DMN2100UDM
N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

Features

- Low On-Resistance
- $55 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{Gs}}=4.5 \mathrm{~V}$
- $70 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{Gs}}=2.5 \mathrm{~V}$
- $90 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=1.8 \mathrm{~V}$
- $\quad 130 \mathrm{~m} \Omega$ @ $\mathrm{V}_{\mathrm{GS}}=1.5 \mathrm{~V}$
- Low Gate Threshold Voltage
- Low Input Capacitance
- Fast Switching Speed
- ESD Protected Gate
- Lead Free By Design/RoHS Compliant (Note 2)
- "Green" Device (Note 3)
- Qualified to AEC-Q101 Standard for High Reliability

TOP VIEW

Please click here to visit our online spice models database

Mechanical Data

- Case: SOT-26
- Case Material: Molded Plastic, "Green" Molding Compound UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminal Connections: See Diagram
- Terminals: Finish - Matte Tin annealed over Copper leadframe. Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 3
- Ordering Information: See Page 3
- Weight: 0.015 grams (approximate)

SOT-26

Maximum Ratings $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Value	Units
Drain-Source Voltage	$V_{\text {DSS }}$	20	V
Gate-Source Voltage	$\mathrm{V}_{\text {GSS }}$	± 8	V
Drain Current (Note 1)	I_{D}	3.3	A
Pulsed Drain Current (Note 1)	I_{DM}	13	A

Thermal Characteristics $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Value	Units
Total Power Dissipation (Note 1)	P_{D}	900	mW
Thermal Resistance, Junction to Ambient	$\mathrm{R}_{\text {®JA }}$	139	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{J,} \mathrm{~T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 4)							
Drain-Source Breakdown Voltage	$\mathrm{BV}_{\mathrm{DSS}}$	20	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	
Zero Gate Voltage Drain Current	Idss	-	-	1	$\mu \mathrm{A}$	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}$	
Gate-Source Leakage	Igss	-	-	± 1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}= \pm 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	0.6	-	1.0	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	
Static Drain-Source On-Resistance	RDS (ON)	-	$\begin{aligned} & 32 \\ & 43 \\ & 56 \\ & 80 \end{aligned}$	$\begin{gathered} \hline 55 \\ 70 \\ 90 \\ 130 \end{gathered}$	$\mathrm{m} \Omega$	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=6 \mathrm{~A}$	
						$\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}$	
						$\mathrm{V}_{\mathrm{GS}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$	
						$\mathrm{V}_{\mathrm{GS}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$	
Forward Transfer Admittance	\|Y fs		-	8	-	S	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$
Diode Forward Voltage (Note 4)	$\mathrm{V}_{\text {SD }}$	-	0.7	1.1	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{IS}=2 \mathrm{~A}$	
DYNAMIC CHARACTERISTICS							
Input Capacitance	$\mathrm{C}_{\text {iss }}$	-	555	-	pF	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	
Output Capacitance	$\mathrm{C}_{\text {oss }}$	-	112	-	pF		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	-	84	-	pF		

Notes: 1. Device mounted on FR-4 PCB, or minimum recommended pad layout with 2oz. copper pads
2. No purposefully added lead
3. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead free/index.php.
4. Short duration pulse test used to minimize self-heating effect.

Fig. 3 On-Resistance vs. Drain Current \& Gate Voltage

Fig. 5 Gate Threshold Variation vs. Ambient Temperature

Fig. 2 Typical Transfer Characteristics

Fig. 4 Normalized Static Drain-Source On-Resistance vs. Ambient Temperature

Fig. 6 Typical Total Capacitance

Fig. 7 Reverse Drain Current vs. Source-Drain Voltage
Ordering Information (Note 5)

Part Number	Case	Packaging
DMN2100UDM-7	SOT-26	3000/Tape \& Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

Package Outline Dimensions

SOT-26				
Dim	Min	Max	Typ	
A	0.35	0.50	0.38	
B	1.50	1.70	1.60	
C	2.70	3.00	2.80	
D	-	-	0.95	
H	2.90	3.10	3.00	
J	0.013	0.10	0.05	
K	1.00	1.30	1.10	
L	0.35	0.55	0.40	
M	0.10	0.20	0.15	
α	0°	8°	-	
All Dimensions in	$\mathbf{m m}$			

Suggested Pad Layout

Dimensions	Value (in mm)
\mathbf{Z}	3.20
\mathbf{G}	1.60
\mathbf{X}	0.55
\mathbf{Y}	0.80
$\mathbf{C 1}$	2.40
$\mathbf{C} 2$	0.95

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT
Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

