International Rectifier

MBR16..PbF Series

SCHOTTKY RECTIFIER

16 Amp

$$I_{F(AV)} = 16Amp$$

 $V_R = 35-45V$

Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	16	А
V _{RRM}	35-45	V
I _{FSM} @ tp=5 μs sine	1800	А
V _F @16 Apk, T _J = 125°C	0.57	V
T _J	- 65 to 150	°C

Description/ Features

The MBR16..PbF Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150°C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

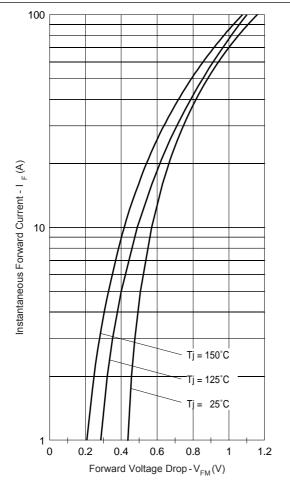
- 150°C T_J operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

Voltage Ratings

Part number	MBR1635PbF	MBR1645PbF	
V _R Max. DC Reverse Voltage (V)			
V _{RWM} Max. Working Peak Reverse Voltage (V)	35	45	

Absolute Maximum Ratings

	Parameters	MBR16	Units	Conditions
I _{F(AV)}	Max. Average Forward Current	16	А	@T _C = 134 °C (Rated V _R)
I _{FSM}	Non-Repetitive Peak Surge Current	1800	٨	5μs Sine or 3μs Rect. pulse Following any rated load condition and with rated V _{RRM} applied
		100 1		Surge applied at rated load condition halfwave single phase 60Hz
E _{AS}	Non-Repetitive Avalanche Energy	24	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 3.6 \text{Amps}, L = 3.7 \text{mH}$
I _{AR}	Repetitive Avalanche Current	3.6	А	Current decaying linearly to zero in 1 μ sec Frequency limited by T_J max. $V_A = 1.5 \times V_R$ typical


Electrical Specifications

	Parameters	MBR16	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.63	V	@ 16A	T _J = 25 °C
		0.57	V	@ 16A	T _J = 125 °C
I _{RM}	Max. Instantaneus Reverse Current	0.2	mA	T _J = 25 °C	Rated DC voltage
	(1)	40	mA	T _J = 125 °C	Rated DC voltage
C_{T}	Max. Junction Capacitance	1400	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25°C	
L _s	Typical Series Inductance	8.0	nH	Measured from top of terminal to mounting plane	
dv/dt	Max. Voltage Rate of Change	10000	V/ µs		
	(Rated V _R)				

(1) Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters		MBR16	Units	Conditions
T _J	Max. Junction Temperature R	ange	-65 to 150	°C	
T _{stg}	Max. Storage Temperature Ra	ange	-65 to 175	°C	
R _{thJC}	Max. Thermal Resistance Jun to Case	ction	1.50	°C/W	DC operation
R _{thCS}	Typical Thermal Resistance, 0 to Heatsink	Case	0.50	°C/W	Mounting surface, smooth and greased
wt	Approximate Weight		2 (0.07)	g (oz.)	
Т	Mounting Torque	Min.	6 (5)	Kg-cm	
		Max.	12 (10)	(lbf-in)	
	Case Style		TO-220AC		JEDEC
	Marking Device		MBR1645		

100 Tj = 150°C 10 100°C 100°C 100°C 100°C 25°C 0.001 0.0001 0 5 10 15 20 25 30 35 40 45 Reverse Voltage - V_R(V)

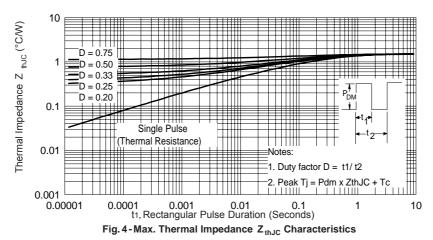

Fig. 2-Typical Values of Reverse Current Vs. Reverse Voltage

Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

3

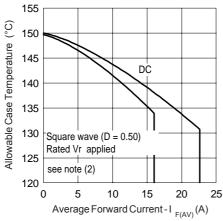


Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current

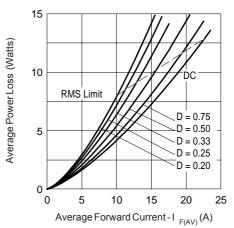


Fig. 6-Forward Power Loss Characteristics

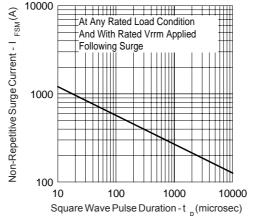
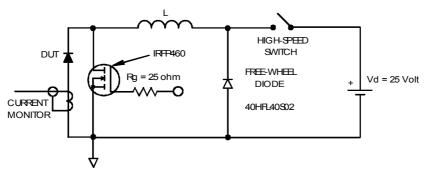
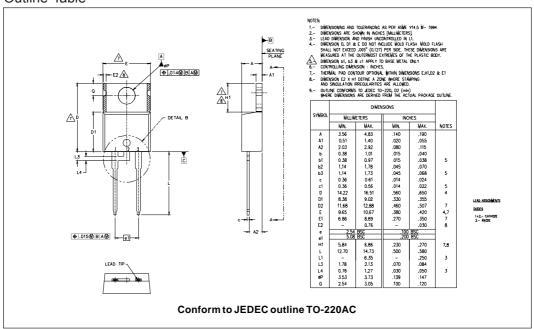
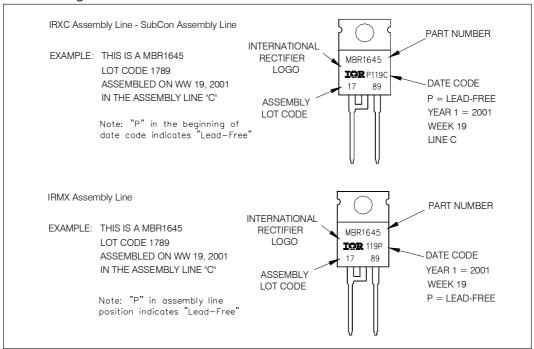
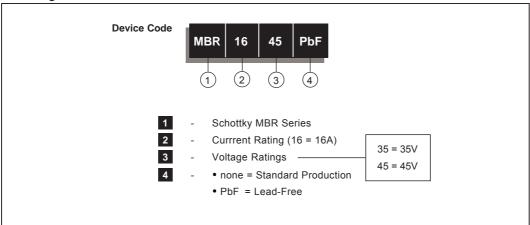


Fig. 7-Max. Non-Repetitive Surge Current (Per Leg)


Fig. 8 - Unclamped Inductive Test Circuit

(2) Formula used: $T_C = T_J^-(Pd + Pd_{REV})xR_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)}xV_{FM} @ (I_{F(AV)}/D) \text{ (see Fig. 6)};$ $Pd_{REV} = Inverse Power Loss = V_{R1}xI_{R}(1-D); I_{R} @ V_{R1} = rated V_{R} applied$


Outline Table

Part Marking Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 04/06