Quad, Simultaneous Sample-Hold with Multiplexer ## **FEATURES** - · 4 Simultaneous sample-hold amplifiers - Internal 4-channel multiplexer - 775ns acquisition time 10V step to ±0.01% (including multiplexer) - · 2 Channels with optional X10 gain - . Control logic for interfacing to A/D's - 100MΩ minimum input impedance - · Low power, 2.25 Watts - Small, 32-pin, ceramic TDIP - -55°C to +125°C versions ### GENERAL DESCRIPTION The MSH-840 is a quad, simultaneous sample-hold featuring an acquisition time (including the internal multiplexer!) of 775 ns for a 10V step to ±0.01% accuracy. Control logic is provided for strobing the channels simultaneously and for interfacing to A/D's. A four-channel multiplexer allows individual S/H outputs to be selected. The MSH-840 requires ±15V and +5V power supplies and dissipates just 2.25 Watts. Packaged in a small, 32-pin, ceramic TDIP, both commercial 0 to +70°C and military –55 to +125°C operating temperature range models are offered. ### INPUT/OUTPUT CONNECTIONS | PIN | FUNCTION | PIN | FUNCTION | |-----|-----------------|-----|-------------------| | 1 | DIGITAL GROUND | 32 | RESET | | 2 | +5V SUPPLY | 31 | EOC IN | | 3 | SSH1 IN | 30 | S/H IN | | 4 | OFFSET ADJUST 1 | 29 | CONVERT IN | | 5 | SSH1 OUT | 28 | START CONVERT OUT | | 6 | SSH2 IN | 27 | CA0 | | 7 | OFFSET ADJUST 2 | 26 | CA1 | | 8 | SSH2 OUT | 25 | ANALOG GROUND | | 9 | SSH3 IN | 24 | MUX IN1 | | 10 | OFFSET ADJUST 3 | 23 | MUX IN2 | | 11 | GX10 CH3 | 22 | MUX IN3 | | 12 | SSH3 OUT | 21 | MUX IN4 | | 13 | SSH4 IN | 20 | MUX OUTPUT | | 14 | OFFSET ADJUST 4 | 19 | -15V SUPPLY | | 15 | GX10 CH4 | 18 | POWER GROUND | | 16 | SSH4 OUT | 17 | +15V SUPPLY | Figure 1. Functional Block Diagram Sample-and-Hold Amplifiers 3-34 ### **ABSOLUTE MAXIMUM RATINGS** | PARAMETER | LIMITS | UNITS | | |-----------------------------------|--------------|-------|--| | +15V Supply, Pin 17 | 0 to +18 | Volts | | | -15V Supply, Pin 19 | 0 to -18 | Volts | | | +5V Supply, Pin 2 | -0.5 to +7.0 | Volts | | | Digital Inputs, Pins 26-27, 29-32 | -0.3 to +5.5 | Volts | | | Analog Inputs, Pins 3, 4, | | | | | 6, 7, 9, 10, 13, 14 | -Vcc to +Vcc | Volts | | | Lead Temperature (10 seconds) | 300 | °C | | | Output Short Circuit To Ground | 50 | mA. | | # **FUNCTIONAL SPECIFICATIONS** (Apply over the operating temperature range and at ±15V and +5V unless specified.) | INPUTS | MIN. | TYP. | MAX. | UNITS | |--|-----------------|---------------|----------------------|------------------------| | Input Type | | Single-Ende | d | | | Input Voltage Ranges
Input Impedance
Digital Inputs
Logic Levels | 100 | ±10V | _ | Volts
MΩ | | Logic 1 Logic 0 Logic Loading | +2.0 | _ | +0.8 | Volts
Volts | | Logic 1
Logic 0
CONVERT IN Minimum | _ | _ | +1.0
-1.0 | μA
μA | | Pulse Width
+25°C
0 to +70°C
-55 to +125°C | 20
25
40 | -
 -
 - | <u>-</u> | ns
ns
ns | | OUTPUTS | I | 1 | L | | | Output Range Output Current Stable Capacitive Load Output Impedance | ±10
—
100 |

 | _
±20
_ | Volts
mA
pF
Ω | | START CONVERT OUT Pulse Width CONVERT IN to START CONVERT OUT delay | 40 | 50 | 60 | ns | | +25°C
0 to +70°C
-55 to +125°C | _
_
_ | _
_
_ | 60
75
90 | ns
ns
ns | | PERFORMANCE | | | | | | Nonlinearity ®
Nonlinearity TC
Sample Mode Offset Error | _ | ±0.005 | ±0.01
±1 | %FS
⊕ | | (Gain =1) Sample Mode Offset Error | _ | ±2 | ±15 | mV | | (Gain =10) Sample Mode Offset Tempco Offset Adjustment Range S/H Offset (Pedestal) Error |
±0.5 | ±20
±2 | ±150
±4 | mV
④
%FS | | (Over Full Input)
Gain
Gain Tempco | _ | -
+1 | ±10
— | mV
V/V | | (+ tempco of gain pot. or resistor):
Gain Adjustment Range
Gain Error | _
±1 | ±2
— | ±5
— | ppm/°C
% | | (Externally Adjustable to Zero) 25Ω gain resistor 50Ω gain resistor No gain resistor (shorted) | - | _ | ±0.3
±0.3
±0.3 | %
%
% | | Harmonic Distortion
(dc to 500kHz, 20Vp-p) | -69 | -70 | _ | dB | | PERFORMANCE (Cont.) | MIN. | TYP. | MAX. | UNITS | |-----------------------------|--------|--------------|-------------|--------------| | Acquisition Time ① | | | | | | ±0.1%FS, 20V Step | l _ | 800 | 850 | ns | | ±0.01%FS, 10V Step @ | l _ | 775 | 900 | ns | | ±0.01%FS, 20V Step | _ | 1.2 | 1.4 | ШS | | ±0.003%FS, 20V Step | l _ | 1.5 | 2.0 | us | | Aperture Delay | ١ _ | 15 | 60 | ns | | Aperture Uncertainty | l _ | 15 | 50 | psec | | Slew Rate | +45 | " | = | V/µs | | Full Power BW | 300 | 500 | l _ | kHz | | Small Signal BW (-3dB) | 8 | 13 | l | MHz | | Hold Mode Settling Time | | '0 | | 1911 12. | | To ±10mV | l _ | | 100 | ns | | To ±1mV | _ | | 200 | ns | | To ±0.3mV | _ | _ | 300 | ns | | Feedthrough Rejection |] | _ | 000 | ,,,, | | (20V Step) | | -74 | -70 | dB | | Hold Mode Crosstalk ③ | _ | -74 | -70
-70 | dB | | Droop Rate | 1 | -1- | -10 | ub ub | | +25°C | l _ | _ | ±1.5 | μV/μs | | 0 to +70°C | _ | | ±25 | uV/us | | -55 to +125°C | l _ | _ | ±3 | mV/us | | Output Noise, Hold Mode | _ | _ | 600 | μVrms | | POWER REQUIREMENTS | l | | | L | | Ranges | | | | | | +15V Supply | +14.25 | +15 | +15.75 | Volts | | –15V Supply | -14.25 | -15 | -15.75 | Volts | | +5V Supply | +4.5 | -13
+5 | +5.25 | Voits | | Currents | +4.5 | +3 | +3.23 | VOILS | | +15.75V Supply | | +75 | +90 | mA i | | -15.75V Supply | _ | -75 | -90 | mA | | +5V Supply | _ | -/3 | +1.0 | mA | | Power Dissipation | | 2.25 | 2.75 | Watts | | Power Supply Rejection | _ | 2.20 | ±0.006 | %FSR/%V | | | | | | 701 010 70 0 | | PHYSICAL/ENVIRONMENTA | L . | | | | | Operating Temp. Range, Case | | | | | | MSH-840MC | 0 | _ | +70 | ∘c | | MSH-840MM | -55 | | +125 | ∘č | | Storage Temp. Range | -65 | - | +150 | °č ∣ | | Package Type | | n, metal-sea | led ceramic | DIP | | Weight | | 0.5 ounces (| | OIL. | | Footnotes: | | | | J | - Includes multiplexer. - ② +25°C - 3 500kHz - Units are ppm of FS/°C. - (5) FS = full scale = 10V. # **TECHNICAL NOTES** - 1. Avoid ground related problems by connecting the analog, power and digital grounds to one point, the ground plane beneath the MSH-840. The analog, power and digital grounds are not connected to each other internally. - 2. Bypass the analog and digital supplies to ground with a 2.2µF, 25V tantalum electrolytic capacitor in parallel with a 0.1µF ceramic capacitor. - 3. Offset adjustments are provided by connecting the offset adjust pins (OFSADJ1-4) to the wipers of 20kΩ trimpots connected between the ±15 Volt power supplies. For operation without offset adjustments, connect these pins to ground. DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For immediate assistance 800-233-2765 - 4. Gain adjustments are made by connecting 50Ω trimpots between each SSH OUT pin and its respective MUX IN pin. See the typical connection diagram in Figure 4. For the most accurate operation without adjustment, use a 25Ω fixed resistor instead of a trimpot. A short between the respective SSH OUT and MUX IN pins can also be used for operation without adjustment, but with increased gain error. - A gain of 10 is possible on channels 3 and 4 by grounding pins GX10 CH3 (pin 11) or GX10 CH4 (pin 15) respectively. Do not connect GX10 CH3/CH4 for gain = 1 operation. # Scan Mode (Simultaneous Sample-Hold) The MSH-840's scan mode allows sampling up to four channels at the same time. There are two ways to put the MSH-840 into a sampling mode: - Toggling the RESET line (pin 32) low and then high again, upon power-up for instance, puts the four sample-holds into the sampling mode. - The four sample-holds can also be put into the sampling mode by using the S/H IN control line (pin 30). Using pin 30 is preferred over toggling the RESET line because pin 30 can also put the MSH-840 into the hold mode. After waiting for the appropriate acquisition time, all four sample-holds can be simultaneously put into the hold mode by bringing the \overline{S}/H IN pin to a high state. External A/D conversions can begin after waiting for the appropriate hold mode settling time. The rising edge of a signal on CONVERT IN (pin 29) generates a 50ns start convert pulse on the START CONVERT OUT line (pin 28). An external A/D converter requiring 50ns start convert pulses could use these pulses to begin conversions. Refer to Table 1 to see how channel address selectors CA0 and CA1 (pins 27, 26) select the particular channel to be digitized by the A/D converter. EOC IN serves no function in this simultaneous scan mode and should be tied to ground. | RESET | = Resets all sample-holds to the sample mode (\$\overline{S}\$/H must be low during the negative transition of RESET) | |--------|---| | S/H IN | | = Sets all sample-holds to sample mode CONVERT _____ = Internally generates a start convert pulse for use with an external A/D converter EOC IN = No function during scan (while \$\overline{S}\$/H is high) START CONVERT OUT = A 50 nanosecond positive pulse generated by CONVERT IN CA0 and CA1 = A two-bit binary word to select one of the four multiplexer channels **Table 1. Output Channel Selection** | | CA1 | CA0 | |-----------|-----|-----| | Channel 1 | 0 | 0 | | Channel 2 | 0 | 1 | | Channel 3 | 1 | 0 | | Channel 4 | 1 | 1 | | | | | Figure 2. MSH-840 Scan Mode Timing # **Random Single Channel Mode** The MSH-840's single channel mode can randomly select a particular channel(s) for digitization by an external A/D converter. Once again, the RESET function can set all sample-holds to the sample mode on initial power-up. Channels are selected using the CA0 and CA1 channel address pins. The S/H IN pin serves no function in this mode and should be tied to ground. A high-to-low falling edge on \overline{EOC} IN (pin 31) puts the particular channel chosen into the sample mode. After the initial falling edge on \overline{EOC} IN, this signal could be derived from the A/D converter's \overline{EOC} or status pin, which would indicate completion of the previous conversion. The sample-hold could then be put back into the sample mode. A low-to-high rising edge on the CONVERT IN pin puts the selected channel into the hold mode. After putting the sample-hold into hold, this same edge generates a 50 ns wide start convert signal on START CONVERT OUT (pin 28). An external A/D converter requiring 50ns start convert pulses could use these pulses to begin conversions. Sample-and-Hold Amplifiers Figure 3. MSH-840 Single-Channel Mode Timing Figure 4. Typical Connection Diagram ■ 2651561 0003593 993 ■ 3-36 DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For immediate assistance 800-233-2765 # **MECHANICAL DIMENSIONS** INCHES (mm) ## ORDERING INFORMATION MODEL MSH-840MC MSH-840MM -55 to +125°C ACCESSORIES Receptacle for PC board mounting is available from AMP, Inc. Part Number 3-331272-8 (Component Lead Socket), 32 required. For availability of a MIL-STD-883 version, contact DATEL.