
ARM946E-S
(Rev 1)

Technical Reference Manual
Copyright © 2001 ARM Limited. All rights reserved.
ARM DDI 0201A



 

ARM946E-S (Rev 1)
Technical Reference Manual

Copyright © 2001 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except 
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the 
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document 
may be adapted or reproduced in any material form except with the prior written permission of the copyright 
holder.

The product described in this document is subject to continuous developments and improvements. All 
particulars of the product and its use contained in this document are given by ARM in good faith. However, 
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or 
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable 
for any loss or damage arising from the use of any information in this document, or any error or omission in 
such information, or any incorrect use of the product.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.

Product Status

The information in this document is final (information on a developed product).

Web Address

http://www.arm.com

Change history

Date Issue Change

16th February 2001 A First release
ii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Contents
ARM946E-S (Rev 1)Technical Reference Manual

Preface
About this document ..................................................................................... xii
Further reading ............................................................................................. xv
Feedback ..................................................................................................... xvi

Chapter 1 Introduction
1.1 About the ARM946E-S (Rev 1) ...................................................................  1-2
1.2 Microprocessor block diagram ....................................................................  1-3

Chapter 2 Programmer’s Model
2.1 About the ARM946E-S (Rev 1) programmer’s model .................................  2-2
2.2 About the ARM9E-S programmer’s model ..................................................  2-3
2.3 CP15 register map summary ......................................................................  2-4

Chapter 3 Caches
3.1 Cache architecture ......................................................................................  3-2
3.2 ICache .........................................................................................................  3-6
3.3 DCache .......................................................................................................  3-8
3.4 Cache lockdown ........................................................................................  3-12
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. iii



Contents
Chapter 4 Protection Unit
4.1 About the protection unit .............................................................................  4-2
4.2 Memory regions ..........................................................................................  4-3
4.3 Overlapping regions ...................................................................................  4-6

Chapter 5 Tightly-coupled Memory Interface
5.1 ARM946E-S (Rev 1) TCM interface description .........................................  5-2
5.2 Using CP15 control register ........................................................................  5-3
5.3 Enabling the instruction tightly-coupled memory during soft reset .............  5-7
5.4 DTCM Accesses .........................................................................................  5-8
5.5 ITCM accesses ...........................................................................................  5-9

Chapter 6 Bus Interface Unit and Write Buffer
6.1 About the BIU and write buffer ...................................................................  6-2
6.2 AHB bus master interface ...........................................................................  6-3
6.3 Noncached Thumb instruction fetches .......................................................  6-9
6.4 AHB clocking ............................................................................................  6-10
6.5 The write buffer .........................................................................................  6-13

Chapter 7 Coprocessor Interface
7.1 About the coprocessor interface .................................................................  7-2
7.2 LDC/STC ....................................................................................................  7-4
7.3 MCR/MRC ..................................................................................................  7-8
7.4 Interlocked MCR .......................................................................................  7-10
7.5 CDP ..........................................................................................................  7-12
7.6 Privileged instructions ...............................................................................  7-13
7.7 Busy-waiting and interrupts ......................................................................  7-14

Chapter 8 Debug Support
8.1 About the debug interface ..........................................................................  8-2
8.2 Debug systems ...........................................................................................  8-4
8.3 The JTAG state machine ............................................................................  8-7
8.4 Scan chains ..............................................................................................  8-13
8.5 Debug access to the caches ....................................................................  8-19
8.6 Debug interface signals ............................................................................  8-21
8.7 ARM9E-S core clock domains ..................................................................  8-26
8.8 Determining the core and system state ....................................................  8-27
8.9 Overview of EmbeddedICE-RT ................................................................  8-28
8.10 Disabling EmbeddedICE-RT ....................................................................  8-30
8.11 The debug communications channel ........................................................  8-31
8.12 Real-time debug .......................................................................................  8-34
iv Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Contents
Chapter 9 ETM Interface
9.1 About the ETM interface .............................................................................  9-2
9.2 Enabling the ETM interface .........................................................................  9-4

Chapter 10 Test Support
10.1 About the ARM946E-S (Rev 1) test methodology .....................................  10-2
10.2 Scan insertion and ATPG .........................................................................  10-3
10.3 BIST of memory arrays .............................................................................  10-5

Appendix A AC Parameters
A.1 Timing diagrams ......................................................................................... A-2
A.2 AC timing parameter definitions ................................................................ A-12

Appendix B Signal Descriptions
B.1 Signal properties and requirements ............................................................ B-2
B.2 Clock interface signals ................................................................................ B-3
B.3 TCM interface signals ................................................................................. B-4
B.4 AHB signals ................................................................................................ B-5
B.5 Coprocessor interface signals ..................................................................... B-7
B.6 Debug signals ............................................................................................. B-9
B.7 JTAG signals ............................................................................................. B-11
B.8 Miscellaneous signals ............................................................................... B-12
B.9 ETM interface signals ............................................................................... B-13
B.10 INTEST wrapper signals ........................................................................... B-15
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. v



Contents
vi Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



List of Tables
ARM946E-S (Rev 1)Technical Reference Manual

Table 1-1 Location of block descriptions .......................................................  1-4
Table 2-1 CP15 register map ........................................................................  2-5
Table 2-2 CP15 terms and abbreviations ......................................................  2-6
Table 2-3 Register 0, ID code .......................................................................  2-7
Table 2-4 Cache type register format ............................................................  2-8
Table 2-5 Cache size encoding .....................................................................  2-9
Table 2-6 Cache associativity encoding ......................................................  2-10
Table 2-7 Tightly-coupled memory size register .........................................  2-11
Table 2-8 Memory size field ........................................................................  2-11
Table 2-9 Register 1, control register ..........................................................  2-12
Table 2-10 Programming instruction and data cachable bits ........................  2-16
Table 2-11 Programming data bufferable bits ...............................................  2-16
Table 2-12 Programming instruction and data 

access permission bits (extended) ..............................................  2-17
Table 2-13 Access permission encoding (extended) ....................................  2-18
Table 2-14 Instruction and data access permission bits (standard) ..............  2-18
Table 2-15 Access permission encoding (standard) .....................................  2-19
Table 2-16 Accessing protection region/base size registers .........................  2-20
Table 2-17 Protection region/base size register format ................................  2-20
Table 2-18 Area size encoding .....................................................................  2-21
Table 2-19 Cache operations ........................................................................  2-22
Table 2-20 Index fields for supported cache sizes ........................................  2-23
Table 2-21 Lockdown register format ............................................................  2-25
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. vii



Table 2-22 TCM region/base size register format ........................................  2-26
Table 2-23 Tightly-coupled memory area size encoding ..............................  2-27
Table 2-24 Register 15, BIST instructions ....................................................  2-29
Table 2-25 Register 15, implementation-specific BIST instructions .............  2-29
Table 2-26 RAM BIST control register bit definitions ....................................  2-30
Table 2-27 Test state register bit assignments .............................................  2-31
Table 2-28 Additional operations ..................................................................  2-32
Table 2-29 Index fields for supported cache sizes .......................................  2-34
Table 2-30 Trace control register .................................................................  2-34
Table 2-31 Trace control register bit assignments .......................................  2-35
Table 3-1 TAG and index fields for supported cache sizes ..........................  3-4
Table 3-2 Meaning of Cd bit values ..............................................................  3-9
Table 3-3 Calculating index addresses ......................................................  3-11
Table 4-1 Protection register format .............................................................  4-3
Table 4-2 Region size encoding ...................................................................  4-4
Table 6-1 Supported burst types ..................................................................  6-4
Table 6-2 Data write modes .......................................................................  6-13
Table 7-1 Handshake encoding ....................................................................  7-7
Table 8-1 Public instructions ......................................................................  8-10
Table 8-2 ARM946E-S (Rev 1) scan chain allocations ..............................  8-13
Table 8-3 Scan chain 1 bits ........................................................................  8-14
Table 8-4 Scan chain 15 addressing mode bit order ..................................  8-15
Table 8-5 Mapping of scan chain 15 address field to CP15 registers ........  8-15
Table 8-6 Status bit mapping of scan chain 15 address field

to CP15 registers ........................................................................  8-17
Table 8-7 Correlation between status bits and cache operations ...............  8-18
Table 8-8 Coprocessor 14 register map .....................................................  8-31
Table 10-1 Instruction BIST address and general registers .........................  10-7
Table 10-2 Data BIST address and general registers ..................................  10-7
Table A-1 Timing parameter definitions ......................................................  A-12
Table B-1 Clock interface signals .................................................................  B-3
Table B-2 TCM interface signals ...................................................................  B-4
Table B-3 AHB signals ..................................................................................  B-5
Table B-4 Coprocessor interface signals ......................................................  B-7
Table B-5 Debug signals ...............................................................................  B-9
Table B-6 JTAG signals ..............................................................................  B-11
Table B-7 Miscellaneous signals ................................................................  B-12
Table B-8 ETM interface signals .................................................................  B-13
Table B-9 INTEST wrapper signals ............................................................  B-15
viii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



List of Figures
ARM946E-S (Rev 1)Technical Reference Manual

Figure P-1 Key to timing diagram conventions ................................................ xiv
Figure 1-1 ARM946E-S block diagram ...........................................................  1-3
Figure 2-1 CP15 MRC and MCR bit pattern ...................................................  2-7
Figure 2-2 Index and segment format ..........................................................  2-23
Figure 2-3 ICache address format ................................................................  2-24
Figure 2-4 Process ID format .......................................................................  2-29
Figure 2-5 Index/segment format .................................................................  2-33
Figure 2-6 Data format TAG read/write operations ......................................  2-33
Figure 3-1 Example 8KB cache ......................................................................  3-3
Figure 3-2 Access address for a 4KB cache ..................................................  3-5
Figure 3-3 Register 7, Rd format ..................................................................  3-10
Figure 4-1 ARM946E-S protection unit ..........................................................  4-2
Figure 4-2 Overlapping memory regions ........................................................  4-6
Figure 5-1 TCM read cycle .............................................................................  5-2
Figure 5-2  Data write followed by data read of DTCM ..................................  5-8
Figure 5-3 Simultaneous instruction fetch and data read of ITCM ...............  5-10
Figure 5-4 Data Write followed by Data Read of ITCM ................................  5-11
Figure 5-5 Data Write followed by Instruction Fetch of ITCM .......................  5-12
Figure 5-6 Data Read followed by Instruction Fetch ....................................  5-13
Figure 5-7 Simultaneous Instruction fetch and data write ............................  5-14
Figure 5-8 Data write followed by simultaneous instruction fetch

and data read ..............................................................................  5-15
Figure 6-1 Linefetch transfer ..........................................................................  6-5
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. ix



Figure 6-2 Back-to-back linefetches ..............................................................  6-6
Figure 6-3 Nonsequential uncached accesses ..............................................  6-6
Figure 6-4 Data burst followed by instruction fetch ........................................  6-7
Figure 6-5 Crossing a 1KB boundary ............................................................  6-7
Figure 6-6 Uncached LDC sequence ............................................................  6-8
Figure 6-7 AHB clock relationships ..............................................................  6-11
Figure 6-8 ARM946E-S (Rev 1) CLK to AHB HCLK sampling ....................  6-12
Figure 7-1 Coprocessor clocking ...................................................................  7-2
Figure 7-2 LDC/STC cycle timing ..................................................................  7-4
Figure 7-3 MCR/MRC transfer timing with busy-wait .....................................  7-8
Figure 7-4 Interlocked MCR/MRC timing with busy-wait .............................  7-11
Figure 7-5 Late cancelled CDP ....................................................................  7-12
Figure 7-6 Privileged instructions ................................................................  7-13
Figure 7-7 Busy-waiting and interrupts ........................................................  7-15
Figure 8-1 Clock synchronization ..................................................................  8-3
Figure 8-2 Typical debug system ...................................................................  8-4
Figure 8-3 ARM9E-S block diagram ..............................................................  8-6
Figure 8-4 Test access port (TAP) controller state transitions .......................  8-8
Figure 8-5 TAG address format ...................................................................  8-19
Figure 8-6 Cache index register format .......................................................  8-20
Figure 8-7 Breakpoint timing ........................................................................  8-21
Figure 8-8 Watchpoint entry with data processing instruction .....................  8-23
Figure 8-9 Watchpoint entry with branch .....................................................  8-24
Figure 8-10 The ARM9E-S, TAP controller, and EmbeddedICE-RT .............  8-28
Figure 8-11 Debug comms channel status register .......................................  8-32
Figure 9-1 ARM946E-S (Rev 1) ETM interface .............................................  9-3
Figure A-1 Clock, reset, and AHB enable timing ............................................  A-2
Figure A-2 AHB bus request and grant related timing ...................................  A-3
Figure A-3 AHB bus master timing .................................................................  A-4
Figure A-4 Coprocessor interface timing ........................................................  A-5
Figure A-5 Debug interface timing .................................................................  A-6
Figure A-6 JTAG interface timing ...................................................................  A-7
Figure A-7 DBGSDOUT to DBGTDO timing ..................................................  A-8
Figure A-8 Exception and configuration timing ..............................................  A-8
Figure A-9 INTEST wrapper timing ................................................................  A-9
Figure A-10  TCM interface timing .................................................................  A-10
Figure A-11 ETM interface timing ..................................................................  A-11
x Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Preface

This preface introduces the ARM946E-S (Rev 1) processor and its reference 
documentation. It contains the following sections:

• About this document on page xii

• Further reading on page xv

• Feedback on page xvi.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. xi



Preface 
About this document

This document is a reference manual for the ARM946E-S (Rev 1) macrocell.

Intended audience

This document has been written for hardware and software engineers who want to 
design or develop products based upon the ARM946E-S (Rev 1) processor. It assumes 
no prior knowledge of ARM products.

Using this manual

This document is organized into the following chapters:

Chapter 1 Introduction 

This chapter provides an introduction to the ARM946E-S macrocell.

Chapter 2 Programmer’s Model 

This chapter describes the programmer’s model of the ARM946E-S and 
includes a summary of the ARM946E-S coprocessor registers.

Chapter 3 Caches 

This chapter describes the ARM946E-S cache implementation.

Chapter 4 Protection Unit 

This chapter describes the ARM946E-S memory protection unit.

Chapter 5 Tightly-coupled Memory Interface 

This chapter describes the requirements and operation of the 
tightly-coupled SRAM.

Chapter 6 Bus Interface Unit and Write Buffer 

This chapter describes the operation of the Bus Interface Unit and write 
buffer.

Chapter 7 Coprocessor Interface 

This chapter describes the coprocessor interface and the operation of 
common coprocessor instructions.

Chapter 8 Debug Support 

This chapter describes the debug support for the ARM946E-S macrocell 
and the EmbeddedICE-RT logic.
xii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Preface 
Chapter 9 ETM Interface 

This chapter describes the ETM interface, including details of how to 
enable the interface.

Chapter 10 Test Support 

This chapter describes the test methodology used for the ARM946E-S 
synthesized logic and tightly-coupled SRAM.

Appendix A AC Parameters 

This appendix describes the timing parameters applicable to the 
ARM946E-S macrocell.

Appendix B Signal Descriptions 

This appendix describes the signals used in the ARM946E-S macrocell.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface 
elements such as menu names. Can also be used for emphasis in 
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that can be entered at the keyboard, such as 
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or 
option name.

typewriter italic Denotes arguments to commands or functions where the argument 
is to be replaced by a specific value.

typewriter bold Denotes language keywords when used outside example code.

Timing diagram conventions

This manual contains a number of timing diagrams. The key shown in Figure P-1 on 
page xiv explains the components used in these diagrams. Any variations are clearly 
labeled when they occur. Therefore, no additional meaning must be attached unless 
specifically stated.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. xiii



Preface 
Figure P-1 Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus

Valid (correct) sampling point
xiv Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Preface 
Further reading

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not 
answered by this document, please contact info@arm.com or visit our web site at 
http://www.arm.com.

ARM publications

This document contains information that is specific to the ARM946E-S (Rev 1) core 
processor. You can refer to the following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM9E-S Technical Reference Manual (ARM DDI 0165)

• AMBA Specification (Rev 2.0) (ARM IHI 0011).

Other publications

This section lists relevant documents published by third parties:

• IEEE Std. 1149.1-1990, Standard Test Access Port and Boundary-Scan 
Architecture.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. xv



Preface 
Feedback

ARM Limited welcomes feedback both on the ARM946E-S (Rev 1) processor, and on 
the documentation.

Feedback on the ARM946E-S macrocell

If you have any comments or suggestions about this product, please contact your 
supplier giving:

• the product name

• a concise explanation of your comments

Feedback on the document

If you have any comments about this document, please send email to errata@arm.com 
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
xvi Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Chapter 1 
Introduction

This chapter introduces the ARM946E-S (Rev 1) processor. It contains the following 
sections:

• About the ARM946E-S (Rev 1) on page 1-2

• Microprocessor block diagram on page 1-3.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 1-1



Introduction 
1.1 About the ARM946E-S (Rev 1)

The ARM946E-S (Rev 1) processor is a synthesizable macrocell combining an ARM 
processor core with a configurable memory system. It is a member of the ARM9 Thumb 
family of high-performance, 32-bit system-on-chip processor solutions.

The ARM946E-S (Rev 1) processor has tightly-coupled SRAM memory, and 
instruction and data caches, and is targeted at a wide range of embedded applications 
where high-performance, low system cost, small die size, and low power are all 
important.

The ARM946E-S (Rev 1) processor macrocell is a Harvard architecture cached 
processor that provides a complete high-performance processor subsystem, including:

• An ARM9E-S RISC integer CPU core featuring: 

— ARMv5TE 32-bit instruction set with improved ARM/Thumb code 
interworking and enhanced multiplier designed for improved DSP 
performance

— ARM debug architecture with additional support for real-time debug. This 
allows critical exception handlers to execute while debugging the system.

• Support for external Tightly-Coupled Memory (TCM). A TCM interface is 
provided for each of the external instruction and data memory blocks. The size of 
both the Instruction and Data TCM blocks are implementor-specific and can 
range from 4KB to 1MB.

• Instruction and data caches. The design can be easily modified to allow any 
combination of caches from 4KB to 1MB.

• A protection unit that allows the memory to be protected in a simple manner, ideal 
for embedded control applications.

• An AMBA AHB bus interface. The ARM946E-S (Rev 1) processor interfaces to 
the rest of the system are through use of unified address and data buses. This 
interface is compatible with the AMBA AHB bus standard.

• Support for external coprocessors allowing floating point or other application 
specific hardware acceleration to be added. For coprocessor support, the 
instruction and data buses are exported along with simple handshaking signals.

• Support for the use of a scan test methodology for the standard cell logic and 
Built-In-Self-Test (BIST) for the tightly-coupled SRAM and caches.

• An interface to an external Embedded Trace Macrocell (ETM) to support 
real-time tracing of instructions and data.

Providing this complete high-frequency subsystem frees the system-on-a-chip designer 
to concentrate on design issues unique to their system. The synthesizable nature of the 
device eases integration into ASIC technologies.
1-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Introduction 
1.2 Microprocessor block diagram

The ARM946E-S (Rev 1) block diagram is shown in Figure 1-1.

Figure 1-1 ARM946E-S block diagram

ARM9E-S

Tightly-coupled memory interface
System control

coprocessor
(CP15)

External
coprocessor

interface

AHB
bus interface unit
and write buffer

ETM
interface

IA DA

WDATA

RDATAINSTR

Addr Addr Din

Data
cache

Instruction
cache

Memory
protection

unit

System
controller

Data
cache
control

Instruction
cache
control

AHB peripherals Coprocessors

ETM

Dout

Data
memory

Instruction
memory
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 1-3



Introduction 
The blocks shown in Figure 1-1 on page 1-3, with the exception of Instruction and Data 
Tightly-coupled memories (TCMs), which are external to the A946E-S (Rev 1), are 
described in the locations listed in Table 1-1.

Table 1-1 Location of block descriptions

Block Location of description

ARM9E-S (Rev 1) ARM9E-S (Rev 1)Technical Reference 
Manual

AHB bus interface unit and write buffer Chapter 6 Bus Interface Unit and Write 
Buffer

Tightly-coupled Memory interface Chapter 5 Tightly-coupled Memory Interface

System control coprocessor (CP15) Chapter 2 Programmer’s Model

External coprocessor interface Chapter 7 Coprocessor Interface

ETM interface Chapter 9 ETM Interface

System controller Chapter 2 Programmer’s Model

Memory protection unit Chapter 4 Protection Unit

Instruction cache Chapter 3 Caches

Data cache Chapter 3 Caches

Instruction cache control Chapter 2 Programmer’s Model and 
Chapter 3 Caches

Data cache control Chapter 2 Programmer’s Model and 
Chapter 3 Caches
1-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Chapter 2 
Programmer’s Model

This chapter describes the programmer’s model for the ARM946E-S (Rev 1) macrocell. 
It contains the following sections:

• About the ARM946E-S (Rev 1) programmer’s model on page 2-2

• About the ARM9E-S programmer’s model on page 2-3

• CP15 register map summary on page 2-4.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-1



Programmer’s Model 
2.1 About the ARM946E-S (Rev 1) programmer’s model

The programmer’s model for the ARM946E-S (Rev 1) macrocell primarily consists of 
the ARM9E-S core programmer’s model (see About the ARM9E-S programmer’s model 
on page 2-3). Additions to this model are required to control the operation of the 
ARM946E-S (Rev 1) internal coprocessors, and any coprocessor connected to the 
external coprocessor interface.

There are two internal coprocessors within the ARM946E-S (Rev 1):

• CP14 within the ARM9E-S core allows software access to the debug 
communications channel

• CP15 allows configuration of the caches, TCM, protection unit, write buffer, and 
other ARM946E-S (Rev 1) system options such as big or little-endian operation.

The registers defined in CP14 are accessible with MCR and MRC instructions, and are 
described in The debug communications channel on page 8-31.

The registers defined in CP15 are accessible with MCR and MRC instructions, and are 
described in CP15 register map summary on page 2-4. These instructions permit 
conditional access using the optional {cond} field.

Registers and operations provided by any coprocessors attached to the external 
coprocessor interface are accessible with appropriate coprocessor instructions.
2-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
2.2 About the ARM9E-S programmer’s model

The ARM9E-S processor core implements the ARMv5TE architecture, which includes 
the 32-bit ARM instruction set and the 16-bit Thumb instruction set. For a description 
of both instruction sets, see the ARM Architecture Reference Manual. Contact ARM for 
complete descriptions of both instruction sets.

2.2.1 Data Abort model

The ARM9E-S implements the base restored Data Abort model, which differs from the 
base updated Data Abort model implemented by ARM7TDMI.

The difference in the Data Abort model affects only a very small section of operating 
system code, the Data Abort handler. It does not affect user code. With the base restored 
Data Abort model, when a Data Abort exception occurs during the execution of a 
memory access instruction, the base register is always restored by the processor 
hardware to the value the register contains before the instruction is executed. This 
removes the requirement for the Data Abort handler to unwind any base register update 
that might have been specified by the aborted instruction.

The base restored Data Abort model significantly simplifies the Data Abort handler 
software.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-3



Programmer’s Model 
2.3 CP15 register map summary

The ARM946E-S (Rev 1) macrocell incorporates CP15 for system control. CP15 allows 
configuration of the caches, tightly-coupled SRAM, and protection unit. It also allows 
configuration of the ARM946E-S (Rev 1) system options including big or little-endian 
operation. 

This section contains the following:

• Accessing CP15 registers on page 2-6

• Register 0, ID code register on page 2-7

• Register 0, Cache type register on page 2-8

• Register 0, Tightly-coupled memory size register on page 2-10

• Register 1, Control register on page 2-12

• Register 2, Cache configuration registers on page 2-15

• Register 3, Write buffer control register on page 2-16

• Register 5, Access permission registers on page 2-17

• Register 6, Protection region/base size registers on page 2-19

• Register 7, Cache operations register on page 2-22

• Register 9, Cache lockdown registers on page 2-25

• Register 9, Tightly-coupled memory region registers on page 2-26.

• Register 13, Trace process identifier register on page 2-28

• Register 15, RAM and TAG BIST test registers on page 2-29

• Register 15, Test state register on page 2-31

• Register 15, Cache debug index register on page 2-32

• Register 15: Trace Control Register on page 2-34

The register map for CP15 is shown in Table 2-1 on page 2-5.
2-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
Table 2-1 CP15 register map

Register Read Write

0 ID code a Unpredictable

0 Cache type a

a. Register location provides access to more than one register. The register accessed depends on 
the value of the opcode_2 or CRm field. See the register description for details.

Unpredictable

0 Tightly-coupled memory sizeb

b. Separate registers for instruction and data. See the register description for details.

Unpredictable

1 Control Control

2 Cache configuration b Cache configuration b

3 Write buffer control Write buffer control

4 Unpredictable Unpredictable

5 Access permission b Access permission b

6 Protection region base and size a Protection region base and size a

7 Unpredictable Cache operations

8 Unpredictable Unpredictable

9 Cache lockdown b Cache lockdown b

9 Tightly-coupled memory region b Tightly-coupled memory region b

10 Unpredictable Unpredictable

11 Unpredictable Unpredictable

12 Unpredictable Unpredictable

13 Trace Process ID Trace Process ID

14 Unpredictable Unpredictable

15 RAM and TAG BIST test a RAM and TAG BIST test a

15 Test state a Test state a

15 Cache debug index a Cache debug index a

15 Trace control Trace control
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-5



Programmer’s Model 
2.3.1 Accessing CP15 registers

Table 2-2 on page 2-6 shows the terms and abbreviations used in this section.

In all cases, reading from, or writing any data values to any CP15 registers, including 
those fields specified as unpredictable or should be zero, does not cause any permanent 
damage.

All CP15 register bits that are defined and contain state, except V-Bit and the instruction 
RAM (ITCM) enable in register 1, are set to zero by HRESETn. V-bit takes the value 
of the VINITHI macrocell input pin, and the ITCM enable, the value of the INITRAM 
input when HRESETn is asserted.

that takes the value of macrocell input VINITHI when HRESETn is asserted.

ITCM and DTCM sizes in register 9 reflect the physical ITCM and DTCM sizes, as 
applied to input pins ITCMSize[3:0] and DTCMSize[3:0] respectively.

CP15 registers can only be accessed with MRC and MCR instructions in a privileged mode. 
The instruction bit pattern of the MCR and MRC instructions is shown in Figure 2-1 on 
page 2-7. 

Table 2-2 CP15 terms and abbreviations

Term Abbreviation Description

Unpredictable UNP For reads, the data returned when reading from this 
location is unpredictable. It can have any value.

For writes, writing to this location causes unpredictable 
behavior, or an unpredictable change in device 
configuration.

Undefined UND An instruction that accesses CP15 in the manner 
indicated takes the undefined instruction trap.

Should be zero SBZ When writing to this location, all bits of this field should 
be 0.

Should be one SBO When writing to this location, all bits of this field should 
be 1.
2-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
Figure 2-1 CP15 MRC and MCR bit pattern

The assembler for these instructions is:

MCR/MRC{cond} p15,opcode_1,Rd,CRn,CRm,opcode_2

Instructions CDP, LDC, and STC, along with unprivileged MRC and MCR instructions to CP15, 
cause the undefined instruction trap to be taken. The CRn field of MRC and MCR instructions 
specifies the coprocessor register to access. The CRm field and opcode_2 field specify a 
particular action when addressing registers.

Attempting to read from a nonreadable register, or writing to a nonwritable register 
causes unpredictable results. 

The opcode_1, opcode_2, and CRm fields should be zero, except when the values specified 
are used to select the desired operations, in all instructions that access CP15. Using 
other values results in unpredictable behavior.

2.3.2 Register 0, ID code register

This is a read-only register that returns a 32-bit device ID code. The ID code register is 
accessed by reading CP15 register 0 with the opcode_2 field set to any value other than 
1 or 2. For example:

MRC p15, 0, Rd, c0, c0, {0,3-7}; returns ID register

The contents of the ID code are shown in Table 2-3.

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

1 1 1 0 1 1 1 1 1

CRmopcode_2RdCRn

L

opcode_1Cond

Table 2-3 Register 0, ID code

Register bits Function Value

31:24 Implementor 0x41

23:20 Reserved (variant) 0x00
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-7



Programmer’s Model 
2.3.3 Register 0, Cache type register

This is a read-only register that contains information about the size and architecture of 
the Instruction Cache (ICache) and Data Cache (DCache), allowing operating systems 
to establish how to perform operations such as cache cleaning and lockdown. Future 
ARM cached processors will contain this register, allowing RTOS vendors to produce 
future-proof versions of their operating systems.

The cache type register is accessed by reading CP15 register 0 with the opcode_2 field 
set to 1. For example:

MCR p15,0,Rd,c0,c0,1; returns cache details

The format of the register is shown in Table 2-4.

19:16 Architecture version ARM5TE 0x05

15:4 Part number 0x946

3:0 Version (implementation-specific) Revision

Table 2-3 Register 0, ID code (continued)

Register bits Function Value

Table 2-4 Cache type register format

Register bits Function Value

31:29 Reserved 000

28:25 Cache type 0111

24 Harvard/Unified 1 (defines Harvard cache)

23:22 Reserved 00

21:18 DCache size Implementation-specific

17:15 DCache associativity Implementation-specific

14 DCache base size Implementation-specific

13:12 DCache words per line 10 (defines 8 words per line)

11:10 Reserved 00

9:6 ICache size Implementation-specific
2-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
Bits [28:25] indicate which major cache class the implementation falls into. 0x7 means 
that the cache provides:

• cache-clean-step operation

• cache-flush-step operation

• lock-down facilities.

Bits [21:18] give the data cache size. Bits [9:6] give the instruction cache size. Table 2-5 
lists the meaning of values used for cache size encoding.

5:3 ICache associativity Implementation-specific

2 ICache base size Implementation-specific

1:0 ICache words per line 10 (defines 8 words per line)

Table 2-5 Cache size encoding

Bits [21:18] and
bits[9:6]

Cache size

b0000 0KB

b0011 4KB

b0100 8KB

b0101 16KB

b0110 32KB

b0111 64KB

b1000 128KB

b1001 256KB

b1010 512KB

b1011 1MB

Table 2-4 Cache type register format (continued)

Register bits Function Value
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-9



Programmer’s Model 
Bits [17:15] give the data cache associativity. Bits [5:3] give the instruction cache 
associativity. Table 2-6 lists the meaning of values used for cache associativity 
encoding.

The cache associativity fields in the cache type register are implementation-specific 
(implementor-defined). Therefore, if the implementation has an instruction or data 
cache, the associativity for that cache is set to 010 to indicate a four-way set associative 
cache. If either cache is not included in a specific implementation, then the associativity 
field for that cache is set to 000 to indicate that the cache is absent. 

The cache base size and cache size fields are generated within the cache blocks to avoid 
having to resynthesize the design for different cache sizes:

• bit 14 gives the data cache base size

• bit 2 gives the instruction cache base size.

The base size bits are implementation-specific. If the implementation has an instruction 
or data cache, the base size bit for that cache is set to 0, indicating that the cache type 
parameters are valid. If either cache is not included for a specific implementation, the 
relevant base size is set to 1, indicating that the cache is absent.

2.3.4 Register 0, Tightly-coupled memory size register

This is a read-only register that returns the size of the tightly-coupled instruction and 
data RAMs integrated with the ARM946E-S (Rev 1) macrocell.

The tightly-coupled memory size register is accessed by reading CP15 register 0 with 
the opcode_2 field set to 2. For example:

MRC p15, 0, Rd, c0, c0, 2; returns tightly-coupled memory size register

Table 2-6 Cache associativity encoding

Bits [17:15] and
bits [5:3]

Associativity

000 Direct mapped

010 4
2-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
The register contains information about the size of the tightly-coupled memories. The 
format of the register is shown in Table 2-7.

The memory size parameters are implementation-specific. The values used are 
generated within the memory blocks. This allows the memory size to be changed 
without having to re-synthesize the full design. Bits [21:18] define the data RAM size. 
Bits [9:6] define the instruction RAM size. Table 2-8 shows the memory size field 
definitions for instruction and data RAM memory sizes.

Table 2-7 Tightly-coupled memory size register

Register bit Meaning Value

31:22 Reserved b0000000000

21:18 Data RAM size Implementation-specific

17:15 Reserved b000

14 Data RAM absent Implementation-specific

13:10 Reserved b0000

9:6 Instruction RAM size Implementation-specific

5:3 Reserved b000

2 Instruction RAM absent Implementation-specific

1:0 Reserved b00

Table 2-8 Memory size field

Bits [21:8] and bits 
[9:6]

Tightly-coupled 
RAM size 

b0000 0KB

b0011 4KB

b0100 8KB 

b0101 16KB

b0110 32KB

b0111 64KB

b1000 128KB
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-11



Programmer’s Model 
If the tightly-coupled memory is absent, then the relevant RAM absent bit (bit 14 or bit 
2) in the tightly-coupled memory register should be one. If tightly-coupled memory is 
present within the design, the relevant RAM absent bit should be zero.

2.3.5 Register 1, Control register

This register contains the control bits of the ARM946E-S (Rev 1). All reserved bits must 
either be written with zero or one, as indicated, or written using read-modify-write. The 
reserved bits have an unpredictable value when read. To read and write this register:

MRC p15, 0, Rd, c1, c0, 0; read control register
MCR p15, 0, Rd, c1, c0, 0; write control register

Table 2-9 lists the functions controlled by register 1.

b1001 256KB

b1010 512KB

b1011 1MB

Table 2-8 Memory size field (continued)

Bits [21:8] and bits 
[9:6]

Tightly-coupled 
RAM size 

Table 2-9 Register 1, control register

Register bit Function

31:20 Reserved (SBZ)

19 ITCM load mode

18 ITCM enable

17 DTCM load mode

16 DTCM enable

15 Configure disable loading TBIT

14 Round-robin replacement

13 Alternate vector select V-BIT

12 ICache enable

11:8 Reserved (SBZ)
2-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
The bits in the control register have the following functions.

Bit 19, Instruction RAM load mode

This bit controls the operation of the instruction RAM load mode.

You can use the instruction RAM load mode for initializing the instruction RAM. The 
instruction RAM load mode allows you to load data into ARM registers from either data 
cache or main memory, and then write to the same address but within the 
tightly-coupled instruction RAM. This allows you to copy boot code from memory 
located at address 0x0 into the instruction RAM which, when enabled, also exists at 
address 0x0. The operation of the load mode is described in ITCM load mode on 
page 5-3. 

At reset this bit is cleared.

Bit 18, Instruction RAM enable

This bit controls operation of the tightly-coupled instruction RAM. When the 
instruction RAM is enabled, all instruction and data accesses to the instruction RAM 
address range access the instruction RAM.

At reset this bit this bit takes the value of the input pin INITRAM.

Bit 17, Data RAM load mode

This bit controls the operation of the data RAM load mode.You can use the data RAM 
load mode for initializing the data RAM. The data RAM load mode allows you to load 
data into ARM registers from either data cache or main memory, and then write to the 
same address but within the tightly-coupled data RAM. The operation of the load mode 
is described in DTCM load mode on page 5-5. 

At reset this bit is cleared.

7 Big-endian

6:3 Reserved (SBO)

2 DCache enable

1 Reserved (SBZ)

0 Protection unit enable

Table 2-9 Register 1, control register (continued)

Register bit Function
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-13



Programmer’s Model 
Bit 16, Data RAM enable

This bit controls operation of the tightly-coupled data RAM. When the data RAM is 
enabled, it takes precedence over the data cache and AHB for data accesses.

At reset this bit is cleared.

Bit 15, Configure disable loading TBIT 

This bit controls the behavior of load PC instructions. When LOW the 
ARMv5TE-specific behavior is enabled, and bit 0 of the loaded data is used to control 
the entry into Thumb state when the PC (r15) is the destination register. When HIGH, 
this ARMv5TE behavior is disabled.

At reset this bit is cleared.

Bit 14, Round-robin replacement

This bit controls the cache replacement algorithm.

When HIGH, round-robin replacement is used. When LOW, a pseudo-random 
replacement algorithm is used.

At reset this bit is cleared.

Bit 13, Alternate vectors select

This bit controls the base address used for the exception vectors. 

When LOW, the base address for the exception vectors is 0x00000000. When HIGH, the 
base address is 0xFFFF0000.

Note

 This bit is initialized either HIGH or LOW during system reset, depending on the value 
of the input pin, VINITHI. This allows you to define the exception vector location 
during reset to suit the boot mechanism of the application. You can then reprogram this 
bit as required following system reset.

Bit 12, ICache enable

Controls the behavior of the ICache. To use the instruction cache, both the protection 
unit enable bit (bit 0) and the ICache enable bit must be HIGH. This can be done with 
a single write to register 1.

At reset this bit is cleared.
2-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
Bit 7, Endian

 Selects the endian configuration of the ARM946E-S (Rev 1). When this bit is HIGH, 
big-endian configuration is selected. When LOW, little-endian configuration is selected. 

At reset this bit is cleared.

Bit 2, DCache enable

This bit controls the behavior of the DCache.

To use the data cache, both the protection unit enable bit (bit 0) and the DCache enable 
bit must be HIGH. This can be done with a single write to register 1.

At reset this bit is cleared.

Bit 0, Protection unit enable

This bit controls the operation of the ARM946E-S (Rev 1) protection unit.

At reset this bit is cleared. This disables the protection unit, and as a result disables the 
instruction and data caches and the write buffer.

At least one protection region (see Register 6, Protection region/base size registers on 
page 2-19 and Chapter 4 Protection Unit) must be programmed before the protection 
unit is enabled.

2.3.6 Register 2, Cache configuration registers

These registers contain the cachable attributes for the eight areas of memory. Individual 
control is provided for the I and D caches. If the opcode_2 field = 0, then the data cache 
bits are programmed. If the opcode_2 field = 1, then the instruction cache bits are 
programmed. To read and write these registers:

MRC p15, 0, Rd, c2, c0, 0; read data cachable bits
MRC p15, 0, Rd, c2, c0, 1; read instruction cachable bits
MCR p15, 0, Rd, c2, c0, 0; write data cachable bits
MCR p15, 0, Rd, c2, c0, 1; write instruction cachable bits
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-15



Programmer’s Model 
The format for the cachable bits in data and instruction areas is the same, and is given 
in Table 2-10.

2.3.7 Register 3, Write buffer control register

This register contains the write buffer control (bufferable) attribute for the eight areas 
of memory.

Note
 This register only applies to data accesses.

To read and write the write buffer control register:

MCR p15, 0, Rd, c3, c0, 0; write data bufferable bits
MRC p15, 0, Rd, c3, c0, 0; read data bufferable bits

The format for the bufferable bits in the data areas is given in Table 2-11.

Table 2-10 Programming instruction and data cachable bits

Register bit Function

7 Cachable bit (C_7) for area 7

6 Cachable bit (C_6) for area 6

5 Cachable bit (C_5) for area 5

4 Cachable bit (C_4) for area 4

3 Cachable bit (C_3) for area 3

2 Cachable bit (C_2) for area 2

1 Cachable bit (C_1) for area 1

0 Cachable bit (C_0) for area 0

Table 2-11 Programming data bufferable bits

Register bit Function

7 Bufferable bit (B_7) for data area 7

6 Bufferable bit (B_6) for data area 6

5 Bufferable bit (B_5) for data area 5
2-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
2.3.8 Register 5, Access permission registers

 There are four access permission registers. These contain the access permission bits for 
the instruction and data protection regions. The opcode_2 field of the MCR/MRC instruction 
determines whether the standard or extended registers are accessed, and if the 
instruction or data access permissions are accessed. To read and write the extended 
registers:

MRC p15, 0, Rd, c5, c0, 2; read data access permission bits
MRC p15, 0, Rd, c5, c0, 3; read instruction access permission bits
MCR p15, 0, Rd, c5, c0, 2; write data access permission bits
MCR p15, 0, Rd, c5, c0, 3; write instruction access permission bits

The format for the access permission bits in instruction and data areas is the same, and 
is given in Table 2-12. 

4 Bufferable bit (B_4) for data area 4

3 Bufferable bit (B_3) for data area 3

2 Bufferable bit (B_2) for data area 2

1 Bufferable bit (B_1) for data area 1

0 Bufferable bit (B_0) for data area 0

Table 2-11 Programming data bufferable bits (continued)

Register bit Function

Table 2-12 Programming instruction and data access permission bits (extended)

Register bit Function

31:28 Ap7[3:0] bits for area 7

27:24 Ap6[3:0] bits for area 6

23:20 Ap5[3:0] bits for area 5

19:16 Ap4[3:0] bits for area 4

15:12 Ap3[3:0] bits for area 3

11:8 Ap2[3:0] bits for area 2

7:4 Ap1[3:0] bits for area 1

3:0 Ap0[3:0] bits for area 0
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-17



Programmer’s Model 
The values of the IApn[3:0] and DApn[3:0] bits define the access permission for each 
area of memory, n. The encoding is shown in Table 2-13.

The following instructions are supported for backwards compatibility with existing 
ARM processors with memory protection, and access the standard registers:

MRC p15, 0, Rd, c5, c0, 0; read data access permission bits
MRC p15, 0, Rd, c5, c0, 1; read instruction access permission bits
MCR p15, 0, Rd, c5, c0, 0; write data access permission bits
MCR p15, 0, Rd, c5, c0, 1; write instruction access permission bits

The data format for these registers is shown in Table 2-14.

Table 2-13 Access permission encoding (extended)

I/DApn[3:0]
Access permission

Privileged User

0000 No access No access

0001 Read/write access No access

0010 Read/write access Read-only

0011 Read/write access Read/write access

0100 UNP UNP

0101 Read-only No access

0110 Read-only Read-only

0111 UNP UNP

1xxx UNP UNP

Table 2-14 Instruction and data access permission bits (standard)

Register bit Function

15:14 Ap7[1:0] bits for area 7

13:12 Ap6[1:0] bits for area 6

11:10 Ap5[1:0] bits for area 5

9:8 Ap4[1:0] bits for area 4

7:6 Ap3[1:0] bits for area 3
2-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
The values of the IApn[1:0] and DApn[1:0] bits define the access permission for each 
area of memory, n. The encoding is shown in Table 2-15.

Note
 On reset, the values of IApn and DApn bits are undefined. However, because on reset 
the protection unit is disabled, this is as though all areas are set to privileged mode 
read/write access, User read/write access. Therefore, you must program the access 
permission registers before you enable the protection unit.

If the access permissions are initially programmed using the extended access 
permissions (see Table 2-13 on page 2-18), and then reprogrammed using the standard 
access permissions (see Table 2-15 on page 2-19), the access permissions applied are as 
if Apn[3:2] are programmed to 00 in Table 2-13 on page 2-18.

2.3.9 Register 6, Protection region/base size registers

These registers define the protection region base address/size registers. You can define 
eight programmable regions using these registers. The values are ignored when the 
protection unit is disabled, and on reset only the region enable bit for each region is reset 
to 0. All other bits are undefined. You must program at least one memory region before 
you enable the protection unit.

5:4 Ap2[1:0] bits for area 2

3:2 Ap1[1:0] bits for area 1

1:0 Ap0[1:0] bits for area 0

Table 2-15 Access permission encoding (standard)

I/DApn[1:0]
Access permission

Privileged User

00 No access No access

01 Read/write access No access

10 Read/write access Read-only

11 Read/write access Read/write access

Table 2-14 Instruction and data access permission bits (standard) (continued)

Register bit Function
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-19



Programmer’s Model 
The instructions used to access the eight protection region/base size registers are listed 
in Table 2-16.

Each protection region/base size register has the format shown in Table 2-17.

You must align the region base to an area size boundary, where the area size is defined 
in its respective protection region register. The behavior is unpredictable if this is not 
done.

Table 2-16 Accessing protection region/base size registers

ARM instruction
Protection region/ 
base size register

MCR/MRC p15, 0, Rd, c6, c7, 0 Memory region 7

MCR/MRC p15, 0, Rd, c6, c6, 0 Memory region 6

MCR/MRC p15, 0, Rd, c6, c5, 0 Memory region 5

MCR/MRC p15, 0, Rd, c6, c4, 0 Memory region 4

MCR/MRC p15, 0, Rd, c6, c3, 0 Memory region 3

MCR/MRC p15, 0, Rd, c6, c2, 0 Memory region 2

MCR/MRC p15, 0, Rd, c6, c1, 0 Memory region 1

MCR/MRC p15, 0, Rd, c6, c0, 0 Memory region 0

Table 2-17 Protection region/base size register format

Register bit Function

31:12 Region base

5:1 Area size

0 1 = Region enable

0 = Region disable

Reset to 0.
2-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
Area sizes are encoded as shown in Table 2-18.

Table 2-18 Area size encoding

Bit encoding Area size

00000 to 01010 Reserved (UNP)

01011 4KB

01100 8KB

01101 16KB

01110 32KB

01111 64KB

10000 128KB

10001 256KB

10010 512KB

10011 1MB

10100 2MB

10101 4MB

10110 8MB

10111 16MB

11000 32MB

11001 64MB

11010 128MB

11011 256MB

11100 512MB

11101 1GB

11110 2GB

11111 4GB
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-21



Programmer’s Model 
Example base setting

An 8KB size region aligned to an 8KB boundary at 0x0000 2000 (covering the address 
range 0x0000 2000 to 0x0000 3FFF) is programmed as 0x0000 2019.

The following instruction is supported for backward compatibility with other ARM 
processors using a memory protection unit:

MRC p15, 0, Rd, c6, CRm, 1; returns protection region register

This instruction allows the protection region registers to be read.

Writes to the protection region/base size registers with opcode_2 set to 1 are 
unpredictable.

2.3.10 Register 7, Cache operations register

You can use a write to this register to perform the following operations:

• flush ICache and DCache

• prefetch an ICache line

• wait for interrupt 

• drain the write buffer

• clean and flush the DCache.

The ARM946E-S (Rev 1) macrocell uses a subset of the ARM architecture v4 functions 
(defined in the ARM Architecture Reference Manual). The available operations are 
summarized in Table 2-19.

Table 2-19 Cache operations

ARM instruction Function Data

MCR p15, 0, Rd, c7, c5, 0 Flush ICache SBZa

MCR p15, 0, Rd, c7, c5, 1 Flush ICache single entry Address

MCR p15, 0, Rd, c7, c13, 1 Prefetch ICache line Address

MCR p15, 0, Rd, c7, c6, 0 Flush DCache SBZa

MCR p15, 0, Rd, c7, c6, 1 Flush DCache single entry Address

MCR p15, 0, Rd, c7, c10, 1 Clean DCache entry Address
2-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
The data format for index/segment operations is shown in Figure 2-2 on page 2-23.

Figure 2-2 Index and segment format

The size of the index varies depending on the implemented cache size. Table 2-20 on 
page 2-23 shows how the index size changes for the cache sizes supported by the 
ARM946E-S (Rev 1) macrocell.

MCR p15, 0, Rd, c7, c14, 1 Clean and flush DCache entry Address

MCR p15, 0, Rd, c7, c10, 2 Clean DCache entry Index/segment

MCR p15, 0, Rd, c7, c14, 2 Clean and flush DCache entry Index/segment

a. The value transferred in Rd should be zero.

Table 2-19 Cache operations (continued)

ARM instruction Function Data

31 30 29 N+1 N 5 4 0

Should be zero Index SBZ

Segment

Table 2-20 Index fields for supported cache sizes

Cache size Index

4KB Addr[9:5]

8KB Addr[10:5]

16KB Addr[11:5]

32KB Addr[12:5]

64KB Addr[13:5]

128KB Addr[14:5]

256KB Addr[15:5]

512KB Addr[16:5]

1MB Addr[17:5]
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-23



Programmer’s Model 
For the ICache prefetch operation, the data format is shown in Figure 2-3.

Figure 2-3 ICache address format

Cache clean and flush operations

Cache clean and flush operations can occur during instruction and data linefetches. In 
such circumstances the linefetch completes before the clean or flush operation is 
executed.

Drain write buffer

This operation stalls instruction execution until the write buffer is emptied. This is 
useful in real-time applications where the processor must be sure that a write to a 
peripheral has completed before program execution continues. An example is where a 
peripheral in a bufferable region is the source of an interrupt. When the interrupt has 
been serviced, the request must be removed before interrupts can be re-enabled. This is 
ensured if a drain write buffer operation separates the store to the peripheral and the 
enable interrupt functions.

The drain write buffer operation is invoked by a write to register 7 using the following 
ARM instruction:

MCR p15, 0, Rd, c7, c10, 4; drain write buffer 

This stalls the processor core until any outstanding accesses in the write buffer are 
completed, that is, until all data is written to external memory.

Wait for interrupt

This operation allows the ARM946E-S (Rev 1) to enter a low-power standby mode. 
When you invoke the operation, the CLKEN signal to the processor core is negated and 
the cache and tightly-coupled memories are placed in a low-power state until either an 
interrupt or a debug request occurs. This function is invoked by a write to register 7. The 
following ARM instruction causes this to occur:

MCR p15, 0, Rd, c7, c0, 4; wait for interrupt

31 5 4 0

Address SBZ
2-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
This is the preferred encoding for new software. For compatibility with existing 
software, ARM946E-S (Rev 1) also supports the following ARM instruction that has 
the same affect:

MCR p15, 0, Rd, c15, c8, 2; wait for interrupt

This stalls the processor from the time that this instruction is executed until either nFIQ, 
nIRQ or EDBGRQ are asserted. Also, if the debugger sets the debug request bit in the 
EmbeddedICE-RT logic control register then this causes the wait for interrupt condition 
to terminate.

In the case of nFIQ and nIRQ, the processor core is woken up regardless of whether 
the interrupts are enabled or disabled (that is, independent of the I and F bits in the 
processor CPSR). The debug related waking only occurs if DBGEN is HIGH, that is, 
only when debug is enabled.

If interrupts are enabled, the ARM9E-S core is guaranteed to take the interrupt before 
executing the instruction after the wait for interrupt. If debug request is used to wake up 
the system, the processor enters debug state before executing any more instructions.

The write buffer continues to drain until empty while the wait for interrupt operation is 
executing.

2.3.11 Register 9, Cache lockdown registers

 These registers allow you to lock down regions of the cache. To read and write these 
registers:

MCR p15, 0, Rd, c9, c0, 0; write data lockdown control
MRC p15, 0, Rd, c9, c0, 0; read data lockdown control
MCR p15, 0, Rd, c9, c0, 1; write instruction lockdown control
MRC p15, 0, Rd, c9, c0, 1; read instruction lockdown control

The format of the register, Rd, transferred during this operation is shown in Table 2-21.

Lockdown is described in Cache lockdown on page 3-12.

Table 2-21 Lockdown register format

Register bit Function

31 Load bit

30:2 UNP/SBZ

1:0 Cache segment
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-25



Programmer’s Model 
2.3.12 Register 9, Tightly-coupled memory region registers

These registers enable you to modify the visible size of the tightly-coupled memories.

You can either increase or decrease the size of the tightly-coupled memories from the 
physical sizes described in register 0 (see Register 0, Tightly-coupled memory size 
register on page 2-10). Increasing the visible size of the tightly-coupled memories 
above the physical size allows aliasing within the tightly-coupled memory space. This 
feature is useful for debugging multitasking systems.

There is a memory region register for each of the tightly-coupled memories:

MRC p15, 0, Rd, c9, c1, 0; read data tightly-coupled memory
MCR p15, 0, Rd, c9, c1, 0; write data tightly-coupled memory
MRC p15, 0, Rd, c9, c1, 1; read instruction tightly-coupled memory
MCR p15, 0, Rd, c9, c1, 1; write instruction tightly-coupled memory

Each tightly-coupled memory region register has the format shown in Table 2-22.

For a given number of aliases for the physical memory size (set in Register 0), the area 
size is calculated in the following way: 

Number of required aliases = x (where x is a power of 2)
N = log2x (or 2N = x)
Area size = Physical size + N

Table 2-22 TCM region/base size register format

Register bit Function

31:12 Region base

5:1 Area size

Minimum size = 4KB

Maximum size = 4GB

(See Table 2-23 on page 2-27).

0 SBZ
2-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
The encodings for the supported tightly-coupled memory area sizes are shown in 
Table 2-23.

Table 2-23 Tightly-coupled memory area size encoding

Bit encoding
Tightly-coupled 
memory area size

b00011 4KB

b00100 8KB

b00101 16KB

b00110 32KB

b00111 64KB

b01000 128KB

b01001 256KB

b01010 512KB

b01011 1MB

b01100 2MB

b01101 4MB

b01110 8MB

b01111 16MB

b10000 32MB

b10001 64MB

b10010 128MB

b10011 256MB

b10100 512MB

b10101 1GB

b10110 2GB

b10111 4GB
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-27



Programmer’s Model 
You must align the region base to an area size boundary, where the area size is defined 
in its respective protection region register. The behavior is unpredictable if this is not 
done.

The instruction tightly-coupled memory base address is fixed at 0x00000. For the 
instruction tightly-coupled memory, the region base returns the value 0x00000 when 
read.

When writing to the instruction tightly-coupled memory, you must set the region base 
to 0x00000. Writes with the region base set to any other value are unpredictable.

At reset, the region base for both the instruction and data tightly-coupled memory 
region registers are cleared to 0x00000.

At reset, the area size for the instruction and data tightly-coupled memory region 
registers takes the value defined in the tightly-coupled memory size register (see 
Register 0, Tightly-coupled memory size register on page 2-10).

You must program the data tightly-coupled memory region registers before you set the 
data RAM enable bit (bit 16) in register 1 (see Register 1, Control register on 
page 2-12). If this is not done, the data tightly-coupled memory resides at the same 
location resulting in unpredictable behavior.

Note
 If the data tightly-coupled memory is located at the same address as the instruction 
tightly-coupled memory, then the instruction memory takes precedence for data 
accesses. If the data tightly-coupled memory is located at the same address as the 
instruction tightly-coupled memory, and the instruction RAM is in load mode, data 
accesses read from the data RAM and write to the instruction RAM.

2.3.13 Register 13, Trace process identifier register

This register enables you to identify the currently executing process in multi-tasking 
environments using the real-time trace tools.

The contents of this register are replicated on the ETMPROCID pins of the 
ARM946E-S (Rev 1) macrocell.

The following ARM instructions are used for accessing the Process ID register:

MRC p15, 0, Rd, c13, c0, 1; read process ID register
MCR p15, 0, Rd, c13, c0, 1; write process ID register

To support software written for other ARM processors, the following instructions are 
also supported:
2-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
MRC p15, 0, Rd, c13, c1, 1; read process ID register
MCR p15, 0, Rd, c13, c1, 1; write process ID register

The format of the register, Rd, transferred during these operations is shown in 
Figure 2-4.

Figure 2-4 Process ID format

2.3.14 Register 15, RAM and TAG BIST test registers

 Register 15 gives you access to the test features included within the ARM946E-S (Rev 
1) macrocell.

The register map for CP15 register 15 BIST-related instructions is shown in Table 2-24.

Table 2-25 lists CP15 register 15 implementation-specific BIST instructions.

31 0

Trace process identifier

Table 2-24 Register 15, BIST instructions

Register Read Write

TAG BIST control register MRC p15, 0, Rd, c15, c0, 1 MCR p15, 0, Rd, c15, c0, 1

RAM BIST control register MRC p15, 1, Rd, c15, c0, 1 MCR p15, 1, Rd, c15, c0, 1

Cache RAM BIST control register MRC p15, 2, Rd, c15, c0, 1 MCR p15, 2, Rd, c15, c0, 1

Table 2-25 Register 15, implementation-specific BIST instructions

Register Read Write

Instruction TAG BIST address register MRC p15, 0, Rd, c15, c0, 2 MCR p15, 0, Rd, c15, c0, 2

Instruction TAG BIST general register MRC p15, 0, Rd, c15, c0, 3 MCR p15, 0, Rd, c15, c0, 3

Data TAG BIST address register MRC p15, 0, Rd, c15, c0, 6 MCR p15, 0, Rd, c15, c0, 6

Data TAG BIST general register MRC p15, 0, Rd, c15, c0, 7 MCR p15, 0, Rd, c15, c0, 7

Instruction RAM BIST address register MRC p15, 1, Rd, c15, c0, 2 MCR p15, 1, Rd, c15, c0, 2
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-29



Programmer’s Model 
Note
 ARM Ltd. recommends that you do not write application code that relies on the 
presence of the BIST address and general registers. ARM Ltd. does not guarantee to 
support these registers in future versions of the ARM946E-S macrocell.

The format of CP15 register 15 is shown in Table 2-26.

Instruction RAM BIST general register MRC p15, 1, Rd, c15, c0, 3 MCR p15, 1, Rd, c15, c0, 3

Data RAM BIST address register MRC p15, 1, Rd, c15, c0, 6 MCR p15, 1, Rd, c15, c0, 6

Data RAM BIST general register MRC p15, 1, Rd, c15, c0, 7 MCR p15, 1, Rd, c15, c0, 7

Instruction cache RAM BIST address register MRC p15, 2, Rd, c15, c0, 2 MCR p15, 2, Rd, c15, c0, 2

Instruction cache RAM BIST general register MRC p15, 2, Rd, c15, c0, 3 MCR p15, 2, Rd, c15, c0, 3

Data cache RAM BIST address register MRC p15, 2, Rd, c15, c0, 6 MCR p15, 2, Rd, c15, c0, 6

Data cache RAM BIST general register MRC p15, 2, Rd, c15, c0, 7 MCR p15, 2, Rd, c15, c0, 7

Table 2-25 Register 15, implementation-specific BIST instructions (continued)

Register Read Write

Table 2-26 RAM BIST control register bit definitions

Register bit  Meaning when written  Meaning when read

0  Data BIST run strobe  Data BIST running flag

1  Data BIST pause  Data BIST pause

2  Data BIST enable  Data BIST enable

3  Reserved (SBZ)  Data BIST fail flag

4  Reserved (SBZ)  Data BIST complete flag

15: 5  Data BIST size  Data BIST size

16  Instruction BIST run strobe  Instruction BIST running flag

17  Instruction BIST pause  Instruction BIST pause

18  Instruction BIST enable  Instruction BIST enable
2-30 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
Note

 The pause and size bits of this register are not supported in all implementations.

2.3.15 Register 15, Test state register

 Register 15 gives you access to the test features included within the ARM946E-S (Rev 
1) macrocell, depending on the state of the MRC, MCR, opcode, and CRm fields. See 
Accessing CP15 registers on page 2-6. Memory BIST tests are initiated by writes to this 
register. BIST results and status are evaluated by reading this register. The formats of 
the TAG BIST control register, RAM BIST control register, and Cache RAM Control 
register are the same. The register is accessed by:

MCR p15, 0, Rd, c15, c0, 0; write test state register
MRC p15, 0, Rd, c15, c0, 0; read test state register

The bit assignments of the test state access register are shown in Table 2-27.

Reading the test state register returns bits [12:0] in the least significant bits. The 19 most 
significant bits are unpredictable. Writing the test state register updates only bits [12:9].

19  Reserved (SBZ) Instruction  BIST fail flag

20  Reserved (SBZ) Instruction  BIST complete flag

31: 21  Instruction BIST size  Instruction BIST size

Table 2-26 RAM BIST control register bit definitions

Register bit  Meaning when written  Meaning when read

Table 2-27 Test state register bit assignments

Bit Function

31:13 Unpredictable

12 Disable DCache streaming

11 Disable ICache streaming

10 Disable DCache linefill

9 Disable ICache linefill

8:0 Reserved
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-31



Programmer’s Model 
In debug you must be able to execute code without causing linefills to update the caches, 
primarily to load new code into memory. This means that STRs, if they hit the cache, 
must update the memory and the cache, and that for LDRs or instruction prefetches that 
miss, a linefill is not performed. When set, bits [10:9] prevent the respective cache from 
performing a linefill on a cache miss. The memory mapping, as seen by the ARM9E-S 
or by the programmer, is unchanged. This improves the performance of single-stepping 
when in debug.

When set, bits [12:11] prevent the respective cache from streaming data to the 
ARM9E-S while the linefill is performed to the cache. The linefill still occurs, but the 
prefetched instruction or load data is returned to the core at the end of a linefill.

2.3.16 Register 15, Cache debug index register

Register 15 gives you access to the test features included within the ARM946E-S (Rev 
1), depending on the state of the MRC and MCR opcode and CRm fields. See Accessing 
CP15 registers on page 2-6.

Additional instructions and operations are required to support debug operations within 
the cache. Instructions for the additional operations are listed in Table 2-28 on 
page 2-32.

Table 2-28 Additional operations

Function Data Instruction

Write CP15 cache debug index 
register

Index/

segment

MCR p15, 3, Rd, c15, c0, 0

Read CP15 cache debug index 
register

Index/

segment

MRC p15, 3, Rd, c15, c0, 0

Instruction TAG write Data MCR p15, 3, Rd, c15, c1, 0

Instruction TAG read Data MRC p15, 3, Rd, c15, c1, 0

Data TAG write Data MCR p15, 3, Rd, c15, c2, 0

Data TAG read Data MRC p15, 3, Rd, c15, c2, 0

Instruction cache write Data MCR p15, 3, Rd, c15, c3, 0

Instruction cache read Data MRC p15, 3, Rd, c15, c3, 0

Data cache write Data MCR p15, 3, Rd, c15, c4, 0

Data cache read Data MRC p15, 3, Rd, c15, c4, 0
2-32 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
With the cache debug index register (CP15 r15), you can access any location within the 
instruction or data cache. You must program this register before using any of the TAG 
or cache read/write operations. The cache debug index register provides an index into 
the cache memories. 

The format of the index/segment data is shown in Figure 2-5.

Figure 2-5 Index/segment format

The size of the index varies depending on the implemented cache size. Table 2-20 on 
page 2-23 shows how the index address field size changes for the cache sizes supported 
by the ARM946E-S (Rev 1).

Note
 For TAG operations, the word address field in the cache debug register is ignored.

The data format for the TAG read/write operations is shown in Figure 2-6.

Figure 2-6 Data format TAG read/write operations

31 30 29 N+1 N 5 4 2 1 0

Should be zero Index
Word

address
SBZ

Segment

31 N+1 N 5 4 3 2 1 0

TAG address Index
Dirty
bits

Set

Valid
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-33



Programmer’s Model 
The size of the index and address TAGs vary depending on the implemented cache size. 
Table 2-29 shows how the index and TAG address field sizes change for the cache sizes 
supported by the ARM946E-S (Rev 1).

2.3.17  Register 15: Trace Control Register

This register allows masking of interrupts during trace in the ARM946E-S (Rev 1). It 
enables you to determine whether nIRQ or FIQ interrupts take priority over 
FIFOFULL to prevent the core being stalled if an interrupt is received whilst 
FIFOFULL is asserted. Access instructions for register 15 are shown in Table 2-30

Table 2-29 Index fields for supported cache sizes

Cache size TAG Index

4KB Addr[31:10] Addr[9:5]

8KB Addr[31:11] Addr[10:5]

16KB Addr[31:12] Addr[11:5]

32KB Addr[31:13] Addr[12:5]

64KB Addr[31:14] Addr[13:5]

128KB Addr[31:15] Addr[14:5]

256KB Addr[31:16] Addr[15:5]

512KB Addr[31:17] Addr[16:5]

1MB Addr[31:18] Addr[17:5]

Table 2-30 Trace control register

Register Read Write

Trace Control Register  MRC p15, 1, Rd, c15, c1, 0 MCR p15, 1, Rd, c15, c1, 0
2-34 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Programmer’s Model 
The bit assigns for this register are shown in Table 2-31. If bit 1 is set, nIRQ interrupts 
are masked during trace. If bit 2 is set, nFIQ interrupts are masked during trace. When 
these bits are set to 0, FIFOFULL does not stall the core during interrupts. Bits [2:1] 
of this register are reset to 0.

Table 2-31 Trace control register bit assignments

Register bit Content

0 Reserved (Should be zero)

1 1 = Mask nIRQ interrupts during trace

0 = Do not mask nIRQ interrupts during trace

2 1 = Mask nFIQ interrupts during trace

0 = Do not mask nFIQ interrupts during trace

3 Reserved (Should be zero)
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-35



Programmer’s Model 
2-36 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Chapter 3 
Caches

To reduce the effective memory access time, the ARM946E-S (Rev 1) uses a cache 
controller, an Instruction Cache (ICache), and a Data Cache (DCache). This chapter 
describes the features and behavior of each of these blocks. It contains the following 
sections:

• Cache architecture on page 3-2

• ICache on page 3-6

• DCache on page 3-8

• Cache lockdown on page 3-12.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-1



Caches 
3.1 Cache architecture

The ARM946E-S (Rev 1) macrocell incorporates ICache and DCache. You can tailor 
the size of these to suit individual applications. A range of different cache sizes is 
supported:

• 0KB

• 4KB

• 8KB

• 16KB

• 32KB

• 64KB

• 128KB

• 256KB

• 512KB

• 1MB.

You can select the ICache and DCache sizes independently.

The ICache and DCache are formed from synchronous SRAM, and have similar 
architectures. An example 8K cache is shown in Figure 3-1 on page 3-3.
3-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Caches 
Figure 3-1 Example 8KB cache

The ICache and DCache are four-way set associative, with a cache line length of 8 
words (32 bytes). Each cache supports single-cycle read access.

RDATA

WDATA

AddressTAGSet 0 W
ord
0

RAM

Set 0

Set 1

Set 2

Set 3

RO
W

0
1
2

63

32

32

W
ord
1 W

ord
2 W

ord
3 W

ord
4 W

ord
5 W

ord
6 W

ord
7

Addr
[31:0]

Addr
[4:2]

Addr
[31:11]

Addr
[10:5]
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-3



Caches 
Each cache segment consists of a TAG RAM for storing the cache line address and a 
data RAM for storing the instructions or data. 

During a cache access, all TAG RAMs are accessed for the first nonsequential access, 
and the TAG address compared with the access address. If a match (or hit) occurs, the 
data from the segment is selected for return to the ARM9E-S core. If none of the TAGs 
match (a miss), then external memory must be accessed, unless the access is a buffered 
write when the write buffer is used.

If a read access from a cachable memory region misses, new data is loaded into one of 
the four segments. This is an allocate on read miss replacement policy. Selection of the 
segment is performed by a segment counter that can be clocked in a pseudo-random 
manner, or in a predictable manner based on the replacement algorithm selected.

Critical or frequently accessed instructions or data can be locked into the cache by 
restricting the range of the replacement counter. You cannot replace locked lines. They 
remain in the cache until they are unlocked or flushed.

The access address from the ARM9E-S core can be split into four distinct segments:

• byte address (Addr[1:0])

• word address (Addr[4:2])

• index (cache line)

• address TAG.

The size of the index and address TAGs vary depending on the implemented cache size. 
Table 3-1 shows how the index and TAG sizes change for the cache sizes supported by 
the ARM946E-S (Rev 1) macrocell.

Table 3-1 TAG and index fields for supported cache sizes

Cache size Index TAG

4KB Addr[9:5] Addr[31:10]

8KB Addr[10:5] Addr[31:11]

16KB Addr[11:5] Addr[31:12]

32KB Addr[12:5] Addr[31:13]

64KB Addr[13:5] Addr[31:14]

128KB Addr[14:5] Addr[31:15]
3-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Caches 
For example, the access address is broken down as shown in Table 3-2 for a 4Kbyte 
cache.

Figure 3-2 Access address for a 4KB cache

Three additional bits are associated with each TAG entry:

Valid bit This is set when the cache line has been written with valid data. 
Only a valid line can return a hit during a cache lookup. On reset, 
all the valid bits are cleared.

Dirty bits These are associated with write operations in the DCache and are 
used to indicate that a cache line contains data that differs from 
data stored at the address in external memory. One bit is allocated 
for each half cache line.

Data can only be marked as dirty if it resides in a write back 
protection region.

256KB Addr[15:5] Addr[31:16]

512KB Addr[16:5] Addr[31:17]

1MB Addr[17:5] Addr[31:18]

Table 3-1 TAG and index fields for supported cache sizes (continued)

Cache size Index TAG

31 10 9 5 4 2 1 0

TAG Index Word Byte
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-5



Caches 
3.2 ICache

The ARM946E-S (Rev 1) macrocell has a four-way set-associative ICache. You can 
choose the size of the ICache from any of the supported cache sizes. The ICache uses 
the physical address generated by the processor core. It uses a policy of allocate on 
read-miss, and is always reloaded one cache line (eight words) at a time, through the 
external interface.

3.2.1 Enabling and disabling the ICache

You can enable the ICache by setting bit 12 of the CP15 control register. The cache is 
only enabled if the protection unit is already enabled, or if they are enabled 
simultaneously. When the ICache is enabled, a cachable read-miss places lines in the 
ICache.

You can enable the ICache and protection unit simultaneously with a single write to the 
CP15 control register, although you must program at least one protection region before 
you enable the protection unit. You can lock critical or frequently accessed instructions 
into the ICache.

3.2.2 ICache operation

When enabled, the ICache operation is additionally controlled by the Cachable 
instruction (Ci) bit stored in the protection unit. This selectively enables or disables 
caching for different memory regions. The Ci bit affects ICache operation as follows:

Successful cache read 

Data is returned to the core only if the Ci bit is 1.

Unsuccessful cache read 

If the Ci bit is 1, a linefetch of eight words is performed. The 
linefetch starts with the requested address aligned to an 
eight-word boundary (that is, the linefetch starts with word 0). If 
the Ci bit is 0, a single-word external access is performed to fetch 
the requested instruction. The cache is not updated.

You can disable the ICache by clearing bit 12 of the CP15 control register. This prevents 
all ICache look-ups and line fills, and forces all instruction fetches to be performed as 
single external accesses.
3-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Caches 
3.2.3 ICache validity

The ARM946E-S (Rev 1) macrocell does not support external memory snooping. 
Therefore if you write self-modifying code, the instructions in the ICache can become 
incoherent with external memory. Similarly, if you reprogram the protection regions, 
code might exist in the cache that should be in a noncachable region. In either of these 
cases you must flush the ICache.

You can flush the entire ICache by software in one operation, or you can flush individual 
cache lines by writing to the CP15 cache operations register (register 7). The ICache is 
automatically flushed during reset. The ICache never has to be cleaned because its only 
source of data is from external memory. (The ARM9E-S processor only performs reads 
from the ICache, except during debug operations.)

Flushing the entire cache

As shown in Table 2-19 on page 2-22, you can flush the entire ICache using an MCR 
instruction. In this case, the contents of the ARM register transferred to CP15 must be 
zero. You can use the following code segment to do this:

MOV r0, #0 ; Clear r0
MCR p15, 0, r0, c7, c5, 0; Flush entire instruction cache

Note

 The use of r0 is arbitrary.

Flushing the entire cache also flushes any locked-down code. If you want to preserve 
locked down code, you must flush lines individually, avoiding the locked down lines.

Flushing a single cache line

You can flush single cache lines. To do this, you must specify in Rd the address to be 
flushed from the cache. You can use the following code segment to do this:

LDR r0, =FlushAddress; Load r0 with address FlushAddress
MCR p15, r0, c7, c5, 1; Flush single cache line
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-7



Caches 
3.3 DCache

The ARM946E-S (Rev 1) macrocell has a four-way set-associative DCache. You can 
choose the size of the DCache from any of the supported cache sizes. The DCache uses 
the physical address generated by the processor core. It uses an allocate on read-miss 
policy, and is always reloaded one cache line (eight words) at a time, through the 
external interface.

The DCache supports both Write Back (WB) and Write Through (WT) modes. For data 
stores that hit in the DCache, in WB mode the cache line is updated and the dirty bit 
associated with the half cache line updated is set. This indicates that the internal version 
of the data differs from that in external memory. In WT mode, a store that hits in the 
DCache causes the cache line to be updated but not masked as dirty, as the data store is 
also written to the write buffer to keep the external memory consistent. In both WB and 
WT modes, a store that misses in the cache is sent to the write buffer. When a linefetch 
causes a cache line to be evicted from the DCache, the dirty bit for each half of the 
victim line is read and, if the half-line contains valid and dirty data, it is written back to 
the write buffer before the linefill replaces it.

The Cachable data (Cd) and Bufferable data (Bd) bits control the behavior of the 
DCache. For this reason the protection unit must be enabled when the DCache is 
enabled.

3.3.1 Enabling and disabling the DCache

You can enable the DCache by setting bit 2 of the CP15 control register. The cache is 
only enabled if the protection unit is already enabled, or is enabled simultaneously. 

You can enable the DCache and protection unit simultaneously with a single write to the 
CP15 control register, although you must program at least one protection region before 
you enable the protection unit. 

You can disable the DCache by clearing bit2 of the CP15 control register.

The DCache is automatically disabled and flushed on reset.

When the DCache is disabled, cache searches are prevented. This marks all data 
accesses as noncachable, forcing the ARM946E-S (Rev 1) macrocell to perform 
external accesses. The write buffer control is still decoded from the Bd and Cd bits. The 
Cd bit is forced to 0 (noncachable).
3-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Caches 
3.3.2 Operation of the Bd and Cd bits

The Cd bit determines whether data being read must be placed in the DCache and used 
for subsequent reads. Typically, main memory is marked as cachable to reduce memory 
access time and therefore increase system performance. It is usual to mark input/output 
space as noncachable. For example, if a processor is polling a memory-mapped register 
in input/output space, it is important that the processor is forced to read data direct from 
the peripheral, and not a copy of initial data held in the DCache. 

The Bd and Cd bits affect writes that both hit and miss in the DCache. If the Bd and Cd 
bits are both 1, the area of memory is marked as write back, and stores that hit in the 
DCache only update the cache, not external memory. If the Bd bit is 0 and the Cd bit is 
1, the area of memory is marked as write through, and stores that hit in the DCache 
update both the cache and external memory.

3.3.3 DCache operation

When the DCache is enabled, it is searched when the processor performs a load or store. 
If the cache hits on a load, data is returned to the cache if the Cd bit is 1. If the cache 
read misses, the Cd bit is examined. The meaning of the values of the Cd bit are shown 
in Table 3-2.

Stores that hit in the cache update the cache line if the Cd bit is 1. Stores that miss the 
cache use the Cd and Bd bits to determine whether the write is buffered. A write miss 
is not loaded into the cache as a result of that miss.

Load and store multiples are broken up on 4KB boundaries (the minimum protection 
region size), allowing a protection check to be performed in case the Load Multiple 
(LDM) or Store Multiple (STM) crosses into a region with different protection properties.

Table 3-2 Meaning of Cd bit values

Cd bit value Meaning

1 Cachable data area and protection unit enabled. A linefill of eight words is 
performed and the data is written into a randomly chosen segment of the 
DCache.

0 A single or multiple external access is performed and the cache is not 
updated.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-9



Caches 
3.3.4 DCache validity

The ARM946E-S (Rev 1) macrocell does not support memory translation so you can 
always consider the data in the DCache as valid within the context of the ARM946E-S 
(Rev 1) macrocell. However, if you use external memory translation, and the mappings 
are changed, the DCache is no longer consistent with external memory, and you must 
flush it.

The ARM946E-S (Rev 1) macrocell does not support external memory snooping. Any 
shared data memory space therefore, must not be cachable. Additionally, if you 
reprogram the data protection regions, data already in the cache might now be in a 
noncachable region, and you must flush it.

3.3.5 DCache clean and flush

 The DCache has flexible cleaning and flushing utilities that allow the following 
operations:

• You can invalidate the whole DCache (flush DCache) in one operation without 
writing back dirty data.

• You can invalidate individual lines without writing back any dirty data (flush 
DCache single entry). 

• You can perform cleaning on a line-by-line basis. The data is only written back 
through the write buffer when a dirty line is encountered, and the cleaned line 
remains in the cache (clean DCache single entry). You can clean cache lines using 
either their index within the DCache, or their address within memory.

• You can clean and flush individual lines in one operation, using either their index 
within the DCache, or their address within memory.

You perform the cleaning and flushing operations using CP15 register 7, in a similar 
way to the ICache. 

The format of Rd transferred to CP15 for all register 7 operations is shown in 
Figure 3-3.

Figure 3-3 Register 7, Rd format

31 30 29 N+1 N 5 4 0

Should be zero Index SBZ

Segment
3-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Caches 
The value of N is dependent on the cache size, as shown in Table 3-3.

The value of N is derived from the following equation:

Where the number of sets x the line length in bytes is 128.

It is usual to clean the cache before flushing it, so that external memory is updated with 
any dirty data. The following code segment shows how you can clean and flush the 
entire cache (assuming a 4Kbyte DCache).

MOV r1, #0 ; Initialize segment counter
outer_loop

MOV r0, #0 ; Initialize line counter
inner_loop

ORR r2, r1, r0 ; Generate segment and line address
MCR p15, 0, r2, c7, c14, 2 ; Clean and flush the line
ADD r0, r0, #0x20 ; Increment to next line
CMP r0, #0x400 ; Complete all entries in one segment?
BNE inner_loop ; If not branch back to inner_loop
ADD r1, r1, #0x40000000 ; Increment segment counter
CMP r1, #0x0 ; Complete all segments
BNE outer_loop ; If not branch back to outer_loop

; End of routine

Table 3-3 Calculating index addresses

Cache size Value of N

4KB 9

8KB 10

16KB 11

32KB 12

64KB 13

128KB 14

256KB 15

512KB 16

1MB 17

N 2
cache size

number of sets line length in bytes×
---------------------------------------------------------------------------------------
� �
� �log 4+=
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-11



Caches 
3.4 Cache lockdown

To provide predictable code behavior in embedded systems, a mechanism is provided 
for locking code into the ICache and DCache respectively. For example, you can use this 
feature to hold high-priority interrupt routines where there is a hard real-time constraint, 
or to hold the coefficients of a DSP filter routine in order to reduce external bus traffic.

You can lock down a region of the ICache or DCache by executing a short software 
routine, taking note of these requirements:

• the program must be held in a noncachable area of memory

• the cache must be enabled and interrupts must be disabled

• software must ensure that the code or data to be locked down is not already in the 
cache

• if the caches have been used after the last reset, the software must ensure that the 
cache in question is cleaned, if appropriate, and then flushed.

You can carry out lockdown in the DCache using CP15 register 9. ICache lockdown 
uses both CP15 registers 7 and 9.

As described in Cache architecture on page 3-2, the ARM946E-S (Rev 1) ICache and 
DCache each comprise four segments. You can perform lockdown with a granularity of 
one segment. The smallest space that you can lock down is one segment (one quarter of 
cache size). Lockdown starts at segment zero, and can continue until three of the four 
segments are locked.

3.4.1 Locking down the caches

The procedures for locking down a segment in the ICache and DCache are slightly 
different. In both cases you must:

1. Put the cache into lockdown mode by programming register 9.

2. Force a linefill.

3. Lock the corresponding data in the cache.

DCache lockdown

For the DCache, the procedure is as follows: 

1. Write to CP15 register 9, setting DL=1 (DL is bit 31, the load bit) and Dindex=0 
(Dindex are bits 1:0, the cache segment bits).
3-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Caches 
2. Initialize the pointer to the first of the words to be locked into the cache.

3. Execute an LDR from that location. This forces a linefill from that location and the 
resulting eight words are captured in the cache.

4. Increment the pointer by 32 (number of bytes in a cache line).

5. Execute an LDR from that location. The resulting linefill is captured in the cache.

6. Repeat steps 4 and 5 until all words are loaded in the cache, or one quarter of the 
cache has been loaded.

7. Write to CP15 register 9, setting DL=0 and Dindex=1.

If there is more data to lockdown, at the final step, the DL bit must be left HIGH and 
the process repeated. The DL bit must only be set LOW when all the lockdown data has 
been loaded. The Dindex bits must be set to the next available segment.

Note

 The write to CP15 register 9 must not be executed until the linefill has completed. This 
is achieved by aligning the LDR to the last address of the line.

ICache lockdown

For the ICache, the procedure is as follows: 

1. Write to CP15 register 9, setting IL=1 (the load bit) and Iindex=0 (the cache 
segment bits).

2. Initialize the pointer to the first of the words to be locked into the cache.

3. Force a linefill from that location by writing to CP15 register 7 (ICache preload).

4. Increment the pointer by 32 (number of bytes in a cache line).

5. Force a linefill from that location by writing to CP15 register 7. The resulting 
linefill is captured in the ICache.

6. Repeat steps 4 and 5 until all words are loaded in the cache, or one quarter of the 
cache has been loaded.

7. Write to CP15 register 9, setting IL=0 and Iindex=1.

If there are more instructions to lockdown, at the final step, the IL bit must be left HIGH 
and the process repeated. The IL bit must only be set LOW when all the lockdown 
instructions have been loaded. The Iindex bits must be set to the next available segment.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-13



Caches 
The only significant difference between the sequence of operations for the DCache and 
ICache is that an MCR instruction must be used to force the linefill in the ICache, instead 
of an LDR. The rest of the sequence is the same as for DCache lockdown.

The MCR to perform the ICache fetch is a CP15 register 7 operation:

MCR p15, 0, Rd, c7, c13, 1

Example ICache lockdown subroutine

A subroutine that you can use to lock down code in the ICache is:

; Subroutine lock_i_cache
; r1 contains the start address
; r2 contains the end address
; Assumes that r2 - r1 fits within one cache set
; The subroutine performs a lockdown of instructions in the
; instruction cache
; It first reads the current lock_down index and then locks
; down the number of sets required
; Note - This subroutine must be located in a noncachable
;        region of memory
;      - Interrupts must be disabled
;      - Subroutine must be called using the BL instruction
;      - r1-r3 can be corrupted in line with ARM/Thumb
;        Procedure Call Standards (ATPCS)
;      - Returns final ICache lockdown index in r0 if successful
;      - Returns 0xFFFFFFFF in r0 if an error occurred

lock_I_cache
BIC r1, r1, #0x7f ;Align address to cache line
MRC p15, 0, r3, c9, c0, 1 ;Get current ICache index
AND r3, r3, #0x3 ;Mask unwanted bits
CMP r3, #0x3 ;Check for available set
BEQ error ;If no sets available,

;generate an error
ORR     r3, r3, #0x8000000 ;Set the lockdown bit
MCR     p15, 0, r3, c9, c0, 1 ;Write lockdown register

lock_loop
MCR p15, 0, r1, c7, c13, 1 ;Force an instruction fetch

;from address r1
ADD r1, r1, #0x20 ;Increment address by a

;cache line length
CMP r2, r1 ;Reached our end address yet?
BLT lock_loop ;If not, repeat loop
ADD r3, r3, #0x1 ;Increment ICache index
BIC r0, r3, #0x8000000 ;Clear lockdown bit and

;Write index into r0
3-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Caches 
MCR p15, 0, r3, c9, c0, 1 ;Write lockdown register
MOV pc, lr ;Return from subroutine

error
MVN r0, #0 ;Move 0xFFFFFFFF into r0
MOV pc, lr ;Return from subroutine
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-15



Caches 
3-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Chapter 4 
Protection Unit

This chapter describes the ARM946E-S (Rev 1) protection unit. It contains the 
following sections:

• About the protection unit on page 4-2

• Memory regions on page 4-3

• Overlapping regions on page 4-6.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 4-1



Protection Unit 
4.1 About the protection unit

The protection unit allows you to partition memory and set individual protection 
attributes for each protection region. You can divide the address space into eight regions 
of variable size. Figure 4-1 on page 4-2 shows a simplified block diagram of the 
protection unit.

Figure 4-1 ARM946E-S protection unit

The protection unit is programmed using CP15 registers 1, 2, 3, 5, and 6 (see Accessing 
CP15 registers on page 2-6).

4.1.1 Enabling the protection unit

Before the protection unit is enabled, you must program at least one valid protection 
region. If you do not do this the ARM946E-S macroell can enter a state that is 
recoverable only by reset. 

Setting bit 0 of the CP15 register 1, the control register, enables the protection unit.

When the protection unit is disabled, all instruction fetches are noncachable and all data 
accesses are noncachable and nonbufferable.

hit

Abort Attributes

Address from ARM9E-S

Priority
encoder

Attribute registersAddress comparators
4-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Protection Unit 
4.2 Memory regions

You can partition the address space into a maximum of eight regions. Each region is 
specified by the following:

• region base address

• region size 

• cache and write buffer configuration

• read and write access permissions.

The ARM architecture uses constants known as inline literals to perform address 
calculations. These constants are automatically generated by the assembler and 
compiler and are stored inline with the instruction code. To ensure correct operation, 
you must define an area of memory, from where code is to be executed, that allows both 
data and instruction accesses.

The base address and size properties are programmed using CP15 register 6. The format 
for this is shown in Table 4-1.

4.2.1 Region base address

The base address defines the start of the memory region. You must align this to a 
region-sized boundary. For example, if a region size of 8KB is programmed for a given 
region, the base address must be a multiple of 8KB.

Note
 If the region is not aligned correctly, this results in unpredictable behavior.

Table 4-1 Protection register format

Register bits Function

31:12 Region base address

11:6 Unused

5:1 Region size

0 Region enable

Reset to disable (0).
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 4-3



Protection Unit 
4.2.2 Region size

The region size is specified as a five-bit value, encoding a range of values from 4KB to 
4GB. The encoding is shown in Table 4-2.

Table 4-2 Region size encoding

Bit encoding Area size

00000 to 01010 Reserved

01011 4KB

01100 8KB

01101 16KB

01110 32KB

01111 64KB

10000 128KB

10001 256KB

10010 512KB

10011 1MB

10100 2MB

10101 4MB

10110 8MB

10111 16MB

11000 32MB

11001 64MB

11010 128MB

11011 256MB

11100 512MB

11101 1GB

11110 2GB

11111 4GB
4-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Protection Unit 
Note

 Any value less than b01011 programmed in CP15 register 6 bits[5:1] results in 
unpredictable behavior.

4.2.3 Partition attributes

Each region has a number of attributes associated with it. These control how a memory 
access is performed when the processor core issues an address that falls within a given 
region. The attributes are:

• cachable

• bufferable (for data regions only)

• read/write permissions.

You specify this information by programming CP15 registers 2, 3, and 5 (see Chapter 2 
Programmer’s Model). If an access fails its protection check (for example, if a User 
mode application attempts to access a Privileged mode access only region), a memory 
abort occurs. The processor enters the abort exception mode, branching to the Data 
Abort or Prefetch Abort vector accordingly.

The cachable and bufferable bits in CP15 registers 2 and 3 are used together to select 
one of four cache and write buffer configurations. These are described in Chapter 6 Bus 
Interface Unit and Write Buffer, and specifically in The write buffer on page 6-13.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 4-5



Protection Unit 
4.3 Overlapping regions

You can program the protection unit with two or more overlapping regions. When 
overlapping regions are programmed, a fixed priority scheme is applied to determine the 
overlapping region attribute that is applied to the memory access (attributes for region 
7 take highest priority, those for region 0 take lowest priority). For example:

Region 2 Is programmed to be 4KB in size, starting from address 0x3000 
with Dap[3:0] = 0010. (Privileged mode full access, User mode 
read only.)

Region 1 Is programmed to be 16KB in size, starting from address 0x0000 
with Dap[3:0] = 0001. (Privileged mode access only.)

When the processor performs a data write to address 0x3010 while in User mode, the 
address falls into both region 1 and region 2, as shown in Figure 4-2. Because there is a 
clash, the attributes associated with region 2 are applied. Because you are only allowed 
to perform reads from this region, a Data Abort occurs.

Figure 4-2 Overlapping memory regions

4.3.1 Background regions

Overlapping regions increase the flexibility of how the eight regions can be mapped 
onto physical memory devices in the system. You can also use the overlapping 
properties to specify a background region. For example, you might have a number of 
physical memory areas sparsely distributed across the 4GB address space. If a 
programming error occurs therefore, it might be possible for the processor to issue an 
address that does not fall into any defined region.

0x0000

Region 2

Region 1

0x3000

0x4000

0x3010
4-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Protection Unit 
If the address issued by the processor falls outside any of the defined regions, the 
ARM946E-S (Rev 1) protection unit is hard-wired to abort the access. You can override 
this behavior by programming region 0 to be a 4GB background region. In this way, if 
the address does not fall into any of the other seven regions, the access is controlled by 
the attributes you have specified for region 0.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 4-7



Protection Unit 
4-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Chapter 5 
Tightly-coupled Memory Interface

This chapter describes the Tightly-Coupled Memory (TCM) interface in the 
ARM946E-S (Rev 1) processor. It contains the following sections:

• ARM946E-S (Rev 1) TCM interface description on page 5-2

• Using CP15 control register on page 5-3.

• Enabling the instruction tightly-coupled memory during soft reset on page 5-7

• DTCM Accesses on page 5-8

• ITCM accesses on page 5-9

For details of the ARM9E-S interface signals referenced in this chapter, see the 
ARM9E-S Technical Reference Manual.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-1



Tightly-coupled Memory Interface 
5.1 ARM946E-S (Rev 1) TCM interface description

The instruction and data Tightly- Coupled Memories (TCMs) are placed outside the 
ARM946E-S (Rev 1) boundary. This enables greater flexibility in the memory attached 
to the ARM946E-S (Rev 1). The memories used must support single-cycle accesses 
from the ARM946E-S (Rev 1).

The Instruction Tightly Coupled Memory (ITCM) and Data Tightly Coupled Memory 
(DTCM) can both be of any size from 0 bytes to 1MB, although to ease implementation 
the size must be an integer power of two. The miminum size for a TCM when present 
is 4KB. The ITCM and DTCM can have different sizes.

ARM946E-S (Rev 1) supports synchronous TCM for the tightly-coupled RAM. The 
memory cells must be capable of returning data to the ARM9E-S core in a single cycle. 
This requirement applies to both the ITCM and DTCM.

To enable the ITCM to be initialized, and for access to literal tables during execution, 
the data interface of the ARM9E-S core processor must be able to access the ITCM. 
This means that the ARM946E-S (Rev 1) processor must multiplex the instruction and 
data addresses before entering the ITCM. It also means that the instruction data is routed 
to both the instruction and data interfaces of the core. See ITCM accesses on page 5-9 
for details of this data and address multiplexing.

Figure 5-1 on page 5-2 shows a typical ITCM read cycle. The enable signal, En, is 
either ITCMEn or DTCMEn, depending on whether Instruction or Data memory is 
being accessed. The TCM interface signals are described in TCM interface signals on 
page B-4.

Figure 5-1 TCM read cycle

The ITCM is located at address 0x00000000 in the memory map. This simplifies the 
implementation of the design by removing the requirement for complex address 
comparators on both the instruction and data interfaces of the ARM9E-S core to 
generate the chip select logic for the ITCM. 

CLK

En

ADRS[31:0]

D0[31:0]

SRAM access time

Addr 0

D00
5-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Tightly-coupled Memory Interface 
5.2 Using CP15 control register

When out of reset, the behavior of the tightly-coupled memory is controlled by the state 
of CP15 control register.

5.2.1 Enabling the ITCM

You can enable the ITCM by setting bit 18 of the CP15 control register. You must use 
read-modify-write to access this register to preserve the contents of the bits not being 
modified. See Register 1, Control register on page 2-12 for details of how to read and 
write the CP15 control register. When you have enabled the ITCM, all future ARM9E-S 
instruction fetches and data accesses to the ITCM address space cause the ITCM to be 
accessed. 

Enabling the ITCM greatly increases the performance of the ARM946E-S (Rev 1) 
processor because the majority of accesses to it can be performed with no stall cycles. 
Accessing the AHB however, can cause several stall cycles for each access.

You must take care to ensure that the ITCM is appropriately initialized before it is 
enabled and used to supply instructions to the ARM9E-S core. If the core tries to 
execute instructions from uninitialized ITCM, the behavior is unpredictable.

5.2.2 Disabling the ITCM

You can disable the ITCM by clearing bit 18 of the CP15 control register. See Register 
1, Control register on page 2-12 for details of how to read and write the CP15 control 
register. When you have disabled the ITCM, all future ARM9E-S instruction fetches 
access the AHB.

The contents of the memory are preserved when it is disabled. If it is re-enabled, 
accesses to previously initialized memory locations return the preserved data.

5.2.3 ITCM load mode

You must initialize the ITCM with the required code image before execution from the 
ITCM.

You can initialize the ITCM by writing to the memory from the AM9E-S core data 
interface.

The ITCM load mode allows this to be done in an efficient manner. Using the load mode 
allows you to copy from an address in the data cache or external memory into the same 
address within the ITCM.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-3



Tightly-coupled Memory Interface 
The ITCM load mode bit of CP15 Register 1 inhibits reads from the ITCM, forcing 
reads from addresses that are within the ITCM address range to access either main 
memory, the data cache. Writes to addresses that are within the ITCM range are not 
affected by the Instruction Load Mode bit.

The procedure for initializing the ITCM using the load mode is as follows:

1. Enable the ITCM and instruction load mode.

2. Load ARM registers from main memory, data cache, or data RAM.

3. Store ARM registers into ITCM.

4. Increment address pointers and repeat load/store steps until the code image has 
been copied.

A suggested assembler code sequence for this procedure is:

MOV R0, #0 ; Initialize pointer
LDR R1, =ImageTop ; Define end of code image
MRC p15, 0, R2, c1, c0, 0 ; Read Control Register
ORR R2, R2, #&C0000
MCR p15, 0, R2, c1, c0, 0 ; Enable Instruction RAM and Load Mode

CopyLoop
LDMIA R0, {R2 - R9} ; Load 8 registers from main memory
STMIA R0!, {R2 - R9} ; Store 8 regs into instruction SRAM
CMP R1, R0 ; Check if limit reached
BGT CopyLoop ; Repeat if more to do

SWP and SWPB operations to the instruction tightly-coupled memory while it is in load 
mode have unpredictable results. The read accesses external memory or the data cache, 
and the write updates the instruction tightly-coupled memory.

SWP and SWPB operations must not be performed to addresses in the instruction 
tightly-coupled memory space while it is in load mode.

5.2.4 Enabling the DTCM

You can enable the DTCM by setting bit 16 of the CP15 control register. See CP15 
register map summary on page 2-4 for details of how to read and write this register. 
When you have enabled the DTCM, see Register 9, Tightly-coupled memory region 
registers on page 2-26, all future read and write accesses to the DTCM address space 
cause the DTCM to be accessed.
5-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Tightly-coupled Memory Interface 
5.2.5 Disabling the DTCM

You can disable the DTCM by clearing bit 16 of the CP15 control register. When you 
have disabled the DTCM, see Register 9, Tightly-coupled memory region registers on 
page 2-26, all future reads and writes to the DTCM address space access the AHB. Read 
and write accesses to ITCM address space either use the ITCM or access the AHB 
depending on whether ITCM is enabled or not.

5.2.6 DTCM load mode

You must initialize the DTCM with the required data image before use.

You can initialize the DTCM by writing to the memory from the AM9E-S core data 
interface.

The DTCM load mode enables this to be done in an efficient manner. Using the load 
mode enables you to copy from an address in the data cache or external memory into 
the same address within the DTCM.

The DTCM load mode bit of CP15 Register 1 inhibits reads from the DTCM, forcing 
reads from addresses that are within the DTCM address range to access either main 
memory or the data cache. Writes to addresses that are within the DTCM range are not 
affected by the data load mode bit.

The procedure for initializing the DTCM using the load mode is as follows:

1. Enable the DTCM and data load mode.

2. Load ARM registers from main memory or data cache.

3. Store ARM registers into data RAM.

4. Increment address pointers and repeat load/store steps until the data image has 
been copied.

A suggested assembler code sequence for this procedure is:

LDR R0, #ImageStart ; Initialize pointer
LDR R1, =ImageTop ; Define end of data space
MRC p15, 0, R2, c1, c0, 0 ; Read Control Register
ORR R2, R2, #&30000
MCR p15, 0, R2, c1, c0, 0 ; Enable Data RAM and Load Mode

CopyLoop
LDMIA R0, {R2 - R9} ; Load 8 registers from main memory
STMIA R0!, {R2 - R9} ; Store 8 regs into instruction SRAM
CMP R1, R0 ; Check if limit reached
BGT CopyLoop ; Repeat if more to doS
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-5



Tightly-coupled Memory Interface 
SWP and SWPB operations to the data tightly-coupled memory while it is in load mode have 
unpredictable results. The read accesses external memory or the data cache, and the 
write updates the data tightly-coupled memory.

SWP and SWPB operations must not be performed to addresses in the data tightly-coupled 
memory space while it is in load mode.
5-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Tightly-coupled Memory Interface 
5.3 Enabling the instruction tightly-coupled memory during soft reset

Following a soft reset, you can use the ITCM for the reset vector. This is achieved by 
the INITRAM pin. If asserted this pin enables the ITCM at reset. The address space 
allocated for the ITCM defaults to the physical size of the ITCM. To use the reset vector 
in the ITCM, the memory contents must be preserved during reset. The VINITHI pin 
must be de-asserted so that the reset vector is located at address 0x00000000.

The INITRAM pin does not affect the DTCM, which is disabled at reset.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-7



Tightly-coupled Memory Interface 
5.4 DTCM Accesses

Accesses to the DTCM do not incur stall cycles unless a write to the DTCM is 
completing. This access is shown in Figure 5-2.

Figure 5-2  Data write followed by data read of DTCM

DnMREQ

DnRW

DA

CLKEn

D0

D0RAM Addr

RAM DOut

RAM DIn

RAM WE

D0

D0

D1

D1

CLK

D1
5-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Tightly-coupled Memory Interface 
5.5 ITCM accesses

The ITCM provides deterministic behavior for time-critical operations, and is located 
at address 0x00000000 within the processor memory map.

The ITCM is implemented using single port synchronous compiled memory.

The protection unit does not have to be enabled for the ITCM to be used.

If the protection unit is enabled then the access permissions programmed into the 
protection unit are applied to accesses to the ITCM.

The ITCM can be accessed for either instruction fetches or data accesses (read and 
write) from the ARM946E-S (Rev 1) core processor.

5.5.1 Instruction Accesses to ITCM

Instruction accesses to the ITCM are single-cycle read accesses. No stall cycles are 
required for instruction accesses to the ITCM unless there is a data access completing.

5.5.2 Data Accesses to ITCM

Data accesses to the ITCM can either be reads or writes.

Data access to the ITCM can introduce stall cycles to the ARM946E-S (Rev 1) 
macrocell.

5.5.3 Stall cycles for ITCM accesses

Simultaneous instruction fetch and data reads of the ITCM incur a single stall cycle. 
This is because the ITCM is a single port memory, which can only return a single word 
of memory per clock cycle. This is shown in Figure 5-3.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-9



Tightly-coupled Memory Interface 
Figure 5-3 Simultaneous instruction fetch and data read of ITCM

A data write to the ITCM followed by a data read from the ITCM incurs a single stall 
cycle. This is because the memory requires that the write address is pipelined to be 
in-line with the write data. The read address cannot then be applied until the next cycle, 
so requiring the stall. This sequence is shown in Figure 5-4.

I0

CLK

InMREQ

IA

DnMREQ

DnRW

DA

CLKEN

I0

D0

D0

D(I0) D(D0)

D1

I1

RAM Addr

RAM DOut I0
5-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Tightly-coupled Memory Interface 
Figure 5-4 Data Write followed by Data Read of ITCM

Similarly, a data write operation followed by an instruction fetch incurs a stall cycle, as 
shown in Figure 5-5.

CLK

InMREQ

IA

DnMREQ

DnRW

DA

CLKEN

D0

D0

D(D1)

RAM Addr

RAM DOut

RAM DIn

RAM WE

Data 0

Data 0

D1

D1
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-11



Tightly-coupled Memory Interface 
Figure 5-5 Data Write followed by Instruction Fetch of ITCM

A data read followed by an instruction fetch also requires a stall cycle. This stall is 
incurred as a result of the multiplexor switching being controlled by registered versions 
of the ARM9E-S data memory interface. The stall is therefore inserted for the data read 
cycle rather than the instruction read. The sequence is shown in Figure 5-6.

CLK

InMREQ

IA

DnMREQ

DnRW

DA

CLKEN

D0

D0

D(I1)

RAM Addr

RAM DOut

RAM DIn

RAM WE

Data 0

Data 0

I1

I1
5-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Tightly-coupled Memory Interface 
Figure 5-6 Data Read followed by Instruction Fetch

Simultaneous instruction fetch and data write incurs a single stall cycle due to the 
pipelining of the data access to the data address. The sequence is shown in Figure 5-7.

CLK

InMREQ

IA

DnMREQ

DnRW

DA

CLKEN

I0

D0

D0

D(I0)Data 0

I0

RAM Addr

RAM DOut

RAM DIn

RAM WE
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-13



Tightly-coupled Memory Interface 
Figure 5-7 Simultaneous Instruction fetch and data write

A data write followed by a simultaneous instruction fetch and data read incurs two stall 
cycles. The first stall is caused by the write still being active when the instruction fetch 
begins. The second stall is caused by the two reads required. This is shown in 
Figure 5-8.

CLK

InMREQ

IA

DnMREQ

DnRW

DA

CLKEN

I0

D0

D0

D(I0) Data 0

I0

RAM Addr

RAM DOut

RAM DIn

RAM WE

Data 0
5-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Tightly-coupled Memory Interface 
Figure 5-8 Data write followed by simultaneous instruction fetch and data read

CLK

InMREQ

IA

DnMREQ

DnRW

DA

CLKEN

I0

D0

D0

D(I0)Data 0

I0

RAM Addr

RAM DOut

RAM DIn

RAM WE

Data 0

D1

D(D1)

D1
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-15



Tightly-coupled Memory Interface 
5-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Chapter 6 
Bus Interface Unit and Write Buffer

This chapter describes the ARM946E-S (Rev 1) Bus Interface Unit (BIU) and write 
buffer. It contains the following sections:

• About the BIU and write buffer on page 6-2

• AHB bus master interface on page 6-3

• Noncached Thumb instruction fetches on page 6-9

• AHB clocking on page 6-10

• The write buffer on page 6-13.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 6-1



Bus Interface Unit and Write Buffer 
6.1 About the BIU and write buffer

The ARM946E-S (Rev 1) macrocell supports the Advanced Microprocessor Bus 
Architecture (AMBA) Advanced High-performance Bus (AHB) interface. The AHB is 
a new generation of AMBA interface that addresses the requirements of 
high-performance synthesizable designs, including:

• single clock edge operation (rising edge)

• unidirectional (nontristate) buses

• burst transfers

• split transactions

• single-cycle bus master handover.

See the AMBA Rev 2.0 AHB Specification for full details of this bus architecture.

The ARM946E-S (Rev 1) BIU implements a fully-compliant AHB bus master interface 
and incorporates a write buffer to increase system performance. The BIU is the link 
between the ARM9E-S core with the caches and tightly-coupled SRAM and the 
external AHB memory. The AHB memory must be accessed for cache linefills and for 
initializing the tightly coupled memories, and to access code and data that are not within 
the cachable or tightly-coupled memory address regions.

When an AHB access is performed, the BIU and system controller handshake to ensure 
that the ARM9E-S core is stalled until the access has been performed. If you are using 
the write buffer, you might be able to allow the core to continue program execution. The 
BIU controls the write buffer and related stall behavior.
6-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Bus Interface Unit and Write Buffer 
6.2 AHB bus master interface

The ARM946E-S (Rev 1) processor implements a fully compliant AHB bus master 
interface as defined in the AMBA Rev 2.0 Specification. See this document for a detailed 
description of the AHB protocol.

6.2.1 About the AHB

The AHB architecture is based on separate cycles for address and data (rather than 
separate clock phases, as in ASB). The address and control for an access are broadcast 
from the rising edge of HCLK in the cycle before the data is expected to be read or 
written. During this data cycle, the address and control for the next transfer are driven 
out. This leads to a fully pipelined address architecture.

When an access is in its data cycle, a slave can extend an access by driving the 
HREADY signal LOW. This stretches the current data cycle, and therefore the 
pipelined address and control for the next transfer is also stretched. This provides a 
system where all AHB masters and slaves sample HREADY on the rising edge of 
HCLK to determine whether an access has completed and a new address can be 
sampled or driven out.

6.2.2 ARM946E-S (Rev 1) transfer descriptions

The ARM946E-S (Rev 1) processor generates all four of the possible transfer types 
defined in the AMBA Rev 2.0 Specification. These are:

IDLE HTRANS[1:0] = 00

BUSY HTRANS[1:0] = 01

NONSEQ HTRANS[1:0] = 10

SEQ HTRANS[1:0] = 11
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 6-3



Bus Interface Unit and Write Buffer 
6.2.3 Burst sizes

The ARM946E-S (Rev 1) macrocell supports the burst types listed in Table 6-1.

Incrementing bursts have an address increment of four (that is, word increment).

6.2.4 Linefetch transfers

 The ARM946E-S (Rev 1) macrocell is optimized to run with both the ICache and 
DCache enabled. If a memory request (either instruction or data) to a cachable area 
misses in the cache the ARM946E-S (Rev 1) macrocell performs a linefetch.

A linefetch transfer is shown in Figure 6-1 on page 6-5.

Table 6-1 Supported burst types

Burst type
HBURST
encoding

Use

SINGLE 000 Single writes (STR/STRH/STRB)

Uncached single reads

Uncached instruction fetches

INCR 001 Store multiple (STM)

Uncached burst reads (LDM)

INCR4 011 Dirty half-cache line write back

INCR8 101 Dirty cache line write back

Cache linefetches
6-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Bus Interface Unit and Write Buffer 
Figure 6-1 Linefetch transfer

A linefetch is a fixed length burst of eight words. The start address of a linefetch is 
aligned to an eight-word boundary. The ARM946E-S (Rev 1) macrocell asserts the bus 
request HBUSREQ until the arbiter grants the AHB bus (HGRANT asserted). The bus 
request is then negated. This allows optimum system performance as the arbiter can 
accurately predict the end of the defined length burst.

6.2.5 Back to back linefetches

The ARM946E-S (Rev 1) macrocell supports streaming of data and instructions (core 
execution is advanced during the linefetch). To allow for cache look-ups when crossing 
a cache line boundary the ARM946E-S (Rev 1) macrocell must insert IDLE cycles onto 
the AHB bus. The effect of this is shown in Figure 6-2 on page 6-6. It is assumed in 
Figure 6-2 on page 6-6that HGRANT is asserted throughout, and that the HCLK 
frequency is the same as CLK.

CLK

HTRANS

HADDR

HBURST

HBUSREQ

HGRANT

HREADY

NSEQ NSEQ NSEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ

A A A A+0x04 A+0x08 A+0xC A+0x10 A+0x14 A+0x18 A+0x1C

INCR8
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 6-5



Bus Interface Unit and Write Buffer 
Figure 6-2 Back-to-back linefetches

6.2.6 Uncached transfers

If a memory request is made to an uncachable region, or the ARM946E-S (Rev 1) cache 
is not enabled, the memory requests are serviced by the AHB interface. Sequential 
instruction fetches are treated as nonsequential reads. 

Figure 6-3 shows uncached instruction fetches. Nonsequential uncached data 
operations exhibit similar bus timings.

Figure 6-3 Nonsequential uncached accesses

CLK

HTRANS

HADDR

HBURST

HBUSREQ

HREADY

SEQ SEQ IDLE IDLE IDLE NSEQ SEQ SEQ SEQ

A+0x18 A+0x1C A+0x1C A+0x1C A+0x1C B B+0x4 B+0x8 B+0xC

INCR8INCR8

CLK

HTRANS

HADDR

HBURST

HBUSREQ

HGRANT

NSEQ NSEQ NSEQ IDLE IDLE NSEQ NSEQ NSEQ IDLE

A A A A A B B B B

SINGLE SINGLE
6-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Bus Interface Unit and Write Buffer 
6.2.7 Burst accesses

Uncached burst operations (STM/LDM) are performed as incrementing bursts of undefined 
length on the AHB.

Figure 6-4 shows a data burst followed by an uncached instruction fetch.

Figure 6-4 Data burst followed by instruction fetch

6.2.8 Bursts crossing 1KB boundary

The AHB specification requires that bursts must not continue across a 1KB boundary. 
Linefetches and cache line write backs cannot cross a 1KB boundary because the start 
address is aligned to either a four or eight-word boundary, and the burst length is fixed.

Uncached data bursts can cross a 1KB boundary. An example of this is shown in 
Figure 6-5. The burst is restarted by inserting a nonsequential transfer as the boundary 
is crossed.

Figure 6-5 Crossing a 1KB boundary

CLK

HTRANS

HADDR

NSEQ SEQ SEQ SEQ IDLE NSEQ IDLE

A A+4 A+8 A+C A B B

CLK

HTRANS

HADDR

NSEQ SEQ SEQ SEQ NSEQ SEQ IDLE

0x3F0 0x3F4 0x3F8 0x3FC 0x400 0x404 0x404
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 6-7



Bus Interface Unit and Write Buffer 
6.2.9 Uncached LDC operations

Coprocessor loads of its registers from memory are shown in Figure 6-6. For signals 
DnMREQ, DMORE, CLKEN and RDATA, refer to the ARM9E-S Technical 
Reference Manual. The sequence assumes that the ARM946E-S macrocell already has 
been granted bus ownership.

Figure 6-6 Uncached LDC sequence

NSEQ BUSY SEQ SEQ BUSY SEQaBUSY

A0 A1 A3A2

INCR

D0 D1 D2 D3

D0 D1 D2 D3

A0 A1 A2 A3

IDLE

CLK

DnMREQ

HTRANS

DA

HGRANT

HADDR

HBURST

HWRITE

HREADY

HRDATA

RDATA

CLKEN

DMORE
6-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Bus Interface Unit and Write Buffer 
6.3 Noncached Thumb instruction fetches

Thumb instruction fetches are performed as 32-bit accesses on the AHB interface. To 
minimize bus loading, AHB transfers are only performed for nonsequential addresses 
and for sequential addresses that cross a word boundary. The word returned from main 
memory is latched so that both halfwords are available for the processor core.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 6-9



Bus Interface Unit and Write Buffer 
6.4 AHB clocking

The ARM946E-S (Rev 1) macrocell design uses a single rising-edge clock CLK to time 
all internal activity. In many systems in which the ARM946E-S (Rev 1) macrocell is 
embedded, you might prefer to run the AHB at a lower rate. To support this requirement, 
the ARM946E-S (Rev 1) macrocell requires a clock enable, HCLKEN, to time AHB 
transfers.

The HCLKEN input is driven HIGH around a rising edge of the ARM946E-S (Rev 1) 
macrocell CLK to indicate that this rising-edge is also a rising-edge of HCLK so must 
be synchronous to the ARM946E-S (Rev 1) macrocell CLK. 

When the ARM9E-S is running from tightly-coupled SRAM or performing writes using 
the write buffer, the ARM946E-S (Rev 1) macrocell HCLKEN and HREADY inputs 
are not used to generate the SYSCLKEN core stall signal. The core is only stalled by 
SRAM stall cycles or if the write buffer overflows. This means that the ARM9E-S is 
executing instructions at the faster CLK rate and is effectively decoupled from the 
HCLK domain AHB system.

If, however, you want to perform an AHB read access or unbuffered write, the core is 
stalled until the AHB transfer has completed. As the AHB system is being clocked by 
the lower rate HCLK, HCLKEN is examined to detect when to drive out the AHB 
address and control to start an AHB transfer. HCLKEN is then required to detect the 
following rising edges of HCLK so that the BIU knows the access has completed. 

If the slave being accessed at the HCLK rate has a multi-cycle response, the HREADY 
input to the ARM946E-S (Rev 1) macrocell is driven LOW until the data is ready to be 
returned. The BIU must therefore perform a logical AND on the HREADY response 
with HCLKEN to detect that the AHB transfer has completed. When this is the case, 
the ARM9E-S core is enabled by reasserting SYSCLKEN.

Note

 When an AHB access is required, the core is stalled until the next HCLKEN pulse is 
received, before it can start the access, and then until the access has completed. This 
stall before the start of the access is a synchronization penalty and the worst case can be 
expressed in CLK cycles as the HCLK to CLK ratio minus 1.

6.4.1 CLK to HCLK skew

The ARM946E-S (Rev 1) macrocell drives out the AHB address on the rising edge of 
CLK when the HCLKEN input is TRUE. The AHB outputs therefore have output hold 
and delay values relative to CLK. However, these outputs are used in the AHB system 
where transfers are timed using HCLK. Similarly, inputs to the ARM946E-S (Rev 1) 
macrocell are timed relative to HCLK but are sampled within the ARM946E-S (Rev 1) 
6-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Bus Interface Unit and Write Buffer 
macrocell with CLK. This leads to hold time issues, from CLK to HCLK on outputs, 
and from HCLK to CLK on inputs. In order to minimize this effect you must minimize 
the skew between HCLK and CLK.

Figure 6-7 shows the AHB clock relationships.

Figure 6-7 AHB clock relationships

Clock tree insertion at top level

Considering the skew issue in more detail, the ARM946E-S (Rev 1) macrocell requires 
a clock tree to be inserted to allow an evenly distributed clock to be driven to all the 
registers in the design. The registers that drive out AHB outputs and sample AHB inputs 
are therefore timed off CLK at the bottom of the inserted clock tree and subject to the 
clock tree insertion delay. To maximize performance, when the ARM946E-S (Rev 1) 
macrocell is embedded in an AHB system, the clock generation logic to produce HCLK 
must be constrained so that it matches the insertion delay of the clock tree within the 
ARM946E-S (Rev 1) macrocell. You can achieve this using a clock tree insertion tool, 
if the clock tree is inserted for the ARM946E-S (Rev 1) macrocell and the embedded 
system at the same time (top level insertion).

Figure 6-8 on page 6-12 shows an example of an AHB slave connected to the 
ARM946E-S (Rev 1) macrocell.

CLK

HCLK

HCLKEN

AHB outputs
from ARM946E-S

AHB inputs
to ARM946E-S

Skew between andCLK HCLK
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 6-11



Bus Interface Unit and Write Buffer 
Figure 6-8 ARM946E-S (Rev 1) CLK to AHB HCLK sampling

In Figure 6-8, the slave peripheral has an input setup and hold, and an output hold and 
valid time relative to HCLK. The ARM946E-S (Rev 1) macrocell has an input setup 
and hold, and an output hold and valid time relative to CLK’, the clock at the bottom of 
the clock tree. You can use clock tree insertion to position HCLK to match CLK’ for 
optimal performance. 

Hierarchical clock tree insertion

If you perform clock tree insertion on the ARM946E-S (Rev 1) macrocell before it is 
embedded, you can add buffers on input data to match the clock tree so that the setup 
and hold is relative to the top-level CLK. This is guaranteed to be safe at the expense 
of extra buffers in the data input path.

The HCLK domain AHB peripherals must still meet the ARM946E-S (Rev 1) input 
setup and hold requirements. As the ARM946E-S (Rev 1) inputs and outputs are now 
relative to CLK, the outputs appear comparatively later by the value of the insertion 
delay. This ultimately leads to lower AHB performance.

ARM946E-S

CLK'

HRDATA[31:0]

AHB slave mux

AHB
slave

HADDR[31:0]

HCLK

HCLKEN

Clock tree

÷ N

CLK
6-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Bus Interface Unit and Write Buffer 
6.5 The write buffer

The ARM946E-S (Rev 1) macrocell provides a write buffer to improve system 
performance. The write buffer has a 16-entry FIFO. Each entry can be either address or 
data. The type of entry is determined by the setting of an address/data flag. Each address 
entry is tagged with the size of transfer, as indicated by the ARM9E-S core (byte, 
halfword, or word). 

Write buffer behavior is controlled by the protection region attributes of the store being 
performed and the DCache and protection unit enable status. This control is represented 
by the data Cachable bit (Cd) and the write Buffer control bit (Bd) from the 
protection unit. These control bits are generated as follows:

Cd bit This is generated from the cachable attribute of the protection region 
AND the DCache enable AND the protection unit enable.

Bd bit This is generated from the bufferable attribute for the protection region 
AND the protection unit enable.

All accesses are initially noncachable and nonbufferable until you have programmed 
and enabled the protection unit. Therefore, you cannot use the write buffer while the 
protection unit is disabled.

On reset, all entries in the write buffer are invalidated.

6.5.1 Write buffer operation

The write buffer is used when the DCache hits and/or misses, depending on the mode 
of operation. Table 6-2 shows how the Cd and Bd bits control the behavior of the write 
buffer.

NCNB Data reads and writes are not cached, and can be externally 
aborted. Writes are not buffered, so the processor is stalled until 
the external access is performed. NCNB reads bypass the write 
buffer.

Table 6-2 Data write modes

Cd Bd Access mode

0 0 NCNB (noncachable, nonbufferable)

0 1 NCB (noncachable, bufferable)

1 0 WT (write-through)

1 1 WB (write-back)
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 6-13



Bus Interface Unit and Write Buffer 
NCB  Data reads and writes are not cached. Writes are buffered, and so 
cannot be externally aborted. Reads can be externally aborted. 
Reads cause the write buffer to drain. If the DCache hits for this 
type of access, there has been a programming error. DCache hits 
are ignored and the DCache line is not updated for a read. Swap 
instructions operation on data in an NCB region are made to 
perform NCNB type accesses and are not buffered.

WT Searches the DCache for reads and writes. Reads that miss in the 
DCache cause a line fill. Reads that hit in the DCache do not 
perform an external access. All writes are buffered, regardless of 
whether they hit or miss in the DCache. Writes that hit in the 
DCache update the cache but do not mark the cache line as dirty, 
because the write is also sent to the write buffer. Writes cannot be 
externally aborted. DCache linefills cause the write buffer to drain 
before the linefill starts.

WB Searches the DCache for reads and writes. Reads that miss in the 
DCache cause a line fill. Reads that hit in the DCache do not 
perform an external access. Writes that miss in the DCache are 
buffered. Writes that hit in the DCache update the cache line, mark 
it as dirty, and do not send the data to the write buffer. DCache 
write-backs are buffered. Writes (write-miss and write-back) 
cannot be externally aborted. DCache linefills cause the write 
buffer to drain before the linefill starts.

6.5.2 Enabling and disabling the write buffer

 You cannot directly enable or disable the write buffer. However, you can prevent the 
write buffer being used by setting the properties of a memory region to be NCNB, or by 
disabling the protection unit.

6.5.3 Self-modifying code

Instruction fetches and NCNB reads bypass the write buffer. If you write self-modifying 
code to a bufferable or cachable region, then it is essential that you drain the write buffer 
before fetching instructions from these addresses.
6-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Chapter 7 
Coprocessor Interface

This chapter describes the ARM946E-S (Rev 1) pipelined coprocessor interface. It 
contains the following sections:

• About the coprocessor interface on page 7-2

• LDC/STC on page 7-4

• MCR/MRC on page 7-8

• Interlocked MCR on page 7-10

• CDP on page 7-12

• Privileged instructions on page 7-13

• Busy-waiting and interrupts on page 7-14.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-1



Coprocessor Interface 
7.1 About the coprocessor interface

ARM946E-S (Rev 1) macrocell fully supports the connection of on-chip coprocessors 
through an external coprocessor interface. All types of coprocessor instructions are 
supported. For a description of all the interface signals referred to in this chapter, see 
the ARM9E-S Technical Reference Manual.

Coprocessors determine the instructions they must execute using a pipeline follower in 
the coprocessor. As each instruction arrives from memory it enters both the ARM 
pipeline and the coprocessor pipeline. To avoid a critical path for the instruction being 
registered by the coprocessor, the coprocessor pipeline operates one clock cycle behind 
the ARM9E-S core pipeline. However, there is a mechanism inside ARM946E-S (Rev 
1) macrocell that stalls the ARM9E-S pipeline so the external coprocessor pipeline can 
catch up with the processor pipeline. So, practically, consider that the two pipelines are 
synchronized. The ARM9E-S core informs the coprocessor when instructions move 
from Decode into Execute, and whether the instruction has to be executed.

To enable coprocessors to continue executing coprocessor data operations while the 
ARM9E-S core pipeline is stalled (for example, when waiting for a cache linefill to 
occur), the coprocessor receives the clock CLK, and a clock enable signal CPCLKEN.

If CPCLKEN is LOW on the rising edge of CPCLK then the ARM9E-S core pipeline 
is stalled and the coprocessor pipeline must not advance. Figure 7-1 indicates the timing 
for these signals and when the coprocessor pipeline must advance its state.

Figure 7-1 Coprocessor clocking

Coproc clock shows the result of ORing CLK with the inverse of CPCLKEN. This is 
one technique for generating a clock that reflects the ARM9E-S core pipeline 
advancing.

CLK

Coproc
clock

CPCLKEN
7-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Coprocessor Interface 
7.1.1 Coprocessor instructions

There are three classes of coprocessor instructions:

LDC/STC Load from memory to coprocessor, or store from coprocessor to 
memory.

MCR/MRC Register transfer between coprocessor and ARM processor core.

CDP Coprocessor data operation.

The following sections give examples of how a coprocessor must execute these 
instruction classes:

• LDC/STC on page 7-4

• MCR/MRC on page 7-8

• Interlocked MCR on page 7-10

• CDP on page 7-12

• Privileged instructions on page 7-13

• Busy-waiting and interrupts on page 7-14.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-3



Coprocessor Interface 
7.2 LDC/STC

The LDC and STC instructions are used respectively to transfer data to and from external 
coprocessor registers and memory. For the ARM946E-S (Rev 1) macrocell, the memory 
can be either internal memory (cache or tightly-coupled memory) or AHB depending 
on the address range of the access and the protection unit settings.

The cycle timing for these operations is shown in Figure 7-2.

Figure 7-2 LDC/STC cycle timing

In this example, four words of data are transferred. The number of words transferred is 
determined by how the coprocessor drives the CHSDE[1:0] and CHSEX[1:0] buses.

As with all other instructions, the ARM9E-S macrocell performs the main Decode off 
the rising edge of the clock during the Decode stage. From this, the core commits to 
executing the instruction and so performs an instruction Fetch. The coprocessor 

GO GO LAST Ignored

GO

CLK

nCPMREQ

CPINSTR[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
LDC

CPPASS

CPLATECANCEL

LDC

CPDIN[31:0]
STC

Decode Execute
(GO)

Execute
(GO)

Execute
(GO)

Execute
(LAST)

Memory Write
Coprocessor

pipeline

Fetch
7-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Coprocessor Interface 
instruction pipeline keeps in step with ARM9E-S core by monitoring nCPMREQ. This 
is a registered version of the ARM9E-S core instruction memory request signal 
InMREQ. 

At the rising edge of CLK, if CPCLKEN is HIGH, and nCPMREQ is LOW, an 
instruction Fetch is taking place, and CPINSTR[31:0] contains the fetched instruction 
on the next rising edge of the clock, when CPCLKEN is HIGH. 

This means that:

1. The last instruction fetched enters the Decode stage of the coprocessor pipeline.

2. The instruction in the Decode stage of the coprocessor pipeline enters its Execute 
stage.

3. The fetched instruction is sampled.

In all other cases, the ARM9E-S pipeline is stalled, and the coprocessor pipeline does 
not advance.

During the Execute stage, the condition codes are compared with the flags to determine 
whether the instruction really executes or not. The output CPPASS is asserted (HIGH) 
if the instruction in the Execute stage of the coprocessor pipeline:

• is a coprocessor instruction

• has passed its condition codes.

If a coprocessor instruction busy-waits, CPPASS is asserted on every cycle until the 
coprocessor instruction is executed. If an interrupt occurs during busy-waiting, 
CPPASS is driven LOW, and the coprocessor stops execution of the coprocessor 
instruction.

Another output, CPLATECANCEL, cancels a coprocessor instruction when the 
instruction preceding it causes a Data Abort. This is valid on the rising edge of CLK on 
the cycle that follows the first Execute cycle of the coprocessor instruction. This is the 
only cycle that CPLATECANCEL can be asserted in.

On the rising edge of the clock, the ARM9E-S processor examines the coprocessor 
handshake signals CHSDE[1:0] or CHSEX[1:0]:

• If a new instruction is entering the Execute stage in the next cycle, it examines 
CHSDE[1:0].

• If the currently executing coprocessor instruction requires another Execute cycle, 
it examines CHSEX[1:0]. 
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-5



Coprocessor Interface 
7.2.1 Coprocessor handshake states

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor 
instruction, the handshake signals indicate the ABSENT state. In this 
case, the ARM9E-S macrocell takes the undefined instruction trap.

WAIT there is a coprocessor attached that can handle the instruction, but not 
immediately, the coprocessor handshake signals are driven to indicate 
that the ARM9E-S processor core must stall until the coprocessor can 
catch up. This is known as the busy-wait condition. In this case, the 
ARM9E-S processor core loops in an IDLE state waiting for 
CHSEX[1:0] to be driven to another state, or for an interrupt to occur. If 
CHSEX[1:0] changes to ABSENT, the undefined instruction trap is 
taken. If CHSEX[1:0] changes to GO or LAST, the instruction proceeds 
as described below. If an interrupt occurs, the ARM9E-S processor is 
forced out of the busy-wait state. This is indicated to the coprocessor by 
the CPPASS signal going LOW. The instruction is restarted later and so 
the coprocessor must not commit to the instruction (it must not change 
any coprocessor state) until it has seen CPPASS HIGH, at the same time 
as the handshake signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction 
immediately, and that it requires another cycle of execution. Both the 
ARM9E-S processor core and the coprocessor must also consider the 
state of the CPPASS signal before actually committing to the instruction. 
For an LDC or STC instruction, the coprocessor instruction drives the 
handshake signals with GO when two or more words still have to be 
transferred. When only one more word remains to be transferred, the 
coprocessor drives the handshake signals with LAST. During the Execute 
stage, the ARM9E-S processor core outputs the address for the LDC/STC. 
Also in this cycle, DnMREQ is driven LOW, indicating to the 
ARM946E-S memory system that a memory access is required at the data 
end of the device. The timing for the data on CPDOUT and CPDIN is 
shown in.

LAST You can use an LDC or STC for more than one item of data. If this is the 
case, possibly after busy-waiting, the coprocessor drives the coprocessor 
handshake signals with a number of GO states, and in the penultimate 
cycle LAST (LAST indicating that the next transfer is the final one). If 
there is only one transfer, the sequence is [WAIT,[WAIT,...]],LAST.
7-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Coprocessor Interface 
7.2.2 Coprocessor handshake encoding

Table 7-1 shows how the handshake signals CHSDE[1:0] and CHSEX[1:0] are 
encoded.

Note

 If an external coprocessor is not attached in the ARM946E-S embedded system, the 
CHSDE[1:0] and CHSEX[1:0] handshake inputs must be tied off to indicate ABSENT.

7.2.3 Multiple external coprocessors

 If multiple external coprocessors are to be attached to the ARM946E-S interface, you 
can combine the handshaking signals by ANDing bit 1, and ORing bit 0. In the case of 
two coprocessors that have handshaking signals CHSDE1, CHSEX1 and CHSDE2, 
CHSEX2 respectively:

CHSDE[1] = CHSDE1[1] AND CHSDE2[1]

CHSDE[0] = CHSDE1[0] OR CHSDE2[0]

CHSEX[1] = CHSEX1[1] AND CHSEX2[1]

CHSEX[0] = CHSEX1[0] OR CHSEX2[0].

Table 7-1 Handshake encoding

[1:0] Meaning

10 ABSENT

00 WAIT

01 GO

11 LAST
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-7



Coprocessor Interface 
7.3 MCR/MRC

 MCR/MRC cycles look very similar to STC/LDC. An example, with a busy-wait state, is 
shown in Figure 7-3. 

Figure 7-3 MCR/MRC transfer timing with busy-wait

First nCPMREQ is driven LOW to denote that the instruction on CPINSTR[31:0] is 
entering the Decode stage of the pipeline. This causes the coprocessor to decode the 
new instruction and drive CHSDE[1:0] as required. In the next cycle nCPMREQ is 
driven LOW to denote that the instruction has now been issued to the Execute stage. If 

LAST Ignored

WAIT

CLK

nCPMREQ

CPINSTR[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
MCR

CPPASS

CPLATECANCEL

MCR/
MRC

CPDIN[31:0]
MRC

Decode Execute
(WAIT)

Execute
(LAST)

Memory Write
Coprocessor

pipeline

Fetch

Coproc
data

Coproc
data
7-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Coprocessor Interface 
the condition codes pass, and therefore, the instruction is to be executed, then the 
CPPASS signal is driven HIGH and the CHSDE[1:0] handshake bus is examined. It is 
ignored in all other cases. 

For any successive Execute cycles the CHSEX[1:0] handshake bus is examined. When 
the LAST condition is observed, the instruction is committed. In the case of an MCR, the 
CPDOUT[31:0] bus is driven with the registered data during the coprocessor Write 
stage. In the case of an MRC, CPDIN[31:0] is sampled at the end of the ARM9E-S core 
Memory stage and written to the destination register during the next cycle.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-9



Coprocessor Interface 
7.4 Interlocked MCR

 If the data for an MCR operation is not available inside the ARM9E-S core pipeline 
during its first Decode cycle, then the ARM9E-S core pipeline interlocks for one or 
more cycles until the data is available. An example of this is where the register being 
transferred is the destination from a preceding LDR instruction.

In this situation the MCR instruction enters the Decode stage of the coprocessor pipeline, 
and then remains there for a number of cycles before entering the Execute stage. 

Figure 7-4 on page 7-11 gives an example of an interlocked MCR that also has a busy-wait 
state.
7-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Coprocessor Interface 
Figure 7-4 Interlocked MCR/MRC timing with busy-wait

LAST Ignored

WAIT

CLK

nCPMREQ

CPINSTR[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
MCR

CPPASS

CPLATECANCEL

MCR/
MRC

CPDIN[31:0]
MRC

Decode
(interlock)

Decode Execute
(WAIT)

Execute
(LAST)

Memory
Coprocessor

pipeline

WAIT

WriteFetch
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-11



Coprocessor Interface 
7.5 CDP

CDP instructions normally execute in a single cycle. Like all the previous cycles, 
nCPMREQ is driven LOW to signal when an instruction is entering the Decode and 
then the Execute stage of the pipeline. If the instruction really is to be executed, the 
CPPASSCHSDE[1:0] signal is driven HIGH during the Execute cycle. If the 
coprocessor can execute the instruction immediately it drives with LAST. If the 
instruction requires a busy-wait cycle, the coprocessor drives CHSDE[1:0] with WAIT 
and then CHSEX[1:0] with LAST.

Figure 7-5 shows a CDP cancelled because the previous instruction caused a Data Abort.

Figure 7-5 Late cancelled CDP

The CDP instruction enters the Execute stage of the pipeline and is signaled to execute 
by CPASS. In the following cycle CPLATECANCEL is asserted. This causes the 
coprocessor to terminate execution of the CDP instruction and for it to cause no state 
changes to the coprocessor.

Ignored

LAST

CLK

nCPMREQ

CPINSTR[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPPASS

CPLATECANCEL

CPRT

Decode Execute Memory
(Latecancelled)Coprocessor

pipeline

Fetch Instruction
aborted
7-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Coprocessor Interface 
7.6 Privileged instructions

The coprocessor can restrict certain instructions for use in privileged modes only. To do 
this, the coprocessor tracks the nCPTRANS output. Figure 7-6 shows how 
nCPTRANS changes after a mode change.

Figure 7-6 Privileged instructions

The first two CHSDE[1:0] responses are ignored by the ARM9E-S because it is only 
the final CHSDE[1:0] response, as the instruction moves from Decode into Execute, 
that counts. This allows the coprocessor to change its response as nCPTRANS 
changes.

Ignored

Ignored

CLK

nCPMREQ

CPINSTR[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPPASS

CPLATECANCEL

CPRT

Decode Decode Decode Execute Memory
Coprocessor

pipeline

Ignored

Instruction
aborted

nCPTRANS Old mode New mode

LAST

Fetch
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-13



Coprocessor Interface 
7.7 Busy-waiting and interrupts

The coprocessor is permitted to stall, or busy-wait, the processor during the execution 
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor 
instruction. To do so, the coprocessor associated with the Decode stage instruction 
drives WAIT onto CHSDE[1:0]. When the instruction concerned enters the Execute 
stage of the pipeline, the coprocessor can drive WAIT onto CHSEX[1:0] for as many 
cycles as necessary to keep the instruction in the busy-wait loop.

For interrupt latency reasons the coprocessor can be interrupted while busy-waiting. 
This causes the instruction to be abandoned. Abandoning execution is done through 
CPPASS. The coprocessor must monitor the state of CPPASS during every busy-wait 
cycle. If it is HIGH, the instruction must still be executed. If it is LOW, the instruction 
must be abandoned.

Figure 7-7 on page 7-15 shows a busy-waited coprocessor instruction abandoned due to 
an interrupt. CPLATECANCEL is also asserted as a result of the Execute interruption.
7-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Coprocessor Interface 
Figure 7-7 Busy-waiting and interrupts

WAIT WAIT

WAIT

CLK

nCPMREQ

CPINSTR[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPPASS

CPLATECANCEL

CPInstr

Decode Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT)Coprocessor

pipeline

WAIT Ignored

Execute
interrupted

Fetch
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-15



Coprocessor Interface 
7-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Chapter 8 
Debug Support

This chapter describes the ARM946E-S (Rev 1) debug interface. It contains the 
following sections:

• About the debug interface on page 8-2

• Debug systems on page 8-4

• The JTAG state machine on page 8-7

• Scan chains on page 8-13

• Debug access to the caches on page 8-19

• Debug interface signals on page 8-21

• ARM9E-S core clock domains on page 8-26

• Determining the core and system state on page 8-27.

The ARM9E-S EmbeddedICE-RT logic is also discussed in this chapter including:

• Overview of EmbeddedICE-RT on page 8-28

• Disabling EmbeddedICE-RT on page 8-30

• The debug communications channel on page 8-31

• Real-time debug on page 8-34.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-1



Debug Support 
8.1 About the debug interface

Debug support is implemented using the ARM9E-S core embedded within the 
ARM946E-S (Rev 1). The ARM946E-S (Rev 1) macrocell debug interface is based on 
IEEE Std. 1149.1-1990, Standard Test Access Port and Boundary-Scan Architecture. 
See this standard for an explanation of the terms used in this chapter and for a 
description of the TAP controller states.

The ARM9E-S processor core within the ARM946E-S (Rev 1) macrocell contains 
hardware extensions for advanced debugging features. These make it easier to develop 
application software, operating systems, and the hardware itself.

The debug extensions allow you to force the core to be stopped by:

• a given instruction fetch (breakpoint)

• a data access (watchpoint)

• an external debug request.

This is known as debug state. In debug state, the core and ARM946E-S (Rev 1) 
macrocell memory system are effectively stopped, and isolated from the rest of the 
system. This is known as halt mode operation and allows you to examine the internal 
state of the ARM9E-S core, ARM946E-S (Rev 1) system, and external AHB state, 
while all other system activity continues as normal. When debug has been completed, 
the ARM9E-S restores the core and system state, and resumes program execution.

The examination of the internal state of the ARM946E-S (Rev 1) macrocell uses a 
JTAG-style interface, that allows you to serially insert instructions into the instruction 
pipeline. This exports the contents of the ARM9E-S core registers. The exported data is 
serially shifted out without affecting the rest of the system.

In addition, the ARM9E-S supports a real-time debug mode, where instead of 
generating a breakpoint or watchpoint, an internal Instruction Abort or Data Abort is 
generated. This is known as monitor mode operation.

When used in conjunction with a debug monitor program activated by the abort 
exception entry, you can debug the ARM946E-S (Rev 1) macrocell while allowing the 
execution of critical interrupt service routines. The debug monitor program typically 
communicates with the debug host over the ARM946E-S (Rev 1) debug communication 
channel. Real-time debug is described in Real-time debug on page 8-34.

8.1.1 Debug clocks

You must synchronize the system and test clocks externally to the ARM946E-S (Rev 1) 
macrocell. The ARM Multi-ICE debug agent directly supports one or more cores within 
an ASIC design. To synchronize off-chip debug clocking with the ARM946E-S (Rev 1) 
macrocell you must use a three-stage synchronizer. The off-chip device (for example, 
8-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
Multi-ICE) issues a TCK signal, and waits for the RTCK (Returned TCK) signal to 
come back. Synchronization is maintained because the off-chip device does not 
progress to the next TCK until after RTCK is received. 

Figure 8-1 shows this synchronization.

Figure 8-1 Clock synchronization

D Q D QD Q

D Q

D Q

TDO

RTCK

TCK

TMS

TDI

DBGTDO

CLK

DBGTDI

DBGTMS

DBGTCKEN

CLK

CLK

A
R

M
9

4
6

E
-S

CLK
TCK Synchronizer

Multi-ICE
interface
pads

Input sample and hold

DBGnTRST
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-3



Debug Support 
8.2 Debug systems

The ARM946E-S (Rev 1) macrocell forms one component of a debug system that 
interfaces from the high-level debugging performed by the user to the low-level 
interface supported by the ARM946E-S (Rev 1) macrocell. Figure 8-2 shows a typical 
debug system.

Figure 8-2 Typical debug system

A debug system typically has three parts:

• The debug host on page 8-4

• The protocol converter on page 8-5

• ARM946E-S (Rev 1) debug target on page 8-5.

The debug host and the protocol converter are system-dependent.

8.2.1 The debug host

The debug host is a computer that is running a software debugger, such as armsd. The 
debug host allows you to issue high-level commands such as setting breakpoints or 
examining the contents of memory.

Host computer running ARM or third party toolkitDebug
host

Protocol
converter

Debug
host

Debug
target

For example, Multi-ICE

Development system containing ARM946E-S
8-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
8.2.2 The protocol converter

An interface, such as a parallel port, connects the debug host to the ARM946E-S (Rev 
1) macrocell development system. The messages broadcast over this connection must 
be converted to the interface signals of the ARM946E-S (Rev 1) macrocell. The 
protocol converter performs the conversion.

8.2.3 ARM946E-S (Rev 1) debug target

The ARM9E-S core within the ARM946E-S (Rev 1) macrocell has hardware 
extensions that ease debugging at the lowest level. The debug extensions:

• allow you to stall the core from program execution

• examine the core internal state

• examine the state of the memory system

• resume program execution.

The following major blocks of the ARM9E-S are shown in the ARM9E-S block diagram 
on page 8-6.

EmbeddedICE-RT logic 

With hardware support for debug

ARM9E-S CPU core 

This is a set of registers and comparators used to generate debug 
exceptions (such as breakpoints). This unit is described in Overview of 
EmbeddedICE-RT on page 8-28.

TAP controller  

This controls the action of the scan chains using a JTAG serial interface.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-5



Debug Support 
Figure 8-3 ARM9E-S block diagram

The ARM9E-S debug model is extended within the ARM946E-S (Rev 1) macrocell by 
the addition of scan chain 15. This is used for debug access to the CP15 register bank, 
to allow you to configure the system state within the ARM946E-S (Rev 1) macrocell 
while in debug state, for instance to enable or disable the SRAM before performing a 
debug load or store. 

ARM9E-S
TAP Controller

ARM9E-S

ARM9E-S
EmbeddedICE-RT

Logic

Scan chain 2

Scan chain 1
8-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
8.3 The JTAG state machine

The process of serial test and debug is best explained in conjunction with the JTAG state 
machine. Figure 8-4 on page 8-8 shows the state transitions that occur in the TAP 
controller.

The state numbers are also shown on the diagram. These are output from the 
ARM946E-S (Rev 1) on the TAPSM[3:0] bits.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-7



Debug Support 
Figure 8-4 Test access port (TAP) controller state transitions1

1. From IEEE Std 1149.1-1990. Copyright 1999IEEE. All rights reserved.

Select-DR-Scan
0x7

Capture-DR
0x6

Shift-DR
0x2

Exit1-DR
0x1

Pause-DR
0x3

Exit2-DR
0x0

Update-DR
0x5

Run-Test/Idle
0xC

Test-Logic-Reset
0xF

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1

Select-IR-Scan
0x4

Capture-IR
0xE

Shift-IR
0xA

Exit1-IR
0x9

Pause-IR
0xB

Exit2-IR
0x8

Update-IR
0xD

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1

tms=0 tms=0

tms=0 tms=0

tms=1

tms=0

tms=1
tms=0

tms=1

tms=1

tms=0

tms=1 tms=1

tms=1 tms=0 tms=1 tms=0

tms=1

tms=1

tms=0
8-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
8.3.1 Reset

The JTAG interface includes a state-machine controller (the TAP controller). To force 
the TAP controller into the correct state after power-up of the device you must apply a 
reset pulse to the DBGnTRST signal, or you must cycle the JTAG state machine 
through the TEST-LOGIC-RESET state. Before you can use the JTAG interface, you 
must drive DBGnTRST LOW, and then HIGH again. If you do not intend using the 
boundary scan interface, you can tie the DBGnTRST input permanently LOW. 

Note
 A clock on TCK is not necessary to reset the device.

The action of reset is as follows:

1. Forces exit from debug state. The boundary scan chain cells do not intercept any 
of the signals passing between the external system and the core. 

2. The IDCODE instruction is selected. If the TAP controller is put into the 
SHIFT-DR state and TCK is pulsed, the contents of the ID register are clocked 
out of TDO.

8.3.2 Pull-up resistors

The IEEE 1149.1 standard effectively requires TDI and TMS to have internal pull-up 
resistors. In order to minimize static current draw, these resistors are not fitted to the 
ARM9E-S core. Accordingly, the four inputs to the test interface (the TDO, TDI, and 
TMS signals plus TCK) must all be driven to valid logic levels to achieve normal circuit 
operation.

8.3.3 Instruction register

The instruction register is four bits in length. There is no parity bit. The fixed value 
loaded into the instruction register during the CAPTURE-IR controller state is 0001.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-9



Debug Support 
8.3.4 Public instructions

Table 8-1 lists the public instructions that are supported.

In this section it is assumed that TDI and TMS are sampled on the rising edge of TCK 
and all output transitions on TDO occur as a result of the falling edge of TCK.

EXTEST (0000)

The selected scan chain is placed in test mode by the EXTEST instruction. The 
EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the scan cells 
are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system logic and outputs from the output 
scan cells to the system are captured by the scan cells. 

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain 
on TDO, while new test data is shifted in on the TDI input. This data is applied 
immediately to the system logic and system pins. 

SCAN_N (0010)

This instruction connects the scan path select register between TDI and TDO. 

During the CAPTURE-DR state, the fixed value 10000 is loaded into the register. 

During the SHIFT-DR state, the ID number of the desired scan path is shifted into the 
scan path select register. 

Table 8-1 Public instructions

Instruction Binary code

EXTEST 0000

SCAN_N 0010

INTEST 1100

IDCODE 1110

BYPASS 1111

SAMPLE/PRELOAD 0011

RESTART 0100
8-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
In the UPDATE-DR state, the scan register of the selected scan chain is connected 
between TDI and TDO, and remains connected until a subsequent SCAN_N instruction 
is issued. On reset, scan chain 3 is selected by default. The scan path select register is 
five bits long in this implementation, although no finite length is specified.

INTEST (1100)

The selected scan chain is placed in test mode by the INTEST instruction. The INTEST 
instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the scan cells 
are placed in their test mode of operation.

In the CAPTURE-DR state, the value of the data applied from the core logic to the 
output scan cells, and the value of the data applied from the system logic to the input 
scan cells is captured.

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain 
on the TDO pin, while new test data is shifted in on the TDI pin.

IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register) 
between TDI and TDO. The ID register is a 32-bit register that allows the manufacturer, 
part number, and version of a component to be determined through the TAP. The ID 
register is loaded from the TAPID[31:0] input bus. This must be tied to a constant value 
that represents the unique JTAG IDCODE for the device.

When the instruction register is loaded with the IDCODE instruction, all the scan cells 
are placed in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code is captured by the ID register. 

In the SHIFT-DR state, the previously captured device identification code is shifted out 
of the ID register on the TDO pin, while data is shifted in on the TDI pin into the ID 
register. 

In the UPDATE-DR state, the ID register is unaffected.

BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the bypass register) between 
TDI and TDO.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-11



Debug Support 
When the BYPASS instruction is loaded into the instruction register, all the scan cells 
are placed in their normal (system) mode of operation. This instruction has no effect on 
the system pins. 

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. 

In the SHIFT-DR state, test data is shifted into the bypass register on TDI and out on 
TDO after a delay of one TCK cycle. The first bit shifted out is a 0. 

The bypass register is not affected in the UPDATE-DR state. 

Note

 All unused instruction codes default to the BYPASS instruction.

SAMPLE/PRELOAD (0011)

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all 
the scan cells of the selected scan chain are placed in the normal mode of operation.

In the CAPTURE-DR state, a snapshot of the signals of the boundary scan is taken on 
the rising edge of TCK. Normal system operation is unaffected. 

In the SHIFT-DR state, the sampled test data is shifted out of the boundary scan on the 
TDO pin, while new data is shifted in on the TDI pin to preload the boundary scan 
parallel input latch. This data is not applied to the system logic or system pins while the 
SAMPLE/PRELOAD instruction is active. 

You must use this instruction to preload the boundary scan register with known data 
prior to selecting INTEST or EXTEST instructions.

RESTART (0100)

This instruction restarts the processor on exit from debug state. The RESTART 
instruction connects the bypass register between TDI and TDO and the TAP controller 
behaves as if the BYPASS instruction is loaded. The processor resynchronizes back to 
the memory system when the RUN-TEST/IDLE state is entered.
8-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
8.4 Scan chains

ARM946E-S (Rev 1) macrocell supports 32 scan chains. Three scan chains are used 
inside ARM946E-S (Rev 1) macrocell. These allow testing, debugging, and 
programming of the EmbeddedICE macrocell watchpoint units.

The supported scan chains are listed in Table 8-2 on page 8-13.

8.4.1 Scan chain 1

This scan chain is primarily used for debugging and provides access to the core 
instruction and data buses.

Scan chain 1 is 67 bits long and is made up of:

• 32 bits for data values

• 3 control bits

• 32 bits for instruction data.

Table 8-2 ARM946E-S (Rev 1) scan chain allocations

Scan chain
number

Function

0 Reserved

1 Debug

2 EmbeddedICE-RT logic

programming

3 External boundary scan

4 to 14 Reserved

15 Control coprocessor

16 to 31 Unassigned
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-13



Debug Support 
These are arranged as shown in Table 8-3.

The three control bits are:

• SYSSPEED

• WPTANDBKPT

• a reserved bit.

While debugging, the value placed in the SYSSPEED control bit determines if the 
ARM9E-S core executes the instruction at system speed.

After the ARM946E-S (Rev 1) macrocell has entered debug state, the first time 
SYSSPEED is captured and scanned out tells the debugger whether the core has entered 
debug state due to a breakpoint (SYSSPEED LOW) or a watchpoint (SYSSPEED 
HIGH). A watchpoint and a breakpoint can occur simultaneously. When a watchpoint 
condition occurs, the WPTANDBKPT bit must be examined by the debugger to 
determine whether the instruction currently in the Execute stage of the pipeline is 
breakpointed. If it is, WPTANDBKPT is HIGH, otherwise it is LOW.

8.4.2 Scan chain 2

Scan chain 2 allows access to the EmbeddedICE-RT logic registers.The order of the 
scan chain, from DBGTDI to DBGTDO, is:

• read/write

• register address bits 4:0

• data value bits 31:0.

No action occurs during CAPTURE-DR.

During SHIFT-DR, a data value is shifted into the serial register. Bits 36:32 specify the 
address of the EmbeddedICE-RT register to be accessed.

During UPDATE-DR, this register is either read or written depending on the value of 
bit 37 (0 = read, 1 = write).

Table 8-3 Scan chain 1 bits

Bit Function

67:35 Data values

34:32 Control bits

31:0 Instruction values
8-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
8.4.3 Scan chain 3

This scan chain allows ARM946E-S (Rev 1) macrocell to control an optional external 
boundary scan chain. You can determine the length of scan chain 3.

8.4.4 Scan chain 15

Scan chain 15 allows debug access to the CP15 register bank and allows the cache to be 
interrogated. Scan chain 15 is 39 bits long.

The order of scan chain 15 from the DBGTDI input to the DBGTDO output is shown 
in Table 8-4.

The mapping of the CP15 register address field of scan chain 15 to CP15 registers is 
shown in Table 8-5.

Table 8-4 Scan chain 15 addressing mode bit order

Bits Contents

38 Read = 0, write = 1

37:32 CP15 register address

31:0 CP15 data value

Table 8-5 Mapping of scan chain 15 address field to CP15 registers

Address Register

[37] [36:33] [32] Number Name Type

0 0000 0 C0.ID ID register Read

0 0000 1 C0.C Cache type Read

0 0001 0 C1 Control Read/write

0 0010 0 C2.D Data cachable bits Read/write

0 0010 1 C2.I Instruction cachable bits Read/write

0 0011 0 C3 Write buffer control Read/write

0 0100 0 C0.M Tightly-coupled memory size Read

0 0101 0 C5.D Data space access permissions Read/write

0 0101 1 C5.I Instruction address access permissions Read/write
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-15



Debug Support 
In the SHIFT-DR state of the TAP state machine, the read/write bit, the register address 
and the register value for writing, are shifted in.

For a write, the register value is updated when the UPDATE-DR state is reached.

1 <Crm>a 0 C6.[7:0] Memory region protection Read/write

0 0111 0 C7.FD Flush data cache Read/write

0 0111 1 C7.FI Flush instruction cache Read/write

0 1110 0 C7.FD.s Flush DCache single (uses C15.C.Ind) Read/write

0 1110 1 C7.FI.s Flush ICache single (uses C15.C.Ind) Read/write

1 1010 1 C7.CD.s Clean DCache single (uses C15.C.Ind) Read/write

0 1001 0 C9.D Data cache lock-down Read/write

0 1001 1 C9.I Instruction cache lock-down Read/write

1 1000 1 C9.Dram Data SRAM size/location Read/write

1 1001 1 C9.Iram Instruction SRAM size/location Read/write

0 1101 1 C13.TPID Trace process identifier Read/write

0 1111 0 C15.State Test state Read/write

0 1111 1 C15.TAG TAG BIST control Read/write

1 1111 1 C15.RAM Cache RAM BIST control Read/write

1 1101 0 C15.C.Ind Cache index (address/segment) Read/write

0 1010 0 C15.DC Data cache read/write (uses C15.C.Ind) Read/write

0 1010 1 C15.IC Instruction cache read/write (uses C15.C.Ind) Read/write

0 1011 0 C15.DT Data tag read/write (uses C15.C.Ind) Read/write

0 1011 1 C15.IT Instruction tag read/write (uses C15.C.Ind) Read/write

1 1110 1 C15.Mem Memory RAM BIST control Read/write

a. For CP15 register 6, CRm corresponds to the region number (0 to 7).

Table 8-5 Mapping of scan chain 15 address field to CP15 registers (continued)

Address Register

[37] [36:33] [32] Number Name Type
8-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
For reading, return to SHIFT-DR through CAPTURE-DR to shift out the register value.

8.4.5 Scan chain debug status register

In situations where the AHB clock frequency is significantly less than the debugger 
clock frequency, cache maintenance operations initialized by the debug scan chain (scan 
chain 15) might be missed by the ARM946E-S (Rev 1) macrocell. 

This situation can be prevented by providing status information to the debugger. Cache 
maintenance operations (cache flush and cache clean) are read/write accesses. By 
reading back from the same scan chain register address that initiated the maintenance 
operation, a status bit is returned to the debugger. If the bit is set, the operation has been 
completed and the debug sequence can continue. If the bit is cleared, the requested 
operation has not been completed. 

The Status Bit is implemented for the debug scan chain operations shown in Table 8-6 
on page 8-17.

The complete list of operations that can be initiated from the debug scan chain are 
shown in Table 8-6.

Table 8-6 Status bit mapping of scan chain 15 address field to CP15 registers

Address Register

[37] [36:33] [32] Number Name Type

0 0111 0 C7.FD Flush data cache Read/write

0 0111 1 C7.FI Flush instruction cache Read/write

0 1110 0 C7.FD.s Flush DCache single (uses C15.C.Ind) Read/write

0 1110 1 C7.FI.s Flush ICache single (uses C15.C.Ind) Read/write

1 1010 1 C7.CD.s Clean DCache single (uses C15.C.Ind) Read/write

0 1011 1 C15.IT Instruction tag read/write (uses C15.C.Ind) Read/write

1 1110 1 C15.Mem Memory RAM BIST control Read/write
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-17



Debug Support 
The status bit associated with each cache maintenance operation is shown in Table 8-7.

Table 8-7 Correlation between status bits and cache operations

Status bit Cache maintenance operation

6:0 Unpredictable

7 Clean DCache Single Busy

9 Flush DCache Single Busy

10 Flush DCache Busy

17 Flush ICache Single Busy

18 Flush ICache Busy

31:19 Unpredictable
8-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
8.5 Debug access to the caches

It is desirable for the debugger to examine the contents of the instruction and data 
caches during debug operations. This is achieved in two steps:

1. The debugger determines if valid addresses are stored in the cache and forms TAG 
addresses from the TAG contents and the TAG index.

2. The debugger uses the generated addresses to either access main memory, or to 
read individual entries using the CP15 scan chain.

8.5.1 Debug access to the caches, Step 1

This is done by reading the ICache and DCache TAG arrays using scan chain 15. The 
debugger must do this for each entry set within the cache. The format of the data 
returned is shown in Figure 8-5 on page 8-19.

Figure 8-5 TAG address format

The TAG address is formed from the TAG contents and the TAG index used to 
interrogate the TAG. This ensures that the data format returned is consistent regardless 
of cache size.

8.5.2 Debug access to the caches, Step 2

Reading individual entries using the CP15 scan chain can be useful where an entry has 
been marked as dirty, because this indicates that there is an inconsistency between the 
cache contents and main memory.

For the DCache, the debugger can execute system speed accesses that hit in the cache 
and, therefore, return the cache contents. Writes to the DCache from the processor core 
by this method result in the dirty bits being set for write-back regions, and main memory 
is updated for write-through regions.

31 5 4 3 2 1 0

TAG address

Valid
Dirty1
Dirty2
Set1
Set0
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-19



Debug Support 
If the CP15 scan chain is used for updating the DCache, only the cache contents are 
updated. Writes are not made to main memory. For this method you must first program 
the index/set register with the required cache index, set, and word values. The format of 
the cache index register is shown in Figure 8-6 on page 8-20.

Figure 8-6 Cache index register format

Note

 Although 27 bits are specified for the TAG address, only those bits required for the TAG 
implemented are used.

The cache index register is also used for writing to the instruction cache. This is useful 
for setting software breakpoints within code already in the cache. This means that you 
do not have to flush the cache and reload the entry.

Note
 There is no mechanism for detecting that the ICache has been updated in this way. The 
debugger must restore the original cache contents after executing the breakpoint.

31 30 29 N+1 N 5 4 2 1 0

Segment

Word
address

SBZSBZ Index
8-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
8.6 Debug interface signals

There are four primary external signals associated with the debug interface:

• DBGIEBKPT, DBGDEWPT, and EDBGRQ are system requests for the 
ARM946E-S (Rev 1) to enter debug state.

• DBGACK is used by the ARM946E-S (Rev 1) to flag back to the system that it 
is in debug state.

8.6.1 Entry into debug state on breakpoint

 Any instruction being fetched from memory is sampled at the end of a cycle. To apply 
a breakpoint to that instruction, you must assert the breakpoint signal by the end of the 
same cycle. This is shown in Figure 8-7 on page 8-21.

Figure 8-7 Breakpoint timing

You can build external logic, such as additional breakpoint comparators, to extend the 
breakpoint functionality of the EmbeddedICE-RT logic. The output from the external 
logic must be applied to the DBGIEBKPT input. This signal is ORed with the 
internally-generated Breakpoint signal before being applied to the ARM9E-S core 
control logic. The timing of the input makes it unlikely that data-dependent external 
breakpoints are possible.

CLK

INSTR[31:0] 1

M1E1 W1D1

IA[31:1]

2 3 4

DBGIEBKPT

DBGACK

F1

M2E2 W2D2F2

M1E1 W1D1F1

Edebug1Ddebug Edebug2
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-21



Debug Support 
A breakpointed instruction is allowed to enter the Execute stage of the pipeline, but any 
state change as a result of the instruction is prevented. All writes from previous 
instructions complete as normal.

The Decode cycle of the debug entry sequence occurs during the Execute cycle of the 
breakpointed instruction. The latched Breakpoint signal forces the processor to start 
the debug sequence.

8.6.2 Breakpoints and exceptions

A breakpointed instruction can have a Prefetch Abort associated with it. If so, the 
Prefetch Abort takes priority and the breakpoint is ignored. (If there is a Prefetch Abort, 
instruction data might be invalid, the breakpoint might have been data-dependent, and 
as the data might be incorrect, the breakpoint might have been triggered incorrectly.)

SWI and undefined instructions are treated in the same way as any other instruction that 
might have a breakpoint set on it. Therefore, the breakpoint takes priority over the SWI 
or undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an interrupt 
(nIRQ or nFIQ), the interrupt is taken and the breakpointed instruction is discarded. 
When the interrupt has been serviced, the execution flow is returned to the original 
program. This means that the previously breakpointed instruction is fetched again, and 
if the breakpoint is still set, the processor enters debug state when it reaches the Execute 
stage of the pipeline.

When the processor has entered halt mode debug state, it is important that additional 
interrupts do not affect the instructions executed. For this reason, as soon as the 
processor enters stop-mode debug state, interrupts are disabled, although the state of the 
I and F bits in the Program Status Register (PSR) are not affected

8.6.3 Watchpoints

 Entry into debug state following a watchpointed memory access is imprecise. This is 
necessary because of the nature of the pipeline. 

You can build external logic, such as external watchpoint comparators, to extend the 
functionality of the EmbeddedICE-RT logic. The output of the external logic must be 
applied to the DBGDEWPT input. This signal is ORed with the internally-generated 
Watchpoint signal before being applied to the ARM9E-S core control logic. The timing 
of the input makes it unlikely that data-dependent external watchpoints are possible.
8-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
After a watchpointed access, the next instruction in the processor pipeline is always 
allowed to complete execution. Where this instruction is a single-cycle data-processing 
instruction, entry into debug state is delayed for one cycle while the instruction 
completes. The timing of debug entry following a watchpointed load in this case is 
shown in Figure 8-8 on page 8-23.

Figure 8-8 Watchpoint entry with data processing instruction

Note
 Although instruction 5 enters the Execute stage, it is not executed, and there is no state 
update as a result of this instruction. When the debugging session is complete, normal 
continuation involves a return to instruction 5, the next instruction in the code sequence 
that has not yet been executed.

The instruction following the instruction that generated the watchpoint might modify 
the Program Counter (PC). If this happens, you cannot determine the instruction that 
caused the watchpoint. However, you can always restart the processor. A timing 
diagram showing debug entry after a watchpoint where the next instruction is a branch 
is shown in Figure 8-9 on page 8-24.

CLK

INSTR[31:0]

InMREQ

RDATA[31:0]

1

M1E1 W1D1

WDATA[31:0]

DA[31:0]

2 LDR Dp 5 6

F1

M2E2 W2D2F2

MldrEldr WldrDldrFldr

MDpEDp WDpDDpFDp

M5E5 W5D5F5

Edebug1Ddebug Edebug2

7 8

DBGDEWPT

DBGACK
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-23



Debug Support 
When the processor has entered debug state, you can interrogate the ARM9E-S core to 
determine its state. In the case of a watchpoint, the PC contains a value that is five 
instructions on from the address of the next instruction to be executed. Therefore, if on 
entry to debug state, in ARM state, the instruction SUB PC, PC, #20 is scanned in and the 
processor restarted, execution flow returns to the next instruction in the code sequence.

Figure 8-9 Watchpoint entry with branch

8.6.4 Watchpoints and exceptions

If a watchpointed data access is also abort, the watchpoint condition is registered and 
the exception entry sequence performed. Then the processor enters debug state. If there 
is an interrupt pending, the ARM9E-S allows the exception entry sequence to occur and 
then enters debug state.

8.6.5 Debug request

A debug request can take place through the EmbeddedICE-RT logic or by asserting the 
EDBGRQ signal. The request is synchronized and passed to the processor. Debug 
request takes priority over any pending interrupt. Following synchronization, the core 
enters debug state when the instruction at the execution stage of the pipeline has 

CLK

INSTR[31:0]

InMREQ

RDATA[31:0]

LDR

WDATA[31:0]

DA[31:0]

B X X T T+4

MldrEldr WldrDldrFldr

MBEB WBDBFB

ETDTFT

Edebug1Ddebug Edebug2

T+8 T+C

DBGDEWPT

DBGACK

IA[31:1]
8-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
completely finished executing (when memory and write stages of the pipeline have 
completed). While waiting for the instruction to finish executing, no more instructions 
are issued to the Execute stage of the pipeline.

Note

 If EDBGRQ is asserted while the processor is operating in monitor mode, the processor 
enters debug state as if operating in halt mode.

8.6.6 Actions of the ARM9E-S in debug state

When the ARM9E-S is in debug state, both memory interfaces indicate internal cycles. 
This ensures that the tightly-coupled SRAM within the ARM946E-S (Rev 1) macrocell, 
and the AHB interface, are both quiescent, allowing the rest of the AHB system to 
ignore the ARM9E-S and function as normal. Because the rest of the system continues 
operation, the ARM9E-S ignores aborts and interrupts.

The nRESET signal must be held stable during debug. If the system applies reset to the 
ARM946E-S (Rev 1) (nRESET is driven LOW), the state of the ARM9E-S macrocell 
changes without the knowledge of the debugger.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-25



Debug Support 
8.7 ARM9E-S core clock domains

The ARM9E-S core has a single clock, CLK, that is qualified by two clock enables:

• SYSCLKEN controls access to the memory system

• DBGTCKEN controls debug operations.

During normal operation, SYSCLKEN conditions CLK to clock the core. When the 
ARM946E-S (Rev 1) macrocell is in debug state, DBGTCKEN conditions CLK to 
clock the core.
8-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
8.8 Determining the core and system state

When the ARM946E-S (Rev 1) macrocell is in debug state, you can examine the core 
and system state by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine 
whether the processor entered debug from Thumb state or ARM state, by examining 
bit 4 of the EmbeddedICE-RT debug status register. When bit 4 is HIGH, the core has 
entered debug from Thumb state.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-27



Debug Support 
8.9 Overview of EmbeddedICE-RT

The ARM9E-S EmbeddedICE-RT logic provides integrated on-chip debug support for 
the ARM9E-S core within the ARM946E-S (Rev 1) macrocell.

EmbeddedICE-RT is programmed serially using the ARM9E-S TAP controller. 
Figure 8-10 on page 8-28 illustrates the relationship between the core, 
EmbeddedICE-RT, and the TAP controller, showing only the signals that are pertinent 
to EmbeddedICE-RT. 

Figure 8-10 The ARM9E-S, TAP controller, and EmbeddedICE-RT

TAP

EmbeddedICE-RTARM9E-S

DBGTCKEN
DBGTMS
DBGTDI

DBGTDO

CLK

DBGIEBKPT

EDBGRQ

DBGACK

DBGEN

DBGRNG[1:0]

DBGEXT[1:0]

DBGCOMMRX

DBGCOMMTX

DBGDEWPT

DBGnTRST
8-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
The EmbeddedICE-RT logic comprises:

• two real-time watchpoint units

• two independent registers:

— the debug control register

— the debug status register

• debug comms channel.

The debug control register and the debug status register provide overall control of 
EmbeddedICE-RT operation.

You can program one or both watchpoint units to halt the execution of instructions by 
the core. Execution halts when the values programmed into EmbeddedICE-RT match 
the values currently appearing on the address bus, data bus, and various control signals.

Note
 You can mask bits so that their values do not affect the comparison. 

You can configure each watchpoint unit to be either a watchpoint (monitoring data 
accesses) or a breakpoint (monitoring instruction fetches). Watchpoints and breakpoints 
can be data-dependent in halt mode debug.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-29



Debug Support 
8.10 Disabling EmbeddedICE-RT

 You can disable EmbeddedICE-RT by setting the DBGEN input LOW.

Caution

 Hard wiring the DBGEN input LOW permanently disables debug access.

When DBGEN is LOW, it inhibits DBGDEWPT, DBGIEBKPT, and EDBGRQ to 
the core, and DBGACK from the ARM946E-S (Rev 1) macrocell is always LOW.
8-30 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
8.11 The debug communications channel

The ARM9E-S EmbeddedICE-RT logic contains a communications channel for 
passing information between the target and the host debugger. This is implemented as 
coprocessor 14.

The communications channel comprises:

• a 32-bit comms data read register 

• a 32-bit wide comms data write register

• a 6-bit wide comms control register for synchronized handshaking between the 
processor and the asynchronous debugger. 

These registers are located in fixed locations in the EmbeddedICE-RT logic register 
map and are accessed from the processor using MCR and MRC instructions to coprocessor 
14.

In addition to the comms channel registers, the processor can access a 1-bit debug status 
register for use in the real-time debug configuration.

8.11.1 Debug comms channel registers

CP14 contains 4 registers. These have the register allocations listed in Table 8-8 on 
page 8-31.

8.11.2 Debug comms channel status register

The debug comms channel status register is read-only. It controls synchronized 
handshaking between the processor and the debugger. The debug comms channel status 
register is shown in Figure 8-11 on page 8-32. 

Table 8-8 Coprocessor 14 register map

Register name Register number Notes

Comms channel status C0 Read-only

Comms channel data read C1 For reads

Comms channel data write C1 For writes

Debug status C2 Read/write
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-31



Debug Support 
Figure 8-11 Debug comms channel status register

Each register bit functions as follows:

Bits 31:28 Contain a fixed pattern that denotes the EmbeddedICE-RT version 
number (in this case 0011).

Bits 27:2 Are reserved.

Bit 1 Denotes whether the comms data write register is available (from 
the point of view of the processor). If, from the point of view of 
the processor, the comms data write register is free (W=0), new 
data can be written. If the register is not free (W=1), the processor 
must poll until W=0. From the point of view of the debugger, 
when W=1, some new data has been written that can then be 
scanned out.

Bit 0 Denotes whether there is new data in the comms data read register. 
If, from the point of view of the processor, R=1, there is new data 
that can be read using an MRC instruction. From the point of view 
of the debugger, if R=0, the comms data read register is free, and 
new data can be placed there through the scan chain. If R=1, this 
denotes that data previously placed there through the scan chain 
has not been collected by the processor, and so the debugger must 
wait.

From the point of view of the debugger, the registers are accessed using the scan chain 
in the usual way. From the point of view of the processor, these registers are accessed 
using coprocessor register transfer instructions.

You are recommended to use the following instructions:

MRC p14, 0, Rd, c0, c0 This returns the debug comms control register into Rd.

MCR p14, 0, Rn, c1, c0 This writes the value in Rn to the comms data write register.

MRC p14, 0, Rd, c1, c0 This returns the debug data read register into Rd.

You are advised to access this data using SWI instructions when in Thumb state because 
the Thumb instruction set does not contain coprocessor instructions.

31 30 29 28 27 2 1 0

0 0 1 1 SBZ W R
8-32 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
8.11.3 Communications using the comms channel

You can send and receive messages using the comms channel.

Sending a message to the debugger

When the processor has to send a message to the debugger, it must check the comms 
data write register is free for use by finding out whether the W bit of the debug comms 
control register is clear.

The processor reads the debug comms control register to check the status of the W bit:

• If the W bit is clear, the comms data write register is clear.

• If the W bit is set, previously written data has not been read by the debugger. The 
processor must continue to poll the control register until the W bit is clear.

When the W bit is clear, a message is written by a register transfer to coprocessor 14. 
As the data transfer occurs from the processor to the comms data write register, the W 
bit is set in the debug comms control register. 

The debugger sees both the R and W bits when it polls the debug comms control register 
through the JTAG interface. When the debugger sees that the W bit is set, it can read the 
comms data write register, and scan the data out. The action of reading this data register 
clears the debug comms control register W bit. At this point, the communications 
process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a 
message to the debugger. In this case, the debugger polls the R bit of the debug comms 
control register: 

• if the R bit is LOW, the comms data read register is free, and data can be placed 
there for the processor to read

• if the R bit is set, previously deposited data has not yet been collected, so the 
debugger must wait.

When the comms data read register is free, data is written there using the JTAG 
interface. The action of this write sets the R bit in the debug comms control register. 

The processor polls the debug comms control register. If the R bit is set, there is data 
that can be read using an MRC instruction to coprocessor 14. The action of this load clears 
the R bit in the debug comms control register. When the debugger polls this register and 
sees that the R bit is clear, the data has been taken, and the process can now be repeated.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-33



Debug Support 
8.12 Real-time debug

The ARM9E-S within ARM946E-S (Rev 1) macrocell contains logic that allows you to 
debug a system without stopping the core entirely. This enables the continued servicing 
of critical interrupt routines while the core is being interrogated by the debugger. Setting 
bit 4 of the debug control register enables the real-time debug features of ARM9E-S. 
When this bit is set, the EmbeddedICE-RT logic is configured so that a 
breakpoint/watchpoint causes the ARM to enter abort mode, taking the Prefetch Abort 
or Data Abort vectors respectively. You must be aware of a number of restrictions when 
the ARM is configured for real-time debugging: 

• Breakpoints/watchpoints cannot be data-dependent. No support is provided for 
the range and chain functionality. Breakpoints/watchpoints can only be based on:

— instruction/data addresses

— external watchpoint conditioner (DBGEXTERN)

— User/Privileged mode access (DnTRANS/InTRANS)

— read/write access (watchpoints)

— access size (breakpoints: ITBIT, watchpoints: DMAS[1:0]).

• The single-step hardware is not enabled.

• External breakpoints/watchpoints are not supported.

• You can use the vector catching hardware, but must not configure it to catch the 
Prefetch or Data Abort exceptions.

• No support is provided to mix halt mode/monitor mode debug functionality. 
When the core is configured into the monitor mode, asserting the external 
EDBGRQ signal results in unpredictable behavior. Setting the internal 
EDBGRQ bit results in unpredictable behavior.

When an abort is generated by the monitor mode, it is recorded in the debug status 
register in coprocessor 14 (see Scan chain debug status register on page 8-17).

Because the monitor mode debug does not put the ARM9E-S into debug state, you must 
now change the contents of the watchpoint registers while external memory accesses are 
taking place, rather than being changed when in debug state. If the watchpoint registers 
are written to during an access, all matches from the affected watchpoint unit using the 
register being updated are disabled for the cycle of the update.
8-34 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Debug Support 
If false matches can occur during changes to the watchpoint registers, caused by old data 
in some registers and new data in others, then you must: 

1. Disable that watchpoint unit using the control register for that watchpoint unit.

2. Change the other registers.

3. Re-enable the watchpoint unit by rewriting the control register.

8.12.1 Further reading - debug in depth

A more detailed description of the ARM9E-S debug features and JTAG interface are 
provided in the ARM9E-S Technical Reference Manual, Appendix D Debug in Depth.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-35



Debug Support 
8-36 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Chapter 9 
ETM Interface

This chapter describes the ARM946E-S (Rev 1) Embedded Trace Macrocell (ETM) 
interface. It contains the following sections:

• About the ETM interface on page 9-2

• Enabling the ETM interface on page 9-4.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 9-1



ETM Interface 
9.1 About the ETM interface

The ARM946E-S (Rev 1) supports the connection of an optional external Embedded 
Trace Macrocell (ETM) to provide real-time tracing of ARM946E-S (Rev 1) 
instructions and data in an embedded system.

The ETM consists of two parts:

A trace port A trace protocol has been developed to provide a real-time trace 
capability for processor cores that are deeply embedded in much 
larger ASIC designs. As the ASIC typically includes significant 
amounts of on-chip memory, you cannot determine how the 
processor core is operating simply by observing the pins of the 
ASIC. A trace port is required to confirm the performance of the 
processor in operational use.

Triggering facilities 

An extensible specification exists, allowing you to specify the 
exact set of trigger resources required for a particular application. 
Resources include address and data comparators, counters, and 
sequencers.

The ETM compresses the trace information and exports it through the trace port. An 
external Trace Port Analyzer (TPA) is used to capture the trace information.

The ETM interface is primarily one way. To provide code tracing, the ETM block must 
be able to monitor various ARM9E-S inputs and outputs. The required ARM9E-S 
inputs and outputs are collected and driven out from the ARM946E-S (Rev 1) macrocell 
as the ETM interface.

The ETM interface outputs are pipelined by a single clock cycle to provide early output 
timing and to isolate any ETM input load from the critical ARM946E-S (Rev 1) signals. 
The latency of the pipelined outputs does not affect ETM trace behavior, because all 
outputs are delayed by the same amount.

Figure 9-1 on page 9-3 shows the ARM946E-S (Rev 1) ETM interface.
9-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



ETM Interface 
Figure 9-1 ARM946E-S (Rev 1) ETM interface

ETM

ARM9E-S
To/from
ARM946E-S
logic

To/from
ARM946E-S
logic

ETM interface registersCLK nRESET

ARM946E-S
ETMEN

En

FIFOFULL
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 9-3



ETM Interface 
9.2 Enabling the ETM interface

The only input to the ETM interface of the ARM946E-S (Rev 1) is an enable signal that 
determines whether the required ARM9E-S inputs and outputs are driven out from the 
ARM946E-S (Rev 1).

The ETM enable is controlled by the top-level pin ETMEN. When this input is HIGH, 
the ETM interface is enabled and the outputs are driven so that an external ETM can 
begin code tracing.

When the ETMEN input is driven LOW, the ETM interface outputs are held at their last 
value before the interface is disabled. At reset, all ETM interface outputs are reset LOW.

The ETMEN input is usually driven by the ETM, and driven HIGH when you have 
programmed the ETM using its TAP controller. It must be connected to the inverted 
PWRDOWN output of the ETM.

Note
 If you do not use an ETM in an embedded ARM946E-S (Rev 1) design, you must tie 
the ETMEN input LOW to save power.
9-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Chapter 10 
Test Support

This chapter describes the test methodology used for the ARM946E-S (Rev 1) 
synthesized logic and TCM. It contains the following sections:

• About the ARM946E-S (Rev 1) test methodology on page 10-2

• Scan insertion and ATPG on page 10-3

• BIST of memory arrays on page 10-5.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 10-1



Test Support 
10.1 About the ARM946E-S (Rev 1) test methodology

To achieve a high level of fault coverage, you can use scan insertion and ATPG 
techniques on the ARM9E-S core and ARM946E-S (Rev 1) control logic as part of the 
synthesis flow. You can use BIST to provide high fault coverage of the compiled RAMs 
(cache and TCM).
10-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Test Support 
10.2 Scan insertion and ATPG

This technique is covered in detail in the ARM946E-S (Rev 1) Implementation Guide. 
Scan insertion requires that all register elements are replaced by scannable versions that 
are then connected up into a number of large scan chains. These scan chains are used to 
set up data patterns on the combinatorial logic between the registers, and capture the 
logic outputs. The logic outputs are then scanned out while the next data pattern is 
scanned in. 

You can use Automatic Test Pattern Generation (ATPG) tools to create the necessary 
scan patterns to test the logic, when the scan insertion has been performed. With this 
technique you can achieve very high fault coverage for the standard cell combinatorial 
logic, typically in the 95-99% range.

Scan insertion does have an impact on the area and performance of the synthesized 
design, due to the larger scan register elements and the serial routing between them. 
However, to minimize these effects, the scan insertion is performed early in the 
synthesis cycle and the design re-optimized with the scan elements in place.

10.2.1 ARM946E-S (Rev 1) INTEST wrapper

In addition to the auto-inserted scan chains, the ARM946E-S (Rev 1) macrocell 
optionally includes a dual-purpose INTEST scan chain wrapper. This facilitates ATPG 
and provides an additional method for activating BIST of the compiled RAM.

ATPG 

You can use the INTEST scan chain to enable an ATPG tool to access the ARM946E-S 
(Rev 1) top-level inputs and outputs in an embedded design. This wrapper adds a scan 
source for each ARM946E-S (Rev 1) input and a capture cell for each output. The 
ATPG tools use this scan chain in addition to the ones created by scan insertion, to test 
the logic from a given input pin to any register that it connects to, and from any registers 
whose outputs end up at a pin.

Note
 The order of this scan chain is predetermined and must be maintained through synthesis 
and place and route of the macrocell. 

BIST activation

To enable the BIST hardware to be activated by scan means, the INTEST wrapper has 
a second operational mode. When the ARM946E-S (Rev 1) SERIALEN input is true, 
this scan chain scans in serialized MCR instructions to initiate BIST test using the CP15 
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 10-3



Test Support 
BIST register. After a predetermined number of clock cycles (depending on the size of 
the test), the appropriate MRC instruction is scanned in to read the BIST control register 
to check the test result. The INTEST wrapper allows the full range of BIST tests to be 
applied as detailed in BIST of memory arrays on page 10-5. The flow for generating the 
serialized patterns from ARM assembler source is supplied with the ARM946E-S (Rev 
1) implementation scripts.
10-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Test Support 
10.3 BIST of memory arrays

Caution
 Code for running the BIST must not be placed in the ITCM or in a cacheable location, 
because this can cause invalid or dirty data to be introduced into program execution. 
Also, caches must be flushed after running the BIST.

Adding a simple memory test controller allows you to perform an exhaustive test of the 
memory arrays. You can activate the BIST test using an MCR to the CP15 BIST control 
register. 

When you perform a BIST test on compiled RAM, the functional enable for all RAMs 
is automatically disabled, forcing all memory accesses to all TCM and cache address 
ranges to go to the AHB. This enables you to run BIST tests in the background, for 
instance the instruction RAM can be BIST tested, while code is executed over the AHB.

Serial scan access to the CP15 BIST operations is also provided for production test 
purposes, using a special mode of operation of the INTEST wrapper. See ARM946E-S 
(Rev 1) INTEST wrapper on page 10-3.

You can also perform limited BIST testing in debug state by using scan chain 15 to 
access the CP15 BIST control register. This is not necessarily recommended as the 
BIST test corrupts the contents of the SRAM being tested.

You can achieve full programmer control over the BIST mechanism through five 
registers that are mapped to CP15 register 15 address space. For details of the MCR/MRC 
instructions used to access these registers, see Register 15, RAM and TAG BIST test 
registers on page 2-29.

10.3.1 BIST control register

 The CP15 register 15 BIST control register controls the operation of the compiled RAM 
memory BIST. Before initiating a BIST test, an MCR is first performed to the BIST 
control register to set up the size of the test and enable the RAM to be tested. An 
additional MCR is required to initiate the test.

You can access the current status of a BIST test and result of a completed test by 
performing an MRC to the BIST control register. This returns flags to indicate that a test 
is:

• running

• paused

• failed

• completed.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 10-5



Test Support 
In addition to returning the state for the size of the test memory array, having completed 
a BIST test, if you wish to use the memory array for functional operation you must first 
clear the BIST enable by writing to the BIST control register. You must then re-enable 
the memory array by writing to CP15 register 1. 

Note

 Clearing the functional memory array enable when BIST is enabled prevents you from 
trying to run from cache or TCM following a BIST test, without having first flushed the 
cache memory and reprogrammed the RAM. This is necessary as the BIST algorithm 
corrupts all tested memory locations.

10.3.2 BIST address and general registers

The BIST control register enables you to perform standard BIST operations on each 
RAM block and to optionally specify the size of the test. Additional registers are 
required, however, to provide the following functionality:

• testing of the BIST hardware

• changing the seed data for a BIST test

• providing a nonzero starting address for a BIST test 

• peek and poke of the RAM

• returning an address location for a failed BIST test.

This additional functionality is most useful for debugging faulty silicon during 
production test. The exception to this is the start address for a BIST test. It is possible 
that BIST of the RAM is performed periodically during program execution, the memory 
being tested in smaller pieces rather than in one go. This requires a start address that is 
incremented by the size of the test each time a test is activated.

Note
 ARM Ltd. recommends that you do not write application code that relies on the 
presence of the BIST address and general registers. ARM Ltd. does not guarantee to 
support these registers in future versions of the ARM946E-S (Rev 1) macrocell.
10-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Test Support 
Table 10-1 and Table 10-2 show how the registers are used. The pause bits from the 
BIST control register provide extra decode of these registers.

10.3.3 Pause modes

ARM Ltd. recommends that you use the following production test sequence for the 
compiled RAM:

1. Test each RAM using a full test.

2. Test the BIST hardware for each RAM.

To allow testing of the BIST hardware, it is necessary to deliberately corrupt data in the 
SRAM. This can be done by the ATPG tool if is recognizes the SRAM parameters. 
Alternatively a pause mechanism enables you to halt the BIST test. This enables you to 
corrupt data within the RAM. The sequence for this is:

1. Write the address for the location to be corrupted with an MCR to the relevant BIST 
address register.

2. Write the corrupted data using a MCR to the BIST general register. 

Table 10-1 Instruction BIST address and general registers

BIST register
IBIST
pause

Read Write

IBIST address register 0 IBIST fail address IBIST start address

IBIST address register 1 IBIST fail address IBIST peek/poke address

IBIST general register 0 IBIST fail data IBIST seed data

IBIST general register 1 IBIST peek data IBIST poke data

Table 10-2 Data BIST address and general registers

BIST register
IBIST
pause

Read Write

DBIST address register 0 DBIST fail address DBIST start address

DBIST address register 1 DBIST fail address DBIST peek/poke address

DBIST general register 0 DBIST fail data DBIST seed data

DBIST general register 1 DBIST peek data DBIST poke data
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 10-7



Test Support 
You can then restart the test using an MCR to the BIST control register and check to see 
that the corrupted data causes the test to fail. You can read the fail address and data from 
the BIST address and general registers.

In addition to controlling the addressing within the address and general registers, the 
pause bit also controls the progression of the BIST algorithm as described in:

• Auto pause on page 10-8

Note
 ARM Ltd. recommends that you do not write application code that relies on the 
presence of the BIST pause mode. ARM Ltd. does not guarantee to support this feature 
in future versions of the ARM946E-S macrocell.

Auto pause

If you set the pause bit in the BIST control register before you activate the test, the test 
runs in auto pause mode. The BIST test pauses at predetermined points of the BIST 
algorithm, for instance when the algorithm has reached the top or the bottom of the 
memory array being tested. 

You can poll the BIST control register to detect when a test has paused (the running flag 
is LOW). You can then corrupt the data, as described in Pause modes on page 10-7, 
before you restart the BIST test.

Note
 Auto pause only operates after the first pass of the BIST.
10-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Appendix A 
AC Parameters

This appendix lists the AC timing parameters for the ARM946E-S (Rev 1) macrocell. 
It contains the following sections:

• Timing diagrams on page A-2

• AC timing parameter definitions on page A-12.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-1



AC Parameters 
A.1 Timing diagrams

The timing diagrams in this section are:

• Clock, reset, and AHB enable timing on page A-2

• AHB bus request and grant related timing on page A-3

• AHB bus master timing on page A-4

• Coprocessor interface timing on page A-5

• Debug interface timing on page A-6

• JTAG interface timing on page A-7

• DBGSDOUT to DBGTDO timing on page A-8

• Exception and configuration timing on page A-8

• INTEST wrapper timing on page A-9

• ETM interface timing on page A-11.

Clock, reset, and AHB enable timing parameters are shown in Figure A-1.

Figure A-1 Clock, reset, and AHB enable timing

AHB bus request and grant related timing parameters are shown in Figure A-2.

CLK

HCLKEN

HRESETn

ihhenT
ishenT

cycT

ihrstT

isrstT
A-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



AC Parameters 
Figure A-2 AHB bus request and grant related timing

AHB bus master timing parameters are shown in Figure A-3.

CLK

HGRANT

HLOCK

HBUSREQ

ovreqT ohreqT

ovlckT ohlckT

isgntT

ihgntT
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-3



AC Parameters 
Figure A-3 AHB bus master timing

Coprocessor interface timing parameters are shown in Figure A-4.

CLK

HRESP

HREADY

HTRANS[1:0]

ovtrT

HADDR[31:0]

HWRITE
HSIZE[2:0]

HBURST[2:0]
HPROT[3:0]

HWDATA[31:0]

NONSEQ

A

Control

Write data (A)

ohtrT

ovaT ohaT

ovctlT ohctlT

ovwdT ohwdT

Tihrdy
isrdyT

OKAY OKAY

HRDATA[31:0]
Read data

(A)

isrspT Tihrsp

Tihrd

isrdT
A-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



AC Parameters 
Figure A-4 Coprocessor interface timing

Debug interface timing parameters are shown in Figure A-5.

CLK

CPPASS

CPLATECANCEL

CPCLKEN

ovcpenT

CPINSTR[31:0]

nCPMREQ
nCPTRANS

CPTBIT

CHSDE
CHSEX

ohcpenT

WAIT/GO
LAST/ABSENT

CPDOUT[31:0]

STC/MRC
data

ovcpidT ohcpidT

ovcpctlT ohcpctlT

ovcplcT ohcplcT

ovcppsT ohcppsT

ovcprdT

CPDIN[31:0]

LDC/MCR
data

ihcphsTiscphsT

ohcprdT

ihcpwrT

iscpwrT
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-5



AC Parameters 
Figure A-5 Debug interface timing

JTAG interface timing parameters are shown in Figure A-6.

CLK

DBGEN
EDBGRQ

DBGEXT[1:0]

COMMRX
COMMTX

DBGACK

ovdbgackT

DBGRNG[1:0]

DBGRQI

DBGINSTREXEC

ohdbgackT

DBGIEBKPT

DBGDEWPT

isdbginT

ovdbgrngT ohdbgrngT

ovdbgrqiT ohdbgrqiT

ovdbgstatT ohdbgstatT

ovdbgcommT ohdbgcommT

ihdbginT

isiebkptT
ihiebkptT

isdewptT
ihdewptT
A-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



AC Parameters 
Figure A-6 JTAG interface timing

A combinatorial path timing parameter exists from the DBGSDOUT input to 
DBGTDO output. This is shown in Figure A-7.

CLK

DBGTDI
DBGTMS

DBGnTRST

DBGIR[3:0]
DBGSCREG[4:0]
DBGTAPSM[3:0]

ovdbgsmT

DBGnTDOEN

DBGSDIN

DBGTDO

ohdbgsmT

DBGTCLKEN

TAPID[31:0]

istdiT

ovtdoenT ohtdoenT

ovsdinT ohsdinT

ovtdoT ohtdoT

ihntrstT

ihtdiT

istckenT
ihtckenT

istapidT
ihtapidT

isntrstT
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-7



AC Parameters 
Figure A-7 DBGSDOUT to DBGTDO timing

Exception and configuration timing parameters are shown in Figure A-8.

Figure A-8 Exception and configuration timing

The INTEST wrapper timing parameters are shown in Figure A-9.

DBGSDOUT

DBGTDO

tdsdT

tdshT

CLK

BIGENDOUT

ovbigendT

nFIQ
nIRQ

VINITHI

INITRAM

ohbigendT

isintT
ihintT

ishivecsT
ihhivecsT

isinitramT
ihinitramT
A-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



AC Parameters 
Figure A-9 INTEST wrapper timing

The TCM interface timing parameters are shown in Figure A-10

CLK

SO

ovsoT

SI

SCANEN

TESTEN

ohsoT

issiT
ihsiT

isscanenT
ihscanenT

istestenT
ihtestenT

isserialenT
ihserialenT

SERIALEN
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-9



AC Parameters 
Figure A-10  TCM interface timing

The ETM interface timing parameters are shown in Figure A-11.

CLK

TCMWEn

TCMWData[31:0]

Control

Write data (A)

TCMEn

ovtcmctlT ohtcmctlT

ovtcmwdT ohtcmwdT

TCMRData[31:0]
Read data

(A)

Tihtcmrd

istcmrdT

TCMADDR[17:0] A

ovatcmT ohatcmT

A

oventcmT ohentcmT
A-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



AC Parameters 
Figure A-11 ETM interface timing

CLK

ETMDMORE
ETMDnMREQ

ETMDnRW
ETMDABORT

ETMnWAIT

ETMIA[31:1]
ETMID31To24[31:24]

ETMID15To8[15:8]

ovetminstT

ETMInMREQ
ETMISEQ
ETMITBIT

ETMIABORT

ETMINSTREXEC

ETMDA[31:0]
ETMRDATA[31:0]
ETMWDATA[31:0]

ETMDMAS[1:0]

ohetminstT

ETMBIGEND
ETMHIVECS

ETMCHSD[1:0]
ETMCHSE[1:0]

ETMPASS
ETMLATECANCEL

ovetmictlT ohetmictlT

ovetmstatT ohetmstatT

ovetmdataT ohetmdataT

ovetmnwaitT ohetmnwaitT

isetmenT
ihetmenT

ETMDBGACK
ETMRNGOUT[1:0]

ETMEN

ovetmdctlT ohetmdctlT

ovetmcfgT ohetmcfgT

ovetmcpifT ohetmcpifT

ovetmdbgT ohetmdbgT
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-11



AC Parameters 
A.2 AC timing parameter definitions

 Table A-1 on page A-12 shows target AC parameters. All figures are expressed as 
percentages of the CLK period at maximum operating frequency. 

Note

 The figures quoted are relative to the rising clock edge after the clock skew for internal 
buffering has been added. Inputs given a 0% hold figure therefore require a positive hold 
relative to the top-level clock input. The amount of hold required is equivalent to the 
internal clock skew.

 

Table A-1 Timing parameter definitions

Symbol Parameter Min Max

Tcyc CLK cycle time 100% -

Tishen HCLKEN input setup to rising CLK 85% -

Tihhen HCLKEN input hold from rising CLK - 0%

Tisrst HRESETn de-assertion input setup to rising CLK 90% -

Tihrst HRESETn de-assertion input hold from rising CLK - 0%

Tovreq Rising CLK to HBUSREQ valid - 30%

Tohreq HBUSREQ hold time from rising CLK >0% -

Tovlck Rising CLK to HLOCK valid - 30%

Tohlck HLOCK hold time from rising CLK >0% -

Tisgnt HGRANT input setup to rising CLK 50% -

Tihgnt HGRANT input hold from rising CLK - 0%

Tovtr Rising CLK to HTRANS[1:0] valid - 30%

Tohtr HTRANS[1:0] hold time from rising CLK >0% -

Tova Rising CLK to HADDR[31:0] valid - 30%

Toha HADDR[31:0] hold time from rising CLK >0% -

Tovctl Rising CLK to AHB control signals valid - 30%

Tohctl AHB control signals hold time from rising CLK >0% -
A-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



AC Parameters 
Tovwd Rising CLK to HWDATA[31:0] valid - 30%

Tohwd HWDATA[31:0] hold time from rising CLK >0% -

Tisrdy HREADY input setup to rising CLK 50% -

Tihrdy HREADY input hold from rising CLK - 0%

Tisrsp HRESP[1:0] input setup to rising CLK 50% -

Tihrsp HRESP[1:0] input hold from rising CLK - 0%

Tisrd HRDATA[31:0] input setup to rising CLK 40% -

Tihrd HRDATA[31:0] input hold from rising CLK - 0%

Tovcpen Rising CLK to CPCLKEN valid - 30%

Tohcpen CPCLKEN hold time from rising CLK >0% -

Tovcpid Rising CLK to CPINSTR[31:0] valid - 30%

Tohcpid CPINSTR[31:0] hold time from rising CLK >0% -

Tovcpctl Rising CLK to transaction control valid - 30%

Tohcpctl Transaction control hold time from rising CLK >0% -

Tiscphs Coprocessor handshake input setup to rising CLK 50% -

Tihcphs Coprocessor handshake input hold from rising CLK - 0%

Tovcplc Rising CLK to CPLATECANCEL valid - 30%

Tohcplc CPLATECANCEL hold time from rising CLK >0% -

Tovcpps Rising CLK to CPPASS valid - 30%

Tohcpps CPPASS hold time from rising CLK >0% -

Tovcprd Rising CLK to CPDOUT[31:0] valid - 30%

Tohcprd CPDOUT[31:0] hold time from rising CLK >0% -

Tiscpwr CPDIN[31:0] input setup to rising CLK 50% -

Tihcpwr CPDIN[31:0] input hold from rising CLK - 0%

Tovdbgack Rising CLK to DBGACK valid - 60%

Table A-1 Timing parameter definitions (continued)

Symbol Parameter Min Max
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-13



AC Parameters 
Tohdbgack DBGACK hold time from rising CLK >0% -

Tovdbgrng Rising CLK to DBGRNG[1:0] valid - 80%

Tohdbgrng DBGRNG[1:0] hold time from rising CLK >0% -

Tovdbgrqi Rising CLK to DBGRQI valid - 45%

Tohdbgrqi DBGRQI hold time from rising CLK >0% -

Tovdbgstat Rising CLK to DBGINSTREXEC valid - 30%

Tohdbgstat CLK hold time from rising DBGINSTREXEC >0% -

Tovdbgcomm Rising CLK to comms channel outputs valid - 60%

Tohdbgcomm Comms channel outputs hold time from rising CLK >0% -

Tisdbgin Debug inputs input setup to rising CLK 30% -

Tihdbgin Debug inputs input hold from rising CLK - 0%

Tisiebkpt DBGIEBKPT input setup to rising CLK 20% -

Tihiebkpt DBGIEBKPT input hold from rising CLK - 0%

Tisdewpt DBGDEWPT input setup to rising CLK 20% -

Tihdewpt DBGDEWPT input hold from rising CLK - 0%

Tovdbgsm Rising CLK to debug state valid - 30%

Tohdbgsm Debug state hold time from rising CLK >0% -

Tovtdoen Rising CLK to DBGnTDOEN valid - 40%

Tohtdoen DBGnTDOEN hold time from rising CLK >0% -

Tovsdin Rising CLK to DBGSDIN valid - 20%

Tohsdin DBGSDIN hold time from rising CLK >0% -

Tovtdo Rising CLK to DBGTDO valid - 65%

Tohtdo DBGTDO hold time from rising CLK >0% -

Tisntrst DBGnTRST de-asserted input setup to rising CLK 25% -

Tihntrst DBGnTRST input hold from rising CLK - 0%

Table A-1 Timing parameter definitions (continued)

Symbol Parameter Min Max
A-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



AC Parameters 
Tistdi Tap state control input setup to rising CLK 25% -

Tihtdi Tap state control input hold from rising CLK - 0%

Tistcken DBGTCKEN input setup to rising CLK 50% -

Tihtcken DBGTCKEN input hold from rising CLK - 0%

Tistapid TAPID[31:0] input setup to rising CLK 35% -

Tihtapid TAPID[31:0] input hold from rising CLK - 0%

Tdsd DBGTDO delay from DBGSDOUTBS changing - 30%

Tdsh DBGTDO hold time from DBGSDOUTBS changing >0% -

Tovbigend Rising CLK to BIGENDOUT valid - 30%

Tohbigend BIGENDOUT hold time from rising CLK >0% -

Tisint Interrupt input setup to rising CLK 15% -

Tihint Interrupt input hold from rising CLK - 0%

Tishivecs VINITHI input setup to rising CLK 90% -

Tihhivecs VINITHI input hold from rising CLK - 0%

Tisinitram INITRAM input setup to rising CLK 90% -

Tihinitram INITRAM input hold from rising CLK - 0%

Tovso Rising CLK to SO valid - 30%

Tohso SO hold time from rising CLK >0% -

Tissi SI input setup to rising CLK 95% -

Tihsi SI input hold from rising CLK - 0%

Tisscanen SCANEN input setup to rising CLK 95% -

Tihscanen SCANEN input hold from rising CLK - 0%

Tistesten TESTEN input setup to rising CLK 95% -

Tihtesten TESTENinput hold from rising CLK - 0%

Tisserialen SERIALEN input setup to rising CLK 95% -

Table A-1 Timing parameter definitions (continued)

Symbol Parameter Min Max
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-15



AC Parameters 
Tihserialen SERIALEN input hold from rising CLK - 0%

Tovatcm Rising CLK to TCMAdrs[17:0] valid - 10%

Toventcm Rising CLK to TCMEn valid - 10%

Tovtcmctl Rising CLK to TCM control signals valid - 10%

Tohatcm TCMAdrs[17:0] hold time from rising CLK >0% -

Tohentcm TCMEn hold time from rising CLK >0% -

Tohtcmctl TCM control signals hold time from rising CLK >0%

Tistcmrd TCMRData[31:0] input setup to rising CLK 30% -

Tihtcmrd TCMRData[31:0] input hold from rising CLK - 0%

Tovtcmwd Rising CLK to TCMWData[31:0] valid - 10%

Tohtcmwd TCMWData[31:0] hold time from rising CLK >0% -

Tovetminst Rising CLK to ETM instruction interface valid - 30%

Tohetminst ETM instruction interface hold time from rising CLK >0% -

Tovetmictl Rising CLK to ETM instruction control valid - 30%

Tohetmictl ETM instruction control hold time from rising CLK >0% -

Tovetmstat Rising CLK to ETMINSTREXEC valid - 30%

Tohetmstat ETMINSTREXEC hold time from rising CLK >0% -

Tovetmdata Rising CLK to ETM data interface valid - 30%

Tohetmdata ETM data interface hold time from rising CLK >0% -

Tovetmnwait Rising CLK to ETMnWAIT valid - 30%

Tohetmnwait ETMnWAIT hold time from rising CLK >0% -

Tovetmdctl Rising CLK to ETM data control valid - 30%

Tohetmdctl ETM data control hold time from rising CLK >0% -

Tovetmcfg Rising CLK to ETM configuration valid - 30%

Tohetmcfg ETM configuration hold time from rising CLK >0% -

Table A-1 Timing parameter definitions (continued)

Symbol Parameter Min Max
A-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



AC Parameters 
Note

 The VINITHI pin is specified as 95% of the cycle because it is for input configuration 
during reset and can be considered static. The INTEST wrapper inputs/outputs are 
specified as 95% of the cycle as they are production test related and expected to operate 
at typically 50% of the functional clock rate.

Tovetmcpif Rising CLK to ETM coprocessor signals valid - 30%

Tohetmcpif ETM coprocessor signals hold time from rising CLK >0% -

Tovetmdbg Rising CLK to ETM debug signals valid - 30%

Tohetmdbg ETM debug signals hold time from rising CLK >0% -

Tisetmen ETMEN input setup to rising CLK 50% -

Tihetmen ETMEN input hold from rising CLK - 0%

Table A-1 Timing parameter definitions (continued)

Symbol Parameter Min Max
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-17



AC Parameters 
A-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Appendix B 
Signal Descriptions

This appendix introduces the ARM946E-S (Rev 1) processor. It contains the following 
sections:

• Signal properties and requirements on page B-2

• Clock interface signals on page B-3

• TCM interface signals on page B-4

• AHB signals on page B-5

• Coprocessor interface signals on page B-7

• Debug signals on page B-9

• JTAG signals on page B-11

• Miscellaneous signals on page B-12

• ETM interface signals on page B-13

• INTEST wrapper signals on page B-15.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. B-1



Signal Descriptions 
B.1 Signal properties and requirements

 In order to ensure ease of integration of the ARM946E-S (Rev 1) into embedded 
applications and to simplify synthesis flow, the following design techniques have been 
used:

• a single rising edge clock times all activity

• all signals and buses are unidirectional

• all inputs are required to be synchronous to the single clock.

These techniques simplify the definition of the top-level ARM946E-S (Rev 1) signals 
as all outputs change from the rising edge and all inputs are sampled with the rising edge 
of the clock. In addition, all signals are either input or output only, as bidirectional 
signals are not used.

Note

 You must use external logic to synchronize asynchronous signals (for example interrupt 
sources) before applying them to the ARM946E-S (Rev 1) macrocell. 
B-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Signal Descriptions 
B.2 Clock interface signals

Table B-1 describes the ARM946E-S (Rev 1) clock interface signals.

Table B-1 Clock interface signals

Name Direction Description

CLK
System clock

Input This clock times all operations in the ARM946E-S 
(Rev 1) design. All outputs change from the rising 
edge and all inputs are sampled on the rising edge. 
The clock can be stretched in either phase. 

Using the HCLKEN signal, this clock also times 
AHB operations.

Using the DBGTCKEN signal, this clock also times 
debug operations.

HCLKEN Input Synchronous enable for AHB transfers. When HIGH 
indicates that the next rising edge of CLK is also a 
rising edge of HCLK in the AHB system that the 
ARM946E-S (Rev 1) is embedded in. Must be tied 
HIGH in systems where CLK and HCLK are 
intended to be the same frequency.

DBGTCKEN Input Synchronous enable for debug logic accessed using 
the JTAG interface. When HIGH on the rising edge 
of CLK the debug logic can advance.

GateTheCLK Output Clock control signal for Wait For Interrupt. When 
asserted, the CLK input can be stopped to minimize 
power. 

Note that when CLK is disabled, generating a debug 
request within the ARM946E-S does not re-enable 
the core.

UngatedCLK Input Free-running clock.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. B-3



Signal Descriptions 
B.3 TCM interface signals

Table B-2 describes the ARM946E-S TCM interface signals.

Table B-2 TCM interface signals

Signal Direction Description

DTCMAdrs[17:0] Out Data tightly-coupled memory address. This is a word 
address.

DTCMWData[31:0] Out Write Data to the Tightly-coupled memory.

DTCMRData[31:0] In Read data from the Tightly-coupled memory.

DTCMEn Out Data Tightly-coupled memory enable.

DTCMWen[3:0] Out Data Tightly-coupled memory write enables. There is one 
writer enable fir each byte.

PhyDTCMSize[3:0] In Encoded size of the Data Tightly-coupled memory. The 
encoding for these signals is given in Table 2-5.

ITCMAdrs[17:0] Out Instruction tightly-coupled memory address. This is a 
word address.

ITCMWData[31:0] Out Write Data to the Instruction Tightly Coupled Memory.

ITCMRData[31:0] In Read data from the Instruction Tightly Coupled Memory.

ITCMEn Out Instruction Tightly-coupled memory enable.

ITCMWen[3:0] Out Instruction Tightly-coupled memory write enables. There 
is one writer enable fir each byte.

PhyITCMSize[3:0] In Encoded size of the instruction Tightly-coupled memory. 
The encoding for these signals is given in Table 2-5.
B-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Signal Descriptions 
B.4 AHB signals

 Table B-3 describes the ARM946E-S (Rev 1) AHB signals.

Table B-3 AHB signals

Name Direction Description

HADDR[31:0]
Address bus

Output The 32-bit AHB system address bus.

HBURST[2:0]
Burst type

Output Indicates if the transfer forms part of a burst. The 
ARM946E-S (Rev 1) supports SINGLE transfer 
(000) and incremental burst cycles INCR(001), 
INCR4(011) and INCR8(101).

HBUSREQ
Bus request

Output Indicates that the ARM946E-S (Rev 1) requires the 
bus.

HGRANT
Bus grant

Input Indicates that the ARM946E-S (Rev 1) is currently 
the highest priority master. Ownership of the 
address/control signals changes at the end of a 
transfer when HREADY is HIGH, so the 
ARM946E-S (Rev 1) gets access to the bus when 
both HREADY and HGRANT are HIGH.

HLOCK

Request locked 
transfers

Output When HIGH, indicates that the ARM946E-S (Rev 1) 
requires locked access to the bus and no other master 
must be granted until this signal has gone LOW. 
Asserted by the ARM946E-S (Rev 1) when 
executing SWP instructions to AHB address space.

HPROT[3:0]

Protection control

Output Indicates that the ARM946E-S (Rev 1) transfer is an 
opcode fetch (0--0) or data access (0--1). Indicates if 
the transfer is User mode access (0-0-) or a 
Supervisor mode access (0-1-). Indicates that an 
access is nonbufferable (00--) or bufferable (01--). 
Bit [3] is tied LOW indicating noncachable.

HRDATA[31:0]
Read data bus

Input The 32-bit read data bus transfers data from a 
selected bus slave to the ARM946E-S (Rev 1) during 
read operations.

HREADY
Transfer done

Input When HIGH indicates that a transfer has finished on 
the bus. This signal can be driven LOW by the 
selected bus slave to extend a transfer.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. B-5



Signal Descriptions 
HRESETn

Not reset

Input Asynchronously asserted LOW input used to 
initialize the ARM946E-S (Rev 1) system state. 
Synchronously de-asserted.

HRESP[1:0]
Transfer response

Input The transfer response from the selected slave 
provides additional information on the status of the 
transfer. The response can be OKAY (00), ERROR 
(01), RETRY (10), or SPLIT (11).

HSIZE[2:0]

Transfer size

Output Indicates the size of an ARM946E-S (Rev 1) transfer. 
This can be Byte (000), Halfword (001), or Word 
(010). Bit [2] is tied LOW.

HTRANS[1:0]
Transfer type

Output Indicates the type of ARM946E-S (Rev 1) transfer. 
This can be IDLE (00), BUSY (01), NONSEQ (10), 
or SEQ (11).

HWDATA[31:0]
Write data bus

Output The 32-bit write data bus transfers data from the 
ARM946E-S (Rev 1) to a selected bus slave during 
write operations.

HWRITE

Transfer direction

Output When HIGH indicates a write transfer. When LOW 
indicates a read transfer.

Table B-3 AHB signals (continued)

Name Direction Description
B-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Signal Descriptions 
B.5 Coprocessor interface signals

Table B-4 describes the ARM946E-S (Rev 1) coprocessor interface signals.

Table B-4 Coprocessor interface signals

Name Direction Description

CPCLKEN
Coprocessor clock 
enable

Output Synchronous enable for coprocessor pipeline 
follower. When HIGH on the rising edge of CLK the 
pipeline follower logic can advance.

CPINSTR[31:0]

Coprocessor 
instruction data

Output The 32-bit coprocessor instruction bus used to 
transfer instructions to the coprocessor pipeline 
follower.

CPDOUT[31:0]
Coprocessor read 
data

Output The 32-bit coprocessor read data bus for transferring 
data to the coprocessor.

CPDIN[31:0]
Coprocessor write 
data

Input The 32-bit coprocessor write data bus for transferring 
data from the coprocessor.

CPPASS Output Indicates that there is a coprocessor instruction in the 
Execute stage of the pipeline, that must be executed.

CPLATECANCEL Output If HIGH during the first memory cycle of a 
coprocessor instruction, then the coprocessor must 
cancel the instruction without changing any internal 
state. This signal is only asserted in cycles where the 
previous instruction causes a Data Abort to occur.

CHSDE[1:0]

Coprocessor 
handshake decode

Input The handshake signals from the Decode stage of the 
coprocessor’s pipeline follower. Indicates ABSENT 
(10), WAIT (00), GO (01), or LAST (11).

CHSEX[1:0]
Coprocessor 
handshake execute

Input The handshake signals from the Execute stage of the 
coprocessor’s pipeline follower. Indicates ABSENT 
(10), WAIT (00), GO (01), or LAST (11).
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. B-7



Signal Descriptions 
CPTBIT

Coprocessor 
instruction Thumb 
bit

Output When HIGH indicates that the ARM946E-S (Rev 1) 
is in Thumb state. When LOW indicates that the 
ARM946E-S (Rev 1) is in ARM state. Sampled by 
the coprocessor pipeline follower.

nCPMREQ

Not coprocessor 
instruction request

Output When LOW on the rising edge of CLK and 
CPCLKEN is HIGH, the instruction on CPINSTR 
must enter the coprocessor pipeline.

nCPTRANS
Not coprocessor 
memory translate

Output When LOW indicates that the ARM946E-S (Rev 1) 
is in User mode. When HIGH indicates that the 
ARM946E-S (Rev 1) is in Privileged mode. Sampled 
by the coprocessor pipeline follower.

Table B-4 Coprocessor interface signals (continued)

Name Direction Description
B-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Signal Descriptions 
B.6 Debug signals

Table B-5 describes the ARM946E-S (Rev 1) debug signals.

Table B-5 Debug signals

Name Direction Description

COMMRX
Communications 
channel receive

Output When HIGH, denotes that the comms channel 
receive buffer contains valid data waiting to be read.

COMMTX

Communications 
channel transmit

Output When HIGH, denotes that the comms channel 
transmit buffer is empty.

DBGACK
Debug acknowledge

Output When HIGH indicates that the processor is in debug 
state.

DBGDEWPT

Data watchpoint

Input Asserted by external hardware to halt execution of 
the processor for debug purposes. If HIGH at the end 
of a data memory request cycle, it causes the 
ARM946E-S (Rev 1) to enter debug state.

DBGEN
Debug enable

Input Enables the debug features of the processor. This 
signal must be tied LOW if debug is not required.

DBGEXT[1:0]

EmbeddedICE-RT 
external input

Input Input to the EmbeddedICE-RT logic allows 
breakpoints/watchpoints to be dependent on external 
conditions.

DBGIEBKPT
Instruction 
breakpoint

Input Asserted by external hardware to halt execution of 
the processor for debug purposes. If HIGH at the end 
of an instruction fetch, it causes the ARM946E-S 
(Rev 1) to enter debug state if that instruction reaches 
the Execute stage of the processor pipeline.

DBGINSTREXEC
Instruction executed

Output Indicates that the instruction in the Execute stage of 
the processor’s pipeline has been executed.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. B-9



Signal Descriptions 
DBGRNG[1:0]

EmbeddedICE-RT 
Rangeout

Output Indicates that the corresponding EmbeddedICE-RT 
watchpoint register has matched the conditions 
currently present on the address, data, and control 
buses. This signal is independent of the state of the 
watchpoint enable control bit.

DBGRQI

Internal debug 
request

Output Represents the debug request signal that is presented 
to the core debug logic. This is a combination of 
EDBGRQ and bit 1 of the debug control register.

EDBGRQ
External debug 
request

Input An external debugger can force the processor into 
debug state by asserting this signal.

Table B-5 Debug signals (continued)

Name Direction Description
B-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Signal Descriptions 
B.7 JTAG signals

Table B-6 describes the ARM946E-S (Rev 1) JTAG signals.

Table B-6 JTAG signals

Name Direction Description

DBGIR[3:0]
TAP controller 
instruction register

Output These four bits reflect the current instruction loaded 
into the TAP controller instruction register. These 
bits change when the TAP controller is in the 
UPDATE-IR state.

DBGnTRST

Not test reset

Input Internally synchronized active LOW reset signal for 
the EmbeddedICE-RT internal state.

DBGnTDOEN
Not DBGTDO 
enable

Output When LOW, the serial data is being driven out of the 
DBGTDO output. Normally used as an output 
enable for a DBGTDO pin in a packaged part.

DBGSCREG[4:0] Output These five bits reflect the ID number of the scan 
chain currently selected by the TAP controller. These 
bits change when the TAP controller is in the 
UPDATE-DR state.

DBGSDIN
External scan chain 
serial input data

Output Contains the serial data to be applied to an external 
scan chain.

DBGSDOUT
External scan chain 
serial data output

Input Contains the serial data out of an external scan chain. 
When an external scan chain is not connected, this 
signal must be tied LOW.

DBGTAPSM[3:0]

TAP controller state 
machine

Output This bus reflects the current state of the TAP 
controller state machine.

DBGTCKEN Input Synchronous enable test clock.

DBGTDI Input Test data input for debug logic.

DBGTDO Output Test data output from debug logic.

DBGTMS Input Test mode select for TAP controller.

TAPID[31:0]
Boundary scan ID 
code

Input Specifies the ID code value shifted out on DBGTDO 
when the IDCODE instruction is entered into the 
TAP controller.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. B-11



Signal Descriptions 
B.8 Miscellaneous signals

Table B-7 describes the miscellaneous signals on the ARM946E-S (Rev 1) macrocell.

Table B-7 Miscellaneous signals

Name Direction Description

BIGENDOUT Output When HIGH, the ARM946E-S (Rev 1) treats bytes in 
memory as being in big-endian format. When LOW, 
memory is treated as little-endian.

nFIQ
Not fast interrupt 
request

Input This is the Fast Interrupt Request signal. This signal 
must be synchronous to CLK.

nIRQ
Not interrupt request

Input This is the Interrupt Request signal. This signal must 
be synchronous to CLK.

VINITHI
Exception vector 
location at reset

Input Determines the reset location of the exception 
vectors. When LOW, the vectors are located at 
0x00000000. When HIGH, the vectors are located at 
0xFFFF0000.

INITRAM Input Determines if the TCMs are enabled at reset. If high, 
they are enabled, if low, disabled.
B-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Signal Descriptions 
B.9 ETM interface signals

Table B-8 describes the ARM946E-S (Rev 1) ETM interface signals.

Table B-8 ETM interface signals

Name Direction Description

ETMEN Input Synchronous ETM interface enable. This signal must 
be tied LOW if an ETM is not used.

ETMBIGEND Output Big-endian configuration indication for the ETM.

ETMHIVECS Output Exception vectors configuration for the ETM.

ETMIA[31:1] Output Instruction address for the ETM.

ETMInMREQ Output Instruction memory request for the ETM.

ETMISEQ Output Sequential instruction access for the ETM.

ETMITBIT Output Thumb state indication for the ETM.

ETMIABORT Output Instruction Abort for the ETM.

ETMDA[31:0] Output Data address for the ETM.

ETMDMAS[1:0] Output Data size indication for the ETM.

ETMDMORE Output More sequential data indication for the ETM.

ETMDnMREQ Output Data memory request for the ETM.

ETMDnRW Output Data not read/write for the ETM.

ETMDSEQ Output Sequential data indication for the ETM.

ETMRDATA[31:0] Output Read data for the ETM.

ETMWDATA[31:0] Output Write data for the ETM.

ETMDABORT Output Data Abort for the ETM.

ETMnWAIT Output ARM9E-S stalled indication for the ETM.

ETMDBGACK Output Debug state indication for the ETM.

ETMINSTREXEC Output Instruction execute indication for the ETM.

ETMRNGOUT[1:0] Output Watchpoint register match indication for the ETM.

ETMID31TO25[31:25] Output Instruction data field for the ETM.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. B-13



Signal Descriptions 
ETMID15TO11[15:11] Output Instruction data field for the ETM.

ETMCHSD[1:0] Output Coprocessor handshake decode signals for the ETM.

ETMCHSE[1:0] Output Coprocessor handshake execute signals for the ETM.

ETMPASS Output Coprocessor instruction execute indication for the 
ETM.

ETMLATECANCEL Output Coprocessor late cancel indication for the ETM.

ETMPROCID[31:0] Output Process identifier for the ETM.

ETMPROCIDWR Output ETMPROCID write strobe.

ETMINSTRVALID Output Instruction valid indication for the ETM.

Table B-8 ETM interface signals (continued)

Name Direction Description
B-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Signal Descriptions 
B.10 INTEST wrapper signals

Table B-9 describes the ARM946E-S (Rev 1) INTEST wrapper signals.

Table B-9 INTEST wrapper signals

Name Direction Description

INnotEXTEST Input Selects between INTEST and EXTEST mode of the 
INTEST wrapper scan chain.

SI Input Serial input data for the INTEST wrapper scan chain.

SO Output Serial output data from the INTEST wrapper scan 
chain.

SCANEN Input Enables scanning of data through the INTEST 
wrapper scan chain.

TESTEN

Input

Selects the INTEST wrapper scan chain as the source 
for ARM946E-S (Rev 1) inputs.

SERIALEN Input Enables the INTEST wrapper BIST activation mode 
where the scan chain applies serialized ARM 
instructions to the ARM946E-S (Rev 1) to activate 
BIST test of the tightly-coupled SRAM.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. B-15



Signal Descriptions 
B-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



-Glossary

This glossary describes some of the terms used in this manual. Where terms can have 
several meanings, the meaning presented here is intended.

Abort A mechanism that indicates to a core that it should halt execution of an attempted illegal 
memory access. An abort can be caused by the external or internal memory system as a 
result of attempting to access invalid instruction or data memory. An abort is classified 
as either a prefetch abort, a data abort, or an external abort. See also Data abort, 
External abort and Prefetch abort.

Abort model An abort model is the defined behavior of an ARM processor in response to a Data 
Abort exception. Different abort models behave differently with regard to load and store 
instructions that specify base register writeback.

ALU See Arithmetic Logic Unit.

Application Specific 
Integrated Circuit 

An integrated circuit that has been designed to perform a specific application function. 
It can be custom-built or mass-produced.

Arithmetic Logic Unit The part of a processor core that performs arithmetic and logic operations.

ARM state A processor that is executing ARM (32-bit) word-aligned instructions is operating in 
ARM state.

ASIC See Application Specific Integrated Circuit.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. Glossary-i
 



Glossary
Associative sets Total cache memory is usually divided into associative sets, allowing 8 word long data 
blocks with memory addresses having the same LSBs to be loaded into cache in the 
same lines (rows), but in different sets. For example, 4-way association allows up to four 
data blocks with different tags but the same row address in cache, to be stored, before 
data has to be overwritten.

Banked registers Those physical registers whose use is defined by the current processor mode. The 
banked registers are R8 to R14.

Base register A register specified by a load or store instruction that is used to hold the base value for 
the instruction’s address calculation. 

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are 
stored at increasing addresses in memory. See also Little-endian and Endianness.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which 
program execution is to be halted. Breakpoints are inserted by the programmer to allow 
inspection of register contents, memory locations, variable values at fixed points in the 
program execution to test that the program is operating correctly. Breakpoints are 
removed after the program is successfully tested. See also Watchpoint.

Byte An 8-bit data item.

Cache A block of on-chip or off-chip fast access memory locations, situated between the 
processor and main memory, used for storing and retrieving copies of often used 
instructions and/or data. This is done to greatly reduce the average speed of memory 
accesses and so to increase processor performance. 

Cache contention When the number of frequently-used memory cache lines that use a particular cache set 
exceeds the set-associativity of the cache. In this case, main memory activity increases 
and performance decreases.

Cache hit A memory access that can be processed at high speed because the instruction or data 
that it addresses is already held in the cache.

Cache line index The number associated with each cache line in a cache set. Within each cache set, the 
cache lines are numbered from 0 to (set associativity) -1.

Cache lockdown To fix a line in cache memory so that it cannot be overwritten. Cache lockdown allows 
critical instructions and/or data to be loaded into the cache so that the cache lines 
containing them will not subsequently be reallocated. This ensures that all subsequent 
accesses to the instructions/data concerned are cache hits, and therefore complete as 
quickly as possible.

Cache miss A memory access that cannot be processed at high speed because the instruction/data it 
addresses is not in the cache and a main memory access is required. 

CAM See Content addressable memory.
Glossary-ii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A
 



Glossary
Central Processing Unit The part of a processor that contains the ALU, the registers, and the instruction decode 
logic and control circuitry. Also commonly known as the processor core.

Clock gating Gating a clock signal for a macrocell with a control signal (such as PWRDOWN) and 
using the modified clock that results to control the operating state of the macrocell.

Condition field A 4-bit field in an instruction that is used to specify a condition under which the 
instruction can execute.

Content addressable 
memory 

Memory that is identified by its contents. Content addressable memory is used in 
CAM-RAM architecture caches to store the tags for cache entries. 

Coprocessor A processor that supplements the main CPU. It carries out additional functions that the 
main CPU cannot perform. Usually used for floating-point math calculations, signal 
processing, or memory management.

CPU See Central Processing Unit.

Data Abort An indication from a memory system to a core that it should halt execution of an 
attempted illegal memory access. A data abort is attempting to access invalid data 
memory. See also Abort, External abort and Prefetch abort.

Data cache See DCache.

DCache A block of on-chip fast access memory locations, situated between the processor and 
main memory, used for storing and retrieving copies of often used data. This is done to 
greatly increase the average speed of memory accesses and so to improve processor 
performance.

Debugger A debugging system that includes a program, used to detect, locate, and correct software 
faults, together with custom hardware that supports software debugging.

Domain A collection of sections, large pages and small pages of memory, which can have their 
access permissions switched rapidly by writing to the Domain Access Control Register 
(CP15 register 3).

Double word A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise 
stated.

EmbeddedICE The additional JTAG-based hardware provided by debuggable ARM processors to aid 
debugging.

Endianness Byte ordering. The scheme that determines the order in which successive bytes of a data 
word are stored in memory. See also Little-endian and Big-endian.

Exception vector One of a number of fixed addresses in low memory, or in high memory if high vectors 
are configured, that contains the first instruction of the corresponding interrupt service 
routine.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. Glossary-iii
 



Glossary
External abort An indication from an external memory system to a core that it should halt execution of 
an attempted illegal memory access. An external abort is caused by the external memory 
system as a result of attempting to access invalid memory. See also Abort, Data abort 
and Prefetch abort

Halfword A 16-bit data item.

ICache A block of on-chip fast access memory locations, situated between the processor and 
main memory, used for storing and retrieving copies of often used instructions. This is 
done to greatly increase the average speed of memory accesses and so to improve 
processor performance.

Instruction cache See ICache.

Joint Test Action Group The name of the organization that developed standard IEEE 1149.1. This standard 
defines a boundary-scan architecture used for in-circuit testing of integrated circuit 
devices. It is commonly known by the initials JTAG.

JTAG See Joint Test Action Group.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored 
at increasing addresses in memory. See also Big-endian and Endianness.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system 
will comprise several macrocells (such as an ARM9E-S, an ETM9, and a memory 
block) plus application-specific logic.

Prefetch abort An indication from a memory system to a core that it should halt execution of an 
attempted illegal memory access. A prefetch abort can be caused by the external or 
internal memory system as a result of attempting to access invalid instruction memory. 
See also Data abort, External abort and Abort

Processor A contraction of microprocessor. A processor includes the CPU or core, plus additional 
components such as memory, and interfaces. These are combined as a single macrocell, 
that can be fabricated on an integrated circuit. 

Region A partition of instruction or data memory space.

Register A temporary storage location used to hold binary data until it is ready to be used. 

SBO See Should be one.

SBZ See Should be zero.

SCREG The currently selected scan chain number in an ARM TAP controller.

Should be one Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 will produce 
UNPREDICTABLE results.
Glossary-iv Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A
 



Glossary
Should be zero Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 will produce 
UNPREDICTABLE results.

Tag bits The index or key field of a CAM entry.

TAP See Test access port.

TCM Tightly- coupled memory.

Test Access Port The collection of four mandatory and one optional terminals that form the input/output 
and control interface to a JTAG boundary-scan architecture. The mandatory terminals 
are TDI, TDO, TMS, and TCK. The optional terminal is TRST.

Thumb state A processor that is executing Thumb (16-bit) half-word aligned instructions is operating 
in Thumb state

UNDEFINED An instruction that generates an undefined instruction exception.

UNPREDICTABLE For reads, the data returned when reading from this location is unpredictable. It can have 
any value. For writes, writing to this location causes unpredictable behavior, or an 
unpredictable change in device configuration. UNPREDICTABLE instructions must 
not halt or hang the processor, or any part of the system.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when 
the data contained by a particular memory address is changed. Watchpoints are inserted 
by the programmer to allow inspection of register contents, memory locations, and 
variable values when memory is written to test that the program is operating correctly. 
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

Word A 32-bit data item.
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. Glossary-v
 



Glossary
Glossary-vi Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A
 



Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The 
references given are to page numbers.
A
AC timing parameters   A-12
Access permission

bits   2-17
registers   2-17

AHB
bus master interface   6-3
clock relationships   6-11
clocking   6-10
signals   B-5

Alternate vectors select bit   2-14
ARM9E-S   1-2
ARM946E-S

transfer   6-3
ATPG   10-3
Auto pause   10-8
Automatic test pattern generator   10-3

B
Background regions   4-6

Base restored data abort model   2-3
Base setting, example   2-22
Base updated data abort model   2-3
Bd bit   3-9, 6-13
Big-endian   2-15
BIST

activation   10-3
address register   10-6
control register   10-5
general register   10-6
of tightly-coupled SRAM   10-5

Breakpoints   8-21
exceptions   8-22
instruction boundary   8-22
prefetch abort   8-22
timing   8-21

Burst
access   6-7
crossing 1K boundary   6-7
size   6-4

Bus interface unit   6-2
Bus master interface, AHB   6-3
Busy-waiting   7-14

C
Cachable bits   2-16
Cache

architecture   3-5
associativity   2-10
configuration registers   2-15
debug index register   2-32
example 8K   3-3
lockdown register   2-25
operations register   2-22
size   2-9

Cd bit   3-9
CDP   7-12
Clean and flush DCache   3-10
CLK to HCLK slew   6-10
Clock

domains   8-26
interface signals   B-3
relationships   6-11

Clock tree insertion   6-11
hierarchical   6-12

Clocking, AHB   6-10
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. Index-1



Index
Configure disable loading TBIT   2-14
Control register   2-12, 5-3
Coprocessor

external   7-7
handshake signals   7-6
interface signals   B-7
states   7-6

CP15   5-3
register map   2-5

D
Data Abort model   2-3
Data bufferable bits   2-16, 6-13
Data RAM

enable bit   2-14
load mode bit   2-13

Data write modes   6-13
DCache

Bd and Cd bits   3-9
clean and flush   3-10
disabling   3-8
enable bit   2-15
enabling   3-8
lockdown   3-12
operation   3-9
validity   3-10

Debug
clocks   8-2
comms channel   8-31, 8-33
comms channel registers   8-31
comms channel status register   8-31
comms control register   8-31
comms data read register   8-31
comms data write register   8-31
control register   8-29
host   8-4
instruction register   8-9
interface   8-2
interface signals   8-21
message transfer   8-33
Multi-ICE   8-2
public instructions   8-10
pullup resistors   8-9
real-time   8-34
request   8-24
reset   8-9
signals   B-9

status register   8-29
systems   8-4
target   8-5

Debug state
actions of ARM9TDMI   8-25
breakpoints   8-21
watchpoints   8-22

Determining
core state   8-27
system state   8-27

Dirty bits   3-5
Disabling EmbeddedICE-RT   8-30
DTCM

disabling   5-4
enabling   5-4
load mode   5-5

E
EmbeddedICE-RT   8-5

disabling   8-30
overview   8-28

Enable bit   2-13
Endian bit   2-15
ETM interface   9-2

enabling   9-4
signals   B-13

External coprocessors   7-7

F
Flushing

entire ICache   3-7
single ICache line   3-7

I
ICache   3-6

disabling   3-6
enable bit   2-14
enabling   3-6
flushing   3-7
lockdown   3-13
operation   3-6
validity   3-7

Index field   2-23

Index/segment format   2-23
Instruction RAM

enable bit   2-13
load mode bit   2-13

Interlocked MCR   7-10
Interrupts   7-14
INTEST wrapper   10-3

signals   B-15
I-SRAM

enabling   5-3
ITCM

disabling   5-3
load mode   5-3

J
JTAG

signals   B-11
state machine   8-7

L
Linefetch

back to back   6-5
transfer   6-4

Little-endian   2-15
Load mode

bit   2-13
DTCM   5-5
ITCM   5-3

Lockdown
cache   3-12
DCache   3-12
example subroutine   3-14
ICache   3-13

M
MCR

bit pattern   2-7
cycles   7-8
interlocked   7-10

Memory
size field   2-11

Miscellaneous signals   B-12
MRC
Index-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A



Index
bit pattern   2-7
cycles   7-8

Multi-ICE   8-2

N
NCB   6-14
Noncachable

bufferable   6-14
Noncached Thumb instruction fetch   

6-9

O
Overlapping regions   4-7

P
Privileged instructions   7-13
Protection region/base size register   

2-19
Protection unit

enable bit   2-15
enabling   4-2

Protocol converter   8-5
Public instructions within debug

BYPASS   8-11
EXTEST   8-10
IDCODE   8-11
INTEST   8-11
SCAN_N   8-10

R
RAM and TAG BIST test registers   

2-29
Real-time debug   8-34
Region

overlapping   4-7
Register

access permission   2-17
base size   2-19
BIST address   10-6
BIST control   10-5
BIST general   10-6

cache configuration   2-15
cache debug index   2-32
cache lockdown   2-25
cache operations   2-22
control   2-12, 5-3
debug comms channel   8-31
debug comms channel status   8-31
debug comms control   8-31
debug comms data read   8-31
debug comms data write   8-31
debug control   8-29
debug status   8-29
protection region   2-19
RAM and TAG BIST test   2-29
test state   2-31
tightly-coupled memory region   

2-26
tightly-coupled memory size   2-10
trace process identifier   2-28
write buffer control   2-16

Register map, CP15   2-5
Round robin replacement bit   2-14

S
Scan insertion   10-3
Signal descriptions   B-2
Signal properties and requirements   B-2
Signals

AHB   B-5
clock interface   B-3
coprocessor interface   B-7
debug   B-9
debug interface   8-21
ETM interface   B-13
INTEST wrapper   B-15
JTAG   B-11
miscellaneous   B-12

Slew   6-10
System state, determining   8-27

T
TagRAM   3-4
TAP controller   8-5, 8-7
TCM

memory interface description   5-2

read cycle   5-2
Test methodology   10-2
Test state register   2-31
Thumb instruction fetch, noncached   

6-9
Tightly-coupled memory

area size   2-27
region register   2-26
size register   2-10

Tightly-coupled SRAM
BIST   10-5

Timing
diagrams   A-2
parameters   A-12

Transfer   6-3
linefetch   6-4
uncached   6-6

U
Uncached transfers   6-6

W
Watchpoints   8-22

exceptions   8-24
timing   8-23

WB   6-14
Write back   6-14
Write buffer   6-2, 6-14

control bit   6-13
control register   2-16
disabling   6-14
enabling   6-14
operation   6-13

Write through   6-14
WT   6-14
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. Index-3



Index
Index-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A


