28 VOLT INPUT - 65 WATT

FEATURES

Parallel operation with current share, up to 3 units (148 watts)

- · -55° to +125°C operation
- 16 to 40 VDC input
- 50 V for 120 ms transient protection
- · Fully isolated, magnetic feedback
- · Fixed high frequency switching
- Remote sense or output trim on single output models
- · Inhibit function
- · Sync in and Sync Out
- Indefinite short circuit protection
- · High power density, 87% efficiency

MODELS VDC OUTPUT						
SINGLE 3.3 5 12 15 28	DUAL ±5 ±12 ±15					
Other output voltages available upon request, including 2 V, 8 V and 54 V single.						

DESCRIPTION

The MFL Series™ 28-volt DC/DC converters are rated up to 65 watts of output power over a -55°C to +125°C temperature range with a 28 VDC nominal input. On dual output models up to 70% of the rated output power can be drawn from either the positive or negative output. Current sharing allows the units to be paralleled for total power of up to 148 watts. The welded, hermetically sealed package is only 3.005 x 1.505 x 0.400 inches, giving the series an overall power density of up to 43 watts per cubic inch. The converters are offered with standard screening, "ES" screening, or fully compliant to "883" MIL-PRF-38534 Class H screening. Standard microcircuit drawings (SMD) are available.

DESIGN FEATURES

The MFL Series converters are switching regulators that use a quasi-square wave, single ended forward converter design with a constant switching frequency of 600 kHz.

Isolation between input and output circuits is provided with a transformer in the forward path and a wide bandwidth magnetic coupling in the feedback control loop. The MFL uses a unique dual loop feedback technique that controls output current with an inner feedback loop and an output voltage with a cascaded voltage mode feedback loop.

The additional secondary current mode feedback loop improves transient response in a manner similar to primary current mode control and allows for ease of paralleling, but without the cost and complexity.

The constant frequency, pulse-width modulated converters use a quasi-square wave single-ended forward design. Tight load regulation is achieved through a wide-bandwidth magnetic feedback circuit. The output on single MFL models can be trimmed (see Figure 1 for voltage changes with different resistor values).

INHIBIT

The MFL Series converters have two inhibit terminals (INH1 and INH2) that can be used to disable power conversion, resulting in a very low quiescent input current and no generation of switching noise. A logic low (<0.8 volts) is required to inhibit the converter between INH1 (pin 4) and Input Common (pin 2). A logic low (<0.5 volts) is required to inhibit the converter between INH2 (pin 12) and Output Common (pin 8). The application of intermediate voltages to these pins (1.5 to 10.5 volts) should be avoided.

SYNC

Converters may be synced to an external clock (525 to 675 kHz) or to one another by using the sync in or out pins. The nominal free-run switching frequency is 600 kHz (see Application Note on Inhibit and Synchronization).

CURRENT AND PARALLEL OPERATION

Multiple MFL converters may be used in parallel to drive a common load (see Figure 2). In this mode of operation the load current is shared by two or three MFL converters. In current sharing mode, one MFL converter is designated as a master. The SLAVE pin (pin 11) of the master is left unconnected and the MSTR/INH2 pin (pin 12) of the master is connected to the SLAVE pin (pin 11) of the slave units. The units designated as slaves have the MSTR/INH2 pin (pin 12) connected to the SNS RTN pin (pin 9). Figure 2 shows the typical setup for two or three units in parallel. Note that synchronizing the units together (though shown in the figure) is not required for current sharing operation. A second slave unit may be placed in parallel with a master and slave; this requires the TRI pin (pin 3) of the master unit to be connected to the SNS RTN pin (pin 9).

When paralleled, 76% of the total combined power ratings of the MFL converters are available at the load. Overload and short circuit performance are not adversely affected during parallel operation.

28 VOLT INPUT - 65 WATT

OPERATING CONDITIONS AND CHARACTERISTICS

Input Voltage Range

- 16 to 40 VDC continuous
- 50 V for 120 msec transient

Output Power

· 50 to 65 watts depending on model

Lead Soldering Temperature (10 sec per lead)

• 300°C

Storage Temperature Range (Case)

• -65°C to +150°C

Case Operating Temperature (Tc)

- · -55°C to +125°C full power
- -55°C to +100°C full power (MFL283R3S)
- · · -55°C to +135°C absolute

Derate Output Power/Current

- · Linearly from 100% at 125°C to 0% at 135°C
- MFL283R3S: linearly from 100% at 100°C to 85% at 125°C to 0% at 135°C

Output Voltage Temperature Coefficient

100 ppm/°C typical

Input to Output Capacitance

• 150 pF, typical

Current Limit

125% of full load typical

Isolation

• 100 megohm minimum at 500 V

Audio Rejection

50 dB typical

Conversion Frequency (-55°C to 125°C)

 Free run mode 600 kHz typical 525 kHz. min, 675 kHz max

SYNC AND INHIBIT (INH1, INH2)

Sync

- Sync In
 - ▶ Input frequency 525 to 675 Hz.
 - ► Duty cycle 40% min, 60% max
 - ► Logic low 0.8 V max
 - ► Logic high 4.5 V min, 5 V max
 - ► Referenced to input common
- · Sync Out
 - ► Referenced to input common

Inhibit (INH1, INH2)

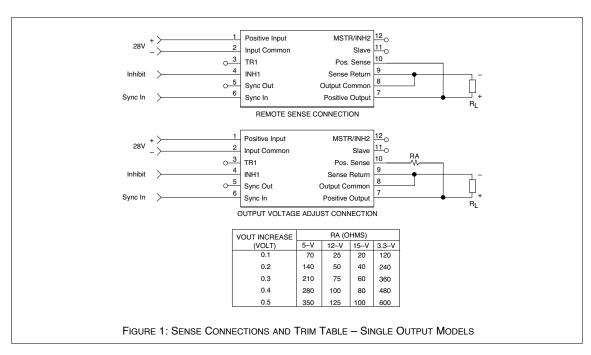
- · Active low (output disabled)
 - ► INH1 referenced to input common
 - Active low 0.8 V max
 - Inhibit pin current 10 mA max
 - ► INH2 referenced to output common
 - Active low 0.5 V max
 - Inhibit pin current 5 mA max
- Active high (output enabled)
 - Open collector (output enabled)
 - ► Avoid intermediate voltages of 1.5 to 10.5
 - ► Open pin voltage
 - INH1 = 9 to 12 V
 - INH2 = 9 V max

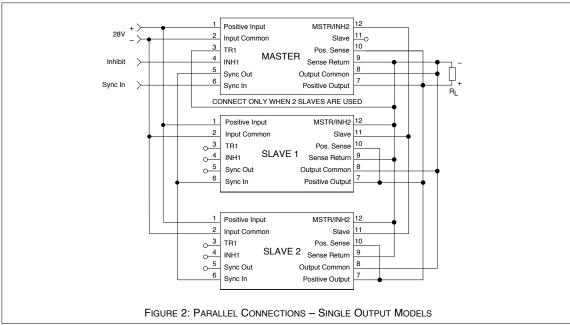
MECHANICAL AND ENVIRONMENTAL

Size (maximum)

- 3.005 x 1.505 x 0.400 inches (76.33 x 38.23 x 10.16 mm)
- See figure 17, case U, for dimensions.

Weight (maximum)


· 86 grams


Screening

 Standard, ES, or /883 (Class H, QML). See Screening Tables 1 and 2 for more information.

28 VOLT INPUT - 65 WATT

SINGLE OUTPUT MODELS CONNECTION DIAGRAMS - SENSE AND PARALLEL

28 VOLT INPUT - 65 WATT

PIN OUT

PIN OUT							
Pin	Single Output	Dual Output					
1	Positive Input	Positive Input					
2	Input Common	Input Common					
3	Triple (TR1)	Triple (TR1)					
4	Inhibit 1 (INH1)	Inhibit 1 (INH1)					
5	Sync Out	Sync Out					
6	Sync In	Sync In					
7	Positive Output	Positive Output					
8	Output Common	Output Common					
9	Sense Return	Negative Output					
10	Positive Sense	No connection					
11	Slave	Slave					
12	Master/Inhibit 2	Master/Inhibit 2					

PINS NOT IN USE						
Pin	Description	Action				
3	TR1	Leave unconnected				
4 Inhibit 1 (INH1) Leave unconnected		Leave unconnected				
5	Sync Out	Leave unconnected				
6	Sync In	Connect to Input Common				
9	Sense Return	Connect to appropriate outputs				
10	Positive Sense	Connect to appropriate outputs				
11	Slave	Leave unconnected				
12	Master/Inhibit 2	Leave unconnected				

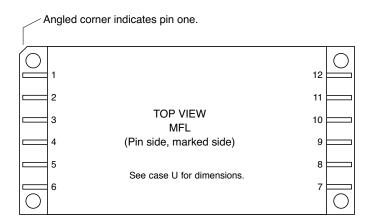
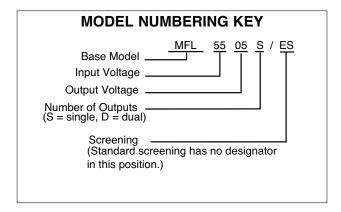



FIGURE 3: PIN OUT

28 VOLT INPUT - 65 WATT

SMD NUMBERS							
STANDARD MICROCIRCUIT DRAWING (SMD)	MFL SERIES SIMILAR PART						
5962-0621301HXC 5962-9316301HXC 5962-9316201HXC 5962-9316101HXC 5962-9319101HXC 5962-9319201HXC 5962-9319301HXC	MFL283R3S/883 MFL2805S/883 MFL2812S/883 MFL2815S/883 MFL2805D/883 MFL2812D/883 MFL2815D/883						
For exact specifications for an SMD product, refer to							

the SMD drawing. SMDs can be downloaded from: http://www.dscc.dla.mil/programs/smcr

MODEL SELECTION On the lines below, enter one selection from each category to determine the model number.								
CATEGORY	MFL28 Base Model and Input Voltage	Output Voltage ¹	Number of Outputs ²	1	Screening ³			
SELECTION	MFL28 is the only available option	3R3, 05, 12, 15 05, 12, 15	S D		(STANDARD leave blank) ES 883			

Notes:

- 1. Output Voltage: An R indicates a decimal point. 3R3 is 3.3 volts out.
- 2. Number of Outputs: S is a single output and D is a dual output
- 3. Screening: For standard screening leave the screening option blank. For other screening options, insert the desired screening level. For more information see Screening Tables 1 and 2

28 VOLT INPUT - 65 WATT

Electrical Characteristics: -55° C to $+125^{\circ}$ C T_C, 28 VDC V_{IN}, 100% load, free run, unless otherwise specified.

SINGLE OUT	TPUT MODELS	М	FL283R3	3S	N	/IFL2805	S	l M	1FL2812	S	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		3.21	3.30	3.39	4.87	5.00	5.13	11.76	12.00	12.24	VDC
OUTPUT CURRENT	V _{IN} = 16 TO 40 VDC	0	_	12.12	0	_	10	0	_	5	Α
OUTPUT POWER	V _{IN} = 16 TO 40 VDC	0	_	40	0	_	50	0	_	60	W
OUTPUT RIPPLE	T _C = 25°C	_	10	35	_	15	35	_	30	75	mV p-p
10 кНz - 2 МНz	T _C = -55°C TO +125°C	_	10	50	_	30	50	_	45	100	
LINE REGULATION	V _{IN} = 16 TO 40 VDC	_	0	20	_	0	20	_	0	20	mV
LOAD REGULATION	NO LOAD TO FULL	_	_	40	_	_	20	_	_	20	mV
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 120 msec. ^{1, 2}	_	_	50	_	_	50	_	_	50	V
INPUT CURRENT	NO LOAD	_	70	100	_	70	120	_	50	100	
	INHIBITED-INH1	_	9	14	_	9	14	_	9	14	mA
	INHIBITED-INH2	_	35	70	_	35	70	_	35	70	
INPUT RIPPLE CURRENT	10 кНz - 10 MHz	_	15	50	_	15	50	_	15	50	mA p-p
EFFICIENCY	T _C = 25°C	73	_	_	77	80	_	83	86	_	%
	T _C = -55°C TO +125°C	71	_	_	75	_		81			,,,
LOAD FAULT	POWER DISSIPATION SHORT CIRCUIT	_	12.5	16	_	12.5	18	_	10	16	W
	RECOVERY 1	_	1.5	6	-	1.5	4	_	1.5	4	ms
STEP LOAD RESPONSE	50% - 100% - 50% TRANSIENT	_	200	400	_	250	350	_	450	600	mV pk
	RECOVERY 1, 3	_	1.5	3.0	_	1.5	3.0	_	1.5	3.0	ms
STEP LINE RESPONSE ¹	16 - 40 -16 VDC TRANSIENT ⁴	_	250	300	_	250	300	_	250	400	mV pk
	RECOVERY 3	_	200	600	_	200	300	_	200	300	μs
START-UP ⁶	DELAY	_	3.5	6	_	3.5	6	_	3.5	6	ms
	OVERSHOOT 1	_	0	25	_	0	25	_	0	25	mV pk
CAPACITIVE LOAD 1, 6	T _C = 25°C	_	_	1000	_	_	1000	_	_	1000	μF

Notes

- 1. Guaranteed by design, not tested.
- 2. Unit will shut down above approximately 45V but will be undamaged and will restart when voltage drops into normal range.
- 3. Recovery time is measured from application of the transient to the point at which Vout is within 1% of final value.
- 4. Transition time 100 μ s ±20%.
- 5. Tested on release from inhibit.
- 6. Shall not compromise DC performance.

28 VOLT INPUT - 65 WATT

Electrical Characteristics: -55° C to $+125^{\circ}$ C T_C, 28 VDC V_{IN}, 100% load, free run, unless otherwise specified.

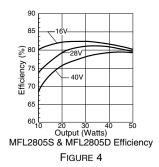
SINGLE OUTPUT MODELS		MFL2815S		M				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		14.55	15.00	15.45	27.16	28.00	28.84	VDC
OUTPUT CURRENT	V _{IN} = 16 TO 40 VDC	0	_	4.33	0	_	2.32	Α
OUTPUT POWER	V _{IN} = 16 TO 40 VDC	0	_	65	0	_	65	W
OUTPUT RIPPLE	T _C = 25°C	_	30	85	_	100	200	mV p-p
10 кHz - 2 MHz	T _C = -55°C TO +125°C	_	45	110	_	_	275	
LINE REGULATION	V _{IN} = 16 TO 40 VDC	_	0	20	_	20	60	mV
LOAD REGULATION	NO LOAD TO FULL	_	0	20	_	20	75	mV
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 120 msec. ^{1, 2}	_	_	50	_	_	50	V
INPUT CURRENT	NO LOAD	_	50	100	_	60	100	
	INHIBITED-INH1	_	9	14	_	9	14	mA
	INHIBITED-INH2	_	35	70	_	35	70	
INPUT RIPPLE CURRENT	10 кНz - 10 MHz	_	15	50	_	20	50	mA p-p
EFFICIENCY	T _C = 25°C	84	87	_	83	86	_	%
	T _C = -55°C TO +125°C	82	_	_	81	_	_	,,
LOAD FAULT	POWER DISSIPATION SHORT CIRCUIT T _C = 25°C	_	10	16	_	7	14	w
	RECOVERY 1	_	1.5	4	_	1.0	4	ms
STEP LOAD RESPONSE	50% - 100% - 50% TRANSIENT	_	500	600	_	800	1400	mV pk
	RECOVERY 1, 3	_	1.5	3.0	_	1.5	3.0	ms
STEP LINE RESPONSE ¹	16 - 40 -16 VDC TRANSIENT ⁴	_	250	500	_	250	800	mV pk
	RECOVERY 3	_	200	300	_	200	400	μs
START-UP ⁵	DELAY	_	3.5	6	_	3.5	6	ms
	OVERSHOOT 1	_	0	50	_	0	100	mV pk
CAPACITIVE LOAD 1, 6	T _C = 25°C	_	_	1000	_	_	1000	μF

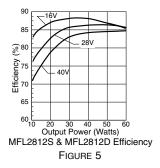
Notes

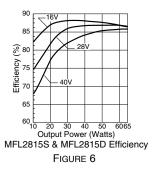
- 1. Guaranteed by design, not tested.
- Unit will shut down above approximately 45V but will be undamaged and will restart when voltage drops into normal range.
- 3. Recovery time is measured from application of the transient to the point at which Vout is within 1% of final value.
- 4. Transition time 100 μ s ±20%.
- 5. Tested on release from inhibit.
- 6. Shall not compromise DC performance.

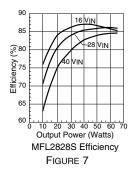
28 VOLT INPUT - 65 WATT

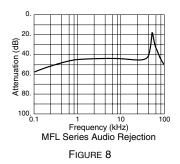
Electrical Characteristics: –55°C to +125° C T_C , 28 VDC V_{IN} , 100% load, free run, unless otherwise specified.

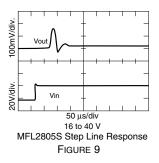

DUAL OUTPUT MODELS ²		l M	MFL2805D MFL2812D		MFL2815D						
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+ V _{OUT}	4.85	5.00	5.15	11.64	12.00	12.36	14.55	15.00	15.45	VDC
	- V _{OUT}	4.82	5.00	5.18	11.58	12.00	12.42	14.47	15.00	15.53	1
OUTPUT CURRENT 3	EACH OUTPUT	0	_	7	0	_	3.5	0	_	3.03	Α
V _{IN} = 16 TO 40 VDC	TOTAL OUTPUT	0	_	10	0	_	5	0	_	4.34	
OUTPUT POWER 3	V _{IN} = 16 TO 40 VDC	0	_	50	0	_	60	0	_	65	W
OUTPUT RIPPLE	10 кHz - 2 MHz	_	50	100	_	50	120	_	50	150	mV p-p
LINE REGULATION	+ V _{OUT}	_	0	50	_	0	50	_	0	50	mV
V _{IN} = 16 TO 40 VDC	- V _{OUT}	_	25	100	_	25	100	_	25	100	
LOAD REGULATION	+ V _{OUT}	_	0	50	-	10	50	_	10	50	mV
NO LOAD TO FULL	- V _{OUT}	_	25	100	_	25	120	_	50	150]
CROSS REGULATION	SEE NOTE 4	_	5	8	_	2	4	_	2	4	%
$T_C = 25^{\circ}C$	SEE NOTE 5	_	3	7	_	2	4	_	2	4	,,,
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 120 msec. ^{1, 6}	0	_	50	0	_	50	0	_	50	V
INPUT CURRENT	NO LOAD	_	50	120	_	50	100	_	50	100	
	INHIBITED-INH1	_	9	14	_	9	14	_	9	14	mA
	INHIBITED-INH2	_	35	70	_	35	70	_	35	70	
INPUT RIPPLE CURRENT	10 кНz - 10 MHz	_	15	50	_	15	50	_	15	50	mA p-p
EFFICIENCY	T _C = 25°C	77	80	_	83	86	_	84	87	ı	%
BALANCED LOAD	$T_{C} = -55^{\circ}C \text{ TO } +125^{\circ}C$	75	_	_	81	_	_	82	_	-	,,,
LOAD FAULT	POWER DISSIPATION SHORT CIRCUIT	_	12.5	18	_	10	16	_	10	16	w
	RECOVERY 1	_	1.5	4	_	1.5	4	_	1.5	4.0	ms
STEP LOAD RESPONSE ⁷	50% - 100% - 50% TRANSIENT	_	250	350	_	450	600	_	500	600	mV pk
± V _{OUT}	RECOVERY 1, 8	_	1.5	3.0	_	1.5	3.0	_	1.5	3.0	ms
STEP LINE RESPONSE ^{1, 7}	16 - 40 -16 VDC TRANSIENT	_	250	300	_	250	400	_	250	500	mV pk
± V _{OUT}	RECOVERY 8	_	200	300	_	200	300	_	200	300	μs
START-UP ⁹	DELAY	_	3.5	6	_	3.5	6	_	3.5	6	ms
	OVERSHOOT 1	_	0	25	_	0	50	_	0	50	mV pk
CAPACITIVE LOAD 1, 10	T _C = 25°C	_	_	500	-	-	500	_	-	500	μF

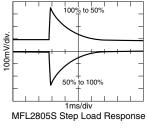

Notes:

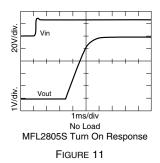

- 1. Guaranteed by design, not tested.
- 2. Parallel load share function is not characterized for dual output models.
- 3. Up to 70% of the total output power is available from either output providing the opposite output is simultaneously carrying 30% of the total power.
- Effect on negative Vout from 50%/50% loads to 70%/30% or 30%/70% loads.
- 5. Effect on negative Vout from 50%/50% loads to 50% then 10% load on negative Vout
- Unit will shut down above approximately 45V but will be undamaged and will restart when voltage drops into normal range.
- 7. Transition time 100 μ s ±20%.
- 8. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.
- 9. Tested on release from inhibit.
- 10. Shall not compromise DC performance.

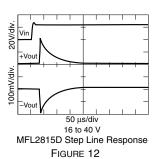

28 VOLT INPUT - 65 WATT

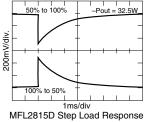

Typical Performance Curves: 25°C T $_{\!C}$, 28 VDC V $_{\!IN}$, 100% load, free run, unless otherwise specified.

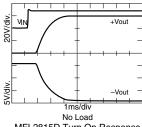


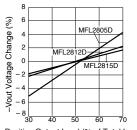











28 VOLT INPUT - 65 WATT

Typical Performance Curves: 25°C Tc , 28 VDC Vin, 100% load, free run, unless otherwise specified.

MFL2815D Turn On Response

Positive Output Load (% of Total Load) -V_{out} with shift in load balance Cross Regulation

FIGURE 13 FIGURE 14 FIGURE 15

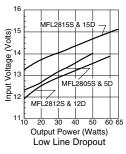
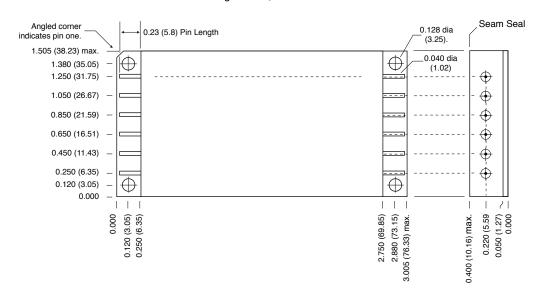



FIGURE 16

28 VOLT INPUT - 65 WATT

TOP VIEW CASE U Flanged case, short-leaded

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold, compression glass seal

Seal Hole: 0.100 ±0.002 (2.54 ±0.05)

Case U, Rev F, 20100915

FIGURE 17: CASE U

28 VOLT INPUT - 65 WATT

STANDARD AND /ES (NON-QML) AND /883 (CLASS H, QML) PRODUCT ELEMENT EVALUATION

COMPONENT-LEVEL TEST PERFORMED	STANDAR NON-			83 H QML
	M/S ²	P 3	M/S ²	P 3
Element Electrical (probe)	yes	no	yes	yes
Element Visual	no	no	yes	yes
Internal Visual	no	N/A	yes	N/A
Final Electrical	no	no	yes	yes
Wire Bond Evaluation ⁴	no	no	yes	yes
SLAM™/C-SAM: Input capacitors only (Add'l test, not req. by H)	no	no	no	yes

Notes

- Standard and /ES, non-QML products, do not meet all of the requirements of MIL-PRF-38534.
- 2. M/S = Active components (Microcircuit and Semiconductor Die)
- 3. P = Passive components
- 4. Not applicable to EMI filters that have no wire bonds.

Definitions:

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534 SLAM™: Scanning Laser Acoustic Microscopy

C-SAM: C - Mode Scanning Acoustic Microscopy

SCREENING TABLE 1: ELEMENT EVALUATION

28 VOLT INPUT - 65 WATT

STANDARD AND /ES (NON-QML) AND /883 (CLASS H, QML) PRODUCT ENVIRONMENTAL SCREENING

TEST PERFORMED	125°C STANDARD	125°C /ES	/883
	NON-QML ¹	NON-QML ¹	CLASS H QML
Pre-cap Inspection Method 2017, 2032	yes	yes	yes
Temperature Cycle (10 times) Method 1010, Cond. C, -65°C to 150°C, ambient Method 1010, Cond. B, -55°C to 125°C, ambient	no	no	yes
	no	yes	no
Constant Acceleration Method 2001, 3000 g Method 2001, 500 g	no no	no yes	yes no
Burn-in ² Method 1015, 125°C case, typical 96 hours 160 hours	no	yes	no
	no	no	yes
Final Electrical Test MIL-PRF-38534, Group A Subgroups 1 through 6: -55°C, +25°C, +125°C case Subgroups 1 and 4: +25°C case	no yes	no yes	yes no
Hermeticity Test Fine Leak, Method 1014, Cond. A Gross Leak, Method 1014, Cond. C Gross Leak, Dip (1 x 10 ⁻³)	no	yes	yes
	no	yes	yes
	yes	no	no
Final visual inspection Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

1. Standard and /ES, non-QML products, do not meet all of the requirements of MIL-PRF-38534.

2. Burn-in temperature designed to bring the case temperature to $+125\,^{\circ}\text{C}$

SCREENING TABLE 2: ENVIRONMENTAL SCREENING

