ON Semiconductor[®]

ASM3P2780A

Peak EMI Reducing Solution

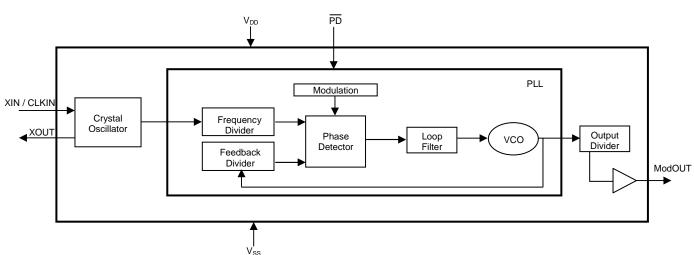
Features

- Generates an EMI optimized clock signal at the output.
- Integrated loop filter components.
- Operates with a 3.3 / 2.5V Supply.
- Operating current less than 5mA.
- CMOS design.
- Input frequency range: 30MHz to 50MHz for 2.5V 30MHz to 50MHz for 3.3V
- Generates a 1X low EMI spread spectrum clock of the input frequency.
- Frequency deviation: ±0.75% (Typ) @ 46MHz Input Frequency.
- Available in 6L-TSOP (6L-TSOT-23) Package.

Product Description

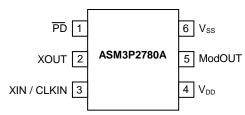
The ASM3P2780A is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. The ASM3P2780A reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of all clock dependent signals. The ASM3P2780A allows significant system cost savings by reducing the number of circuit board layers, ferrite beads and shielding that are traditionally required to pass EMI regulations.

The ASM3P2780A uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a proprietary all digital method.


The ASM3P2780A modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation.'

Applications

The ASM3P2780A is targeted towards all portable devices like MP3 players and digital still cameras.


Key Specifications

Description	Specification
Supply voltages	V _{DD} = 3.3V / 2.5V
Cycle-to-Cycle Jitter	±200pS (Typ)
Output Duty Cycle	45/55%
Modulation Rate Equation	F _{IN} /1280
Frequency Deviation	±0.75 (Typ) @ 46MHz

Block Diagram

Pin Configuration (6L-TSOP Package)

Pin Description

Pin#	Pin Name	Туре	Description			
1	PD	I	Power-down control pin. Pull low to enable power-down mode. Connect to V_{DD} if not used.			
2	2 XOUT O		Crystal connection. If using an external reference, this pin must be left unconnected.			
3	XIN / CLKIN	I	Crystal connection or external reference frequency input. This pin has dual functions. It can be connected either to an external crystal or an external reference clock.			
4	V _{DD}	Р	Power supply for the entire chip.			
5	ModOUT	0	Spread spectrum clock output.			
6	V _{SS}	Р	Ground connection.			

Specifications

Description		Specification
	For 2.5V Supply	
Frequency Range	For 3.3V Supply	30MHz < CLKIN < 50MHz
Modulation Equation		F _{IN} /1280
Frequency Deviation		±0.75% (Typ) @ 46MHz

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit			
$V_{\text{DD}},V_{\text{IN}}$	Voltage on any pin with respect to Ground	-0.5 to +4.6	V			
T _{STG}	Storage temperature	-65 to +125	C			
Ts	Max. Soldering Temperature (10 sec)	260	C			
TJ	Junction Temperature	150	C			
T _{DV} Static Discharge Voltage 2 KV (As per JEDEC STD22- A114-B)						
Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.						

Operating Conditions

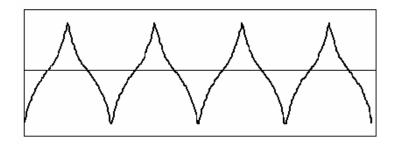
Parameter	Description	Min	Max	Unit
VDD	Supply Voltage	2.375	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	+85	C
CL	Load Capacitance		15	pF
C _{IN}	Input Capacitance		7	pF

Symbol	Parameter	Min	Тур	Max	Unit
V _{IL}	Input low voltage	V _{SS} -0.3		0.8	V
V _{IH}	Input high voltage	2.0		V _{DD} +0.3	V
I _{IL}	Input low current			-35	μA
IIH	Input high current			35	μA
I _{XOL}	XOUT output low current (@ 0.6V, $V_{DD} = 2.5V$)		3		mA
I _{XOH}	XOUT output high current (@ 1.8V, $V_{DD} = 2.5V$)		3		mA
V _{OL}	Output low voltage (V_{DD} = 2.5 V, I_{OL} = 8mA)			0.6	V
V _{OH}	Output high voltage (V_{DD} = 2.5 V, I_{OH} = 8mA)	1.8			V
I _{DD}	Static supply current ¹			10	uA
Icc	Dynamic supply current (2.5V, 46MHz and no load)		4.0		mA
V _{DD}	Operating Voltage	2.375	2.5	2.625	V
t _{ON}	Power-up time (first locked cycle after power-up) ²			5	mS
Z _{OUT}	Output impedance		50		Ω
	CLKIN pin and PD pin are pulled low. and XIN / CLKIN input are stable, PD pin is made high from low.				

DC Electrical Characteristics for 2.5V Supply

AC Electrical Characteristics for 2.5V Supply

Symbol	Parameter		Min	Тур	Max	Unit
CLKIN	Input frequency		30		50	MHz
ModOUT	Output frequency	Output frequency			50	MHz
4	Input Frequency = 30MHz Input Frequency = 50MHz	Input Frequency = 30MHz		±1.10		%
f _d			±0.65		/0	
t _{LH} 1	Output rise time (measure	Output rise time (measured from 0.7V to 1.7V)		1.3	1.6	nS
t _{HL} ¹	Output fall time (measured	Output fall time (measured from 1.7V to 0.7V)		0.8	1.0	nS
t _{JC}	Jitter (cycle-to-cycle)			±200		pS
t _D	Output duty cycle		45	50	55	%
Note: 1. t_{LH} and t_{HL} are	Note: 1. t _{LH} and t _{HL} are measured into a capacitive load of 15pF.					

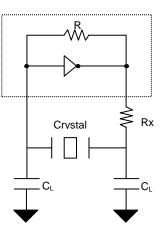

Symbol	Parameter	Min	Тур	Max	Unit
VIL	Input low voltage	V _{SS} -0.3		0.8	V
V _{IH}	Input high voltage	2.0		V _{DD} +0.3	V
IIL	Input low current			-35	μA
IIH	Input high current			35	μA
I _{XOL}	XOUT output low current (@ 0.4V, V _{DD} = 3.3V)		3		mA
I _{XOH}	XOUT output high current (@ 2.5V, $V_{DD} = 3.3V$)		3		mA
V _{OL}	Output low voltage (V_{DD} = 3.3 V, I_{OL} = 8mA)			0.4	V
V _{OH}	Output high voltage (V_{DD} = 3.3 V, I_{OH} = 8mA)	2.5			V
I _{DD}	Static supply current ¹			10	uA
Icc	Dynamic supply current (3.3V, 46MHz and no load)		5.0		mA
V _{DD}	Operating Voltage	2.7	3.3	3.6	V
t _{ON}	Power-up time (first locked cycle after power-up) ²			5	mS
Z _{OUT}	Output impedance		45		Ω
	/ CLKIN pin and PD pin are pulle <u>d lo</u> w. and XIN / CLKIN input are stable, PD pin is made high from low.				

DC Electrical Characteristics for 3.3V Supply

AC Electrical Characteristics for 3.3V Supply

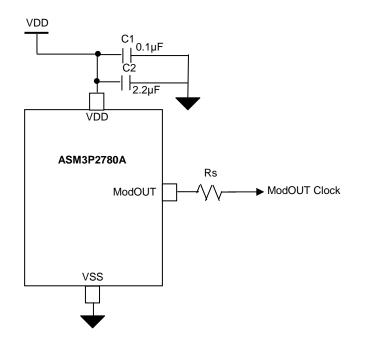
Symbol	Pa	Parameter			Max	Unit
CLKIN	Input frequency		30		50	MHz
ModOUT	Output frequency	Output frequency			50	MHz
4	Fraguency Deviation	Input Frequency = 30MHz		±1.10		0/
f _d	Frequency Deviation	Input Frequency = 50MHz		±0.65		%
t _{LH} 1	Output rise time (measur	Output rise time (measured from 0.8 to 2.0V)		1.1	1.4	nS
t _{HL} 1	Output fall time (measure	Output fall time (measured at 2.0V to 0.8V)		0.8	1.1	nS
t _{JC}	Jitter (cycle-to-cycle)	Jitter (cycle-to-cycle)		±200		pS
t _D	Output duty cycle	Output duty cycle		50	55	%
Note: 1. t_{LH} and t_{HL} are me	Note: 1. t _{LH} and t _{HL} are measured into a capacitive load of 15pF.					

Modulation Profile



Typical Crystal Specifications

Fundamental AT cut parallel resonant crystal				
Nominal frequency 33MHz				
Frequency tolerance	± 50 ppm or better at 25℃			
Operating temperature range	-25℃ to +85℃			
Storage temperature	-40℃ to +85℃			
Load capacitance(C _P)	18pF			
Shunt capacitance	7pF maximum			
ESR	25 Ω			


Note: Note: C_L is Load Capacitance and Rx is used to prevent oscillations at overtone frequency of the Fundamental frequency.

Typical Crystal Interface Circuit

 $\begin{aligned} C_L &= 2^*(C_P - C_S), \\ Where & C_P = Load \ capacitance \ of \ crystal \\ & C_S = Stray \ capacitance \ due \ to \ C_{IN,} \ PCB, \ Trace \ etc. \end{aligned}$

Typical Application Schematic

ASM3P2780A

Package Information

	Dimensions				
Symbol	In	ches	Milli	meters	
	Min	Max	Min	Мах	
А		0.04		1.00	
A1	0.00	0.004	0.00	0.10	
A2	0.033	0.036	0.84	0.90	
b	0.012	0.02	0.30	0.50	
н	0.00)5 BSC	0.127 BSC		
D	0.11	4 BSC	2.9	0 BSC	
В	0.0	6 BSC	1.6	0 BSC	
е	0.03	74 BSC	0.95	50 BSC	
С	0.11 BSC		2.8	0 BSC	
L	0.0118	0.02	0.30	0.50	
θ	0°	4°	0°	4°	

ASM3P2780A

Ordering Information

Part Number	Marking	Package Type	Temperature
ASM3P2780AF-06OR	G4L	6L-TSOP (6L-TSOT-23), TAPE & REEL, Pb Free	0℃ to +70℃

A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-free.

Licensed under US Patent #5,488,627 and #5,631,921.

Note: This product utilizes US Patent #6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003.

ON Semiconductor and ^(IIII) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PulseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable coopyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax:** 303-675-2176 or 800-344-3867 Toll Free USA/Canada **Email:** orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative