overflow interrupt (IRQ0.1) and match/capture interrupt (IRQ0.0) generation

— Timer 0 control register, T0CON (40H, read/write)



16-BIT TIMER 0 S3CK215/FK215

13-2

FUNCTION DESCRIPTION

Timer 0 Interrupts (IRQ0.0, IRQ0.1)

The timer 0 module can generate two interrupts, the timer 0 overflow interrupt (T0OVF), and the timer 0
match/capture interrupt (T0INT). T0OVF is interrupt level IRQ0.1. T0INT belongs to interrupt level IRQ0.0.

Interval Timer Function

In interval timer mode, a match signal is generated and T0OUT is toggled when the counter value is identical to
the value written to the T0 reference data register, T0DATAH/L. The match signal generates a timer 0 match
interrupt (T0INT) and clears the counter.

If, for example, you write the value 0010H to T0DATAH/L and 04H to T0CON, the counter will increment until it
reaches 0010H. At this point, the T0 interrupt request is generated, the counter value is reset, and counting
resumes.

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the
T0PWM pin. As in interval timer mode, a match signal is generated when the  counter value is identical to the
value written to the timer 0 data register. In PWM mode, however, the match signal does not clear the counter
but can generate a match interrupt. The counter runs continuously, overflowing at FFFFH, and then repeat the
incrementing from 0000H. Whenever an overflow is occurred, an overflow (OVF) interrupt can be generated.

Although you can use the match or the overflow interrupt in PWM mode, interrupts are not typically used in
PWM-type applications. Instead, the pulse at the T0PWM pin is held to Low level as long as the reference data
value is less than or equal to (≤) the counter value and then pulse is held to High level for as long as the data
value is greater than (>) the counter value. One pulse width is equal to tCLK

Capture Mode

In capture mode, a signal edge that is detected at the T0CAP pin opens a gate and loads the current counter
value into the T0 data register. You can select rising or falling edges to trigger this operation.
Timer 0 also gives you capture input source, the signal edge at the T0CAP pin. You select the capture input by
setting the value of the timer 0 capture input selection bit in the port 1 control register low, P1CONL, (22H).
When P1CONL.5-4 is 00, the T0CAP input or normal input is selected .When P1CONL.5-4 is set to 11, normal
output is selected.

Both kinds of timer 0 interrupts can be used in capture mode, the timer 0 overflow interrupt is generated
whenever a counter overflow occurs, the timer 0 match/capture interrupt is generated whenever the counter
value is loaded into the T0 data register.

By reading the captured data value in  T0DATAH/L, and assuming a specific value for the timer 0 clock
frequency, you can calculate the pulse width (duration) of the signal that is being input at the T0CAP pin.



S3CK215/FK215 16-BIT TIMER 0

13-3

TIMER 0 CONTROL REGISTER (T0CON)

You use the timer 0 control register, T0CON, to

— Select the timer 0 operating mode (interval timer, capture mode, or PWM mode)

— Select the timer 0 input clock frequency

— Clear the timer 0 counter, T0CNTH/L

T0CON is located at address 40H, and is read/written addressable.

A reset clears T0CON to ‘00H’. This sets timer 0 to normal interval timer mode, and selects an input clock
frequency of fxx/1024. To disable the counter operation, please set T0CON.7-.5 to 111B. You can clear the timer
0 counter at any time during normal operation by writing a “1” to T0CON.2.

Timer 0 Control Register (T0CON)
40H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Timer 0 counter clear bit:
0 = No effect
1 = Clear the timer 0 counter (when write)

Timer 0 input clock selection bits:
000 = fxx/1024
010 = fxx/256
100 = fxx/64
110 = fxx/8
001 = fxx/1
011 = External clock (T0CLK) falling edge
101 = External clock (T0CLK) rising edge
111 = Counter stop

Timer 0 operating mode selection bits:
00 = Interval mode
01 = Capture mode (capture on rising edge, counter running, OVF can occur)
10 = Capture mode (capture on falling edge, counter running, OVF can occur)
11 = PWM mode
        (OVF & match interrupt can occur)

Not used

Figure 13-1. Timer 0 Control Register (T0CON)



16-BIT TIMER 0 S3CK215/FK215

13-4

BLOCK DIAGRAM

Timer 0 Data H/L
Register

Timer 0 Buffer Reg

16-bit Comparator

16-bit Up-Counter
(Read Only)

Counter Clear Signal or Match

Clear

Match

T0CON.7-5

fXX/1024

fXX/8

fXX/256
fXX/64

fXX/1

T0OVF
IRQ0.1OVF

T0CON.2

T0INT
IRQ0.0

T0OUT
T0PWM

T0CON.4-.3

R

M

U

X

VSS

T0CLK

M
U
X

M
U
X

T0CAP

T0CON.4-.3

Data Bus

8

Data Bus

8

Figure 13-2. Timer 0 Functional Block Diagram



S3CK215/FK215 16-BIT TIMER 0

13-5

Timer 0 Counter High-Byte Register (T0CNTH)
43H, R, Reset Value: 00H

MSB LSB

MSB

.7 .6 .5 .4 .3 .2 .1 .0

.7 .6 .5 .4 .3 .2 .1 .0 LSB

Timer 0 Counter Low-Byte Register (T0CNTL)
 44H, R, Reset Value: 00H

.7 .6 .5 .4 .3 .2 .1 .0 LSB

Timer 0 Data High-Byte Register (T0DATAH)
41H, R/W, Reset Value: FFH

MSB

.7 .6 .5 .4 .3 .2 .1 .0 LSB

Timer 0 Data Low-Byte Register (T1DATAL)
42H, R/W, Reset Value: FFH

MSB

Figure 13-3. Timer 0 Counter and Data Registers (T0CNTH/L, T0DATAH/L)



16-BIT TIMER 0 S3CK215/FK215

13-6

NOTES



S3CK215/FK215 16-BIT TIMER 1

14-1

14 16-BIT TIMER 1

OVERVIEW

The 16-bit timer 1 is an 16-bit general-purpose timer. Timer 1 has the interval timer mode by using the
appropriate T1CON setting.

Timer 1 has the following functional components:

— Clock frequency divider (fxx divided by 256, 64, 8 or 1) with multiplexer

— T3OF (from timer 3) is one of the clock frequencies.

— 16-bit counter (T1CNTH/L), 16-bit comparator, and 16-bit reference data register (T1DATAH/L)

— Timer 1 interrupt (IRQ0.2) generation

— Timer 1 control register, T1CON (48H, read/write)

FUNCTION DESCRIPTION

Interval Timer Function

The timer 1 module can generate an interrupt, the timer 1 match interrupt (T1INT). T1INT belongs to interrupt
level IRQ0.2.

In interval timer mode, a match signal is generated when the counter value is identical to the values written to
the T1 reference data registers, T1DATAH/L. The match signal generates a timer 1 match interrupt (T1INT) and
clears the counter.

If, for example, you write the value 0010H to T1DATAH/L and 0CH to T1CON, the counter will increment until it
reaches 10H. At this point, the T1 interrupt request is generated, the counter value is reset, and counting
resumes.



16-BIT TIMER 1 S3CK215/FK215

14-2

TIMER 1 CONTROL REGISTER (T1CON)

You use the timer 1 control register, T1CON, to

— Enable the timer 1 operating (interval timer)

— Select the timer 1 input clock frequency

— Clear the timer 1 counter, T1CNT

T1CON is located, at address 48H, and is read/written addressable.

A reset clears T1CON to "00H". This sets timer 1 to disable interval timer mode, selects the T3OF. You can clear
the timer 0 counter at any time during normal operation by writing a “1” to T1CON.3

Timer 1 Control Register
48H,  R/W, RESET; 00H

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Timer 1 count enable bit:
0 = Disable counting operation
1 = Enable counting operation

Timer 1 counter clear bit:
0 = No affect
1 = Clear the timer 1 counter (when write)

Timer 1 input clock selection bits:
000 = T3OF
010 = fxx/256
100 = fxx/64
110 = fxx/8
xx1  = fxx

Not used

NOTE: For normal operation T1CON.2 bit must be set 1.

Not used

Figure 14-1. Timer 1 Control Register (T1CON)



S3CK215/FK215 16-BIT TIMER  0/1

14-3

BLOCK DIAGRAM

Timer 1 Data H/L Reg
(Read/Write)

Timer 1 Buffer Reg

16-bit Comparator

16-bit up-Counter H/L
(Read Only)

Match

Bit 3

Counter clear (T1CON.3) signal
or match signal

Bits 7, 6, 5

M

U

X

fxx/256

fxx/64

fxx/8

fxx/1

T3OF

Bit 2

Clear

R

Data Bus

8

Data Bus

8

NOTE: T1CON.3 bit is cleared automatically.

IRQ0.2

DA Converter

T1INT

Figure 14-2. Timer 1 Functional Block Diagram



16-BIT TIMER  0/1 S3CK215/FK215

14-4

Timer 1 Counter High-Byte (T1CNTH)
 4BH, R, Reset Value: 00H

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Timer 1 Counter Low-Byte (T1CNTL)
4CH, R, Reset Value: 00H

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Figure 14-3. Timer 1 Counter Register (T1CNTH/L)

Timer 1 Data High-Byte Register (T1DATAH)
49H, R/W, Reset Value: FFH

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Timer 1 Data Low-Byte Register (T1DATAL)
4AH, R/W, Reset Value: FFH

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Figure 14-4. Timer 1 Data Register (T1DATAH/L)



S3CK215/FK215 8-BIT TIMER  2

15-1

15 8-BIT TIMER 2

OVERVIEW

The 8-bit timer 2  is an 8-bit general-purpose timer/counter. Timer 2 has three operating modes, one of which you
select using the appropriate T2CON setting:

— Interval timer mode (Toggle output at T2OUT pin)

— Capture input mode with a rising or falling edge trigger at the T2CAP pin

— PWM mode (T2PWM)

Timer 2 has the following functional components:

— Clock frequency divider (fxx divided by 1024, 256, or 64 ) with multiplexer

— External clock input pin (T2CLK)

— 8-bit counter (T2CNT), 8-bit comparator, and 8-bit reference data register (T2DATA)

— I/O pin for capture input (T2CAP) or PWM/Match output (T2PWM, T2OUT)

— Timer 2 overflow interrupt (IRQ0.4) and match/capture interrupt (IRQ0.3) generation

— Timer 2 control register, T2CON (50H, read/write)



8-BIT TIMER 2 S3CK215/FK215

15-2

FUNCTION DESCRIPTION

Timer 2 Interrupts (IRQ0.3 and IRQ0.4)

The timer 2 module can generate two interrupts: the timer 2 overflow interrupt (T2OVF), and the timer 2 match/
capture interrupt (T2INT). T2OVF is interrupt level IRQ0.4. T2INT also belongs to interrupt level IRQ0.3.

Interval Timer Function

In interval timer mode, a match signal is generated and T2OUT is toggled when the counter value is identical to
the value written to the T2 reference data register, T2DATA. The match signal generates a timer 2 match
interrupt (T2INT) and clears the counter.

If, for example, you write the value 10H to T2DATA and 0CH  to T2CON, the counter will increment until it
reaches 10H. At this point, the T2 interrupt request is generated, the counter value is reset, and counting
resumes.

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the
T2PWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the
value written to the timer 2 data register. In PWM mode, however, the match signal does not clear the counter.
Instead, it runs continuously, overflowing at FFH, and then continues incrementing from 00H.

Although timer 2 overflow interrupt is occurred, this interrupt is not typically used in PWM-type applications.
Instead, the pulse at the T2PWM pin is held to Low level as long as the reference data value is less than or equal
to ( ≤ ) the counter value and then the pulse is held to High level for as long as the data value is greater than ( > )
the counter value. One pulse width is equal to  tCLK  •  256 .

Capture Mode

In capture mode, a signal edge that is detected at the T2CAP pin opens a gate and loads the current counter
value into the T2 data register. You can select rising or falling edges to trigger this operation.

Timer 2 also gives you capture input source: the signal edge at the T2CAP pin. You select the capture input by
setting the value of the timer 2 capture input selection bit in the port 3 control register, P3CONL (2DH). When
P3CONL.7-.6 is 00, the T2CAP input or normal input is selected. When P3CONL.7-.6 is set to 11, normal output
is selected.

Both kinds of timer 2 interrupts can be used in capture mode: the timer 2 overflow interrupt is generated
whenever a counter overflow occurs; the timer 2 match/capture interrupt is generated whenever the counter
value is loaded into the T2 data register.

By reading the captured data value in T2DATA, and assuming a specific value for the timer 2 clock frequency,
you can calculate the pulse width (duration) of the signal that is being input at the T2CAP pin.



S3CK215/FK215 8-BIT TIMER  2

15-3

TIMER 2 CONTROL REGISTER (T2CON)

You use the timer 2 control register, T2CON, to

— Select the timer 2 operating mode (interval mode, capture mode, or PWM mode)

— Select the timer 2 input clock frequency

— Clear the timer 2 counter, T2CNT

— Enable the timer 2 counting operation

T2CON is located in at address 50H, and is read/written addressable.

A reset clears T2CON to '00H'. This sets timer 2 to normal interval timer mode, selects an input clock frequency
of fxx/1024, and disables timer 2 counting operation. You can clear the timer 2 counter at any time during normal
operation by writing a "1" to T2CON.3 or the timer 2 counter is cleared by match signal.

Timer 2 Control Register
50H, R/W, RESET: 00H

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Timer 2 count enable bit:
0 = Disable counting operation
1 = Enable counting operation

Timer 2 counter clear bit:
0 = No affect
1 = Clear the timer 2 counter (when write)

Timer 2 input clock selection bits:
00 = fxx/1024
01 = fxx/256
10 = fxx/64
11 = External clock (T2CLK)

Timer 2 operating mode selection bits:
00 = Interval mode (T2OUT mode)
01 = Capture mode (capture on rising edge,
        Counter running, OVF can occur)
10 = Capture mode (Capture on falling edge,
        Counter running, OVF can occur)
11 = PWM mode (OVF interrupt can occur)

Not used

Figure 15-1. Timer 2 Control Register (T2CON)



8-BIT TIMER 2 S3CK215/FK215

15-4

BLOCK DIAGRAM

Timer 2 Data Register
(Read/Write)

Timer 2 Buffer Reg

8-bit Comparator

8-bit Up-Counter
(Read Only)

Clear

Match

T2CON.7-.6

fXX/1024

fXX/256

fXX/64

T2CLK

T2CON.3

M

U

X

T2OVF

M
U
XM

U
X

T2CAP

T2OUT

T2PWM

T2CON.5-.4

T2CON.5-.4

Data Bus

8

Data Bus

8

IRQ0.3

IRQ0.4

Bit 2

Figure 15-2. Timer 2 Functional Block Diagram



S3CK215/FK215 8-BIT TIMER 3

16-1

16 8-BIT TIMER 3

OVERVIEW

The S3CK215/FK215 micro-controller has an 8-bit counter called timer 3. Timer 3, which can be used to generate
the carrier frequency of a remote controller signal.

Timer 3 has two functions:

— As a normal interval timer, generating a timer 3 interrupt  at programmed time intervals.

— To supply a clock source to the 16-bit timer/counter module, timer 1, for generating the timer 1 overflow
interrupt.



8-BIT TIMER 3 S3CK215/FK215

16-2

8-bit
Down Counter

Timer 3 Data
High Byte Register

MUX

T3CON.0
(T3OF)

To Other Block
(P3.0/T3PWM)

IRQ0.5
(T3INT)

INT.GEN

Repeat Control

Interrupt Control

M

U

X

fXX/1

fXX/2

fXX/4

fXX/8

T3CON.6-.7 T3CON.2

Timer 3 Data
Low Byte Register

CLK

T3CON.4-.5

Data Bus

8

NOTE: The value of the T3DATAL register is loaded into the 8-bit counter when the operation of the timer 3
starts. If a borrow occurs in the counter, the value of the T3DATAH register is loaded into the 8-bit
counter. However, if the next borrow occurs, the value of the T3DATAL register is loaded into the 8-bit
counter.

Figure 16-1. Timer 3 Functional Block Diagram



S3CK215/FK215 8-BIT TIMER  3

16-3

Timer 3 Control Register
54H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Timer 3 mode selection bit:
0 = One-shot mode
1 = Repeating mode

Timer 3 output flip-flop control bit:
0 = T3OF is low
     (T3PWM: low level for low data,
      high level for high data)
1 = T3OF is high
     (T3PWM: high level for low data,
      low level for high data)

Timer 3 start/stop bit:
0 = Stop timer 3
1 = Start timer 3

Not used

Timer 3 input clock selection bits:
00 = fxx
01 = fxx/2
10 = fxx/4
11 = fxx/8

Timer 3 interrupt time selection bits:
00 = Generating after low data is borrowed.
01 = Generating after high data is borrowed.
10 = Generating after low and high data is
         borrowed.
11 = Invalid setting

Figure 16-2. Timer 3 Control Register (T3CON)

Timer 3 Data High-Byte Register (T3DATAH)
55H, R/W, Reset Value: FFH

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Timer 3 Data Low-Byte Register (T3DATAL)
 56H, R/W, Reset Value: FFH

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Figure 16-3. Timer 3 Data Registers (T3DATAH/L)



8-BIT TIMER 3 S3CK215/FK215

16-4

TIMER 3 PULSE WIDTH CALCULATIONS

tLOW
tHIGH

tLOW

To generate the above repeated waveform consisted of low period time, tLOW, and high period time, tHIGH.

When T3OF = 0,

tLOW = (T3DATAL + 2) x 1/fxx, 0H < T3DATAL < 100H, where fxx = The selected clock.

tHIGH = (T3DATAH + 2) x 1/fxx, 0H < T3DATAH < 100H, where fxx = The selected clock.

When T3OF = 1,

tLOW = (T3DATAH + 2) x 1/fxx, 0H < T3DATAH < 100H, where fxx = The selected clock.

tHIGH = (T3DATAL + 2) x 1/fxx, 0H < T3DATAL < 100H, where fxx = The selected clock.

To make tLOW  = 24 us and  tHIGH = 15 us.  fx = 4 MHz, fxx = 4 MHz/4 = 1 MHz

When T3OF = 0,

tLOW = 24 us = (T3DATAL + 2) /fx = (T3DATAL + 2) x 1us, T3DATAL  = 22.

tHIGH = 15 us = (T3DATAH + 2) /fx = (T3DATAH + 2) x 1us, T3DATAH = 13.

When T3OF = 1,

tHIGH = 15 us = (T3DATAL + 2) /fx = (T3DATAL + 2) x 1us, T3DATAL  = 13.

tLOW = 24 us = (T3DATAH + 2) /fx = (T3DATAH + 2) x 1us, T3DATAH = 22.



S3CK215/FK215 8-BIT TIMER  3

16-5

Timer 3 Clock

0H

T3OF = '0'
T3DATAL = 01-FFH
T3DATAH = 00H

T3OF = '0'
T3DATAL = 00H
T3DATAH = 01-FFH

T3OF = '0'
T3DATAL = 00H
T3DATAH = 00H

T3OF = '1'
T3DATAL = 00H
T3DATAH = 00H

Low

High

Low

High

Timer 3 Clock

T3OF = '1'
T3DATAL = DEH
T3DATAH = 1EH

T3OF = '0'
T3DATAL = DEH
T3DATAH = 1EH

T3OF = '1'
T3DATAL = 7EH
T3DATAH = 7EH

T3OF = '0'
T3DATAL = 7EH
T3DATAH = 7EH

0H 100H 200H

E0H

20H

20H

E0H

80H
80H

80H
80H

Figure 16-4. Timer 3 Output Flip-Flop Waveforms in Repeat Mode



8-BIT TIMER 3 S3CK215/FK215

16-6

+ + PROGRAMMING TIP — To generate 38 kHz, 1/3duty signal through P3.0

This example sets Timer 3 to the repeat mode, sets the oscillation frequency as the Timer 3 clock source, and
T3DATAH and T3DATAL to make a 38 kHz,1/3 Duty carrier frequency. The program parameters are:

17.59 µs

37.9 kHz 1/3 Duty

8.795 µs

— Timer 3 is used in repeat mode

— Oscillation frequency is 4 MHz (0.25 µs)

— T3DATAH =  8.795 µs/0.25 µs = 35.18, T3DATAL = 17.59 µs/0.25 µs = 70.36

— Set P3.0 to T3PWM mode.

ORG 0100H ; Reset address
START DI

•

•

•

LD T3DATAL,#(70-2) ; Set 17.5 µs
LD T3DATAH,#(35-2) ; Set 8.75 µs
LD T3CON,#00000110B ; Clock Source  ←  fxx

; Select repeat mode for Timer 3.
;   Start Timer 3 operation.
;   Set Timer 3 Output flip-flop (T3OF) low.
;

LD P3CONL,#02H ; Set P3.0 to T3PWM mode.
; This command generates 38 kHz, 1/3 duty pulse signal

through P3.0.
•

•

•



S3CK215/FK215 8-BIT TIMER  3

16-7

+ + PROGRAMMING TIP — To generate a one pulse signal through P3.0

This example sets Timer 3 to the one shot  mode, sets the oscillation frequency as the Timer 3 clock source, and
T3DATAH and T3DATAL to make a 40 µs width pulse. The program parameters are:

40 µ s

— Timer 3 is used in one shot mode

— Oscillation frequency is 4 MHz (1 clock = 0.25 µs)

— T3DATAH = 40 µs / 0.25 µs = 160, T3DATAL = 1

— Set P3.0 to T3PWM mode

ORG 0100H ; Reset address
START DI

•

•

•

LD T3DATAH,# (160-2) ; Set 40 µs
LD T3DATAL,# 1 ; Set any value except  00H
LD T3CON,#00000001B ; Clock Source  ←  fxx

; Select one shot mode for Timer 3.
;   Stop Timer 3 operation.
;   Set Timer 3 output flip-flop (T3OF) high

LD P3CONL, #02H ; Set P3.0 to T3PWM mode.
•

•

Pulse_out: LD T3CON,#00000101B ; Start Timer 3 operation
; to make the pulse at  this point.

• ; After the instruction is executed, 0.75 µs is required
• ; before the falling edge of the pulse starts.
•



8-BIT TIMER 3 S3CK215/FK215

16-8

NOTES



S3CK215/FK215 SERIAL I/O INTERFACE

17-1

17 SERIAL I/O INTERFACE

OVERVIEW

The SIO module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control
register settings. To ensure flexible data transmission rates, you can select an internal or external clock source.

Programming Procedure

To program the SIO modules, follow these basic steps:

1. Configure the I/O pins at port (SO, SCK, SI) by loading the appropriate value to the P1CONH register, if
necessary.

2. Load an 8-bit value to the SIOCON register to properly configure the serial I/O module. In this operation,
SIOCON.2 must be set to "1" to enable the data shifter.

3. When you transmit data to the serial buffer, write data to SIODATA and set SIOCON.3 to 1, the shift
operation starts.



SERIAL I/O INTERFACE S3CK215/FK215

17-2

SIO CONTROL REGISTER (SIOCON)

LSBMSB

Serial I/O Module Control Register (SIOCON)
58H, R/W, Reset: 00H

Not used
SIO shift clock select bit:
0 = Internal clock (P.S clock)
1 = External clock (SCK)

Data direction control bit:
0 = MSB-first
1 = LSB-first

SIO counter clear and shift start bit:
0 = No action
1 = Clear 3-bit counter and start shifting

SIO shift operation enable bit:
0 = Disable shifter and clock
1 = Enable shfter and clock

SIO mode selction bit:
0 = Rececive-only mode
1 = Transmit/receive mode

Shift clock edge selction bit:
0 = Tx at falling edge, Rx at rising edge
1 = Tx at rising edge, Tx at falling edge

.7 .6 .5 .4 .3 .2 .1 .0

Figure 17-1. Serial I/O Module Control Registers (SIOCON)

SIO PRE-SCALER REGISTER (SIOPS)

The value stored in the SIO pre-scaler registers, SIOPS, lets you determine the SIO clock rate (baud rate) as
follows:

Baud rate  = Input clock( fxx/4)/(Pre-scaler value + 1),  or,  SCK input clock

where fxx is a selected clock.

LSBMSB

SIO Pre-scaler Register (SIOPS)
59H,R/W, Reset: 00H

Baud rate = (fxx/4)/(SIOPS + 1)

.7 .6 .5 .4 .3 .2 .1 .0

Figure 17-2. SIO Pre-scaler Register (SIOPS)



S3CK215/FK215 SERIAL I/O INTERFACE

17-3

BLOCK DIAGRAM

3-Bit Counter

MUX 8-Bit SIO Shift Buffer
(SIODATA)8-Bit

P.S
1/2fxx/2

SIOPS

SCK

SIOCON.7
(Shift Clock

Source Select)

Clear

CLK

CLK

SI

SIOCON.3

SIOCON.4
(Edge Select)

SIOCON.5
(Mode Select)

SIOCON.2
(Shift Enable)

SIOCON.6
(LSB/MSB First
Mode Select)

Data Bus

8

SO

IRQ0.6
(SIO INT)

Figure 17-3. SIO Function Block Diagram



SERIAL I/O INTERFACE S3CK215/FK215

17-4

SERIAL I/O TIMING DIAGRAM

 

SO

Transmit
Complete

IRQS

Set SIOCON.3

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

D17 D16 D15 D14 D13 D12 D11 D10SI

SCK

Figure 17-4. Serial I/O Timing in Transmit/Receive Mode(Tx at falling, SIOCON.4=0)

IRQS

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

D17 D16 D15 D14 D13 D12 D11 D10

SCK

Transmit
Complete

Set SIOCON.3

SI

SO

Figure 17-5.  Serial I/O Timing in Transmit/Receive Mode(Tx at rising, SIOCON.4=1)



S3CK215/FK215 BATTERY LEVEL DETECTOR

18-1

18 BATTERY LEVEL DETECTOR

OVERVIEW

The S3CK215/FK215 micro-controller has a built-in BLD (Battery Level Detector) circuit which allows detection of
power voltage drop or external input level through software. Turning the BLD operation on and off can be
controlled by software. Because the IC consumes a large amount of current during BLD operation. It is
recommended that the BLD operation should be kept OFF unless it is necessary. Also the BLD criteria voltage

can be set by the software. The criteria voltage can be set by matching to one of the 3 kinds of voltage below that
can be used.

2.4 V, 3.0 V or  4.0 V (internal VIN), or external input level (external VIN)

The BLD block works only when BLDCON.2 is set. If VDD level is lower than the reference voltage selected with
BLDCON.1–.0, BLDCON.3 will be set. If VDD level is higher, BLDCON.3 will be cleared. When users need to

minimize current consumption, do not operate the BLD block.

Battery
Level

Detector
BLDCON.3

BLD Out

BLDCON.4 MUX

BLDCON.2

BLD Run
Battery
Level

Setting
P2CONH.7-.6

VBLDIN/P2.7

External Input
Enable

BLDCON.1
BLDCON.0

Set the Level

VDD Pin

fBLD

Figure 18-1. Block Diagram for Battery Level Detect



S3CK215/FK215 BATTERY LEVEL DETECTOR

18-2

BATTERY LEVEL DETECTOR CONTROL REGISTER (BLDCON)

The bit 2 of BLDCON controls to run or disable the operation of battery level detect. Basically this VBLD is set as

invalid by system reset and it can be changed in 3 kinds voltages by selecting Battery Level Detect Control
register (BLDCON). When you write 2 bit data value to BLDCON, an established resistor string is selected and
the VBLD is fixed in accordance with this resistor. Table 18-1 shows specific VBLD of 3 levels.

Battery Level Detect Control
71H, R/W, Reset : 00H

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Not used

 +

   Comparator

MUX

BANDGAP

BLD Enable/Disable

BLDOUT

Bias

VREF

VIN

RVLD

VBLDIN

Resistor String

P2CONH.7-.6

VBAT

NOTES:
1.     The reset value of BLDCON is #00H.
2.     VREF is about 1 volt.

0
1

Figure 18-2. Battery Level Detect Circuit and Control Register

Table 18-1. BLDCON Value and Detection Level

VLDCON .1–.0 VVLD

0   0 Not available

0   1 2.4 V

1   0 3.0 V

1   1 4.0 V



S3CK215/FK215 LCD CONTROLLER/DRIVER

19-1

19 LCD CONTROLLER/DRIVER

OVERVIEW

The S3CK215/FK215 can directly drive an up-to 120-dots LCD panel. The LCD module has the following
components:

— LCD controller/driver

— Display RAM (80H–8EH of Page 4) for storing display data

— 30 segment output pins (SEG0–SEG29)

— 4 common output pins (COM0–COM3)

— Three LCD operating power supply pins (VLC0–VLC2)

— LCD bias by voltage booster or resistors

Bit settings in the LCD mode register, LMOD, determine the LCD frame frequency, duty, and bias.

The LCD control register LCON turns the LCD display on and off, select bias type, and the segment pins used for
display output. LCD data stored in the display RAM locations are transferred to the segment signal pins
automatically without program control.

LCD
Controller/

Driver8

8-B
it D

ata B
us

2

3

4

30

CA-CB

VLC0-VLC2

COM0-COM3

SEG0-SEG29

Figure 19-1. LCD Function Diagram



LCD CONTROLLER/DRIVER S3CK215/FK215

19-2

LCD CIRCUIT DIAGRAM

COM2

COM0

COM3

LMOD

LCON

Timing
Controller

82H.7

82H.6

82H.5

82H.4

80H.3

80H.2

80H.1

80H.0

8EH.4

8EH.5

8EH.6

8EH.7

MUX

MUX

MUX

8

8

8

8

8

fLCD

COM
Control COM1

VLC0

VLC1

VLC2

CA

CB

SEG29
SEG28
SEG27
SEG26

SEG0

SEG8
SEG7
SEG6
SEG5

SEG4

Segment
Driver

LCD
Voltage
Control

82H.3

82H.2

82H.1

82H.0

MUX8

Figure 19-2. LCD Circuit Diagram



S3CK215/FK215 LCD CONTROLLER/DRIVER

19-3

LCD RAM ADDRESS AREA

RAM addresses 80H–8EH of page 4 are used as LCD data memory. When the bit value of a display segment is
"1", the LCD display is turned on; when the bit value is "0", the display is turned off.

Display RAM data are sent out through segment pins SEG0–SEG29 using a direct memory access (DMA)
method that is synchronized with the fLCD signal. RAM addresses in this location that are not used for LCD

display can be allocated to general-purpose use.

SEG0

BIT.7

BIT.3

BIT.7

BIT.3

BIT.7

BIT.3

BIT.7

BIT.3

BIT.7

BIT.3

BIT.3

BIT.7

BIT.3

BIT.7

BIT.3

BIT.7

BIT.6

BIT.2

BIT.6

BIT.2

BIT.6

BIT.2

BIT.6

BIT.2

BIT.6

BIT.2

BIT.2

BIT.6

BIT.2

BIT.6

BIT.2

BIT.6

BIT.5

BIT.1

BIT.5

BIT.1

BIT.5

BIT.1

BIT.5

BIT.1

BIT.5

BIT.1

BIT.1

BIT.5

BIT.1

BIT.5

BIT.1

BIT.5

BIT.4

BIT.0

BIT.4

BIT.0

BIT.4

BIT.0

BIT.4

BIT.0

BIT.4

BIT.0

BIT.0

BIT.4

BIT.0

BIT.4

BIT.0

BIT.4

SEG1

SEG16

SEG17

SEG18

SEG19

SEG20

SEG21

SEG22

SEG23

SEG24

SEG25

SEG26

SEG27

SEG28

SEG29

80H

88H

89H

8AH

8BH

8CH

8DH

8EH

COM3 COM2 COM1 COM0

Figure 19-3. LCD Display Data RAM Organization



LCD CONTROLLER/DRIVER S3CK215/FK215

19-4

LCD CONTROL REGISTER (LCON, 60H)

Table 19-1. LCD Control Register (LCON) Organization

LCON Bit Setting Description

LCON.7 0 P5.4-P5.5 are selected as I/O.

1 SEG28-SEG29 are selected as LCD segments.

LCON.6 0 P5.0-P5.3 are selected as I/O.

1 SEG24-SEG27 are selected as LCD segments.

LCON.5 0 P4.4-P4.7are selected as I/O.

1 SEG20-SEG23 are selected as LCD segments.

LCON.4 0 P4.0-P4.3 is selected as I/O.

1 SEG16-SEG19 are selected as LCD segments.

LCON.3 0 Always logic zero.

LCON.2 0 Capacitance bias

1 Resistor bias

LCON.1 0 Stop voltage booster (clock stop and cut off current charge path)

1 Run voltage booster (clock run and turn on current charge path)

LCON.0 0 LCD output low; turn display off
Cut off voltage booster (Booster clock disable).

1 COM and SEG output is in display mode; turn display on.

Table 19-2. Relationship of LCON.0 and LMOD.3 Bit Settings

LCON.0 LMOD.3 COM0–COM3 SEG0–SEG29

0 x Output low; LCD display off Output low; LCD display off

1 0 Output low; LCD display off Output low; LCD display off

1 COM output corresponds to display mode SEG output corresponds to display mode

NOTE: "x" means don't care.



S3CK215/FK215 LCD CONTROLLER/DRIVER

19-5

LCD Mode Register (LMOD)

The LCD mode control register LMOD is mapped to RAM addresses 61H.

LMOD controls these LCD functions:

— Duty and bias selection (LMOD.3–LMOD.0)

— LCDCK clock frequency selection (LMOD.5–LMOD.4)

The LCD clock signal, LCDCK, determines the frequency of COM signal scanning of each segment output. This
is also referred to as the 'frame frequency'. RESET clears the LMOD register values to logic zero. This produces
the following LCD control settings:

— Display is turned off

— LCDCK frequency is 64 Hz

The LCD display can continue to operate during idle and stop modes if a sub clock is running and watch timer is
enabled.

Table 19-3. LCD Clock Signal (LCDCK) Frame Frequency

LCDCK Frequency (fLCD) Static 1/2 Duty 1/3 Duty 1/4 Duty

64 Hz 64 32 21 16

128 Hz 128 64 43 32

256 Hz 256 128 85 64

512 Hz 512 256 171 128

NOTE: Because the clock source of LCDCK is from Watch Timer module, Watch Timer must be enabled for LCD display.



LCD CONTROLLER/DRIVER S3CK215/FK215

19-6

Table 19-4. LCD Mode Control Register (LMOD) Organization, 4CH

LMOD.7 Always logic zero.

LMOD.6 Always logic zero.

LMOD.5 LMOD.4 LCD Clock (LCDCK) Frequency

0 0   fLCD   = 64 Hz

0 1   fLCD   = 128 Hz

1 0   fLCD   = 256 Hz

1 1   fLCD   = 512 Hz

LMOD.3 LMOD.2 LMOD.1 LMOD.0 Duty and Bias Selection for LCD Display

0 x x x LCD display off (COM and SEG output Low)

1 0 0 0 1/4 duty, 1/3 bias

1 0 0 1 1/3 duty, 1/3 bias

1 0 1 1 1/3 duty, 1/2 bias

1 0 1 0 1/2 duty, 1/2 bias

1 1 x x Static

NOTE: "x" means don't care.

Table 19-5. Maximum Number of Display Digits per Duty Cycle

LCD Duty LCD Bias COM Output Pins Maximum Seg Display

Static Static COM0 32

1/2 1/2 COM0–COM1 32 × 2

1/3 1/2 COM0–COM2 32 × 3

1/3 1/3 COM0–COM2 32 × 3

1/4 1/3 COM0–COM3 32 × 4



S3CK215/FK215 LCD CONTROLLER/DRIVER

19-7

LCD VOLTAGE DRIVING METHOD

By Voltage Booster

To run the voltage booster

— Enable the watch timer for fbooster

— Set LCON.2 to "0" and LCON.1 to "1" to enable the voltage booster

— 0.1 µF (CAB, C0, C1, C2) capacitance is recommended

By Voltage Dividing Resistors

To make Voltage Dividing Resistors

— Enable the watch timer for fLCD

— Set LCON.2 to "1" and LCON.1 to "0" to disable the voltage booster

LCD
Controller/Driver

LCON.0

LCON.2

VSS

Vdd

CA

CB CAB

VLC2 C0

C0

C2

VSS

VLC1

VLC0

1.25R

R

R

R

Figure 19-4. LCD Bias Circuit Diagram



LCD CONTROLLER/DRIVER S3CK215/FK215

19-8

Static and 1/3 Bias (VLCD = 3V at VDD = 4.25 V) 1/2 Bias (VLCD = 4.25 V at VDD = 4.25 V)

Static and 1/3 Bias (VLCD = 4.25V at VDD = 4.25 V)

VDD

VSS

VLC2

VLC1

VLC0

VDD

VSS

VLC2

VLC1

VLC0

VDD

VSS

VLC2

VLC1

VLC0

NOTE: 2.5 V ≤ VLCD ≤ 5.5 V

Figure 19-5. Voltage Dividing Resistor Circuit Diagram

Voltage
Regulator

LCON.1
LCON.0

LCON.2

Clock

VDD

VSS

CAB CAB

VLC0 (VR)

C0 C1 C2

VLC1 (2 × VR) VLC2 (3 × VR)

Figure 19-6. Voltage Booster Block Diagram



S3CK215/FK215 LCD CONTROLLER/DRIVER

19-9

LCD
Drive

VLC1

VLC2

Voltage
Booster

Voltage
Regulator
(1.05 V)

VLC0

VLC0

COM0-3

SEG0-SEG29

CA

CB

VLC2

VLC1

C0
VLC0

1/3 Bias

LCD
Drive

VLC1

VLC2

Voltage
Booster

Voltage
Regulator

(1.5 V)

VLC0

VLC0

COM0-3

SEG0-SEG29

CA

CB

VLC2

VLC1

C0
VLC0

1/2 Bias and Static

CAB

C1C2

C1C1

CAB

Figure 19-7. Capacitance Bias Circuit Diagram



LCD CONTROLLER/DRIVER S3CK215/FK215

19-10

LCD COM/SEG SIGNALS

The 32 LCD segment signal pins are connected to corresponding display RAM locations at 80H–8EH of page 4.
Bits 0-3 (and 4-7) of the display RAM are synchronized with the common signal output pins COM0, COM1,
COM2, and COM3.

When the bit value of a display RAM location is "1", a select signal is sent to the corresponding segment pin.
When the display bit is "0", a 'no-select' signal is sent to the corresponding segment pin. Each bias has select and
no-select signals.

COM-SEG

FR

Select Non-Select

1 Frame

COM

SEG

VLC2

VSS

VLC2

VSS

VLC2

VSS

-VLC2

Figure 19-8. Select/No-Select Bias Signals in Static Display Mode



S3CK215/FK215 LCD CONTROLLER/DRIVER

19-11

FR

Select Non-Select

1 Frame

COM

VLC1, 2

VLC 0

Vss

SEG

Vss

COM-SEG Vss

-VLC 0

-VLC1, 2

VLC1, 2

VLC 0

VLC1, 2

VLC 0

Figure 19-9. Select/No-Select Bias Signals in 1/2 Duty, 1/2 Bias Display Mode

FR

Select Non-Select

1 Frame

SEG

COM

COM-SEG

VLC 2

VSS

VLC 2

VSS

VLC 2

VSS

-VLC 2

Figure 19-10. Select/No-Select Bias Signals in 1/3 Duty, 1/3 Bias Display Mode



LCD CONTROLLER/DRIVER S3CK215/FK215

19-12

FR 1 Frame

COM0

COM1

SEG0

SEG1

COM0
-SEG0

COM0
-SEG1

COM1
-SEG0

COM1
-SEG1

0 1 0 1

NOTE: VLC2 = VLC1

S
E

G
1

S
E

G
2

S
E

G
3

S
E

G
0

SEG3.1 x C1
.0

 .1
 .2

 .3
1

0
X

X

1
1

X
X

.4
 .5

 .6
 .7

0
1

X
X

.0
 .1

 .2
 .3

1
0

X
X

.4
 .5

 .6
 .7

D
at

a 
R

eg
is

te
r 

pa
ge

 4
, a

dd
re

ss
 8

0H
LD

 8
0H

, #
31

h

D
at

a 
R

eg
is

te
r 

pa
ge

 4
, a

dd
re

ss
 8

1H
LD

 8
1H

, #
12

h

C
O

M
0

C
O

M
1

SEG2.1 x C1

SEG0.0 x C0

S
E

G
0.1 x C

1

SEG1.0 x C0

S
E

G
3.0 x C

0

SEG2.1 x C1

S
E

G
2.0 x C

0
S

E
G

2.0 x C
0

S
E

G
1.1 x C

1

VLC1, 2

VSS

VLC0

VLC1, 2

VSS

VLC0

VLC1, 2

VSS

VLC0

VLC1, 2

VSS

VLC0

VLC1, 2

-VLC1, 2

VLC0

VSS

-VLC0

VLC1, 2

-VLC1, 2

VLC0

VSS

-VLC0

VLC1, 2

-VLC1, 2

VLC0

VSS

-VLC0

VLC1, 2

-VLC1, 2

VLC0

VSS

-VLC0

Figure 19-11. LCD Signal and Wave Forms Example in 1/2 Duty, 1/2 Bias Display Mode



S3CK215/FK215 LCD CONTROLLER/DRIVER

19-13

COM0

COM1

SEG0

SEG1

COM0
-SEG0

COM0
-SEG1

COM1
-SEG0

COM1
-SEG1

COM2

VLC2

VSS

VLC1
VLC0

VLC2

VSS

VLC1
VLC0

VLC2

VSS

VLC1
VLC0

VLC2

VSS

VLC1
VLC0

VLC2

VSS

VLC1
VLC0

FR 1 Frame

0 1 2 0 1 2

SEG1.6 x C2
SEG2.1 x C1

SEG2.0 x C0

S
E

G
0.0 x C

0

SEG2.1 x C1

S
E

G
1.4 x C

0

SEG0.2 x C2

S
E

G
2.0 x C

0
S

E
G

1.5 x C
1

S
E

G
0.1 x C

1

C
O

M
0

C
O

M
1 S
E

G
0

D
at

a 
R

eg
is

te
r 

pa
ge

 4
, a

dd
re

ss
 8

0H
LD

 8
0H

, #
16

h

S
E

G
1

1
0

0
X

.4
 .5

 .6
 .7

S
E

G
2

1
1

0
X

.0
 .1

 .2
 .3C

O
M

2

VLC2

-VLC1

VLC1
VLC0
VSS
-VLC0

-VLC2

VLC2

-VLC1

VLC1
VLC0
VSS
-VLC0

-VLC2

VLC2

-VLC1

VLC1
VLC0
VSS
-VLC0

-VLC2

VLC2

-VLC1

VLC1
VLC0
VSS
-VLC0

-VLC2

.0
 .1

 .2
 .3

0
1

1
X

S
E

G
3

S
E

G
4

1
1

0
X

.0
 .1

 .2
 .3

D
at

a 
R

eg
is

te
r 

pa
ge

 4
, a

dd
re

ss
 8

2H
LD

 8
2H

, #
33

h
S

E
G

5
1

1
0

X
.4

 .5
 .6

 .7

D
at

a 
R

eg
is

te
r 

pa
ge

 4
, a

dd
re

ss
 8

1H
LD

 8
1H

, #
43

h
.4

 .5
 .6

 .7
0

0
1

X

Figure 19-12. LCD Signals and Wave Forms Example in 1/3 Duty, 1/3 Bias Display Mode



LCD CONTROLLER/DRIVER S3CK215/FK215

19-14

1 Frame

0 1 2 3 1 2

VLC2

VSS

VLC1
VLC0

VLC2

VSS

VLC1
VLC0

COM0

COM1

COM3

SEG0

COM0
-SEG0

COM0
-SEG1

COM1
-SEG1

COM2

FR

0 3

VLC2

VSS

VLC1
VLC0

VLC2

VSS

VLC1
VLC0

VLC2

-VLC1

VLC1
VLC0
VSS
-VLC0

-VLC2

VLC2

-VLC1

VLC1
VLC0
VSS
-VLC0

-VLC2

VLC2

-VLC1

VLC1
VLC0
VSS
-VLC0

-VLC2

VLC2

-VLC1

VLC1
VLC0
VSS
-VLC0

-VLC2

VLC2

VSS

VLC1
VLC0

VLC2

VSS

VLC1
VLC0

SEG1

COM1
-SEG0

SEG1.7 x C3
SEG2.1 x C1

SEG1.4 x C0

S
E

G
0.0 x C

0

SEG0.1 x C1

S
E

G
1.5 x C

1

SEG0.3 x C3

S
E

G
2.0 x C

0
S

E
G

1.6 x C
2

S
E

G
0.2 x C

2

C
O

M
0

C
O

M
1

C
O

M
2

D
at

a 
R

eg
is

te
r 

pa
ge

 4
, a

dd
re

ss
 8

1H
LD

 8
1H

, #
7A

h
S

E
G

2
0

1
0

1
.0

 .1
 .2

 .3

S
E

G
3

1
1

1
0

.4
 .5

 .6
 .7

D
at

a 
R

eg
is

te
r 

pa
ge

 4
, a

dd
re

ss
 8

2H
LD

 8
2H

, #
63

h
S

E
G

4
1

1
0

0
.0

 .1
 .2

 .3

S
E

G
5

0
1

1
0

.4
 .5

 .6
 .7

C
O

M
3

D
at

a 
R

eg
is

te
r 

pa
ge

 4
, a

dd
re

ss
 8

0H
LD

 8
0H

, #
3E

h
S

E
G

0
0

1
1

1
.0

 .1
 .2

 .3

S
E

G
1

1
1

0
0

.4
 .5

 .6
 .7

Figure 19-13. LCD Signals and Wave Forms Example in 1/4 Duty, 1/3 Bias Display Mode



S3CK215/FK215 10-BIT A/D CONVERTER

20-1

20 10-BIT ANALOG-TO-DIGITAL CONVERTER

OVERVIEW

The 10-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at
one of the four input channels to equivalent 10-bit digital values. The analog input level must lie between the
AVREF and AVSS values. The A/D converter has the following components:

— Analog comparator with successive approximation logic

— D/A converter logic (resistor string type)

— ADC control register (ADCON)

— Eight multiplexed analog data input pins (AD0–AD7)

— 10-bit A/D conversion data output register (ADDATAH/ADDATAL)

— 8-bit digital input port (Alternately, I/O port)

FUNCTION DESCRIPTION

To initiate an analog-to-digital conversion procedure, at first you must set with alternative function for ADC input
enable at port 2, the pin set with alternative function can be used for ADC analog input. And you write the
channel selection data in the A/D converter control register ADCON.4-.6 to select one of the eight analog input
pins (AD0–AD7) and set the conversion start or enable bit, ADCON.0. The read-write ADCON register is located
in address 5CH. The pins witch are not used for ADC can be used for normal I/O.

During a normal conversion, ADC logic initially sets the successive approximation register to 800H (the
approximate half-way point of an 10-bit register). This register is then updated automatically during each
conversion step. The successive approximation block performs 10-bit conversions for one input channel at a
time. You can dynamically select different channels by manipulating the channel selection bit value (ADCON.6–
4) in the ADCON register. To start the A/D conversion, you should set  the enable bit, ADCON.0. When a
conversion is completed, ADCON.3, the end-of-conversion(EOC) bit is automatically set to 1 and the result is
dumped into the ADDATAH/ADDATAL register where it can be read. The A/D converter then enters an idle state.
Remember to read the contents of ADDATAH/ADDATAL before another conversion starts. Otherwise, the
previous result will be overwritten by the next conversion result.

NOTE

Because the A/D converter has no sample-and-hold circuitry, it is very important that fluctuation in the analog
level at the AD0-AD7 input pins during a conversion procedure be kept to an absolute minimum. Any change in
the input level, perhaps due to noise, will invalidate the result. If the chip enters to STOP or IDLE mode in
conversion process,  there will be a leakage current path in A/D block. You must use STOP or IDLE mode after
ADC operation is finished.



10-BIT A/D CONVERTER S3CK215/FK215

20-2

CONVERSION TIMING

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set-up A/D
conversion. Therefore,  total of 50 clocks are required to complete an 10-bit conversion: When fxx/8 is selected
for conversion clock with an 4.5 MHz fxx clock frequency, one clock cycle is 1.78 us. Each bit conversion
requires 4 clocks, the conversion rate is calculated as follows:

4 clocks/bit  ×  10-bit + set-up time = 50 clocks, 50 clock × 1.78 us = 89 us at 0.56 MHz (4.5 MHz/8)

Note that A/D converter needs at least 25µs for conversion time.

A/D CONVERTER CONTROL REGISTER (ADCON)

The A/D converter control register, ADCON, is located at address 5CH. It has three functions:

— Analog input pin selection (bits 4–6)

— End-of-conversion status detection (bit 3)

— ADC clock selection (bits 2 and 1)

— A/D operation start or enable (bit 0 )

After a reset, the start bit is turned off. You can select only one analog input channel at a time. Other analog
input pins (AD0–AD7) can be selected dynamically by manipulating the ADCON.4–.6 bits. And the pins not used
for analog input can be used for normal I/O function.

Start or disable bit
0 = Disable operation
1 = Start operation
       (This bit is cleared automatically
        after End-of-Conversion.)

A/D Converter Control Register (ADCON)
5CH, R/W (EOC bit is read-only)

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

End-of-conversion bit
0 = Not complete Conversion
1 = Complete Conversion

Always logic zero

A/D input pin selection bits:
000 = AD0
001 = AD1
010 = AD2
011 = AD3
100 = AD4
101 = AD5
110 = AD6
111 = AD7

Clock Selection bits:
00 = fxx/16
01 = fxx/8
10 = fxx/4
11 = fxx/1

Figure 20-1. A/D Converter Control Register (ADCON)



S3CK215/FK215 10-BIT A/D CONVERTER

20-3

Conversion Data Register ADDATAH/ADDATAL
5DH/5EH, Read Only

.9 .8 .7 .6 .5 .4 .3 .2MSB LSB (ADDATAH)

.1 .0MSB LSB (ADDATAL)

Figure 20-2. A/D Converter Data Register (ADDATAH/ADDATAL)

INTERNAL REFERENCE VOLTAGE LEVELS

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input
level must remain within the range AVSS to AVREF.

Different reference voltage levels are generated internally along the resistor tree during the analog conversion
process for each conversion step. The reference voltage level for the first conversion bit is always 1/2 AVREF.

BLOCK DIAGRAM

Input Pins
AD0-AD7

(P2.0-P2.7)

Clock
Selector

Conversion Result
(ADDATAH/ADDATAL,

5DH/5EH)

-

+

To ADCON.3
(EOC Flag)

Successive
Approximation

Logic & Register

AVREF

AVSS

Analog
Comparator

10-bit D/A
Converter

M

U

X

ADCON.4-.6
(Select one input pin of the assigned pins)

P2CONH/L
(Assign Pins to ADC Input)

ADCON.0
(AD/C Enable)

ADCON.0
(AD/C Enable)

...

ADCON.2-.1

Figure 20-3. A/D Converter Functional Block Diagram



10-BIT A/D CONVERTER S3CK215/FK215

20-4

AVSS

S3CK215

AD0-AD7

AVREF
Reference

Voltage Input

Analog
Input Pin

VDD

VDD
10 µF 103C

101C

+
-(AVREF ≤ VDD)

Figure 20-4. Recommended A/D Converter Circuit for Highest Absolute Accuracy



S3CK215/FK215 D/A CONVERTER

21-1

21 D/A CONVERTER

OVERVIEW

The 9-bit D/A Converter (DAC) module uses successive approximation logic to convert 9-bit digital values to

equivalent analog levels between VDD (1 – 
1

512) and VSS.

This D/A Converter consists of R–2R array structure. The D/A Converter has the following components:

— R–2R array structure

— Digital-to-analog converter control register (DACON)

— Digital-to-analog converter data register (DADATAH/DADATAL)

— Digital-to-analog converter output pin (DAO)

FUNCTION DESCRIPTION

To initiate a digital-to-analog conversion procedure, you should set the digital-to-analog converter enable bit
(DACON.0).

The DACON register is located at the RAM address 74H. You should write the digital value calculated to digital-
to-analog converter data register (DADATAH/DADATAL).

NOTE

If the chip enters to power-down mode, STOP or IDLE, in conversion process, there will be current path
in D/A Converter block. So. It is necessary to cut off the current path before the instruction execution
enters power-down mode.



D/A CONVERTER S3CK215/FK215

21-2

  

Data Bus

DACON.1 Timer 1 Match
Signal

.0 .1 .2 .3 .4 .5 .6 .7DADATA .8

.0 .1 .2 .3 .4 .5 .6 .7DAC Buffer .8

DAO

2R

2R 2R 2R 2R 2R 2R 2R 2R 2R

R R RR R R R R

DACON.0

9-bit

Figure 21-1.  DAC Circuit Diagram

Enable/Disable control bit:
0 = Disable
1 = Enable

D/A Converter Control Register (DACON)
74H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Data latch control bit:
0 = The value of DADATA is always
       loaded into the DAC buffer.
1 = The value of DADATA is loaded into
       the DAC buffer when the timer 1
       match is occurred.

Not used

Figure 21-2. Digital to Analog Converter Control Register (DACON)



S3CK215/FK215 D/A CONVERTER

21-3

D/A CONVERTER DATA REGISTER (DADATAH/DADATAL)

The DAC DATA register, DADATAH/DADATAL is located at the RAM address, 75H–76H. DADATAH/DADATAL
specifies the digital data to generate analog voltage. A RESET initializes the DADATAH/DADATAL value to
"00H". The D/A converter output value, VDAO, is calculated by the following formula.

VDAO = VDD ×× 
n

512          (n = 0–511, DADATAH/DADATAL value)

Table 21-1. DADATA Setting to Generate Analog Voltage

DADATAH.7 DADATAH.6 DADATAH.5 DADATAH.4 DADATAH.3 DADATAH.2 DADATAH.1 DADATAH.0 DADATAL.7 VDAO

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 VDD/21

0 1 0 0 0 0 0 0 0 VDD/22

0 0 1 0 0 0 0 0 0 VDD/23

0 0 0 1 0 0 0 0 0 VDD/24

0 0 0 0 1 0 0 0 0 VDD/25

0 0 0 0 0 1 0 0 0 VDD/26

0 0 0 0 0 0 1 0 0 VDD/27

0 0 0 0 0 0 0 1 0 VDD/28

0 0 0 0 0 0 0 0 1 VDD/29

NOTE: These are the values determined by setting just one-bit of DADATA.0–DADATA.8. Other values of DAO can be 
obtained with superimposition.

Conversion Data Register (DADATAH/DADATAL)
75H/76H, R/W

.8 .7 .6 .5 .4 .3 .2 .1MSB LSB (DADATAH)

.0 - - - - - - -MSB LSB (DADATAL)

These bits should be always "0".

Figure 21-3. D/A Converter Data Register (DADATAH/DADATAL)



D/A CONVERTER S3CK215/FK215

21-4

NOTES



S3CK215/FK215 MULTIPLICATION

22-1

22 MULTIPLICATION

OVERVIEW

The multiplier of the S3CK215/FK215 is a 8-bit by 8-bit multiplication, performed in two cycles, and selected for
signed by signed or unsigned by unsigned multiplication by MULCON.0.

This multiplier consists of the following components:

— Multiplier input registers (MXINP, MYINP)

— Multiplication result register (MRH, MRL)

— 8 × 8 multiplier (signed by signed or unsigned by unsigned)

MULTIPLIER CONTROL REGISTER (MULCON)

Multiplier Control Register (MULCON)
78H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB (DADATAH)

Not used
Multiplication Selection bit:
0 = Signed by signed multiplication
1 = Unsigned by unsigned multiplication

Figure 22-1. Multiplier Control Register (MULCON)



MULTIPLICATION S3CK215/FK215

22-2

8 x 8
Multiply

MXINP (8-bit)

MYINP (8-bit)

MULCON.0

MRH (8-bit)

MRL (8-bit)

Data Bus Data Bus

Multiplier X input register

Multiplier Y input register

Multiplication Result (High Byte)

Multiplication Result (Low Byte)

Figure 22-2. Multiplier Functional Block Diagram

+ + PROGRAMMING TIP — Using the Multiplier

LD R0, #01H
LD MULCON, R0
LD R0, #32H
LD R1, #0CEH
LD MXINP, R0
LD MYINP, R1 ; Multiply automatically after loading MXINP, MYINP
NOP
NOP
LD R2, MRH ; The multiplication is finished after 2 cycles
LD R3, MRL ; MRH/MRL = 28H/3CH



S3CK215/FK215 OPERATIONAL AMPLIFIER

23-1

23 OPERATIONAL AMPLIFIER

OVERVIEW

There are two OP AMPs in the S3CK215/FK215. One is for filtering out the noise from input signals, the other is
for amplifying input signals. These amplifiers can be used for another purpose.

The amplifiers consists of the following components:

— FIL amplifier (FILIN, FILOUT)

— MIC amplifier (MICIN, MICOUT)

— OP AMP control register (OPCON)

— Vref generator

OP AMP CONTROL REGISTER (OPCON)

MIC amplifier control bit:
0 = Disable MIC amplifier
1 = Enable MIC amplifier

OP AMP Control Register (OPCON)
77H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

FIL amplifier control bit:
0 = Disable FIL amplifier
1 = Enable FIL amplifier

Not used

Figure 23-1. OP AMP Control Register (OPCON)



OPERATIONAL AMPLIFIER S3CK215/FK215

23-2

Vref
Generator

-
+

-
+

OPCON.0

OPCON.1

FILIN FILOUT Vref MICIN MICOUT

1 pF

300K

15K

Figure 23-2. OP AMP Block Diagram



S3CK215/FK215 ELECTRICAL DATA

24-1

24 ELECTRICAL DATA

Table 24-1. Absolute Maximum Ratings

(TA = 25 °C)

Parameter Symbol Conditions Rating Unit

Supply voltage VDD – –0.3  to  + 6.5 V

Input voltage VI – –0.3  to  VDD + 0.3 V

Output voltage VO – –0.3  to  VDD + 0.3 V

Output current high IOH One I/O pin active –18 mA

All I/O pins active –60

Output current low IOL One I/O pin active + 30 mA

Total pin current for port + 100

Operating temperature TA – –25  to  + 85 °C

Storage temperature TSTG – –65  to  + 150 °C

Table 24-2. D.C. Electrical Characteristics

(TA  = – 25 °C to  + 85 °C, VDD  = 2.0 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit

Operating  voltage VDD fx = 8 MHz 3.0 – 5.5 V

fx = 4 MHz 2.4 – 5.5

fx = 2 MHz 2.0 – 5.5

Input high voltage VIH1 All input pins except VIH2 0.8VDD – VDD V

VIH2 XIN, XTIN VDD–0.1

Input low voltage VIL1 All input pins except VIL2 – – 0.2VDD V

VIL2 XIN, XTIN 0.1

Output high voltage VOH VDD = 4.5 V to 5.5 V;
IOH = –1 mA, all output pins

VDD–1.0 – – V

Output low voltage VOL VDD = 4.5 V to 5.5 V;
IOL = 10 mA, all output pins

– – 2.0



ELECTRICAL DATA S3CK215/FK215

24-2

Table 24-2. D.C. Electrical Characteristics (Continued)

(TA = – 25 °C to + 85 °C, VDD = 2.0 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit

Input high leakage
current

ILIH1 VIN = VDD
All input pins except ILIH2

– – 3 uA

ILIH2 VIN = VDD ; XIN, XTIN – – 20

Input low leakage
current

ILIL1 VIN = 0 V
All input pins except ILIL2

– – –3

ILIL2 VIN = 0 V;  XIN, XTIN, RESET –20

Output high
leakage current

ILOH VOUT = VDD

 All I/O pins and output pins
– – 3

Output low
leakage current

ILOL VOUT = 0 V

All I/O pins and output pins
– – –3

Oscillator feedback
resistors

ROSC1 VDD = 5.0 V, TA = 25 °C
XIN = VDD, XOUT = 0 V

400 750 1200 kΩ

ROSC2 VDD = 5.0 V, TA = 25 °C
XTIN = VDD, XTOUT = 0 V

1500 3000 4500

Pull-up resistor RL1 VIN = 0 V; VDD = 5 V  ± 10%

Port 0,1,2,3,4,5,  TA = 25 °C

25 50 100

RL2 VIN = 0 V; VDD = 3 V  ± 10%

TA = 25 °C, RESET only

110 210 310

LCD voltage
dividing resistor

RLCD TA = 25 °C 50 90 140

VLC2 output
voltage
(resistor bias)

VLC2 TA = 25 °C
VLCD = 2.5 V to 5.5 V

12/17VDD

–0.2V

12/17VDD 12/17VDD

+0.2V
V

VLC1 output
voltage
(resistor bias)

VLC1 8/17VDD

–0.2V

8/17VDD 8/17VDD

+0.2V

VLC0 output
voltage
(resistor bias)

VLC0 4/17VDD

–0.2V

4/17VDD 4/17VDD

+0.2V

VLC0 out voltage

(booster run mode)

VLC0 TA = 25 °C, 1/3 bias 0.9 1.0 1.1 V

TA = 25 °C, 1/2 bias 1.4 1.5 1.7

VLC1 out voltage

(booster run mode)

VLC1 TA = 25 °C, 1/2 and 1/3 bias 2VLC0

–0.1
– 2VLC0

+0.1

VLC2 out voltage

(booster run mode)

VLC2 TA = 25 °C, 1/3 bias 3VLC0

–0.1
– 3VLC0

+0.1



S3CK215/FK215 ELECTRICAL DATA

24-3

Table 24-2. D.C. Electrical Characteristics (Concluded)

(TA = – 25 °C to + 85 °C, VDD = 1.8 V to 3.6 V)

Parameter Symbol Conditions Min Typ Max Unit

COM output voltage
deviation

VDC VDD = VLC2 = 3V

(VLCD–COMi)
IO = ± 15µA, (I = 0–3)

– ± 60 ± 120 mV

SEG output voltage
deviation

VDS VDD = VLC2 = 3V

(VLCD–SEGi)
IO = ± 15µA, (I = 0–29)

– ± 60 ± 120

Supply current (1) IDD1 (2) VDD = 5 V ± 10%

8 MHz crystal oscillator
– 5.5 10 mA

2 MHz crystal oscillator 1.9 3

VDD = 3 V ± 10%

8 MHz crystal oscillator
3.4 5

2 MHz crystal oscillator 1.2 2.0

IDD2 Idle mode: VDD = 5 V ± 10%

8 MHz crystal oscillator
– 1.0 2.0 mA

2 MHz crystal oscillator 0.6 1.2

Idle mode: VDD = 3 V ± 10%

8 MHz crystal oscillator
0.5 1.0

2 MHz crystal oscillator 0.3 0.6

IDD3 Sub operating mode: main-osc stop
VDD = 3 V ± 10 %

32768 Hz crystal oscillator

– 22 40 uA

IDD4 Sub-idle mode; main-osc stop
VDD = 3 V ± 10 %

32768 Hz crystal oscillator

– 5 15

IDD5 Main stop mode; Sub-osc stop.
VDD = 5 V ± 10 %, TA = 25 °C

– 1 2

VDD = 3 V ± 10 %, TA = 25 °C 0.5 2

NOTES:
1, Supply current does not include current drawn through internal pull-up resistors or external output current loads. 
2. IDD1 and IDD2 includes a power consumption of sub oscillator.

3. IDD3 and IDD4 are the current when the main clock oscillation stop and the sub clock is used. And does not include the

LCD and voltage booster and voltage level detector.
4. IDD5 is the current when the main and sub clock oscillation stop.



ELECTRICAL DATA S3CK215/FK215

24-4

Table 24-3. A.C. Electrical Characteristics

(TA = – 25 °C to + 85 °C, VDD = 2.0 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit

Interrupt input high,
low width

tINTH,
tINTL

P0.0–P0.3
VDD = 5 V

– 200 – ns

RESET input
low width

tRSL VDD = 5 V ± 10 % 10 – – µs

tINTHtINTL

0.8 VDD

0.2 VDD

Figure 24-1. Input Timing for External Interrupts (Port 0)

RESET

tRSL

0.2 VDD

Figure 24-2. Input Timing for RESETRESET



S3CK215/FK215 ELECTRICAL DATA

24-5

Table 24-4. Input/Output Capacitance

(TA = –25 °C to + 85 °C, VDD = 0 V)

Parameter Symbol Conditions Min Typ Max Unit

Input capacitance CIN f = 1 MHz; unmeasured pins are
returned to VSS.

– – 10 pF

Output capacitance COUT

I/O capacitance CIO

Table 24-5. Data Retention Supply Voltage in Stop Mode

(TA = –25 °C to + 85 °C)

Parameter Symbol Conditions Min Typ Max Unit

Data retention
supply voltage

VDDDR – 2 – 5.5 V

Data retention
supply current

IDDDR VDDDR = 2 V – – 2 uA

Execution of
STOP Instruction

RESET
Occur

~ ~

VDDDR

~ ~

Stop Mode
Normal
Operating ModeData Retention Mode

tWAIT

RESET

VDD

NOTE: tWAIT is decided by WDTCON register setting. When bit 6, 5, 4 of WDTCON is "110"b, tWAIT is
1024 x 32 x 1/fxx.

Oscillation
Stabilization Time

0.2VDD

Figure 24-3. Stop Mode Release Timing When Initiated by a RESETRESET



ELECTRICAL DATA S3CK215/FK215

24-6

Execution of
STOP Instruction

VDDDR

~ ~ Data Retention
VDD

Normal
Operating
Mode

~ ~

Stop Mode

OSC Start
up time

tWAIT

Oscillation
Stabilization Time

0.2 VDD

INT

NOTE: tWAIT is decided by WDTCON register setting. When bit 6, 5, 4 of WDTCON is "110"b, tWAIT is
1024 x 32 x 1/fxx.

Figure 24-4. Stop Mode Release Timing Initiated by Interrupts



S3CK215/FK215 ELECTRICAL DATA

24-7

Table 24-6. A/D Converter Electrical Characteristics

(TA = – 25 °C to 85 °C, VDD = 2.7 V to 5.5 V, VSS = 0 V)

Parameter Symbol Conditions Min Typ Max Unit

Resolution – 10 – bit

Total accuracy VDD = 5.12 V – – ±3 LSB

Integral linearity error ILE AVREF = 5.12 V – ±2

Differential linearity error DLE AVSS = 0 V – ±2

Offset error of top EOT fxx = 8MHz ±1 ±3

Offset error of bottom EOB ±0.5 ±2

Conversion time (1) TCON 10-bit resolution
50 × fxx/4, fxx = 8MHz

25 – – µs

Analog input voltage VIAN – AVSS – AVREF V

Analog input impedance RAN – 2 – – Ω

Analog reference
voltage

AVREF – 2.5 – VDD V

Analog ground AVSS – VSS – VSS+0.3

Analog input current IADIN AVREF = VDD = 5 V – – 10 µA

Analog block current (2) IADC AVREF = VDD = 5 V – 1 3 mA

AVREF = VDD = 3 V 0.5 1.5

AVREF = VDD = 5 V

When power down mode
100 500 nA

NOTES:
1. 'Conversion time' is the period between start and end of conversion operation.
2. IADC is an operating current during A/D conversion.

Table 24-7. D/A Converter Electrical Characteristics

(TA = – 25 °C to 85 °C, VDD = 2.7 V to 5.5 V, VSS = 0 V)

Parameter Symbol Conditions Min Typ Max Unit

Resolution – VDD = 5.12 V – – 9 bits

Absolute accuracy – –5 – 5 LSB

Differential linearity error DLE –2 – 2 LSB

Setup time tSU – – 5 µs

Output resistance RO 20 30 40 KΩ



ELECTRICAL DATA S3CK215/FK215

24-8

Table 24-8. Voltage Booster Electrical Characteristics

(TA = 25 °C, VDD = 2.0 V to 5.5 V, VSS = 0 V)

Parameter Symbol Conditions Min Typ Max Unit

Operating voltage VDD 2.0 – 5.5 V

Regulated voltage VLC0 ILC0 = 5 µA (1/3 bias) 0.9 1.0 1.1

Booster voltage VLC1 Connect 1 MΩ load
between VSS and VLC1

2VLC0

– 0.1
– 2VLC0

+ 0.1

VLC2 Connect 1 MΩ load
between VSS and VLC2

3VLC0

– 0.1
– 3VLC0

+ 0.1

Regulated voltage VLC0 ILC0 = 6 µA (1/2 bias) 1.4 1.5 1.7

Booster voltage VLC1 Connect 1 MΩ load
between VSS and VLC1

2VLC0

– 0.1
– 2VLC0

+ 0.1

VLC2 Connect 1 MΩ load
between VSS and VLC2

Operating current
consumption

IVB VDD = 3.0 V, without load at
VLC0, VLC1, and VLC2.

– 3 6 µA

Table 24-9. Characteristics of Battery Level Detect Circuit

(TA = 25 °C)

Parameter Symbol Conditions Min Typ Max Unit

Operating voltage of
BLD

VDDBLD 2.0 – 5.5 V

Voltage of BLD VBLD BLDCON.1.0 = 01b 2.2 2.4 2.6

BLDCON.1.0 = 10b 2.8 3.0 3.2

BLDCON.1.0 = 11b 3.7 4.0 4.3

Current consumption IBLD BLD on VDD = 5.5 V – 10 20 µA

VDD = 3.0 V 5 10

VDD = 2.0 V 4 8

Hysteresys voltage of
BLD

∆V BLDCON.1-.0 = 01b, 10b,
11b

– 10 100 mV

BLD circuit response
time

TB fw = 32,768 kHz – – 1 ms



S3CK215/FK215 ELECTRICAL DATA

24-9

Table 24-10. Synchronous SIO Electrical Characteristics

(TA = – 25 °C to + 85 °C, VDD = 2.0 V to 5.5 V, VSS = 0 V, fxx = 8 MHz oscillator)

Parameter Symbol Conditions Min Typ Max Unit

SCK Cycle time TCYC – 250 – – ns

Serial Clock High Width TSCKH – 75 – –

Serial Clock Low Width TSCKL – 75 – –

Serial Output data delay time TOD – – – 65

Serial Input data  setup time TID – 50 – –

Serial Input data  Hold time TIH – 125 – –

Output Data

Input Data

SCK

tSCKH

tCYC

tSCKL

0.8 VDD

0.2 VDD

tOD

tID tIH

0.8 VDD

0.2 VDD
SI

SO

Figure 24-5. Serial Data Transfer Timing



ELECTRICAL DATA S3CK215/FK215

24-10

Table 24-11. Main Oscillator Frequency (fOSC1)

(TA = – 25 °C to + 85 °C VDD = 2.0 V to 5.5 V)

Oscillator Clock Circuit Test Condition Min Typ Max Unit

Crystal/Ceramic XIN

C1 C2

XOUT
VDD = 2.0 V – 5.5 V 0.4 – 2.0 MHz

VDD = 2.4 V – 5.5 V 4.0

VDD = 3.0 V – 5.5 V 8.0

External clock XIN XOUT
VDD = 2.0 V – 5.5 V 0.4 – 2.0 MHz

VDD = 2.4 V – 5.5 V 4.0

VDD = 3.0 V – 5.5 V 8.0

RC XIN XOUT VDD = 5 V 0.4 – 1 MHz

VDD = 3 V 2

NOTE: Oscillation frequency and Xin input frequency data are for oscillator characteristics only.

Table 24-12. Main Oscillator Clock Stabilization Time (TST1)

(TA = – 25 °C to  + 85 °C, VDD = 2.0 V to 5.5 V)

Oscillator Test Condition Min Typ Max Unit

Crystal VDD = 4.5 V  to  5.5 V – – 10 ms

VDD = 2.0 V  to  5.5 V – – 30 ms

Ceramic VDD = 2.0 V  to  5.5 V – – 4 ms

External clock XIN input high and low level width (tXH, tXL) 62.5ns – 125ns –

NOTE: Oscillation stabilization time (TST1) is the time required for the CPU clock to return to its normal oscillation

frequency after a power-on occurs, or when Stop mode is ended by a RESET signal.



S3CK215/FK215 ELECTRICAL DATA

24-11

XIN

tXHtXL

1/fosc1

VDD - 0.1 V

0.1 V

Figure 24-6. Clock Timing Measurement at XIN

Table 24-13. Sub Oscillator Frequency (fOSC2)

(TA = – 25 °C   to  + 85 °C, VDD = 2.0 V  to  5.5 V)

Oscillator Clock Circuit Test Condition Min Typ Max Unit

Crystal XTIN

C1 C2

XTOUT – 32 32.768 35 kHz

External clock XTIN XTOUT – 32 – 100 kHz

NOTE: Oscillation frequency and Xtin input frequency data are for oscillator characteristics only.

XTIN

tXTHtXTL

1/fosc2

VDD - 0.1 V

0.1 V

Figure 24-7. Clock Timing Measurement at XTIN



ELECTRICAL DATA S3CK215/FK215

24-12

Table 24-14. Sub Oscillator (Crystal) Start up Time (tST2)

(TA = – 25 °C  to  + 85 °C, VDD = 2.0 V  to  5.5 V)

Oscillator Test Condition Min Typ Max Unit

Normal drive VDD =  4.5 V  to  5.5 V – 1 2 sec

VDD =  2.0 V  to  5.5 V – – 10

External clock XTIN input high and low level width (tXTH, tXTL) 5 – 15

NOTE: Oscillator stabilization time (tST2) is the time required for the oscillator to it's normal oscillation when stop mode is

released by interrupts.

Table 24-15. OP Amplifier Characteristics

(VDD = 5 V, TA = 25 °C)

Oscillator Symbol Test Condition Min Typ Max Unit

Input voltage
range

Vina fin = 1 kHz – 120 160 mVpp

Total
harmonic
distortion

THD fin = 100 Hz – 10 kHz – – 2 %

Input
impedance

Rin MICIN input impedance 10 15 20 KΩ

Output
inpedance

Rout MICIN output impedance – 5 – KΩ

NOTE: FILIN and FILOUT are the same as MICIN and MICOUT in characteristics at the same condition.



S3CK215/FK215 ELECTRICAL DATA

24-13

4 MHz

0.4 MHz

1 3 4

Supply Voltage (V)

Minimum instruction time = oscillator frequency

2

fCPU

8 MHz

2 MHz

5 6 7
2.4 5.5

Figure 24-8. Operating Voltage Range



ELECTRICAL DATA S3CK215/FK215

24-14

NOTES



S3CK215/FK215 MECHANICAL DATA

25-1

25 MECHANICAL DATA

OVERVIEW

The S3CK215/FK215 is available in 64-LQFP-1010 package.

80-QFP-1420C

#80

20.00 ± 0.20

23.90 ± 0.30

14
.0

0 
±

 0
.2

0

17
.9

0 
±

 0
.3

0

#1

0.80

0.35 + 0.10

NOTE:   Dimensions are in millimeters.

0.15 MAX (0.80)

0.15
+ 0.10
- 0.05

0-8

0.10 MAX

0.
80

 ±
 0

.2
0

0.05 MIN

2.65 ± 0.10

3.00 MAX

0.80 ± 0.20

Figure 25-1. 80-Pin QFP Package Dimensions (80-QFP-1420C)



MECHANICAL DATA S3CK215/FK215

25-2

NOTES



S3CK215/FK215 S3FK215 FLASH MCU

26-1

26 S3FK215 FLASH MCU

OVERVIEW

The S3FK215 single-chip CMOS microcontroller is the FLASH ROM version of the S3CK215 microcontroller. It
has an on-chip FLASH ROM instead of masked ROM. The FLASH ROM is accessed by serial data formats.

The S3FK215 is fully compatible with S3CK215, both in function and in electrical characteristics. Because of its
simple programming requirements, the S3FK215 is ideal for use as an evaluation for the S3CK215.



S3FK215 FLASH MCU S3CK215/FK215

26-2

SEG24/P5.0
SEG25/P5.1
SEG26/P5.2
SEG27/P5.3
SEG28/P5.4
SEG29/P5.5

P3.0/T3PWM
P3.1/T2OUT/T2PWM

P3.2/T2CLK
SDAT/P3.3/T2CAP

SCLK/P3.4/CLKOUT
VDD/VDD

VSS/VSS

XOUT

XIN

VPP/TEST
XTIN

XTOUT

RESETRESET/RESET
DAO

FILIN
FILOUT

Vref
MICIN

S
E

G
23

/P
4.

7
S

E
G

22
/P

4.
6

S
E

G
21

/P
4.

5
S

E
G

20
/P

4.
4

S
E

G
19

/P
4.

3
S

E
G

18
/P

4.
2

S
E

G
17

/P
4.

1
S

E
G

16
/P

4.
0

S
E

G
15

S
E

G
14

S
E

G
13

S
E

G
12

S
E

G
11

S
E

G
10

S
E

G
9

S
E

G
8

M
IC

O
U

T
P

0.
0/

IN
T

0
P

0.
1/

IN
T

1
P

0.
2/

IN
T

2
P

0.
3/

IN
T

3
P

1.
0/

T
0O

U
T

/T
0P

W
M

P
1.

1/
T

0C
LK

P
1.

2/
T

0C
A

P
P

1.
3

P
1.

4/
B

U
Z

P
1.

5/
S

O
P

1.
6/

S
C

K
P

1.
7/

S
I

P
2.

0/
A

D
0

P
2.

1/
A

D
1

P
2.

2/
A

D
2

SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM3
COM2
COM1
COM0
VLC2
VLC1
VLC0
CA
CB
AVSS
AVREF
P2.7/AD7/VBLDIN

P2.6/AD6
P2.5/AD5
P2.4/AD4
P2.3/AD3

S3CK215/S3FK215

(80-QFP)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

Figure 26-1. S3FK215 Pin Assignments (80-QFP)



S3CK215/FK215 S3FK215 FLASH MCU

26-3

Table 26-1. Descriptions of Pins Used to Read/Write the FLASH ROM

During Programming

Pin Name Pin No. I/O Function

SDAT (P3.3) 10 I/O Serial data pin. Output port when reading and input port when
writing. Can be assigned as a Input/push-pull output port.

SCLK (P3.4) 11 I/O Serial clock pin. Input only pin.

VPP (TEST) 16 I Power supply pin for FLASH ROM cell writing (indicates that
FLASH enters into the writing mode).  When 12.5 V is applied,
FLASH is in writing mode and when 5 V is applied, FLASH is in
reading mode. When FLASH is operating, hold GND.

RESET
(RESET)

19 I Chip initialization

VDD/VSS
(VDD/VSS)

12/13 I Logic power supply pin. VDD should be tied to

+5 V during programming.

NOTE: Maximum number of writing/erasing for S3FK215 is 100 times.



S3FK215 FLASH MCU S3CK215/FK215

26-4

NOTES



S3CK215/FK215 DEVELOPMENT TOOLS

27-1

27 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development
support system is configured with a host system, debugging tools, and support software. For the host system, any
standard computer that operates with windows95/98/NT as its operating system can be used. One type of
debugging tool including hardware and software is provided: the effective cost and powerful in-circuit emulator,
InvisibleMDS, for CalmRISC8. Samsung also offers support software that includes debugger, Compiler,
Assembler, and a program for setting options.

CALMSHINE: IDE (INTEGRATED DEVELOPMENT ENVIRONMENT)

CalmRISC8 Samsung Host Interface for In-circuit Emulator, CalmSHINE, is a multi window based debugger for
CalmRISC8. CalmSHINE provides pull-down, pop-up and tool-bar menus, mouse support, function/hot keys,
syntax highlight, tool-tip, drag-and-drop and context-sensitive hyper-linked help. It has an advanced, multiple-
windowed user interface that emphasizes ease of use. Each window can be sized, moved, scrolled, highlighted,
added or removed, docked or undocked completely.

INVISIBLE MDS: IN-CIRCUIT EMULATOR

The evaluation chip of CalmRISC8 has a basic debugging utility block. Using this block, evaluation chip directly
interfaces with host through only communication wire. So, InvisibleMDS offers simple and powerful debugging
environment.

CALMRISC8 C-COMPILER: CALM8CC

The CalmRISC8 Compiler offers the standard features of the C language, plus many extensions for MCU
applications, such as interrupt handling in C and data placement controls, designed to take fully advantage of
CalmRISC8 facilities. It conforms to the ANSI specification. It supports standard library of functions applicable to
MCU systems. The standard library also conforms to the ANSI standard.  It generates highly size-optimized code
for CalmRISC8 by fully utilizing CalmRISC8 architecture. It is available in a Windows version integrated with the
CalmSHINE.

CALMRISC8 RELOCATABLE ASSEMBLER: CALM8ASM

The CalmRISC8 Assembler is a relocatable assembler for Samsung's CalmRISC8 MCU and its MAC816 and
MAC2424 coprocessors. It translates a source file containing assembly language statements into a relocatable
machine object code file in Samsung format. It runs on WINDOWS95 compatible operating systems. It supports
macros and conditional assembly. It produces the relocatable object code only, so the user should link object
files. Object files can be linked with other object files and loaded into memory.

CALMRISC8 LINKER: CALM8LINK

The CalmRISC8 Linker combines Samsung object format files and library files and generates absolute, machine-
code executable hex programs or binary files for CalmRISC8 MCU and its MAC816 and MAC2424 coprocessors.
It generates the map file, which shows the physical addresses to which each section and symbol is bounded, start
addresses of each section and symbol, and size of them. It runs on WINDOWS95 compatible operating systems.



DEVELOPMENT TOOLS S3CK215/FK215

27-2

EMULATION PROBE BOARD CONFIGURATION

SM1408A
2001.11.25

JP2

1

EP-K215

2

JP
6

U10

JT
A

G
PWRRUN

D
C

 5V
/1A

+

C2

U11

K
6R

10
L

6C
-J

C
12

+ +

CON1

USER
VDD

MDS
VDD

POWER
SELECT

U13

XTAL1

MDS
CLK

CLK
SELECT

U1

MXIN

XTAL0

MXOUT

XTAL JP5 MXT

U2

200 190 180 170 160

110

130

140

120

15010

20

30

40

50

U12

60 70 80 90 100

S3EB200X01

150

110

10060

50

200

10

VSS VDD

JP4 JP3

160

JP
7

39 40 79

41

D3 D2

R3

ICLK MCLK

JP8

EVMAT

U
9

B
K

R
E

Q
X

0 1 2 3

0 1 2 3

EXT_BK
U7

U4

RESET

SW1
U3 JP1

TAVREF TAVSS

AVREF

UAVREF UAVSS

AVSS

TP2 TP1
ICLKEAR ENABLE

PW2

UAVSS

PW1

UAVREF

74HCOB

Figure 27-1. Emulation Probe Board Configuration

Invisible MDS Connector = 10-pin/normal Pitch (2.54mm) = JTAG

Pin No. Pin Name Pin No. Pin Name

1 VDD 6 PTD0_TxD

2 PNTRST_NINIT 7 GND

3 PTCK_MCLK 8 UCLK

4 PTMS 9 JTAGSEL

5 PTDI_RxD 10 –



S3CK215/FK215 DEVELOPMENT TOOLS

27-3

U1 Clock Select Description

XTAL1

MDSCLK

MXIN

XTAL0

MXOUT

Master clock is MDS clock.
Master clock output is NC (Not Connection).

XTAL1

MDSCLK

MXIN

XTAL0

MXOUT

Master clock is external clock.
External clock output is Master clock output.

XTAL1

MDSCLK

MXIN

XTAL0

MXOUT

Master clock is external clock.
Master clock output is NC (Not Connection).

XTAL1

MDSCLK

MXIN

XTAL0

MXOUT

Master clock is MDS clock.
Master clock output is External clock output.



DEVELOPMENT TOOLS S3CK215/FK215

27-4

EXTERNAL EVENT INPUT HEADERS (U7)

These input headers are used to add the break condition to the core status externally when the break using
CalmBreaker occurs in the evaluation chip.

EXT_BK

EXT_BK0

EXT_BK1

EXT_BK2

EXT_BK3

EVACHIP_EXTBK[0]

EVACHIP_EXTBK[1]

EVACHIP_EXTBK[2]

EVACHIP_EXTBK[3]

EVENT MATCH OUTPUT HEADERS (U4)

Four event match signals and one combination event signal are occurred by the CalmBreaker in the evaluation
chip. These signals are transmitted through the evaluation chip.

EVMAT

EVMAT0

EVMAT1

EVMAT2

EVMAT3

EVACHIP_EXTBK[0]

EVACHIP_EXTBK[1]

EVACHIP_EXTBK[2]

EVACHIP_EXTBK[3]

EXTERNAL BREAK INPUT HEADERS (U9)

This input pin is used to break during the evaluation chip run.

BKREQX
EVACHIP_BKREQX



S3CK215/FK215 DEVELOPMENT TOOLS

27-5

JP1 Power Select Description

TAVREF

UAVREF

AVREF

TAVSS

AVSS

UAVSS

Master analog reference voltage is User analog reference voltage.
Master analog reference VSS is User analog reference VSS.

TAVREF

UAVREF

AVREF

TAVSS

AVSS

UAVSS

Master analog reference voltage is target analog reference voltage.
Master analog reference VSS is Target analog reference VSS.

TAVREF

UAVREF

AVREF

TAVSS

AVSS

UAVSS

Master analog reference voltage is target analog reference voltage.
Master analog reference VSS is Target analog reference VSS.

TAVREF

UAVREF

AVREF

TAVSS

AVSS

UAVSS

Master analog reference voltage is User analog reference voltage.
Master analog reference VSS is User analog reference VSS.



DEVELOPMENT TOOLS S3CK215/FK215

27-6

U13 Power Select Description

USER_VDD

MDS_VDD

DC JACK

VDD

Same power source from target system
Power source from probe

CPU
Target
SystemVSS

User
VCC

DC_JACK

PROBE

MDS

USER_VDD

MDS_VDD

DC JACK

VDD

Same power source from target system

CPU
Target
SystemVSS

User
VCC

PROBE

MDS

USER_VDD

MDS_VDD

DC JACK

VDD

Same power sources with MDS[Calm]
Power source from probe

CPU
Target
SystemVSS

User
VCC

DC_JACK

PROBE

MDS

USER_VDD

MDS_VDD

DC JACK

VDD

Same power source from target system

CPU
Target
SystemVSS

User
VCC

DC_JACK

PROBE

MDS



S3CK215/FK215 DEVELOPMENT TOOLS

27-7

USE CLOCK SETTING FOR EXTERNAL CLOCK MODE

Proper crystal and capacitors for main clock should be inserted into pin socket on the IE Board as follows;

C
Y2

X-Tal

C
XIN XOUT

SUB CLOCK SETTING

For sub-clock mode a crystal, 32.768 kHz and capacitors should be inserted into pin socket on the IE Board as
follows;

C
Y1

X-Tal

C
XTIN XTOUT

R

NOTE: The value of resistor is 39 KΩ.



DEVELOPMENT TOOLS S3CK215/FK215

27-8

CN1, CN2 PIN ASSIGNMENT

CN1,2 are the signals of IE-K215 and their pin assignment is the same as the pin of S3CK215.

CN1 Function CN1 Function CN2 Function CN2 Function

1 MP5.0 2 MP5.1 41 MP2.3 42 MP2.4

3 MP5.2 4 MP5.3 43 MP2.5 44 MP2.6

5 MP5.4 6 MP5.5 45 MP2.7 46 T_AVREF

7 MP3.0 8 MP3.1 47 T_AVSS 48 MCB

9 MP3.2 10 MP3.3 49 MCA 50 MVLC0

11 MP3.4 12 USER VDD 51 MVLC1 52 MVLC2

13 VSS 14 NC 53 MCOMO 54 MCOM1

15 NC 16 MTEST 55 MCOM2 56 MCOM3

17 NC 18 NC 57 MSEG0 58 MSEG1

19 USER_RESET 20 MDA0 59 MSEG2 60 MSEG3

21 MFINIL 22 MFILOUT 61 MSEG4 62 MSEG5

23 MVREFR 24 MMICIN 63 MSEG6 64 MSEG7

25 MMICOUT 26 MP0.0 65 MSEG8 66 MSEG9

27 MP0.1 28 MP0.2 67 MSEG10 68 MSEG11

29 MP0.3 30 MP1.0 69 MSEG12 70 MSEG13

31 MP1.1 32 MP1.2 71 MSEG14 72 MSEG15

33 MP1.3 34 MP1.4 73 MP4.0 74 MP4.1

35 MP1.5 36 MP1.6 75 MP4.2 76 MP4.3

37 MP1.7 38 MP2.0 77 MP4.4 78 MP4.5

39 MP2.1 40 MP2.2 79 MP4.6 80 MP4.7


