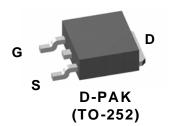
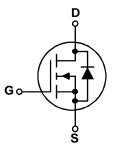


FDD3860 N-Channel PowerTrench[®] MOSFET 100V, 29A, 36mΩ

Features

- Max $r_{DS(on)} = 36m\Omega$ at $V_{GS} = 10V$, $I_D = 5.9A$
- High performance trench technology for extremely low r_{DS(on)}
- 100% UIL tested
- RoHS Compliant




General Description

This N-Channel MOSFET is rugged gate version of Fairchild Semiconductor's advanced Power Trench[®] process. This part is tailored for low $r_{DS(on)}$ and low Qg figure of merit, with avalanche ruggedness for a wide range of switching applications.

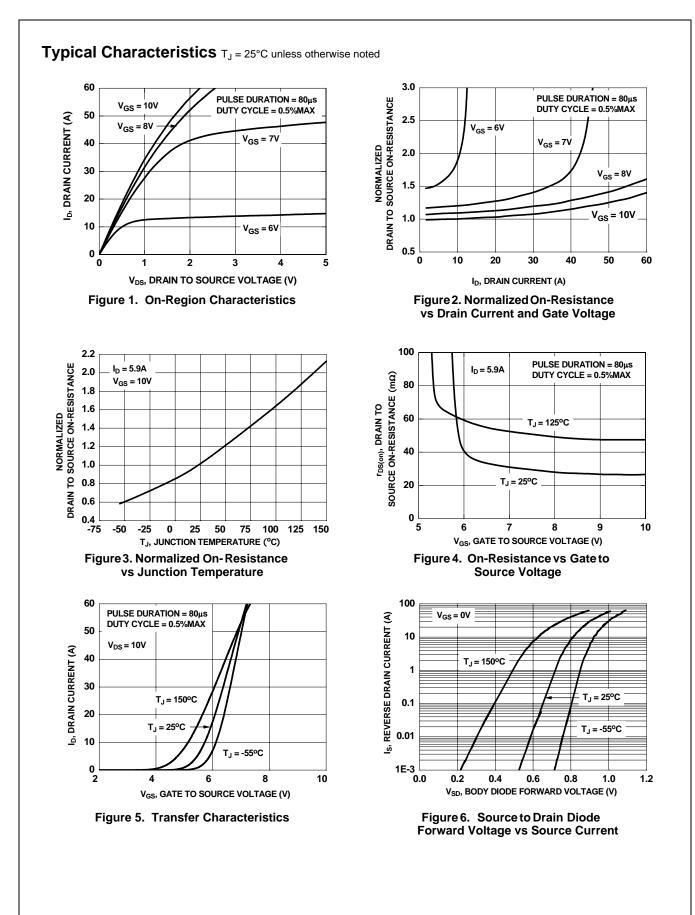
Applications

- DC-AC Conversion
- Synchronous Rectifier

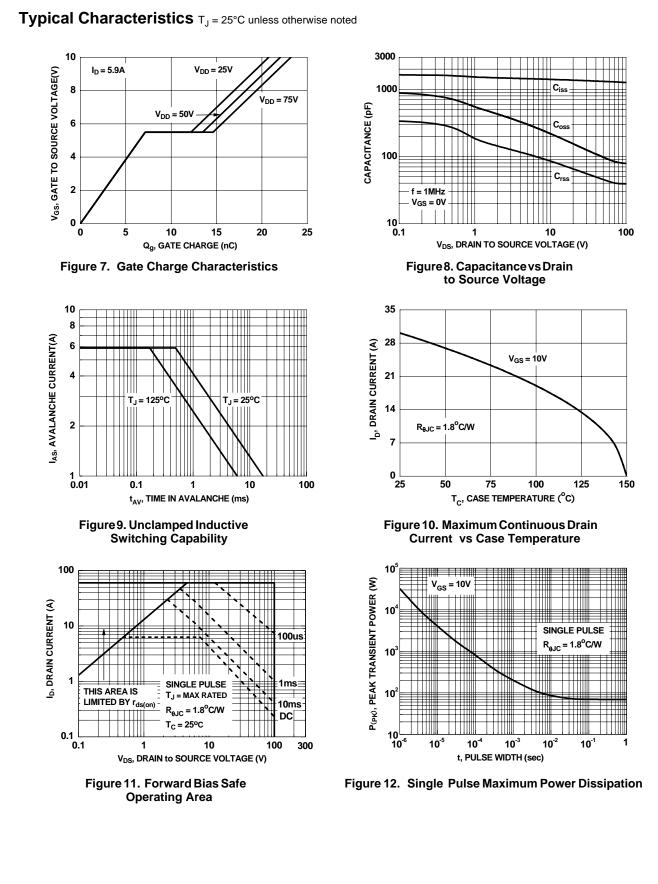
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

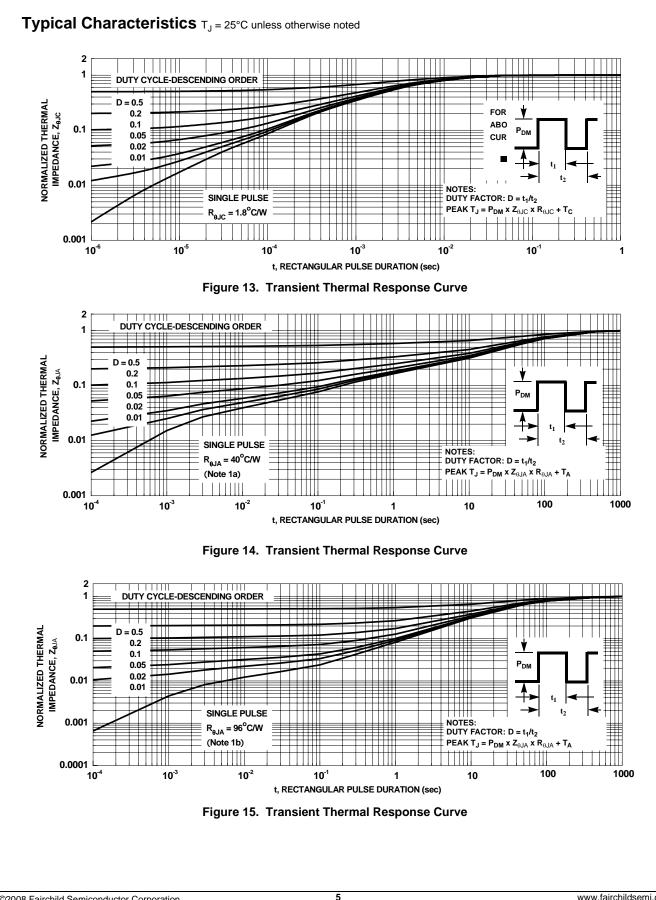
Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			100	V	
V _{GS}	Gate to Source Voltage			±20	V	
I _D	Drain Current -Continuous (Silicon limited)	$T_C = 25^{\circ}C$		29		
	-Continuous	$T_A = 25^{\circ}C$	(Note 1a)	6.2	Α	
	-Pulsed			60		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	121	mJ	
P _D	Power Dissipation	$T_{C} = 25^{\circ}C$		69	W	
	Power Dissipation	T _A = 25°C	(Note 1a)	3.1		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

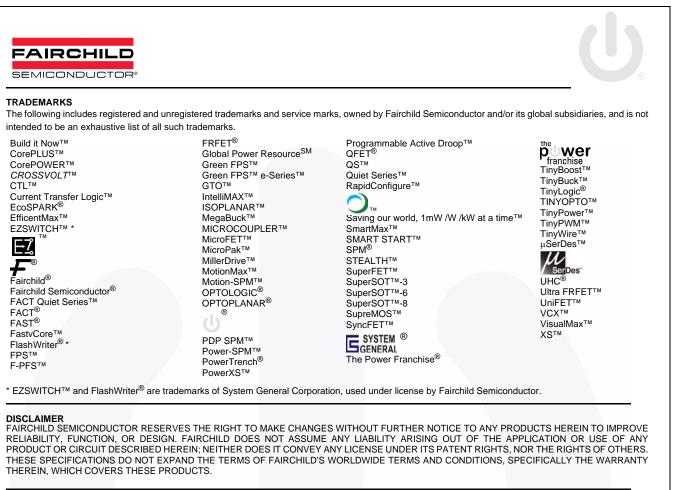

R_{\thetaJC}	Thermal Resistance, Junction to Case	1.8	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	40	C/ VV

Package Marking and Ordering Information


Device Marking	evice Marking Device		Reel Size	Tape Width	Quantity	
FDD3860	FDD3860	D-PAK (TO-252)	13"	12mm	2500 units	


October 2008

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	100			V
∆BV _{DSS}	Breakdown Voltage Temperature Coefficient	$I_{\rm D} = 250 \mu A$, referenced to 25°C		98		mV/°C
ΔT_{J}	Zero Gate Voltage Drain Current	V _{DS} = 80V, V _{GS} = 0V			1	μA
DSS	Gate to Source Leakage Current	$V_{\rm DS} = 600, V_{\rm GS} = 000$ $V_{\rm GS} = \pm 200, V_{\rm DS} = 000$			±100	nA
GSS		VGS - 1200, VDS - 00			100	10.4
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.5	3.8	4.5	V
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250\mu A$, referenced to $25^{\circ}C$		-11.4		mV/°C
	Static Drain to Source On Resistance	$V_{GS} = 10V, I_D = 5.9A$		29	36	mΩ
DS(on)	Static Drain to Source On Resistance	V_{GS} = 10V, I_{D} = 5.9A, T_{J} = 125°C		51	64	
Ĵfs	Forward Transconductance	V _{DS} = 10V, I _D = 5.9A		20		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance			1310	1740	pF
C _{oss}	Output Capacitance	$V_{DS} = 50V, V_{GS} = 0V,$		100	130	, pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		45	70	pF
R _g	Gate Resistance	f = 1MHz		1.6		Ω
	Characteristics				I	
	Characteristics			10		
d(on)	Turn-On Delay Time	$V_{DD} = 50V, I_D = 5.9A,$ $V_{GS} = 10V, R_{GEN} = 6\Omega$		16	29	ns
r	Rise Time			10	21	ns
d(off)	Turn-Off Delay Time			24	39	ns
f C	Fall Time			7	15	ns
כ ^d	Total Gate Charge at 10V Gate to Source Charge	V _{DD} = 50V, I _D = 5.9A		22 7.1	31	nC nC
ସୁ _{gs} ସୁ _{gd}	Gate to Drain "Miller" Charge			6.3		nC
				0.0		
Drain-Sou	Irce Diode Characteristics					1
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = 2.0A$ (Note 2) $V_{GS} = 0V, I_S = 5.9A$ (Note 2)		0.7 0.8	1.2 1.3	V
rr	Reverse Recovery Time			34	55	ns
Q _{rr}	Reverse Recovery Charge	— I _F = 5.9A, di/dt = 100A/μs		40	64	nC
	m of the junction-to-case and case-to-ambient thermal resinteed by design while $R_{\theta JA}$ is determined by the user's box		d as the sole	der mounting	surface of th	ne drain pi
	a) 40°C/W when mo 1 in ² pad of 2 oz		°C/W whe a minimum	n mounted		
	ulse Width < 300µs, Duty cycle < 2.0%. 25°C, L = 3mH, I _{AS} = 9A, V _{DD} = 100V, V _{GS} = 10V.					



FDD3860 N-Channel PowerTrench[®] MOSFET

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 13

www.fairchildsemi.com