ST1152B

Version : A.002

Issue Date : 2009/09/28

File Name : SP-ST1152B-A.002.doc

Total Pages: 10

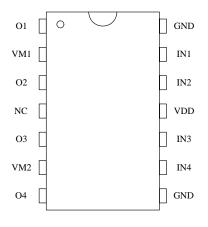
Low-saturation, Low-voltage Bi-directional Motor Driver

9-7F-1, Prosperity Road I, Science Based Industrial Park, Hsin-Chu, Taiwan 300, R.O.C.

Tel: 886-3-5645656 Fax: 886-3-5645626

ST1152B

Low-saturation, Low-voltage **Bi-directional Motor Driver**


General Specifications

The device is a two-channel low-saturation bi-directional motor driver IC. The design is optimal for stepper-motor applications, such as toy, cameras, printers or other portable devices.

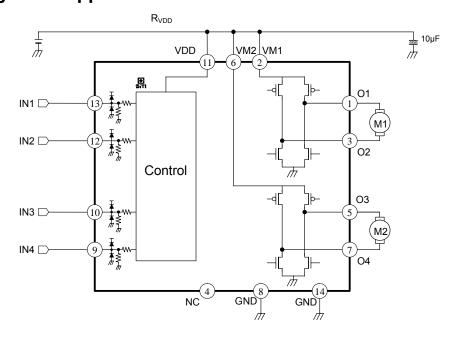
Features and Benefits

- Low voltage operation ($V_{DD \, min} = V_{S1 \, min} = V_{S2 \, min} = 1.5 V$)
- High current output (max. 1.5A/channel)
- Built-in thermal shutdown circuit
- Built-in pull down resistor
- Low saturation voltage (Upper transistor + low transistor residual voltage; 0.3V typ. at 400mA, 0.6V typ. at 750mA)
- Parallel connection (two-channel driver: Upper transistor + low transistor residual; 0.4V typ. at 800mA)
- Separate control logic power supply and motor driver power supply
- Brake function
- High output sinking and driving capability
- Thin, highly reliable package (DIP-14,SOP14)

Pin Assignment

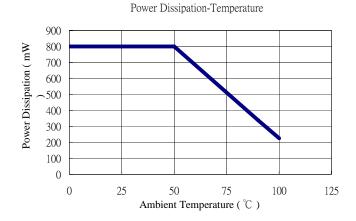
Pin NO.	Pin Name	Description
1	01	Output sinking / driving pin
2	VM1	Power supply pin for driver
3	O2	Output sinking / driving pin
4	NC	No connection
5	O3	Output sinking / driving pin
6	VM2	Power supply pin for driver
7	04	Output sinking / driving pin
8	GND	Ground pin
9	IN4	Input pin 4 that determines driving mode
10	IN3	Input pin 3 that determines driving mode
11	VDD	Power supply pin for controller.
12	IN2	Input pin 2 that determines driving mode
13	IN1	Input pin 1 that determines driving mode
14	GND	Ground pin

Characteristic	Symbol	Rating	Unit
Supply Valtage	V_{DD}	7.0	V
Supply Voltage	V_{M}	7.0	V
Input Voltage	V _{IN}	V _{DD} +0.4	V
I _{ODC} Maxium Current Per Channel (DIP14)	I _{ODC1}	1.5	Α
I _{ODC} Maxium Current Per Channel (SOP14)	I _{ODC2}	1.3	Α
Power Dissipation	P_D	800	mW
Operating Temperature Range	T _{OPR}	-40 ~ 150	°C
Storage Temperature Range	T _{STG}	-65 ~ 150	°C

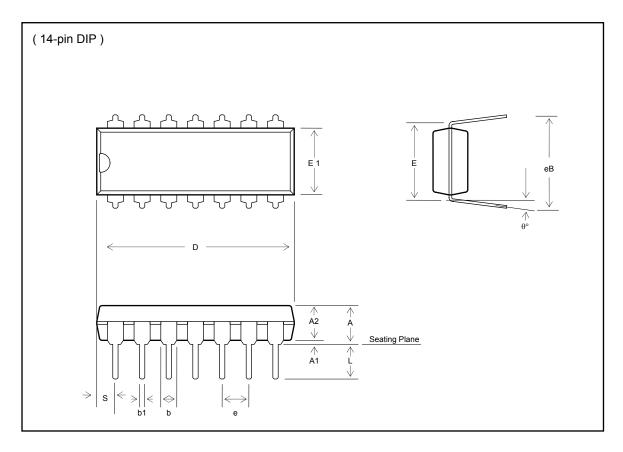

Electrical Characteristic (Unless otherwise noted, T_A = 25 $^{\circ}$ C & V_{DD} = V_M = 3 $^{\circ}$ V)

Characteristic	Sym.	Condition		Limit		Unit
Characteristic	Sylli.	Condition	Min.	Тур.	Max.	Offic
Supply Voltage	V_{DD}		1.5	3	7.0	V
Supply voltage	Vs		1.5	3	7.0	V
Supply Current	I _{DD0}	V _{IN1, IN2, IN3, IN4} = 0V		0.1	10	μ A
(I _{DD} + I _S)	I _{DD1}	V _{IN1} =3V, V _{IN2, IN3, IN4} =0V		0.1	1	mA
IN1 / IN2 / IN3 / IN4 Inpu	ıt Termin	al (T _J = 25°C)				
Input Voltage "H"	V _{IH}	-	0.5*V _{DD}	-	V _{DD} +0.4	V
Input Voltage "L"	V _{IL}	•	-0.4	-	0.2*V _{DD}	V
Input Current "H"	I _{IH}	$V_{IN} = V_{DD} = 3V$	30	50	70	μ A
Input Current "L"	I _{IL}	V _{IN} = 0 V	-	-	±5	μ A
O1 / O2 / O3 / O4 Outpu	t Termin	al (T _J = 25°ℂ)				
	V _{OUT1}	I _{OUT} = 200 mA	-	0.15	0.3	V
	V _{OUT2}	I _{OUT} = 400 mA	-	0.3	0.6	V
Output Voltage	V _{OUT3}	I _{OUT} = 750 mA	-	0.6	0.95	V
(upper + lower)	V _{OUT4}	I _{OUT} = 400 mA (parallel connection)	-	0.2	0.35	V
	V _{OUT5}	I _{OUT} = 800 mA (parallel connection)	-	0.4	0.7	V
Thermal Protection Circ	uit					
Protection Temperature	T _{TSD}	V _{EN} =VDD		150		$^{\circ}\!\mathbb{C}$

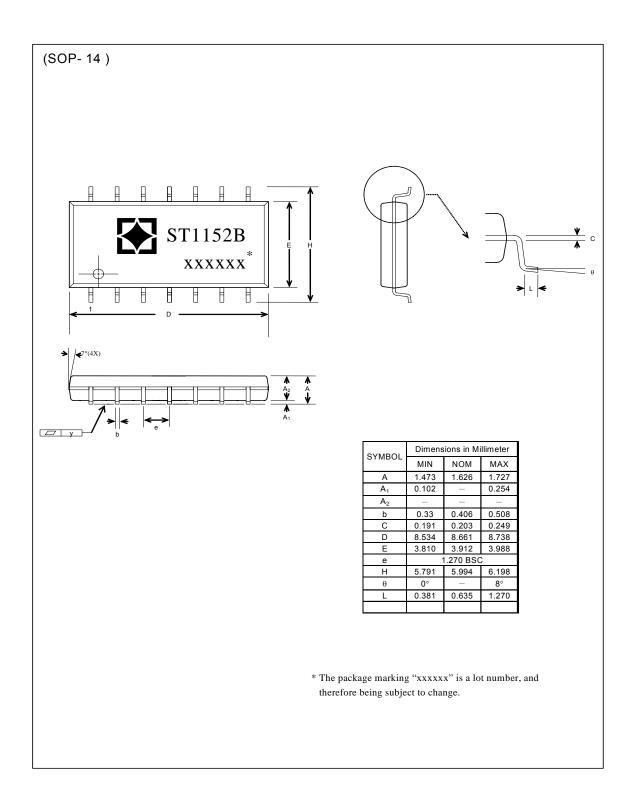
Truth Table


IN1 / IN3	IN2 / IN4	01 / 03	02 / 04	Mode
Н	L	Н	L	Forward
L	Н	L	Н	Reverse
Н	Н	Н	Н	Brake
L	L	OFF	OFF	Standby

Block Diagram & Application Circuit



Application Notes


The power dissipated by the IC varies widely with the supply voltage, the output current, and loading. It is important to ensure the application does not exceed the allowable power dissipation of the IC package. The recommended motor driver power dissipation versus temperature is depicted as follows:

Package Specification

OVADOL		DIMENSION	
SYMBOL		(mm)	
	MIN.	NOM.	MAX.
Α			5.334
A1	0.381		
A2	3.175	3.302	3.429
b	1.300	1.500	1.700
b1	0.400	0.480	0.560
D	18.669	19.495	20.320
E	7.366	7.620	7.874
E1	6.223	6.812	7.400
е	2.290	2.540	2.790
eB	8.509	9.017	9.525
L	2.540	3.175	3.810
S			2.390
θ°	0	7	15

Pad Windows Location

☐ The following table and figure show the pad windows location in layout view.

Unit: um

Pad	PAD Name			PAD Size
NO	0.4	· · · · · ·	,Y)	00)/00
1	01	544	2309	90X90
2	O1	669	2309	90X90
2 3	VM1	193	1912	90X90
4	VM1	318	1912	90X90
5	O2	544	1516	90X90
6	O2	669	1516	90X90
7	O3	544	1035	90X90
8 9	O3	669	1035	90X90
9	VM2	193	639	90X90
10	VM2	318	639	90X90
11	O4	544	242	90X90
12	O4	669	242	90X90
13	VSS	1033	639	90X90
14	VSS	1153	639	90X90
15	IN4	1424	811	80X80
16	IN3	1424	1018	80X80
17	VDD	1424	1204	90X90
18	IN2	1424	1533	80X80
19	IN1	1424	1740	80X80
20	VSS	1033	1912	90X90
21	VSS	1153	1912	90X90

	9 10			3 4	
11 12		7 8	5 6		
	13 14			20 21	
		17 16 15	18	19	

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.

Silicon Touch Technology, Inc. reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.