

STHV748

5-level, ±90 V, 2 A high-speed pulser with four independent channels

Preliminary data

Features

- High-density ultrasound transmitter
- 0 to ±90 V output voltage
- Up to 20 MHz operating frequency
- Low-power, high-voltage drivers
- 2 independently supplied half bridges for each channel in pulse wave (PW) mode
 - 5-level output waveform
 - ±2 A source and sink current
 - Down to 20 ps jitter
 - Anti-cross conduction function
 - Low 2nd harmonic distortion
 - Fine-tuning on propagation delay
- Fully integrated clamping-to-ground function
 - 6 Ω synchronous active clamp
 - Anti-leakage on output node
- Dedicated half bridge for continuous wave (CW) mode on each
 - Down to 0.1 W power consumption
 - ±0.6 A source and sink current
 - Down to 10 ps jitter
- Fully integrated HV receiver switch
 - 13.5 Ω on resistance
 - HV MOS topology to minimize current consumption
 - Up to 300 MHz BW
- 2.4 V to 3.6 V CMOS logic interface
- Auxiliary integrated circuits
 - Noise blocking diodes
 - Fully self-biaising architecture
 - Anti-memory effect for all internal HV nodes
 - Thermal protection
 - Stand by function
- Latch-up free due to HV SOI technology
- Very few external passive components needed

Applications

- Medical ultrasound imaging
- Pulse waveform generator
- NDT ultrasound transmission
- Piezoelectric transducers driver

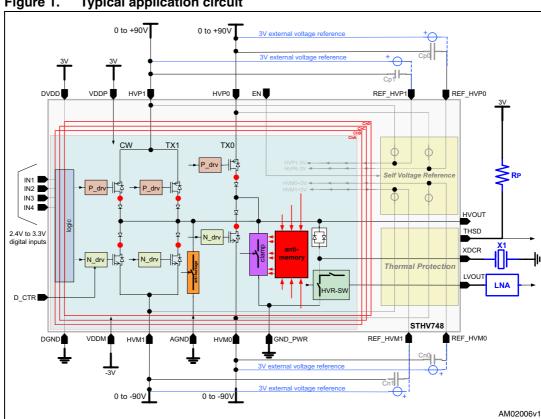
Description

This monolithic, high-voltage, high-speed pulser generator features four independent channels. It is designed for medical ultrasound applications, but can also be used for other piezoelectric, capacitive or MEMS transducers. The device comprises a controller logic interface circuit, level translators, MOSFET gate drivers, noise blocking diodes and high-power P-channel and N-channel MOSFETs as output stage for each channel, clamping-to-ground circuitry, anti-leakage, antimemory effect block, thermal sensor and HV receiver switch (HVR_SW) which guarantees a strong decoupling during transmission phase. Moreover the STHV748 includes self biasing and thermal shutdown blocks (see *Figure 1*).

Each channel can support up to five active output levels with two half bridges. The output stage of each channel is able to provide ±2 A peak output current. In order to reduce power dissipation during continuous wave mode, the peak current is limited to 0.6 A (a dedicated half bridge is used).

Table 1. Device summary

Order code	Package	Packaging
STHV748QTR	QFN64	Tape and reel

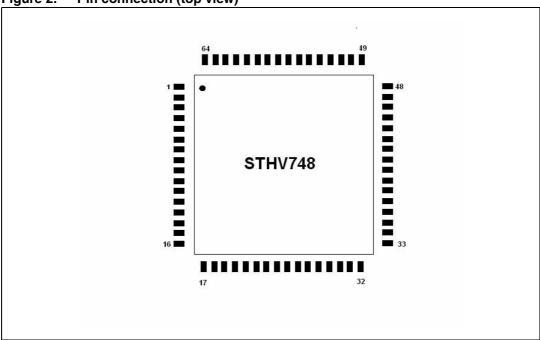

January 2010 Doc ID 15450 Rev 1 1/22

Contents STHV748

Contents

1	Typical application circuit	
2	Pin settings	4
	2.1 Connection	4
	2.2 Description	4
	2.3 Additional pin description	6
3	Truth table and single channel block description	7
4	Typical supply reference setting	8
5	Electrical data	9
	5.1 Absolute maximum ratings	
6	Operating supply voltages and average currents	·
	6.1 Digital inputs	
	6.2 Output signals	
7	Electrical characteristics	12
8	Timings	15
9	Package mechanical data	18
10	Revision history	21

Typical application circuit 1



Pin settings STHV748

2 Pin settings

2.1 Connection

Figure 2. Pin connection (top view)

Note: 0.25 mm X 100 V maximum voltage between abutted pins

2.2 Description

4/22

Table 2. Pin description (P = power, A = analog, D = digital)

Pin N	Name	Function	IN/OUT	Туре
1	AGND	Signal ground	I	Α
2	REF_HVM1	Supply for low side 1 gate driver	I	Р
3	HVM1_A	Negative high-voltage supply 1 channel A	I	Р
4	HVM0_A	Negative high-voltage supply 0 channel A	I	Р
5	HVOUT_A	Channel A, high-voltage output before noise blocking diodes	0	Р
6	HVP0_A	Positive high-voltage supply 0 channel A	I	Р
7	REF_HVP1	Supply for high side 1 gate driver	I	Р
8	HVP1_A	Positive high-voltage supply 1 channel A	I	Р
9	HVP1_B	Positive high-voltage supply 1 channel B	I	Р
10	REF_HVP0	Supply for high side 0 gate driver	I	Р
11	HVP0_B	Positive high-voltage supply 0 channel B	I	Р

STHV748 Pin settings

Table 2. Pin description (P = power, A = analog, D = digital) (continued)

Pin N	Name	Function	IN/OUT	Туре
12	HVOUT_B	Channel B, high-voltage output before noise blocking diodes	0	Р
13	HVM0_B	Negative high-voltage supply 0 channel B	I	Р
14	HVM1_B	Negative high-voltage supply 1 channel B	I	Р
15	REF_HVM0	Supply for low side 0 gate driver	I	Р
16	D_CTR	Delay control	I	Α
17	IN4	Input signal shared	I	D
18	IN1_B	Input signal channel B	I	D
19	IN2_B	Input signal channel B	I	D
20	IN3_B	Input signal channel B	I	D
21	VDDP	Positive low-voltage supply	I	Α
22	GND_PWR	Power ground	I	Р
23	XDCR_B	Channel B, high-voltage output	0	Р
24	LVOUT_B	Channel B, low-voltage output	0	Α
25	LVOUT_C	Channel C, low-voltage output	0	Α
26	XDCR_C	Channel C, high-voltage output	0	Р
27	GND_PWR	Power ground	I	Р
28	VDDM	Negative low-voltage supply	I	Α
29	IN3_C	Input signal channel C	I	D
30	IN2_C	Input signal channel C	I	D
31	IN1_C	Input signal channel C	I	D
32	THSD	Thermal shutdown pin	I/O	D
33	AGND	Signal ground	I	Α
34	REF_HVM1	Supply for low side 1 gate driver	I	Р
35	HVM1_C	Negative high-voltage supply 1 channel C	I	Р
36	HVM0_C	Negative high-voltage supply 0 channel C	I	Р
37	HVOUT_C	Channel C, high-voltage output before noise blocking diodes	0	Р
38	HVP0_C	Positive high-voltage supply 0 channel C	I	Р
39	REF_HVP1	Supply for high side 1 gate driver	I	Р
40	HVP1_C	Positive high-voltage supply 1 channel C	I	Р
41	HVP1_D	Positive high-voltage supply 1 channel D	I	Р
42	REF_HVP0	Supply for high side 0 gate driver	I	Р
43	HVP0_D	Positive high-voltage supply 0 channel D	I	Р
44	HVOUT_D	Channel D, high-voltage output before noise blocking diodes	0	Р

Pin settings STHV748

Pin N Name **Function** IN/OUT Type 45 HVM0 D Negative high-voltage supply 0 channel D Ρ I 46 HVM1 D Negative high-voltage supply 1 channel D I Ρ Ρ 47 REF_HVM0 Supply for low side 0 gate driver I 48 **DGND** Logic ground ı Α DVDD Α 49 Positive logic supply ı 50 IN1_D Input signal channel D ı D 51 IN2_D Input signal channel D I D IN3_D Input signal channel D 52 ı D **VDDP** ı 53 Positive low-voltage supply Α **GND_PWR** Power ground I Р 54 0 Ρ XDCR D 55 Channel D, high-voltage output Channel D, low-voltage output LVOUT_D 0 56 Α 0 57 LVOUT_A Channel A, low-voltage output Α 58 XDCR_A Channel A, high-voltage output 0 Ρ **GND PWR** Р 59 Power ground 60 **VDDM** Negative low-voltage supply ı Α 61 IN₃ A Input signal channel A ı D 62 IN2_A Input signal channel A ı D 63 IN1_A Input signal channel A I D 64 ΕN Enable internal supply generators I D Exposed-Pad Substrate I Р

Table 2. Pin description (P = power, A = analog, D = digital) (continued)

2.3 Additional pin description

EN allows minimizing the power consumption. If EN=0, the self voltage reference is not supplied. Supplying reference externally the total power consumption is reduced.

THSD is a thermal flag. The output stage of THSD pin is a Nch-MOS open-drain, so this necessary to connect external pull-up resistance (Rp \geq 10 k Ω) to positive low-voltage supply (see *Figure 1*).If the internal temperature overtakes 160 °C, THSD goes down and put all the channels in HZ state. Externally forcing THSD to positive low-voltage supply, the thermal protection will be disabled.

D_CTR can be used to optimize 2nd HD performances by tuning the fall propagation delay (tdf - see table 9). If D_CTR is equal to ground tdf has the nominal value. If D_CTR is being varied from 2 V to 4.2 V tdf can be changed from -1ns to +600 ps respect to the nominal value.

EXPOSED-PAD is internally connected to the substrate. It can be floating or connected to a 100 V capacitance toward ground in order to reduce noise during the receiving phase.

3 Truth table and single channel block description

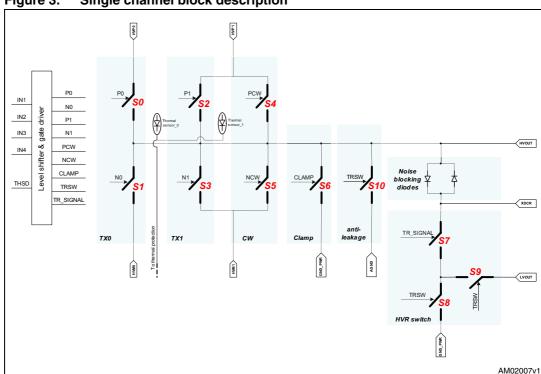


Figure 3. Single channel block description

Global Per channel Switches internal state State IN4 S7 **THSD** IN3 IN2 IN1 S0 S1 S2 S3 S4 S5 **S6** S8 S9 Clamp Х Х HVM0 HVP0 HVR_SW Х HVP1 HΖ HVR_SW Max HVM0 and HVM1 Max HVP0 and HVP1 CW HVM1 CW HVP1 Х Х Х HΖ Х

Table 3. Truth table for one channel

4 Typical supply reference setting

Table 4. Typical supply reference setting

Symbol	External supply mode	Self supply mode
EN	0	1
Cp0, Cp1	Not used	47 nF ⁽¹⁾
Cn0, Cn1	Not used	9 nF ⁽¹⁾
REF_HVP#	Has to be connected to HVP# -3 V	Not used
REF_HVM#	Has to be connected to HVM# +3 V	Not used

^{1.} In Self supply mode 30 μs after EN edge to charge external capacitance are needed.

STHV748 Electrical data

5 Electrical data

5.1 Absolute maximum ratings

Table 5. Absolute maximum ratings

Symbol	Parameter	Value	Unit
AGND	Analog ground reference (1)	0	V
DGND	Digital ground	-300 to 300	mV
GND_PWR	Power ground	-1.2 to 1.2	V
VDDP	Positive supply voltage	-0.3 to 3.9	V
VDDM	Negative supply voltage	0.3 to -3.9	V
DVDD	Positive logic voltage	-0.3 to 3.9	V
HVP0	TX0 high-voltage positive supply	0 to 95	V
HVP1	TX1 high-voltage positive supply	≤ HVP0	V
HVM0	TX0 high-voltage negative supply	0 to -95	V
HVM1	TX1 high-voltage negative supply	≥ HVM0	V
REF_HVP#	High-voltage positive gate supply	-0.3 < HVP - REF_HVP < 3.3	V
REF_HVM#	High-voltage negative gate supply	-0.3 < REF_HVM - HVM < 3.3	V
XDCR	High-voltage output	-95 to 95	V
HVOUT	High-voltage output before noise blocking diodes	-95 to 95	V
LVOUT	Low-voltage output	-1 to 1	V
DIG I/O	Digital input specified in tab1	-0.3 to DVDD + 0.3	V
D_CTR	Delay control	-0.3 to 4.6	V
T _{OP}	Operating temperature range	-40 to 125	°C
T _{STG}	Storage temperature range	-65 to 150	°C

^{1.} AGND is considered like "ground reference" for all fallen voltages.

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 6.

Symbol	Parameter	Value	Unit
R _{th,JA}	Thermal resistance junction-amb	30 ⁽¹⁾	°C/W

This value is given for a two layer PCB (252P) and it's strongly sensitive to PCB layout. Increasing the number of PCB layer or adding heat singer vias this number degree (reduce)

6 Operating supply voltages and average currents (a)

Table 7. Supply voltages

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VDDP	Positive supply voltage		2.7	3	3.6	V
I _{VDDP}	Desitive supply supply	PW mode ⁽¹⁾			3	mA
I _{VDDP_Q}	Positive supply current	Stand-by mode (2)			1	μΑ
VDDM	Negative supply voltage		-2.7	-3	-3.6	V
I _{VDDM}	Negative supply current	PW mode			2	mA
I _{VDDM_Q}	negative supply current	Stand-by mode			1	μΑ
DVDD	Positive logic voltage		2.4	3	min(3.6,VDDP+0.3)	V
I_DVD	Logic supply current	PW mode			10	μΑ
I_ _{DVD_Q}	Logic supply current	Stand-by mode	55	65	80	μΑ
HVP	High-voltage positive supply		0		90	V
I _{HVP}	LIV positive europhy europa	PW mode			50	mA
I _{HVP_Q}	HV positive supply current	Stand-by mode			1	μΑ
HVM	High-voltage negative supply		-90		0	V
I _{HVM}	LIV pagativa auguly augrant	PW mode			45	mA
I _{HVM_Q}	High-voltage negative supply HV negative supply current High-voltage positive gate supply	Stand-by mode			1	μΑ
HVP-REF_HVP	High-voltage positive gate supply		2.7	3	3.3	V
I _{REF_HVP}	LIV positive DEE surrent	PW mode			7	mA
I _{REF_HVP_Q}	HV positive supply current High-voltage negative supply HV negative supply current High-voltage positive gate supply HV positive REF current	Stand-by mode	200	300	400	μΑ
REF_HVM-HVM	High-voltage negative gate supply		2.7	3	3.3	V
I _{REF_HVM}	LIV pagativa DEE augrant	PW mode			3	mA
I _{REF_HVM_Q}	nv negative HEF current	Stand-by mode	200	300	400	μΑ
AGND	Ground reference			0		V
I _{AGND}	Analog ground gurrent	PW mode			700	μΑ
I _{AGND_Q}	Analog ground current	Stand-by mode			1	μΑ
GND_PWR	Power ground reference			0		V
I _{GND_PWR}	DWP ground gurrent	PC mode ⁽³⁾			20	mA
I _{GND_PWR_Q}	PWR ground current	Stand-by mode			1	μΑ
D_CTR	Delay control		0		4.2	V

^{1.} In PW pulse wave mode the average current is measured over 5 periods (see Figure 5)

577

^{2.} In Stand-by mode all channels are in HZ.

^{3.} In PC pulse cancellation mode the average current is measured over 1 period (see Figure 6)

a. Operation conditions, unless otherwise specified, only A channel on, no load, HV=90V, TX0 and TX1 on, EN=0.

6.1 Digital inputs

Table 8. Digital inputs

Symbol	Parameter	Min.	Max.	Units
IN1_#, IN2_#, IN3_#, IN4, EN, THSD	Input logic high-voltage	0.8DVDD	DVDD	V
IN1_#, IN2_#, IN3_#, IN4, EN, THSD	Input logic low-voltage	0	0.2DVDD	V

6.2 Output signals

Table 9. Output signals

Symbol	Parameter	Min.	Max.	Units
HVOUT	High-voltage output before noise blocking diodes	-90	90	V
XDCR	High-voltage output	-90	90	V
LVOUT	Low-voltage output	-1	1	V
THSD	Thermal shutdown pin	0	3	V

Electrical characteristics STHV748

7 Electrical characteristics

Table 10. Static electrical characteristics (1)

Symbol	Parameter	Condition	Min	Тур	Max	Units
1	Saturation current S1 – S3	HVP# =10V, HVM# =-10V, HVOUT=0V	1.18	1.28	1.40	Α
Symbol I _N I _P I _{NCW} I _{PCW} I _{CL} I _L P _{SB} P _{RX} V _{REFP} V _{REFN} T _{OTP} T _{HYS} C _{HVR_SW} R _{HVR_SW_ON}	Saturation current 31 – 33	HVP# =25V, HVM# =-25V, HVOUT=0V		1.70		Α
	Saturation current S0 – S2	HVP# =10V, HVM# =-10V, HVOUT=0V	1.12	1.26	1.42	Α
IP	Saturation current 50 – 52	HVP# =25V, HVM# =-25V, HVOUT=0V		1.70		Α
I _{NCW}	Saturation current S5	HVP1=10V, HVM1=-10V, HVOUT=0V	315	350	400	mA
I _{PCW}	Saturation current S4	HVP1=10V, HVM1=-10V, HVOUT=0V	415	480	575	mA
	Positive saturation current	HVOUT=10V	1.25	1.54	2	Α
	S6 (Pch)	HVOUT=25V		TBD		Α
ICL	Negative saturation	HVOUT=10V	1.32	1.59	2	
	current S6 (Nch)	HVOUT=25V		TBD		
IL	Output leakage current, per channel	HVP# = 90V, HVM# = -90V, HVOUT=0V			1	μΑ
D	Power dissipation in stand	HVP# = 90V, HVM# = -90V, HVOUT=0V, EN=0		4	4.5	μW
P _{SB}	by mode	HVP# = 90V, HVM# = -90V, HVOUT=0V		126	150	mW
P _{RX}	Power dissipation in HVR_SW state	HVP# = 90V, HVM# = -90V, EN=0, all channels in receiving phase	25	30	40	mW
V _{REFP}	HVP# - REF_HVP#	HVP# = 90V, HVM# = -90V, HVOUT=0V	0.8VDDP		1.2VDDP	٧
V _{REFN}	REF_HVM# - HVM#	HVP# = 90V, HVM# = -90V, HVOUT=0V	0.8VDDP		1.2VDDP	٧
T _{OTP}	Over temperature threshold	HVP# =10V, HVM# =-10V	130	145	160	ç
T _{HYS}	OTP Hysteresis	HVP# =10V, HVM# =-10V		40		°C
C _{HVR_SW}	HVR_SW capacitance	LVOUT=0V		40		pF
R _{HVR_SW_ON}	R _{HVR_SW} on resistance	HVP# =10V, HVM# =-10V, XDCR=1V, LVOUT=0V	11.5	13.5	15.5	Ω
R _{HVR_SW_OFF}	R _{HVR_SW} off resistance	HVP# =10V, HVM# =-10V, XDCR=1V, LVOUT=0V	1			GΩ

Table 10. Static electrical characteristics (1) (continued)

Symbol	Parameter	Condition	Min	Тур	Max	Units
V	Voltage drop between HVP1 and XDCR	HVP# =10V, HVM# =-10V, I _{SINK_XDCR} =50mA	2.62	2.79	2.96	V
V _{DROP_CW}	Voltage drop between XDCR and HVM1	HVP# =10V, HVM# =-10V, I _{SOURCE_XDCR} =50mA	2.69	2.86	3.03	V

^{1.} Operating conditions, unless otherwise specified, EN = 1, HVP# = 90 V, HVM# = -90 V, VDDP = 3 V, VDDM = - 3 V, DVDD = 3 V, T_{ROOM} = 25 °C.

Electrical characteristics STHV748

Table 11. AC electrical characteristics (1)

Symbol	Parameter	Test condition	Min	Тур	Max	Units
f	Maximum autaut fraguancy		16			MHz
I	Maximum output frequency	50pF//200Ω		22		MHz
f _{CW}	Maximum output frequency CW	HVP1 =5V, HVM1 = -5V, continuous wave mode	20			MHz
f _{BW}	Output frequency BW	HVP1 = 50V, HVM1 = -50V, continuous wave mode, $50pF//200Ω$		10		MHz
t _j	Output jitter			20		ps, rms
t _{j-CW}	CW output jitter	HVP1 =10V, HVM1 = -10V, continuous wave mode		5		ps, rms
t _f	Fall time			28	31	ns
t _r	Rise time			28	31	ns
t _{dr}	Rise propagation delay			24	27	ns
t _{df}	Fall propagation delay			24	27	ns
t _{HVR_SW}	HVR_SW turn-on / turn-off time			170		ns
		1 pulse f = 1.7MHz		-40		dBc
HD2	2 nd harmonic distortion	1 pulse f = 5MHz	-60		-40	dBc
TIDE		5 pulses f = 1.7MHz		-40		dBc
		5 pulses f = 5MHz	-60		-40	dBc
HD2PC	Pulse cancellation	f = 1.7MHz original and inverted pulse		-40		dBc
	Pulse cancellation	f = 5MHz original and inverted pulse	-60		-40	dBc
BVD	Burst voltage drop	1 st to 128 th pulse HVP1 = 10V, HVM1 = -10V		2		%
P _{D_CW}	Power dissipation, per channel	CW mode, f = 5MHz, HVP1 = 5V, HVM1 = -5V, no load			70	mW
HVR_SW _{SPIKE}	HVR_SW spike on XDCR and LVOUT			100		mV_{pp}
X _{TALK}	Cross talk between channels.	Ampl(2ch)/Ampl(1ch), $50pF//200\Omega$		-40		db

^{1.} Operating conditions, unless otherwise specified, HVP# = 90V, HVM# = -90V, VDDP = 3V, VDDM = -3V, DVDD = 3V, EN = 0, (HVP-REF_HVP) = 3V, (REF_HVM-HVM) = 3V, XDCR load C = 300pF//R = 100Ω, LVOUT load C = 20pF//200Ω T_{ROOM} = 25 °C.

STHV748 Timings

8 Timings

Figure 4. t_r, t_f, t_{dr} and t_{df} descriptions

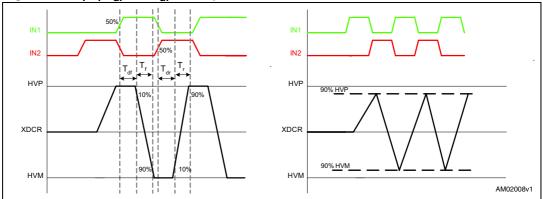


Figure 5. PW example 5 periods, HVP0 = 90 V HVM0 = -90 V, T=200 ns, $T_tx=1.2 \mu s$

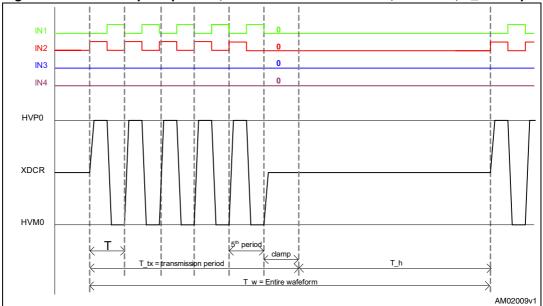
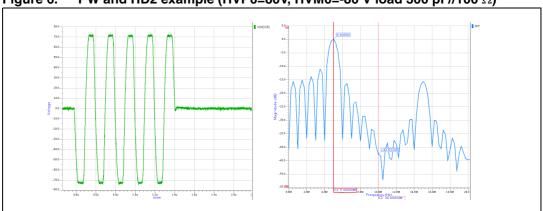
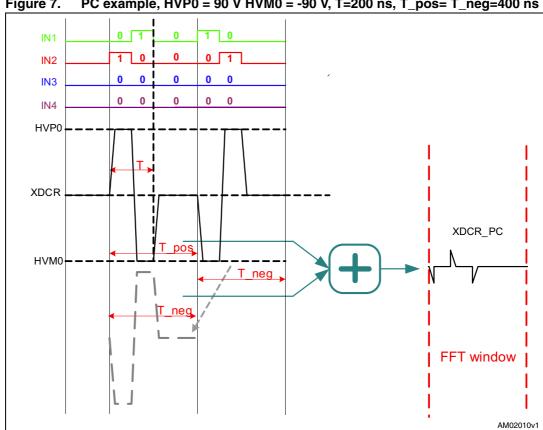
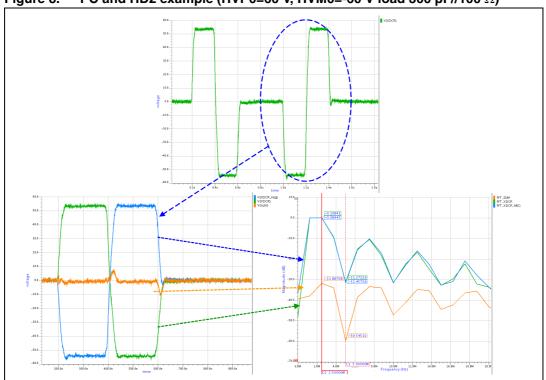
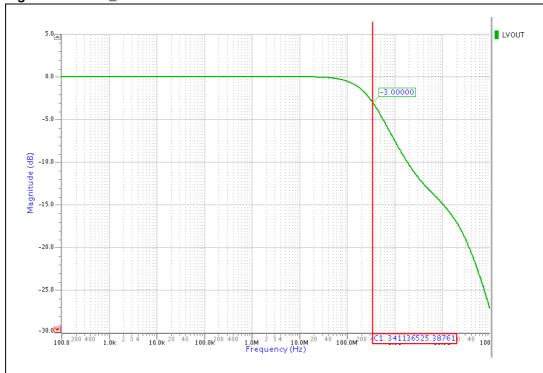




Figure 6. PW and HD2 example (HVP0=80V, HVM0=-80 V load 300 pF//100 Ω)



Timings STHV748

PC example, HVP0 = 90 V HVM0 = -90 V, T=200 ns, T_pos= T_neg=400 ns Figure 7.



STHV748 Timings

IN1 IN2 IN3 1 IN4 1 T tx Τh AM02011v1

Figure 9. CW mode example, HVP1 = 5 V, HVM1 = 5 V, T = 200 ns, T_tx>1 ms

9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Table 12. QFN64 9 x 9 x 1.0 mm 64 pitch 0.50 mechanical data

Dim	Min.	Тур.	Max.	
Α	0.8	0.9	1	
A1		0.02	0.05	
A2		0.65	1	
A3		0.2		
b	0.18	0.25	0.3	
D	8.85	9	9.15	
D1		8.75		
D2	See exposed pad variation			
E	8.85	9	9.15	
E1		8.75		
E2	See exposed pad variation			
е		0.5		
L	0.35	0.4	0.45	
Р			0.6	
K			12	
ddd			0.08	

Table 13. Exposed-pad variation

Variation	D2			E2		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.1	4.25	4.4	4.1	4.25	4.4
В	4.55	4.7	4.85	4.55	4.7	4.85
С	6.95	7.1	7.25	6.95	7.1	7.25
D	7.15	7.3	7.45	7.15	7.3	7.45

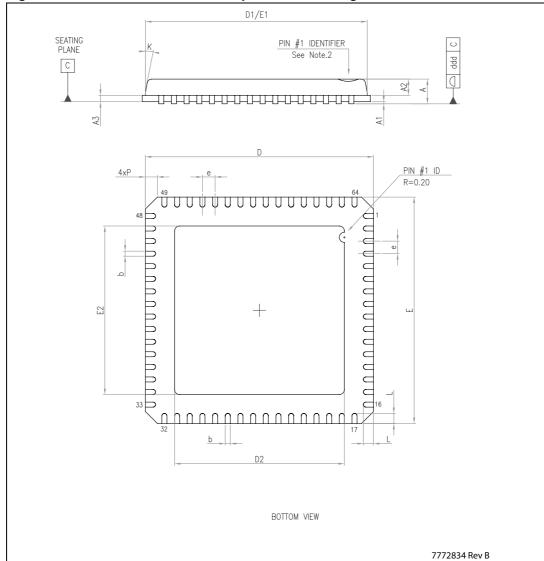
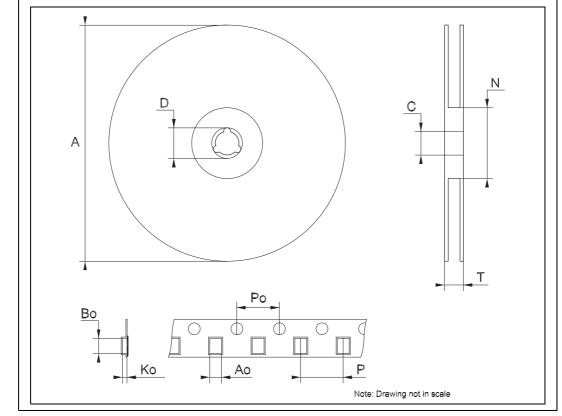



Figure 11. QFN64 9 x 9 x 1.0 mm 64 pitch 0.50 drawing

Figure 12. QFN64 9 x 9 x 1.0 mm 64 tape and reel information

DIM.	mm.			inch		
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			30.4			1.196
Ao	12.25		12.45	0482		0.490
Во	12.25		12.45	0482		0.490
Ko	2.1		2.3	0.083		0.091
Po	3.9		4.1	0.153		0.161
Р	15.9		16.1	0.626		0.639

STHV748 Revision history

10 Revision history

Table 14. Document revision history

Date	Revision	Changes
20-Jan-2010	1	Initial release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

22/22 Doc ID 15450 Rev 1

