HD74HC589

8-bit Serial or Parallel-input/Serial-output Shift Register (with 3-state outputs)

REJ03D0631-0200
(Previous ADE-205-511)
Rev.2.00
Mar 30, 2006

Description

The HD74HC589 is similar in function to the HD74HC597, which is not a 3-state device.
This device consists of an 8-bit storage latch which feeds parallel data to an 8-bit shift register. Data can also be loaded serially (see Function Table). The shift register output, O_{H}, is a three-state output, allowing this device to be used in bus-oriented systems.

Features

- High Speed Operation: $\mathrm{t}_{\mathrm{pd}}\left(\right.$ Shift Clock to $\left.\mathrm{Q}_{\mathrm{H}}\right)=15 \mathrm{~ns}$ typ $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)$
- High Output Current: Fanout of 15 LSTTL Loads
- Wide Operating Voltage: $\mathrm{V}_{\mathrm{CC}}=2$ to 6 V
- Low Input Current: $1 \mu \mathrm{~A}$ max
- Low Quiescent Supply Current: $\mathrm{I}_{\mathrm{CC}}($ static $)=4 \mu \mathrm{~A} \max \left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74HC589FPEL	SOP-16 pin (JEITA)	PRSP0016DH-B (FP-16DAV)	FP	EL (2,000 pcs/reel)
HD74HC589RPEL	SOP-16 pin (JEDEC)	PRSP0016DG-A (FP-16DNV)	RP	EL (2,500 pcs/reel)

Note: Please consult the sales office for the above package availability.

Function Table

Latch Clock LCK	Shift Clock SCK	Serial Shift/ Parallel Load	Output Enable $\overline{\mathrm{OE}}$	Function
Γ	X	X	X	Data are loaded into input latches
Γ	X	L	L	Data are loaded from input into shift registers
X	X	L	L	Data are transferred from input latches to shift registers
$\mathrm{L}, \mathrm{H}, \nearrow$	$\mathrm{L}, \mathrm{H}, 乙$	X	H	Outputs are disabled
X	Γ	H	L	Serial shift $\mathrm{Q}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{n}-1}, \mathrm{Q}_{0}=\mathrm{SER}$

Note: 1. H; High level, L; Low level, X; Irrelevant

Pin Arrangement

Logic Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage range	V_{CC}	-0.5 to 7.0	V
Input / Output voltage	$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Input / Output diode current	$\mathrm{I}_{\mathrm{KK}}, \mathrm{I}_{\mathrm{OK}}$	± 20	mA
Output current	$\mathrm{I}_{\mathrm{OUT}}$	± 35	mA
$\mathrm{~V}_{\mathrm{CC}}$, GND current	I_{CC} Or $\mathrm{I}_{\mathrm{GND}}$	± 75	mA
Power dissipation	P_{T}	500	mW
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	$\mathrm{V}_{\text {cc }}$	2 to 6	V	
Input / Output voltage	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUt }}$	0 to V_{CC}	V	
Operating temperature	Ta	-40 to 85	${ }^{\circ} \mathrm{C}$	
Input rise / fall time**	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	0 to 1000	ns	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$
		0 to 500		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
		0 to 400		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$

Note: 1. This item guarantees maximum limit when one input switches. Waveform: Refer to test circuit of switching characteristics.

Electrical Characteristics

Switching Characteristics $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Item	Symbol	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$		Unit	Test Conditions
			Min	Typ	Max	Min	Max		
Maximum clock frequency	$\mathrm{f}_{\text {max }}$	2.0	-	-	5	-	4	MHz	
		4.5	-	-	27	-	21		
		6.0	-	-	32	-	25		
Propagation delay time	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	2.0	-	-	200	-	250	ns	Latch clock to Q_{H}
		4.5	-	20	40	-	50		
		6.0	-	-	34	-	43		
	tpLH tphl	2.0	-	-	175	-	220	ns	Shift clock to Q_{H}
		4.5	-	15	35	-	44		
		6.0	-	-	30	-	37		
	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	2.0	-	-	175	-	220	ns	Serial shift/parallel load to Q_{H}
		4.5	-	16	35	-	44		
		6.0	-	-	30	-	37		
Output enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{zL}} \\ & \mathrm{t}_{\mathrm{zH}} \end{aligned}$	2.0	-	-	150	-	190	ns	
		4.5	-	9	30	-	38		
		6.0	-	-	26	-	33		
Output disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{HZ}} \end{aligned}$	2.0	-	-	150	-	190	ns	
		4.5	-	14	30	-	38		
		6.0	-	-	26	-	33		
Pulse width	t_{w}	2.0	80	-	-	100	-	ns	
		4.5	16	8	-	20	-		
		6.0	14	-	-	17	-		
Setup time	$\mathrm{t}_{\text {su }}$	2.0	100	-	-	125	-	ns	Data to latch clock
		4.5	20	1	-	25	-		
		6.0	17	-	-	21	-		
	$\mathrm{t}_{\text {su }}$	2.0	100	-	-	125	-	ns	S_{A} to shift clock
		4.5	20	-	-	25	-		
		6.0	17	-	-	21	-		
	$\mathrm{t}_{\text {su }}$	2.0	100	-	-	125	-	ns	Serial shift/parallel load to shift clock
		4.5	20	-	-	25	-		
		6.0	17	-	-	21	-		
Hold time	t_{n}	2.0	5	-	-	5	-	ns	Latch clock to data
		4.5	5	0	-	5	-		
		6.0	5	-	-	5	-		
	$\mathrm{th}_{\text {n }}$	2.0	5	-	-	5	-	ns	Shift clock to S_{A}
		4.5	5	-	-	5	-		
		6.0	5	-	-	5	-		
	t_{n}	2.0	5	-	-	5	-	ns	Shift clock to serial shift/ parallel load
		4.5	5	-	-	5	-		
		6.0	5	-	-	5	-		
Output rise/fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	2.0	-	-	75	-	95	ns	
		4.5	-	5	15	-	19		
		6.0	-	-	13	-	16		
Input capacitance	Cin	-	-	5	10	-	10	pF	

Test Circuit

Note : 1. C_{L} includes probe and jig capacitance.

Waveforms

Notes: 1. Input waveform : $\mathrm{PRR} \leq 1 \mathrm{MHz}$, duty cycle $50 \%, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
2. Waveform - A is for an output with internal conditions such that the output is low except when disabled by the output control.
3. Waveform - B is for an output with internal conditions such that the output is high except when disabled by the output control.
4. The output are measured one at a time with one transition per measurement.

7.

Notes: 1. Input waveform : $\mathrm{PRR} \leq 1 \mathrm{MHz}$, duty cycle $50 \%, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
2. The output are measured one at a time with one transition per measurement.

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com)
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes
5. Renesas Techner system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited
7. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

