MB90480B/485B Series

- PRODUCT LINEUP

MB90480B series

Part number		MB90F481B	MB90F482B	MB90V480B
Classification		Flash memory product		Evaluation product
ROM size		192 Kbytes	256 Kbytes	
RAM size		4 Kbytes	6 Kbytes	16 Kbytes
CPU function		Number of instructions $: 351$ Instruction bit length $: 8$-bit, 16 -bit Instruction length $: 1$ byte to 7 bytes Data bit length $: 1$-bit, 8 -bit, 16 -bit Minimum instruction execution time $: 40 \mathrm{~ns} \mathrm{(25} \mathrm{MHz} \mathrm{machine} \mathrm{clock)}$		
Ports		General-purpose I/O ports: up to 84 General-purpose I/O ports (CMOS output) General-purpose I/O ports (with pull-up resistance) General-purpose I/O ports (N-ch open drain output)		
UART		1 channel, start-stop synchronized		
8/16-bit PPG		8-bit 6 channels/16-bit 3 channels		
8/16-bit up/down counter/timer		Event input pins : 6, 8-bit up/down counters : 2 8-bit reload/compare registers : 2		
16-bit I/O timers	$\begin{aligned} & \text { 16-bit } \\ & \text { free-run timer } \end{aligned}$	Number of channels : 1 Overflow interrupt		
	Output compare (OCU)	Number of channels : 6 Pin input factor : A match signal of compare register		
	Input capture (ICU)	Number of channels : 2 Rewriting a register value upon a pin input (rising, falling, or both edges)		
DTP/external interrupt circuit		Number of external interrupt pin channels : 8 (edge or level detection)		
Extended I/O serial interface		Embedded 2 channels		
Timebase timer		18-bit counter Interrupt cycles: $1.0 \mathrm{~ms}, 4.1 \mathrm{~ms}, 16.4 \mathrm{~ms}, 131.1 \mathrm{~ms}$ (at 4 MHz base oscillator)		
A/D converter		Conversion resolution : 8/10-bit, switchable One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels) Stop conversion mode (conversion of selected channels with repeated pause)		
Watchdog timer		Reset generation interval : $3.58 \mathrm{~ms}, 14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}, 458.75 \mathrm{~ms}$(minimum value, at 4 MHz base oscillator)		
Low-power consumption (standby) modes		Stop mode, sleep mode, CPU intermittent operation mode, watch mode, timebase timer mode		
Process		CMOS		
Type		Not included security function		User pin ${ }^{* 1}$, $3 \mathrm{~V} / 5 \mathrm{~V}$ versions
Emulator power supply*2				Included

*1: User pin : P20 to P27, P30 to P37, P40 to P47, P70 to P77
*2 : It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used.
Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply switching) about details.
Note : Ensure that you must write to Flash at Vcc 3.13 V to $3.60 \mathrm{~V}(3.3 \mathrm{~V} 10$, 5).

MB90480B/485B Series

(Continued)

Part number Item	MB90487B	MB90488B	MB90F488B	MB90V485B	MB90F489B	MB90483C
Watchdog timer	Reset generation interval: $3.58 \mathrm{~ms}, 14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}, 458.75 \mathrm{~ms}$ (minimum value, at 4 MHz base oscillator)					
Low-power consumption (standby) modes	Stop mode, sleep mode, CPU intermittent operation mode, watch timer mode, timebase timer mode					
Process	CMOS					
Type	3 V/5 V power supply*1	3 V/5 V power supply*	$3 \mathrm{~V} / 5 \mathrm{~V}$ power supply*1 Included security function	3 V/5 V power supply*	$3 \mathrm{~V} / 5 \mathrm{~V}$ power supply* ${ }^{* 1}$ Included security function	$3 \mathrm{~V} / 5 \mathrm{~V}$ power supply*
Emulator power supply*3				Included		

*1: $3 \mathrm{~V} / 5 \mathrm{~V}$ I/F pin : All pins should be for 3 V power supply without P20 to P27, P30 to P37, P40 to P47, and P70 to P77.
*2 : P76/P77 pins are N-ch open drain pins (without P-ch) at built-in $I^{2} \mathrm{C}$. However, MB90V485B uses the N -ch open drain pin (with P-ch).
*3 : It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used.
Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply Switching) about details.
Notes: As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/ PG//2C become CMOS input.
Ensure that you must write to Flash at $\mathrm{V}_{\mathrm{cc}} 3.13 \mathrm{~V}$ to $3.60 \mathrm{~V}(3.3 \mathrm{~V} 10,5)$.

MB90480B/485B Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-100P-M06)

* : These are the pins for MB90485B series. The pins for MB90480B series are P36/A06, P37/A07, P43/A11, P44/A12, P45/A13, P75 to P77.

Note: MB90485B series only
${ }^{12} \mathrm{C}$ pin P77 and P76 are N-ch open drain pin (without P-ch). However, MB90V485B uses the N -ch open drain pin (with P -ch) .
P20 to P27, P30 to P37, P40 to P47 and P70 to P77 are also used as $3 \mathrm{~V} / 5 \mathrm{~V}$ I/F pin. As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/ PG// ${ }^{2}$ C become CMOS input.

MB90480B/485B Series

*: These are the pins for MB90485B series. The pins for MB90480B series are P36/A06, P37/A07, P43/A11, P44/A12, P45/A13, P75 to P77.

Note: MB90485B series only
${ }^{12} \mathrm{C}$ pin P77 and P76 are N-ch open drain pin (without P-ch). However, MB90V485B uses the N-ch open drain pin (with P-ch).
P20 to P27, P30 to P37, P40 to P47 and P70 to P77 are also used as $3 \mathrm{~V} / 5 \mathrm{~V} \mathrm{I} / \mathrm{F}$ pin. As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/ $\mathrm{PG} /{ }^{2} \mathrm{C}$ become CMOS input.

MB90480B/485B Series

(Continued)

Pin No.		Pin name	I/O circuit type*3	Function	
QFP*1	LQFP* ${ }^{\text {2 }}$				
10	8	P31	$\begin{gathered} E \\ (\text { CMOS/H }) \end{gathered}$	This is a general purpose I/O port.	
		A01		In non-multiplex mode, this pin functions as an external address pin.	
		BIN0		8/16-bit up/down timer input pin (ch.0) .	
12	10	P32	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.	
		A02		In non-multiplex mode, this pin functions as an external address pin.	
		ZINO		8/16-bit up/down timer input pin (ch.0)	
13	11	P33	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.	
		A03		In non-multiplex mode, this pin functions as an external address pin.	
		AIN1		8/16-bit up/down timer input pin (ch.1) .	
14	12	P34	$\begin{gathered} E \\ (\text { CMOS/H) } \end{gathered}$	This is a general purpose I/O port.	
		A04		In non-multiplex mode, this pin functions as an external address pin.	
		BIN1		8/16-bit up/down timer input pin (ch.1).	
15	13	P35	$\begin{gathered} E \\ (\text { CMOS/H) } \end{gathered}$	This is a general purpose I/O port.	
		A05		In non-multiplex mode, this pin functions as an external address pin.	
		ZIN1		8/16-bit up/down timer input pin (ch.1)	
16, 17	14, 15	P36, P37	$\stackrel{\mathrm{D}}{(\mathrm{CMOS})}$	MB90480B series	This is a general purpose I/O port.
		A06, A07			In non-multiplex mode, these pins function as external address pins.
		P36, P37	$\underset{\text { (CMOS/H) }}{\text { E }}$	MB90485Bseries	This is a general purpose I/O port.
		A06, A07			In non-multiplex mode, these pins function as external address pins.
		PWCO, PWC1*4			PWC input pins
18	16	P40	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.	
		A08		In non-multiplex mode, this pin functions as an external address pin.	
		SIN2		Extended I/O serial interface input pin.	
19	17	P41	F (CMOS)	This is a general purpose I/O port.	
		A09		In non-multiplex mode, this pin functions as an external address pin.	
		SOT2		Extended I/O serial interface output pin.	
20	18	P42	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.	
		A10		In non-multiplex mode, this pin functions as an external address pin.	
		SCK2		Extended I/O serial interface clock input/output pin.	

(Continued)

MB90480B/485B Series

Pin No.		Pin name	I/O circuit type*3	Function	
QFP*1	LQFP*2				
21, 22	19, 20	P43, P44	F(CMOS)	$\begin{gathered} \text { MB90480B } \\ \text { series } \end{gathered}$	This is a general purpose I/O port.
		A11, A12			In non-multiplex mode, these pins function as external address pins.
		P43, P44	F(CMOS)	$\begin{gathered} \text { MB90485B } \\ \text { series } \end{gathered}$	This is a general purpose I/O port.
		A11, A12			In non-multiplex mode, these pins function as external address pins.
		MT00, MT01			PG output pins
24	22	P45	$\begin{gathered} \text { F } \\ (\mathrm{CMOS}) \end{gathered}$	MB90480B	This is a general purpose I/O port.
		A13			In non-multiplex mode, this pin functions as an external address pin.
		P45	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	$\begin{aligned} & \text { MB90485B } \\ & \text { series } \end{aligned}$	This is a general purpose I/O port.
		A13			In non-multiplex mode, this pin functions as an external address pin.
		EXTC*4			PG input pin.
25, 26	23, 24	P46, P47	$\begin{gathered} \text { F } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port.	
		A14, A15		In non-multiplex mode, these pins function as external address pins.	
		$\begin{aligned} & \text { OUT4, } \\ & \text { OUT5 } \end{aligned}$		Output compare event output pins.	
70	68	P50	$\begin{gathered} \mathrm{D} \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. In external bus mode, this pin functions as the ALE pin.	
		ALE		In external bus mode, this pin functions as the address load enable (ALE) signal pin.	
71	69	P51	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. In external bus mode, this pin functions as the RD pin.	
		$\overline{\mathrm{RD}}$		In external bus mode, this pin functions as the read strobe output ($\overline{\mathrm{RD}})$ signal pin.	
72	70	P52	$\begin{gathered} \mathrm{D} \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. In external bus mode, when the WRE bit in the EPCR register is set to " 1 ", this pin functions as the WRL pin.	
		WRL		In external bus mode, this pin functions as the lower data write strobe output (WRL) pin. When the WRE bit in the EPCR register is set to " 0 ", this pin functions as a general purpose I/O port.	
	71	P53	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. In external bus mode with 16-bit bus width, when the WRE bit in the EPCR register is set to " 1 ", this pin functions as the WRH pin.	
73		WRH		In external bus mode with 16 -bit bus width, this pin functions as the upper data write strobe output (WRH) pin. When the WRE bit in the EPCR register is set to " 0 ", this pin functions as a general purpose I/O port.	

(Continued)

MB90480B/485B Series

Pin No.		Pin name	circuittypety	Function	
QFP*1	LQFP*2				
32	30	P75	$\begin{gathered} \hline \mathrm{F} \\ (\mathrm{CMOS}) \end{gathered}$	$\begin{aligned} & \text { MB90480B } \\ & \text { series } \end{aligned}$	This is a general purpose I/O port.
		P75	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{G}}$	MB90485B series	This is a general purpose I/O port.
		PWC2*4			This is a PWC input pin.
33	31	P76	$\begin{gathered} \mathrm{F} \\ \text { (CMOS) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { MB90480B } \\ \text { series } \end{array}$	This is a general purpose I/O port.
		P76	$\stackrel{\mathrm{I}}{(\mathrm{NMOS} / \mathrm{H})}$	$\begin{array}{\|c} \text { MB90485B } \\ \text { series } \end{array}$	This is a general purpose I/O port.
		SCL*4			Serves as the $I^{2} \mathrm{C}$ interface data I/O pin. During operation of the $I^{2} \mathrm{C}$ interface, leave the port output in a high impedance state.
34	32	P77	$\underset{(\mathrm{CMOS})}{\mathrm{F}}$	$\begin{gathered} \text { MB90480B } \\ \text { series } \end{gathered}$	This is a general purpose I/O port.
		P77	(NMOS/H)	$\begin{aligned} & \text { MB90485B } \\ & \text { series } \end{aligned}$	This is a general purpose I/O port.
		SDA*4			Serves as the $I^{2} \mathrm{C}$ interface data I/O pin. During operation of the $I^{2} \mathrm{C}$ interface, leave the port output in a high impedance state.
47, 48	45, 46	P80, P81	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	These are general purpose I/O ports.	
		IRQ0, IRQ1		External interrupt input pins.	
52 to 57	50 to 55	P82 to P87	$\begin{gathered} E \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	These are	general purpose I/O ports.
		IRQ2 to IRQ7		External interrupt input pins.	
58	56	P90	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a ge	eneral purpose I/O port.
		SIN1		Extended I	/O serial interface data input pin.
		CSO		Chip select	
59	57	P91	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port.	
		SOT1		Extended I/O serial interface data output pin.	
		CS1		Chip select 1.	
60	58	P92	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	This is a general purpose I/O port.	
		SCK1		Extended I/O serial interface clock input/output pin.	
		CS2		Chip select 2.	
61	59	P93	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	This is a general purpose I/O port.	
		FRCK		When the free-run timer is in use, this pin functions as the external clock input pin.	
		ADTG		When the A/D converter is in use, this pin functions as the external trigger input pin.	
		CS3		Chip select 3.	
62	60	P94	$\begin{gathered} \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port.	
		PPG4		PPG timer output pin.	

(Continued)

MB90480B/485B Series

(Continued)

Pin No.		Pin name	I/O circuit type ${ }^{* 3}$	Function	
QFP**	LQFP*2				
63	61	P95	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port.	
		PPG5		PPG timer output pin.	
64	62	P96	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.	
		IN0		Input capture ch. 0 trigger input pin.	
65	63	P97	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	This is a general purpose I/O port.	
		IN1		Input capture ch. 1 trigger input pin.	
66 to 69	64 to 67	PA0 to PA3	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	These are general purpose I/O ports.	
66 to 69	64 to 67	OUT0 to OUT3		Output compare event output pins.	
35	33	AVcc		A/D converter analog power supply input pin.	
36	34	AVRH		A/D converter reference voltage input pin.	
37	35	AVss		A/D converter GND pin.	
49 to 51	47 to 49	MD0 to MD2	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{J}}$	Operating mode selection input pins.	
84	82	Vcc3		3.3 V 0.3 V power supply pins (V cc3) .	
	21	Vcc5		$\begin{array}{c\|} \hline \text { MB90480B } \\ \text { series } \end{array}$	$3.3 \mathrm{~V} \quad 0.3 \mathrm{~V}$ power supply pin. Usually, use Vcc Vcc3 Vcc5 as a 3 V power supply.
23				$\begin{gathered} \text { MB90485B } \\ \text { series } \end{gathered}$	3 V/5 V power supply pin. 5 V power supply pin when P20 to P27, P30 to P37, P 40 to $\mathrm{P} 47, \mathrm{P} 70$ to P 77 are used as $5 \mathrm{~V} \mathrm{I} / \mathrm{F}$ pins. Usually, use Vcc Vcc3 Vcc5 as a 3 V power supply (when the 3 V power supply is used alone).
$\begin{gathered} 11,42, \\ 81 \end{gathered}$	$\begin{aligned} & 9,40, \\ & 79 \end{aligned}$	Vss		GND pins.	

*1: QFP : FPT-100P-M06
*2 : LQFP : FPT-100P-M20
*3 : For the I/O circuit type, refer to "■ I/O CIRCUIT TYPES".
*4 : As for MB90V485B, input pins become CMOS input.

MB90480B/485B Series

HANDLING DEVICES

1. Be careful never to exceed maximum rated voltages (preventing latch-up)

In CMOS IC devices, a condition known as latch-up may occur if voltages higher than Vcc or lower than Vss are applied to input or output pins other than medium-or high-voltage pins, or if the voltage applied between Vcc and Vss pins exceeds the rated voltage level.
When latch-up occurs, the power supply current increases rapidly causing the possibility of thermal damage to circuit elements. Therefore it is necessary to ensure that maximum ratings are not exceeded in circuit operation. Similarly, when turning the analog power supply on or off, it is necessary to ensure that the analog power supply voltages (AV cc and AVRH) and analog input voltages do not exceed the digital power supply (Vcc) .

2. Treatment of unused pins

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leading to permanent damage. Unused input pins should always be pulled up or down through resistance of at least 2 k . Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins.

3. Treatment of Power Supply Pins ($\mathrm{Vcc}_{\mathrm{c}} / \mathrm{Vss}_{\mathrm{ss}}$)

When multiple $\mathrm{Vcc} / \mathrm{Vss}$ pins are present, device design considerations for prevention of latch-up and unwanted electromagnetic interference, abnormal strobe signal operation due to ground level rise, and conformity with total output current ratings require that all power supply pins must be externally connected to power supply or ground.
Consideration should be given to connecting power supply sources to the $\mathrm{Vcc} / \mathrm{Vss}$ pins of this device with as low impedance as possible. It is also recommended that a bypass capacitor of approximately 0.1 F be placed between the Vcc and Vss lines as close to this device as possible.

4. Crystal Oscillator Circuits

Noise around the $\mathrm{X} 0 / \mathrm{X} 1$, or $\mathrm{X} 0 \mathrm{~A} / \mathrm{X} 1 \mathrm{~A}$ pins may cause this device to operate abnormally. In the interest of stable operation it is strongly recommended that printed circuit board artwork places ground bypass capacitors as close as possible to the X0/X1, X0A/X1A and crystal oscillator (or ceramic oscillator) and that oscillator lines do not cross the lines of other circuits.

5. Precautions when turning the power supply on

In order to prevent abnormal operation in the chip's internal step-down circuits, a voltage rise time during poweron of $50 \mathrm{~s}(0.2 \mathrm{~V}$ to 2.7 V$)$ or greater should be assured.

6. Supply Voltage Stabilization

Even within the operating range of Vcc supply voltage, rapid voltage fluctuations may cause abnormal operation. As a standard for power supply voltage stability, it is recommended that the peak-to-peak Vcc ripple voltage at commercial supply frequency $\left(50 / 60 \mathrm{~Hz}\right.$) be 10 or less of V_{cc}, and that the transient voltage fluctuation be no more than $0.1 \mathrm{~V} / \mathrm{ms}$ or less when the power supply is turned on or off.

7. Proper power-on/off sequence

The A/D converter power (AVcc, AVRH) and analog input (ANO to AN7) must be turned on after the digital power supply (Vcc) is turned on. The A / D converter power ($\mathrm{AVcc}, \mathrm{AVRH}$) and analog input (ANO to AN7) must be shut off before the digital power supply (V cc) is shut off. Care should be taken that AVRH does not exceed $A V c c$. Even when pins used as analog input pins are doubled as input ports, be sure that the input voltage does not exceed AV cc.

MB90480B/485B Series

BLOCK DIAGRAM

P00 to P07 (8 pins) : with an input pull-up resistance setting register.
P10 to P17 (8 pins) : with an input pull-up resistance setting register.
P40 to P47 (8 pins) : with an open drain setting register.
P70 to P77 (8 pins) : with an open drain setting register.
MB90485B series only
$1^{2} \mathrm{C}$ pin P77 and P76 are N-ch open drain pin (without P-ch). However, MB90V485B uses the N-ch open drain pin (with P-ch).
P20 to P27, P30 to P37, P40 to P47 and P70 to P77 are also used as $3 \mathrm{~V} / 5 \mathrm{~V}$ I/F pin.
As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/ $\mathrm{PG} /{ }^{2} \mathrm{C}$ become CMOS input.
Note : In the above diagram, I/O ports share internal function blocks and pins. However, when a set of pins is used with an internal module, it cannot also be used as an I/O port.

MB90480B/485B Series

- MB90F489B

MB90480B/485B Series

I/O MAP

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
00H	Port 0 data register	PDR0	R/W	Port 0	ХХХХХХХХХв
01н	Port 1 data register	PDR1	R/W	Port 1	ХХХХХХХХХв
02H	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	ХХХХХХХХв
04	Port 4 data register	PDR4	R/W	Port 4	ХХХХХХХХв
05н	Port 5 data register	PDR5	R/W	Port 5	ХХХХХХХХв
06	Port 6 data register	PDR6	R/W	Port 6	ХХХХХХХХв
07\%	Port 7 data register	PDR7	R/W	Port 7	$\begin{gathered} \text { ХХХXXXXXв } \\ \text { (MB90480B series) } \end{gathered}$
					11 XXXXXX (MB90485B series)
08H	Port 8 data register	PDR8	R/W	Port 8	ХХХХХХХХХ
09н	Port 9 data register	PDR9	R/W	Port 9	ХХХХХХХХХв
OAн	Port A data register	PDRA	R/W	Port A	----XXXX
OBн	Up/down timer input enable register	UDRE	R/W	Up/down timer input control	XX000000в
0С	Interrupt/DTP enable register	ENIR	R/W	DTP/external interrupts	00000000в
ODH	Interrupt/DTP source register	EIRR	R/W		ХХХХХХХХХ
ОЕн	Request level setting register	ELVR	R/W		00000000в
OFH	Request level setting register		R/W		00000000в
10H	Port 0 direction register	DDR0	R/W	Port 0	00000000 в
11H	Port 1 direction register	DDR1	R/W	Port 1	00000000в
12H	Port 2 direction register	DDR2	R/W	Port 2	00000000 ${ }_{\text {B }}$
13н	Port 3 direction register	DDR3	R/W	Port 3	00000000в
14H	Port 4 direction register	DDR4	R/W	Port 4	00000000в
15	Port 5 direction register	DDR5	R/W	Port 5	00000000в
16н	Port 6 direction register	DDR6	R/W	Port 6	00000000 в
17H	Port 7 direction register	DDR7	R/W	Port 7	
					XX000000в (MB90485B series)
18H	Port 8 direction register	DDR8	R/W	Port 8	00000000в
19н	Port 9 direction register	DDR9	R/W	Port 9	00000000в
$1 \mathrm{~A}^{\prime}$	Port A direction register	DDRA	R/W	Port A	----0000в
1Вн	Port 4 output pin register	ODR4	R/W	Port 4 (Open-drain control)	00000000в
1 Cr	Port 0 input resistance register	RDR0	R/W	Port 0 (resistance control)	00000000в
1D ${ }_{\text {H }}$	Port 1 input resistance register	RDR1	R/W	Port 1 (resistance control)	00000000в
1Ен	Port 7 output pin register	ODR7	R/W	Port 7 (Open-drain control)	$\begin{gathered} 00000000 \text { в } \\ \text { (MB90480B series) } \end{gathered}$
					XX000000в (MB90485B series)
$1 \mathrm{~F}_{\mathrm{H}}$	Analog input enable register	ADER	R/W	Port 6, A/D	11111111B

(Continued)

MB90480B/485B Series

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
20 H	Serial mode register	SMR	R/W	UART	00000X00в
21н	Serial control register	SCR	W, R/W		00000100в
22н	Serial input/output register	SIDR/SODR	R/W		ХХХХХХХХв
23н	Serial status register	SSR	R, R/W		00001000в
24 H	(Reserved area)				
25	Communication prescaler control register	CDCR	R/W	Communication prescaler (UART)	00--0000в
26н	Serial mode control status register 0	SMCSO	R, R/W	SIO1 (ch.0)	----0000в
27					00000010в
28н	Serial data register 0	SDR0	R/W		ХХХХХХХХХ
29н	Communication prescaler control register 0	SDCR0	R/W	Communication prescaler SIO1 (ch.0)	0---0000в
$2 \mathrm{~A}_{\boldsymbol{H}}$	Serial mode control status register 1	SMCS1	R, R/W	SIO2 (ch.1)	----0000в
2Вн					00000010в
2 CH	Serial data register 1	SDR1	R/W		ХХХХХХХХв
2Dн	Communication prescaler control register 1	SDCR1	R/W	Communication prescaler SIO2 (ch.1)	0---0000в
2Ен	Reload register L (ch.0)	PRLLO	R/W	8/16-bit PPG (ch. 0 to ch.5)	ХХХХХХХХв
2 FH	Reload register H (ch.0)	PRLH0	R/W		ХХХХХХХХв
30н	Reload register L (ch.1)	PRLL1	R/W		ХХХХХХХХв
31н	Reload resister H (ch.1)	PRLH1	R/W		ХХХХХХХХХ
32н	Reload register L (ch.2)	PRLL2	R/W		ХХХХХХХХв
33н	Reload register H (ch.2)	PRLH2	R/W		ХХХХХХХХв
34	Reload register L (ch.3)	PRLL3	R/W		ХХХХХХХХв
35н	Reload register H (ch.3)	PRLH3	R/W		ХХХХХХХХв
36н	Reload register L (ch.4)	PRLL4	R/W		ХХХХХХХХв
37	Reload register H (ch.4)	PRLH4	R/W		ХХХХХХХХв
38H	Reload register L (ch.5)	PRLL5	R/W		ХХХХХХХХв
39н	Reload register H (ch.5)	PRLH5	R/W		ХХХХХХХХХв
ЗАн	PPG0 operating mode control register	PPGC0	R/W		0X000XX1в
ЗВн	PPG1 operating mode control register	PPGC1	R/W		0X000001в
$3 \mathrm{CH}_{\mathrm{H}}$	PPG2 operating mode control register	PPGC2	R/W		0X000XX1в
3D ${ }_{\text {H }}$	PPG3 operating mode control register	PPGC3	R/W		0X000001в
ЗЕн	PPG4 operating mode control register	PPGC4	R/W		0X000XX1в
$3 \mathrm{FH}^{\text {¢ }}$	PPG5 operating mode control register	PPGC5	R/W		0X000001в
40H	PPG0, PPG1 output control register	PPG01	R/W	8/16-bit PPG	00000000в
41н	(Reserved area)				
42н	PPG2, PPG3 output control register	PPG23	R/W	8/16-bit PPG	00000000в
43н	(Reserved area)				

(Continued)

MB90480B/485B Series

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
884*	Bus status register	IBSR	R		00000000в
89н*	Bus control register	IBCR	R/W		00000000в
8Ан*	Clock control register	ICCR	R/W	$1^{2} \mathrm{C}$	--0ХХХХХв
8В ${ }^{*}$	Address register	IADR	R/W		-ХХХХХХХв
$8 \mathrm{CH}^{*}$	Data register	IDAR	R/W		ХХХХХХХХв
8D	(Reserved area)				
8E ${ }^{*}$	PG control status register	PGCSR	R/W	PG	00000---в
8Fн to 9Bн	(Disabled)				
9С	DMAC status register lower digits	DSRL	R/W	DMAC	00000000в
9Dн	DMAC status register upper digits	DSRH	R/W	DMAC	00000000в
9Ен	Program address detection control status resister	PACSR	R/W	Address match detection function	00000000в
9F\%	Delayed interrupt source general/ cancel register	DIRR	R/W	Delayed interrupt generator module	-------0в
AOH	Low-power consumption mode control register	LPMCR	W, R/W	Low-power consumption	00011000в
A1н	Clock select register	CKSCR	R, R/W	Low-power consumption	11111100в
А2н, АЗн	(Reserved area)				
А4 ${ }_{\text {H }}$	DMAC stop status register	DSSR	R/W	DMAC	00000000в
A5	Automatic ready function select register	ARSR	W	External pins	0011--00в
A6н	External address output control register	HACR	W	External pins	********
A7\%	Bus control signal select register	EPCR	W	External pins	1000*10-в
A8H	Watchdog timer control register	WDTC	R, W	Watchdog timer	XXXXX111в
А9н	Timebase timer control register	TBTC	W, R/W	Timebase timer	1ХХ00100в
ААн	Watch timer control register	WTC	R, R/W	Watch timer	10001000в
$\mathrm{ABH}^{\text {¢ }}$	(Reserved area)				
$\mathrm{ACH}^{\text {H}}$	DMAC enable register lower digits	DERL	R/W	DMAC	00000000в
AD	DMAC enable register upper digits	DERH	R/W	DMAC	00000000в
АЕн	Flash memory control status register	FMCS	W, R/W	Flash memory interface	000Х0000в
AFH	(Disabled)				
BOH	Interrupt control register 00	ICR00	W, R/W	Interrupt controller	XXXX0111в
В1н	Interrupt control register 01	ICR01	W, R/W		XXXX0111в
В2н	Interrupt control register 02	ICR02	W, R/W		XXXX0111в
В3н	Interrupt control register 03	ICR03	W, R/W		XXXX0111в
В4н	Interrupt control register 04	ICR04	W, R/W		XXXX0111в
В5н	Interrupt control register 05	ICR05	W, R/W		XXXX0111в
B6н	Interrupt control register 06	ICR06	W, R/W		XXXX0111в
B7\%	Interrupt control register 07	ICR07	W, R/W		XXXX0111в
B8\%	Interrupt control register 08	ICR08	W, R/W		XXXX0111в

(Continued)

MB90480B/485B Series

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	Clear of El2OS	DMAC channel number	Interrupt vector		Interrupt control register	
			Number	Address	Number	Address
Reset			\#08	FFFFDCH		
INT9 instruction			\#09	FFFFD8н		
Exception			\#10	FFFFD4н		
INT0 (IRQ0)	\bigcirc	0	\#11	FFFFD0н	ICR00	0000В号
INT1 (IRQ1)	\bigcirc		\#12	FFFFCCH		
INT2 (IRQ2)	\bigcirc		\#13	FFFFC8н	ICR01	0000B1н
INT3 (IRQ3)	\bigcirc		\#14	FFFFC4H		
INT4 (IRQ4)	\bigcirc		\#15	FFFFC0н	ICR02	0000B2н
INT5 (IRQ5)	\bigcirc		\#16	FFFFBC ${ }_{\text {н }}$		
INT6 (IRQ6)	\bigcirc		\#17	FFFFB8	ICR03	0000В3н
INT7 (IRQ7)	\bigcirc		\#18	FFFFB4н		
PWC1 (MB90485B series only)	\bigcirc		\#19	FFFFB0н	ICR04	0000B4н
PWC2 (MB90485B series only)	\bigcirc		\#20	FFFFACH		
PWC0 (MB90485B series only)	\bigcirc	1	\#21	FFFFA8н	ICR05	0000B5 ${ }^{\text {H }}$
PPG0/PPG1 counter borrow			\#22	FFFFA4н		
PPG2/PPG3 counter borrow			\#23	FFFFA0н	ICR06	0000B6н
PPG4/PPG5 counter borrow			\#24	FFFF9C ${ }_{\text {н }}$		
8/16-bit up/down counter/ timer (ch.0, ch.1) compare/ underflow/overflow/up/down inversion	\bigcirc		\#25	FFFF98	ICR07	0000B7 ${ }^{\text {H }}$
Input capture (ch.0) load	\bigcirc	5	\#26	FFFF94 ${ }_{\text {н }}$		
Input capture (ch.1) load	\bigcirc	6	\#27	FFFF90 ${ }_{\text {н }}$	ICR08	0000B8н
Output compare (ch.0) match	\bigcirc	8	\#28	FFFF8C ${ }_{\text {H }}$		
Output compare (ch.1) match	\bigcirc	9	\#29	FFFF88	ICR09	0000B9н
Output compare (ch.2) match	\bigcirc	10	\#30	FFFF84 ${ }_{\text {¢ }}$		
Output compare (ch.3) match	\bigcirc		\#31	FFFF80 ${ }_{\text {н }}$	ICR10	0000ВАн
Output compare (ch.4) match	\bigcirc		\#32	FFFF7C ${ }_{\text {н }}$		
Output compare (ch.5) match	\bigcirc		\#33	FFFF78н	ICR11	0000ВВн
UART sending completed	\bigcirc	11	\#34	FFFF74н		
16-bit free-run timer overflow, 16-bit reload timer underflow*2	\bigcirc	12	\#35	FFFF70 ${ }_{\text {H }}$	ICR12	0000BCH
UART receiving completed	©	7	\#36	FFFF6CH		
SIO1 (ch.0)	\bigcirc	13	\#37	FFFF68	ICR13	0000BDн
SIO2 (ch.1)	\bigcirc	14	\#38	FFFF64 ${ }_{\text {н }}$		

(Continued)

MB90480B/485B Series

(2) Port Direction Registers

DDR0									Initial value 00000000в	Access R/W
Address : 000010 ${ }^{\text {H }}$										
DDR1	7	6	5	4	3	2	1	0		
Address: 000011н	D17	D16	D15	D14	D13	D12	D11	D10	00000000в	R/W
DDR2	7	6	5	4	3	2	1	0		
Address : 000012H	D27	D26	D25	D24	D23	D22	D21	D20	00000000в	R/W
DDR3	7	6	5	4	3	2	1	0		
Address : 000013H	D37	D36	D35	D34	D33	D32	D31	D30	00000000в	R/W
DDR4	7	6	5	4	3	2	1	0		
Address : 000014H	D47	D46	D45	D44	D43	D42	D41	D40	00000000в	R/W
DDR5	7	6	5	4	3	2	1	0		
Address : 000015H	D57	D56	D55	D54	D53	D52	D51	D50	00000000в	R/W
DDR6	7	6	5	4	3	2	1	0		
Address : 000016н	D67	D66	D65	D64	D63	D62	D61	D60	00000000в	R/W
DDR7	7	6	5	4	3	2	1	0		
Address : 000017H	D77*1	D76*1	D75	D74	D73	D72	D71	D70	$00000000 \mathrm{~B}^{* 2}$	R/W
DDR8	7	6	5	4	3	2	1	0		
Address: 000018H	D87	D86	D85	D84	D83	D82	D81	D80	00000000в	R/W
DDR9	7	6	5	4	3	2	1	0		
Address: 000019н	D97	D96	D95	D94	D93	D92	D91	D90	00000000в	R/W
DDRA	7	6	5	4	3	2	1	0		
Address: 00001Ан					DA3	DA2	DA1	DAO	----0000в	R/W

*1: The value is set to " " on MB90485B series only.
*2 : The initial value of this bit is "XX000000b" on MB90485B series only.
When a set of pins is functioning as a port, the corresponding signal pins are controlled as follows.
0 : Input mode.
1 : Output mode. Reset to "0".
Notes: When any of these registers are accessed using a read-modify-write type instruction (such as a bit set instruction), the bit specified in the instruction will be set to the indicated value. However, the contents of output registers corresponding to any other bits having input settings will be rewritten to the input values of those pins at that time.
For this reason, when changing any pin that has been used for input to output, first write the desired value to the PDR register before setting the DDR register for output.
P76, P77 (MB90485B series only)
This port has no DDR. To use P77 and P76 as $I^{2} \mathrm{C}$ pins, set the PDR value to " 1 " so that port data remains enabled (to use P77 and P76 for general purposes, disable $\mathrm{I}^{2} \mathrm{C}$). The port is an open drain output (with no P-ch).
To use it as an input port, therefore, set the PDR to "1" to turn off the output transistor and add a pull-up resistor to the external output.

MB90480B/485B Series

2. UART

The UART is a serial I/O port for asynchronous (start-stop synchronized) communication as well as CLK synchronized communication.

- Full duplex double buffer
- Transfer modes : asynchronous (start-stop synchronized) , or CLK synchronized (no start bit or stop bit) .
- Multi-processor mode supported.
- Embedded proprietary baud rate generator

Asynchronous : 76923/38461/19230/9615/500 k/250 kbps
CLK synchronized : 16 M/8 M/4 M/2 M/1 M/500 kbps

- External clock setting available, allows use of any desired baud rate.
- Can use internal clock feed from PPG1.
- Data length : 7-bit (asynchronous normal mode only) or 8-bit.
- Master/slave type communication functions (in multi-processor mode).
- Error detection functions (parity, framing, overrun)
- Transfer signals are NRZ encoded.
- DMAC supported (for receiving/sending)

MB90480B/485B Series

(1) Register List

15	8
CDCR	0
SCR	SMR
SSR	SIDR (R)/SODR (W)
-8 bits $\longrightarrow 8$ bits \longrightarrow	

Serial mode register (SMR)
000020 н

7	6	5	4	3	2	1	0	
MD1	MDO	CS2	CS1	CSO	Reserved	SCKE	SOE	
$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	Initial value

Serial control register (SCR)
$000021_{\text {H }}$

Initial value
Serial I/O register (SIDR/SODR)
000022н

Initial value
Serial status register (SSR)
000023н

Initial value
Communication prescaler control register (CDCR)
000025

Initial value

MB90480B/485B Series

3. Expanded I/O Serial Interface

The expanded I/O serial interface is an 8-bit 1-channel serial I/O interface for clock synchronized data transfer. A selection of LSB-first or MSB-first data transfer is provided.

There are two serial I/O operation modes.

- Internal shift clock mode : Data transfer is synchronized with the internal clock signal.
- External shift clock mode : Data transfer is synchronized with a clock signal input from the external clock signal pin (SCK). In this mode the general-purpose port that shares the external clock signal pin (SCK) can be used for transfer according to CPU instructions.
(1) Register List

Serial mode control status register 0/1 (SMCS0, SMCS1)
Address: 000027н

15	14	13	12	11	10	9	8	
SMD2	SMD1	SMDO	SIE	SIR	BUSY	STOP	STRT	00000010в
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	

Address : 000026 00002Ан

----0000 в

Serial data register 0/1 (SDR0, SDR1)

Communication prescaler control register 0/1 (SDCR0, SDCR1)

MB90480B/485B Series

(2) Block Diagram

MB90480B/485B Series

4. 8/10-bit A/D Converter

The A/D converter converts analog input voltage to digital values, and provides the following features.

- Conversion time : minimum 3.68 s per channel
(92 machine cycles at 25 MHz machine clock, including sampling time)
- Sampling time : minimum 1.92 s per channel
(48 machine cycles at 25 MHz machine clock)
- RC sequential comparison conversion method, with sample \& hold circuit.
- 8 -bit or 10-bit resolution
- Analog input selection of 8 channels

Single conversion mode : Conversion from one selected channel.
Scan conversion mode : Conversion from multiple consecutive channels, programmable selection of up to 8 channels.
Continuous conversion mode : Repeated conversion of specified channels.
Stop conversion mode : Conversion from one channel followed by a pause until the next activation allows to synchronize with conversion start.

- At the end of A / D conversion, an A/D conversion completed interrupt request can be generated to the CPU. The interrupt can be used activate the DMAC in order to transfer the results of A/D conversion to memory for efficient continuous processing.
- The starting factor conversion may be selected from software, external trigger (falling edge) , or timer (rising edge).

(1) Register List

ADCS2, ADCS1 (Control status register)

ADCS1	7	6	5	4	3	2	1	0	Initial value Bit attributes
Address : 000046н	MD1	MD0	ANS2	ANS1	ANSO	ANE2	ANE1	ANEO	
	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	
ADCS2	15	14	13	12	11	10	9	8	Initial value Bit attributes
Address : 000047H	BUSY	INT	INTE	PAUS	STS1	STSO	STRT	Reserved	
	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	
ADCR2, ADCR1 (Data register)									
ADCR1	7	6	5	4	3	2	1	0	Initial value Bit attributes
Address : 000048H	D7	D6	D5	D4	D3	D2	D1	D0	
	X R	X R	X R	X R	X R	X	X R	X R	

ADCR2

Address :000049н | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Initial value Bit attributes

MB90480B/485B Series

(2) Block Diagram

MB90480B/485B Series

5. 8/16-bit PPG

The $8 / 16$-bit PPG is an 8 -bit reload timer module that produces a PPG output using a pulse from the timer operation. Hardware resources include 6 -bit down counters, 128 -bit reload timers, 316 -bit control registers, 6 external pulse output pins, and 6 interrupt outputs. Note that MB90480B/485B series has six channels for 8-bit PPG use, which can also be combined as PPG0 PPG1, PPG2 PPG3, and PPG4 PPG5 to operate as a three-channel 16-bit PPG. The following is a summary of functions.

- 8-bit PPG output 6-channel independent mode : Provides PPG output operation on six independent channels.
- 16-bit PPG output operation mode : Provides 16-bit PPG output on three channels. The six original channels are used in combination as PPG0 PPG1, PPG2 PPG3, and PPG4 PPG5.
- 8 8-bit PPG output operation mode : Output from PPG0 (PPG2/PPG4) is used as clock input to PPG1 (PPG3/ PPG5) to provide to 8-bit PPG output at any desired period length.
- PPG output operation : Produces pulse waves at any desired period and duty ratio. The PPG module can also be used with external circuits as a D/A converter.
(1) Register List

PPGC0/PPGC2/PPGC4 (PPG0/PPG2/PPG4 operation mode control register)

PPGC1/PPGC3/PPGC5 (PPG1/PPG3/PPG5 operation mode control register)
00003Вн
00003Dн $00003 \mathrm{FH}_{\mathrm{H}}$

Read/write Initial value
PPG01/PPG23/PPG45 (PPG0 to PPG5 output control register)

| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000040 H | PCS2 | PCS1 | PCS0 | PCM2 | PCM1 | PCM0 | Reserved | Reserved |
| 000042 H | PCS/W | R/W |
| 000044 H | R/ | | | | | | | |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Read/write Initial value

PRLL0 to PRLL5 (Reload register L) 00002Ен 000030н
000032н
000034н
000036н

7	6	5	4	3	2	1	0
D07	D06	D05	D04	D03	D02	D01	D00
R/W							
X	X	X	X	X	X	X	

Read/write Initial value 000038н
PRLH0 to PRLH5 (Reload register H)
00002Fн 000031н 000033н 000035 000037н

15	14	13	12	11	10	9	8
D15	D14	D13	D12	D11	D10	D09	D08
R/W							
X	X	X	X	X	X	X	X

Read/write Initial value

MB90480B/485B Series

(2) Block Diagram

-8-bit PPG ch.0/2/4 block Diagram

MB90480B/485B Series

- 8-bit PPG ch. 1/3/5 Block Diagram

MB90480B/485B Series

6. 8/16-bit up/down Counter/Timer

8/16-bit up/down counter/timer consists of up/down counter/timer circuits including six event input pins, two 8 -bit up/down counters, two 8 -bit reload/compare registers, as well as the related control circuits.

(1) Principal Functions

- 8 -bit count register enables counting in the range 0 to 256 .
(In 16-bit 1 mode, counting is enabled in the range 0 to 65535)
- Count clock selection provides four count modes.

Count modes
 Timer mode Up/down count mode Phase differential down count mode (

- In timer mode, there is a choice of two internal count clock signals.
Count clock
(at 16 MHz operation)
 $125 \mathrm{~ns}(8 \mathrm{MHz}$:

2)
3)

- In up/down count mode, there is a choice of trigger edge detection for the input signal from external pins.

- In phase differential count mode, to handle encoder counting for motors, the encoder A-phase, B-phase, and Z-phase are each input, enabling easy and highly accurate counting of angle of rotation, speed of rotation, etc.
- The ZIN pin provides a selection of two functions.

ZIN pin
 Counter clear function Gate functions

- A compare function and reload function are provided, each for use separately or in combination. Both functions can be activated together for up/down counting in any desired bandwidth.
Compare/reload function
 Compare function (output interrupt at compare events) Compare function (output interrupt and clear counter at compare events)
Reload function (output interrupt and reload at underflow events)
Compare/reload function
(output interrupt and clear counter at compare events, output interrupt and reload at underflow events)
Compare/reload disabled
- Individual control over interrupts at compare, reload (underflow) and overflow events.
- Count direction flag enables identification of the last previous count direction.
- Interrupt generated when count direction changes.

MB90480B/485B Series

(2) Register List

15	87	
UDCR1	UDCR0	
RCR1	RCR0	
Reserved area	CSR0	
CCRH0	CCRL0	
Reserved area	CSR1	
CCRH1	CCRL1	
8-bit	8-bit \longrightarrow	

CCRHO (Counter Control Register High ch.0)

Address : 00006DH \begin{tabular}{c}
H

15 \& 14 \& 13 \& 12 \& 11 \& 10 \& 9 \& 8

\cline { 2 - 9 } \& M16E \& CDCF \& CFIE \& CLKS \& CMS1 \& CMS0 \& CES1

CES0

\hline
\end{tabular}

Initial value 00000000в

CCRH1 (Counter Control Register High ch.1)
Address : 000071H

CCRLO/1 (Counter Control Register Low ch.0/ch.1)

Address : 00006CH | 7 |
| :---: |

CSRO/1 (Counter Status Register ch.0/ch.1)

UDCR0/1 (Up Down Count Register ch.0/ch.1)

Address : 000069н	15	14	13	12	11	10	9	8
	D17	D16	D15	D14	D13	D12	D11	D10
					R	R	R	R

Address : 000068 ${ }^{\text {H }}$

RCR0/1 (Reload/Compare Register ch.0/ch.1)

Address : 00006Ан

Initial value 00000000в

Initial value 00000000в

MB90480B/485B Series

(3) Block Diagram

MB90480B/485B Series

7. DTP/External Interrupt

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F${ }^{2} \mathrm{MC}$-16LX CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU to activate the extended intelligent DMAC or interrupt processing.
(1) Detailed Register Descriptions

Interrupt/DTP Enable Register (ENIR : Enable Interrupt Request Register)									
ENIR	7	6	5	4	3	2	1	0	Initial value
Address : 00000С ${ }_{\text {H }}$	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO	00000000в
	R/W								
Interrupt/DTP Source Register (EIRR : External Interrupt Request Register)									
EIRR	15	14	13	12	11	10	9	8	Initial value
Address : 00000D ${ }^{\text {н }}$	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	XXXXXXXX ${ }_{\text {B }}$
	R/W								
Interrupt Level Setting Register (ELVR : External Level Register)									
	7	6	5	4	3	2	1	0	Initial value
Address : 00000Ен	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LAO	00000000в
	R/W								
	15	14	13	12	11	10	9	8	Initial value
Address : 00000Fh	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	00000000в
	R/W								

(2) Block Diagram

F^{2} MC-16 bus

Request input

MB90480B/485B Series

8. 16-bit Input/Output Timer

The 16-bit input/output timer module is composed of one 16-bit free-run timer, six output compare and two input capture modules. These functions can be used to output six independent wave form based on the 16-bit freerun timer, enabling input pulse width measurement and external clock frequency measurement.

- Register List
- 16-bit free-run timer

- 16-bit output compare

Output compare registers

Output compare control registers

- 16-bit input capture

Input capture data registers

Input capture control status register

MB90480B/485B Series

MB90480B/485B Series

(1) 16-bit Free Run Timer

The 16-bit free-run timer is composed of a 16-bit up-down counter and control status register.
The counter value of this timer is used as the base timer for the input capture and output compare.

- The counter operation provides a choice of eight clock types.
- A counter overflow interrupt can be produced.
- A mode setting is available to initialize the counter value whenever the output compare value matches the value in the compare clear register.
- Register List

Compare clear register (CPCLR)

Initial value ХХХХХХХХв 000066H

7	6	5	4	3	2	1	0
CL07	CL06	CL05	CL04	CL03	CL02	CL01	CL00
R/W							

Initial value
XXXXXXXXв

Timer counter data register (TCDT)

Initial value 00000000 в

000062н

Initial value 00000000в

Timer counter control status register (TCCS)
000065

Initial value 0--00000в

000064

7	6	5	4	3	2	1	0
IVF	IVFE	STOP	MODE	SCLR	CLK2	CLK1	CLK0
R/W							

Initial value
00000000в

MB90480B/485B Series

- Block Diagram

MB90480B/485B Series

(2) Output Compare

The output compare module is composed of a 16-bit compare register, compare output pin unit, and control register. When the value in the compare register in this module matches the 16 -bit free-run timer, the pin output levels can be inverted and an interrupt generated.

- There are six compare registers in all, each operating independently. A setting is available to allow two compare registers to be used to control output.
- Interrupts can be set in terms of compare match events.

- Register List

Output compare registers (OCCPO to OCCP5)

	15	14	13	12	11	10	9	8
00004Вн	C15	C14	C13	C12	C11	C10	C09	C08
00004Fн	R/W							

Initial value 00000000_{B} 0000 000053 000055

	7	6	5	4	3	2	1	0
00004Ан	C07	C06	C05	C04	C03	C02	C01	C00
00004Eн	R/W							
000050н								
000052н								
000054н								

Initial value 00000000_{B}

Output compare control registers (OCS1/OCS3/OCS5)
000057
000059
00005 B

15	14	13	12	11	10	9	8
			CMOD	OTE1	OTEO	OTD1	OTDO
R/W							R/W
R/W	R/W	R/W					

Initial value ---00000в

Output compare control registers (OCS0/OCS2/OCS4)
Initial values 0000--00в
000056н
\square 00005A

MB90480B/485B Series

MB90480B/485B Series

(3) Input Capture

The input capture module performs the functions of detecting the rising edge, falling edge, or both edges of signal input from external circuits, and saving the 16 -bit free-run timer value at that moment to a register. An interrupt can also be generated at the instant of edge detection.
The input capture module consists of input capture registers and a control register. Each input capture module has its own external input pin.

- Selection of three types of valid edge for external input signals.

Rising edge, falling edge, both edges.

- An interrupt can be generated when a valid edge is detected in the external input signal.
- Register List

Input capture data registers (IPCP0, IPCP1)

Initial value
XXXXXXXX

Initial value
XXXXXXXX

Input capture control status register (ICS01)
000060H

Initial value
00000000в

- Block Diagram

MB90480B/485B Series

9. $I^{2} C$ Interface (MB90485B series only)

The $I^{2} \mathrm{C}$ interface is a serial I/O port supporting the Inter IC BUS. Serves as a master/slave device on the $I^{2} \mathrm{C}$ bus.
The $I^{2} \mathrm{C}$ interface has the following functions.
Master/slave transmit/receive
Arbitration function
Clock synchronization
Slave address/general call address detection function
Forwarding direction detection function
Start condition repeated generation and detection
Bus error detection function

(1) Register List

Bus Status Register (IBSR)

Initial value 00000000 B

Bus control register (IBCR)
$000089^{\text {H }}$

Initial value

Clock control register (ICCR)
00008Ан

Initial value
--0XXXXX

Address register (IADR)
00008Вн

Initial value

- XXXXXXX

Data register (IDAR)
00008 CH $_{\text {н }}$

	7				6	5	4	
---	D7	D6	D5	D4	D	D2	D1	D0
-- R/W								

Initial value
XXXXXXXX

MB90480B/485B Series

(2) Block Diagram

MB90480B/485B Series

10. 16-bit Reload Timer

The 16-bit reload timer provides a choice of functions, including internal clock signals that count down in synchronization with three types of internal clock, as well as an event count mode that counts down at specified edge detection events in pulse signals input from external pins. This timer defines an underflow as a change in count value from 0000 н to FFFFн. Thus an underflow will occur when counting from the value "reload register setting value 1 ". The choice of counting operations includes reload mode, in which the count setting values is reloaded and counting continues following an underflow event, and one-shot mode, in which an underflow event causes counting to stop. An interrupt can be generated at counter underflow, and the timer is DTC compatible.

(1) Register List

- TMCSR (Timer control status register)

Timer control status register (high) (TMCSR)
0000 CB н

Read/Write Initial value

Timer control status register (low) (TMCSR)

Read/Write Initial value

- 16-bit timer register/16-bit reload register TMR/TMRLR (high)

0000СDн	15	14	13	12	11	10	9	8
	D15	D14	D13	D12	D11	D10	D09	D08
	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$	R/W X	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$

Read/Write Initial value

TMR/TMRLR (low)
0000CCH

7	6	5	4	3	2	1	0
D07	D06	D05	D04	D03	D02	D01	D00
R/W							
X	X	X	X	X	X	X	X

Read/Write Initial value

MB90480B/485B Series

(2) Block Diagram

MB90480B/485B Series

11. PG Timer (MB90485B series only)

The PG timer performs pulse output in response to the external input.
(1) Register List

PG control status register (PGCSR)
00008Ен

Initial value
00000---в
(2) Block Diagram

MB90480B/485B Series

12. PWC Timer (MB90485B series only)

The PWC timer is a 16 -bit multifunction up-count timer capable of measuring the pulse width of the input signal. A total of three channels are provided, each consisting of a 16-bit up-count timer, an input pulse divider \& divide ratio control register, a measurement input pin, and a 16-bit control register. These components provide the following functions.
Timer function: Capable of generating an interrupt request at fixed intervals specified.
The internal clock used as the reference clock can be selected from among three types.

Pulse width measurement function: Measures the time between arbitrary events based on external pulse inputs.
The internal clock used as the reference clock can be selected from among three types.
Measurement modes

- " H " pulse width (to)/"L" pulse width (to)
- Rising cycle (to)/Falling cycle (to)
- Measurement between edges (or to or)

The 8 -bit input divider can be used for division measurement by dividing the input pulse by $22 n(n \quad 1,2,3,4)$.
An interrupt can be generated upon completion of measurement.
One-time measurement or fast measurement can be selected.

MB90480B/485B Series

(1) Register list

PWC control/status registers (PWCSR0 to PWCSR2)
000077H 00007Вн 00007 FH

15	14	1	12	11	10	9	
TRT	TOP	EDIR	EDIE	OVIR	OVIE	ERR	Re erved
R/W	R/W	R	R/W	R/W	R/W	R	-

PWC control/status registers (PWCSR0 to PWCSR2)
000076н 00007 Ан 00007Ен

7	6	5	4			c	2	1	0
CK 1	CK	0	PI 1	PI 0	/C	MOD2	MOD1	MOD0	
R/W									

Initial value 0000000 Х $_{\text {в }}$

PWC data buffer registers (PWCR0 to PWCR2)

> 000079н 00007Dн 000081 н

15	14	1	12	11	10	9	
D15	D14	D1	D12	D11	D10	D9	D
R/W							

PWC data buffer registers (PWCR0 to PWCR2)

000078	7	6	5	4	2		1	0
00007Сн	D7	D6	D5	D4	D	D2	D1	D0
000080н	R/W							

Initial value 00000000в

Dividing ratio control registers (DIVR0 to DIVR2)
000082н 000084н 000086н

Initial value 00000000 в

MB90480B/485B Series

(2) Block Diagram

MB90480B/485B Series

13. Watch Timer

The watch timer is a 15 -bit timer using the sub clock. This circuit can generate interrupts at predetermined intervals. Also a setting is available to enable it to be used as the clock source for the watchdog timer.
(1) Register List

Watch timer control register (WTC)
0000ААн

7	6	5	4	3	2	1	0
WDCS	SCE	WTIE	WTOF	WTR	WTC2	WTC1	WTC0
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
1	0	0	0	1	0	0	0

Read/write
Initial value
(2) Block Diagram

To watchdog timer

MB90480B/485B Series

14. Watchdog timer

The watchdog timer is a 2-bit counter that uses the output from the timebase timer or watch timer as a count clock signal, and will reset the CPU if not cleared within a predetermined time interval after it is activated.
(1) Register List

Watchdog timer control register (WDTC)
0000А8

7	6	5	4	3	2	1	0
PONR	Reserved	WRST	ERST	SRST	WTE	WT1	WT0
R		R	R	R	W	W	W
X	X	X	X	X	1	1	1

Read/write
Initial value
(2) Block Diagram

MB90480B/485B Series

15. Timebase Timer

The timebase timer is an 18-bit free run counter (timebase counter) that counts up in synchronization with the internal count clock signal (base oscillator 2), and functions as an interval timer with a choice of four types of time intervals. Other functions provided by this module include timer output for the oscillator stabilization wait period, and operating clock signal feed for other timer circuits such as the watchdog timer.

(1) Register List

Timebase timer control register (TBTC)
0000A9н

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RESV | | | TBIE | TBOF | TBR | TBC1 | TBC0 |
| R/W | | | R/W | R/W | W | R/W | R/W |
| 1 | X | X | 0 | 0 | 1 | 0 | 0 |

Read/write
Initial value
(2) Block Diagram

MB90480B/485B Series

16. Clock

The clock generator module controls the operation of the internal clock circuits that serve as the operating clock for the CPU and peripheral devices. This internal clock is referred to as the machine clock, and one cycle is referred to as a machine cycle. Also, the clock signals from the base oscillator are called the oscillator clock, and those from the PLL oscillator are called the PLL clock.
(1) Register List

Clock select register (CKSCR)

0000A1н

15	14	13	12	11	10	9	8
SCM	MCM	WS1	WS0	SCS	MCS	CS1	CS0
R	R	R/W	R/W	R/W	R/W	R/W	R/W
1	1	1	1	1	1	0	0

Read/write

PLL output select register (PLLOS)

Read/write
Initial value

MB90480B/485B Series

(2) Block Diagram

HCLK : Oscillator clock
MCLK : Main clock
SCLK : Sub clock

MB90480B/485B Series

(3) Clock Feed Map

MB90480B/485B Series

17. Low-power Consumption Mode

The MB90480B/485B series uses operating clock selection and clock operation controls to provide the following CPU operating modes :

- Clock modes
(PLL clock mode, main clock mode, sub clock mode)
- CPU intermittent operating modes (PLL clock intermittent mode, main clock intermittent mode, sub clock intermittent mode)
- Standby modes
(Sleep mode, timebase timer mode, stop mode, watch mode)
(1) Register List

Low-power consumption mode control register (LPMCR)

Read/write Initial value

MB90480B/485B Series

(2) Block Diagram

MB90480B/485B Series

(3) Status Transition Chart

MB90480B/485B Series

18. External Bus Pin Control Circuit

The external bus pin control circuit controls the external bus pins used to expand the CPU address/data bus connections to external circuits.
(1) Register List

- Auto ready function select register (ARSR)

- External address output control register (HACR)

Address : 0000А6 ${ }^{\text {н }}$

Initial value
********B

- Bus control signal select register (EPCR)

W : Write only
: Not used

* : May be either "1" or " 0 "
(2) Block Diagram

MB90480B/485B Series

19. Chip Select Function Description

The chip select module generates a chip select signals, which are used to facilitate connections to external memory devices. The MB90480B/485B series has four chip select output pins, each having a chip select area register setting that specifies the corresponding hardware area and select signal that is output when access to the corresponding external address is detected.

- Chip select function features

The chip select function uses two 8 -bit registers for each output pin. One of these registers (CARx) is able to detect memory areas in 64 Kbytes units by specifying the upper 8 -bit of the address for match detection. The other register (CMRx) can be used to expand the detection area beyond 64 Kbytes by masking bits for match detection.
Note that during external bus holds, the CS output is set to high impedance.

(1) Register List

Chip select area mask registers (CMRx)

0000СОн	7	6	5	4	3	2	1	0
0000С2н	M7	M6	M5	M4	M3	M2	M1	M0
0000С4н	R/W							
0000С6н	0	0	0	0	1	1	1	I

Read/write Initial value

Chip select area registers (CARx)
0000 C 1 н
0000 C 3 н
0000 C 5 н
0000 C 7 н

15	14	13	12	11	10	9	8
A7	A6	A5	A4	A3	A2	A1	A0
R/W							
1	1	1	1	1	1	1	1

Read/write Initial value

Chip select control register (CSCR)

Read/write Initial value

Chip select active level register (CALR)

Read/write Initial value
*: The initial value of this bit is " 1 " or " 0 ".
The value depends on the mode pin (MD2, MD1 and MDO) .

MB90480B/485B Series

(2) Block Diagram

MB90480B/485B Series

20. ROM Mirror Function Select Module

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.
(1) Register List

ROM mirror function select register (ROMM)
Initial value
Address : 00006FH

------+1в
() : MB90F489B: Read only, fixed at "1"
()

Other: Selectable, Initial value 0

- : Not used
(2) Block Diagram

Note : Do not access ROM mirror function selection register (ROMM) on using the area of address 004000H to 00FFFFH (008000 н to 00FFFFH) .

MB90480B/485B Series

21. Interrupt Controller

The interrupt control register is built in interrupt controller, and is supported for all I/O of interrupt function. This register sets corresponding peripheral interrupt level.
(1) Register List

Interrupt control registers

Read/write Initial value

W	W	W	W	R / W	R / W	R / W	R / W
X	X	X	X	0	1	1	1

Interrupt control registers
Address: ICROO 0000ВОн
ICR02 0000В2н
ICR04 0000B4н
ICR06 0000B6н
ICR08 0000B8н
ICR10 0000ВАн

ICR12 0000BC
ICR14 0000BEн
Read/write Initial value

Note : The use of access involving read-modify-write instructions may lead to abnormal operation, and should be avoided.

MB90480B/485B Series

(2) Block Diagram

MB90480B/485B Series

22. DMAC

The DMAC is a simplified DMA module with functions equivalent to $\mathrm{EI}^{2} \mathrm{OS}$. The DMAC has 16 DMA data transfer channels, and provides the following functions.

- Automatic data transfer between peripheral resources (I/O) and memory.
- CPU program execution stops during DMA operation.
- Incremental addressing for transfer source and destination can be turned on/off.
- DMA transfer control from the DMAC enable register, DMAC stop status register, DMAC status register, and descriptor.
- Stop requests from resources can stop DMA transfer.
- When DMA transfer is completed, the DMAC status register sets a flag in the bit for the corresponding channel on which transfer was completed, and outputs a completion interrupt to the interrupt controller.

(1) Register List

DMAC enable register

Initial value
00000000в

DMAC enable register

DMAC stop status register

DSSR : 0000A4н	7	6	5	4	3	2	1	0
	STP7	STP6	STP5	STP4	STP3	STP2	STP1	STPO
	R/W							

DMAC status register
DSRH : 00009D

15	14	13	12	11	10	9	8
DE15	DE14	DE13	DE12	DE11	DE10	DE9	DE8
R/W							

DMAC status register
DSRL: 00009CH

MB90480B/485B Series

(2) Block Diagram

MB90480B/485B Series

23. Address Match Detection Function

When the address is equal to a value set in the address detection register, the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code (01H). As a result, when the CPU executes a set instruction, the INT9 instruction is executed. Processing by the INT\#9 interrupt routine allows the program patching function to be implemented.
Two address detection registers are supported. An interrupt enable bit is prepared for each register. If the value set in the address detection register matches an address and if the interrupt enable bit is set at " 1 ", the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code.

(1) Register List

- Program address detection register 0 (PADRO)

Initial value XXXXXXXXB

- Program address detection register 1 (PADR1)

- Program address detection control status register (PACSR)

Address
00009Ен

7	6	5	4	3	2	1	0
RESV	RESV	RESV	RESV	AD1E	RESV	AD0E	RESV
R/W							

Initial value 00000000 в

R/W : Readable and writable
X : Undefined
RESV : Reserved bit

MB90480B/485B Series

(2) Block Diagram

MB90480B/485B Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc3	Vss 0.3	Vss 4.0	V	
	Vcc5	Vss 0.3	Vss 7.0	V	
	AVcc	Vss 0.3	Vss 4.0	V	*2
	AVRH	Vss 0.3	Vss 4.0	V	*2
Input voltage*1	V	Vss 0.3	Vss 4.0	V	*3
		Vss 0.3	Vss 7.0	V	*3, *8, *9
Output voltage*1	Vo	Vss 0.3	Vss 4.0	V	*3
		Vss 0.3	Vss 7.0	V	*3, *8, *9
Maximum clamp current	Iclamp	2.0	2.0	mA	*7
Total maximum clamp current	Iclamp		20	mA	*7
"L" level maximum output current	loL		10	mA	*4
"L" level average output current	lolav		3	mA	*5
"L" level maximum total output current	lol		60	mA	
"L" level total average output current	lolav		30	mA	*6
"H" level maximum output current	Іон		10	mA	*4
"H" level average output current	Іоhav		3	mA	*5
"H" level maximum total output current	Іон		60	mA	
"H" level total average output current	lohav		30	mA	*6
Power consumption	Pd		320	mW	
Operating temperature	TA	40	85	C	
Storage temperature	Tstg	55	150	C	

*1 : This parameter is based on $\mathrm{V}_{\text {ss }} \mathrm{AV}$ ss 0.0 V .
*2 : AVcc and AVRH must not exceed Vcc. Also, AVRH must not exceed AVcc.
*3: V_{1} and V_{0} must not exceed $\mathrm{V}_{\mathrm{cc}} \quad 0.3 \mathrm{~V}$. However, if the maximum current to/from and input is limited by some means with external components, the lclamp rating supersedes the V_{1} rating.
*4 : Maximum output current is defined as the peak value for one of the corresponding pins.
*5 : Average output current is defined as the average current flow in a 100 ms interval at one of the corresponding pins.
*6 : Average total output current is defined as the average current flow in a 100 ms interval at all corresponding pins.
*7 : Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA3
Use within recommended operating conditions.
Use at DC voltage (current).
The $\quad B$ signal should always be applied with a limiting resistance placed between the B signal and the microcontroller.
The value of the limiting resistance should be set so that when the B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
(Continued)

MB90480B/485B Series

(Continued)

Note that when the microcontroller drive current is low, such as in the power saving modes, the B input potential may pass through the protective diode and increase the potential at the V_{cc} pin, and this may affect other devices.
Note that if a B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
Note that if the B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
Care must be taken not to leave the B input pin open.
Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept B signal input.
Sample recommended circuits:

- Input/Output Equivalent circuits

*8: MB90485B series only
P20 to P27, P30 to P37, P40 to P47, P70 to P77 pins can be used as 5 V I/F pin on applied 5 V to Vcc 5 pin. P 76 and P 77 is N -ch open drain pin.
*9: As for P76 and P77 (N -ch open drain pin), even if using at 3 V simplicity ($\mathrm{V} c \mathrm{c} 3 \mathrm{Vcc5}$), the ratings are applied.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90480B/485B Series

2. Recommended Operating Conditions
(Vss AVss 0.0 V)

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc3	2.7	3.6	V	During normal operation
		1.8	3.6	V	To maintain RAM state in stop mode
	Vcc5	2.7	5.5	V	During normal operation*
		1.8	5.5	V	To maintain RAM state in stop mode*
" H " level input voltage	V ${ }_{\text {H }}$	0.7 Vcc	Vcc 0.3	V	All pins other than $\mathrm{V}_{\mathbf{I н}}$, $\mathrm{V}_{\text {неs }}$, $\mathrm{V}_{\text {ннм }}$ and VHX $^{\prime}$
	$\mathrm{V}_{\mathbf{H} 2}$	0.7 Vcc	Vss 5.8	V	MB90485B series only P76, P77 pins (N-ch open drain pins)
	V ${ }_{\text {HS }}$	0.8 Vcc	$\begin{array}{ll}\text { Vcc } & 0.3\end{array}$	V	Hysteresis input pins
	Vimm	V cc 0.3	$\begin{array}{lll}\text { Vcc } & 0.3\end{array}$	V	MD pin input
	VIHx	0.8 Vcc	Vcc 0.3	V	X0A pin, X1A pin
"L" level input voltage	VIL	Vss 0.3	0.3 Vcc	V	All pins other than VILs, VıLм and VILx
	VILs	$\begin{array}{ll}\text { Vss } & 0.3\end{array}$	0.2 Vcc	V	Hysteresis input pins
	VILm	$\begin{array}{ll}\text { Vss } & 0.3\end{array}$	Vss 0.3	V	MD pin input
	VILx	Vss 0.3	0.1	V	X0A pin, X1A pin
Operating temperature	TA	0	70	C	At external bus operation

*: MB90485B series only
P20 to P27, P30 to P37, P40 to P47, P70 to P77 pins can be used as $5 \mathrm{~V} / / \mathrm{F}$ pin on applied 5 V to V Cc 5 pin.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

MB90480B/485B Series

3. DC Characteristics

Notes: MB90485B series only

P40 to P47 and P70 to P77 are N-ch open drain pins with control, which are usually used as CMOS.
P76 and P77 are open drain pins without P-ch.
For use as a single 3 V power supply products, set $\mathrm{V}_{c c}$ Vcc3 $\mathrm{V}_{\mathrm{cc}} 5$.
When the device is used with dual power supplies, P20 to P27, P30 to P37, P40 to P47 and
P 70 to P 77 serve as 5 V pins while the other pins serve as $3 \mathrm{~V} / \mathrm{O}$ pins.

MB90480B/485B Series

(2) Clock Output Timing

Parameter		Symbol	Pin name	Conditions		Value						Unit	Remarks		
		Min				Max									
Cycle			torc	CLK			tcp*						ns		
	CLK	tchcı	CLK	Vcc	3.0 V to 3.6 V	tcp*	2	15	tcp*	2	15	ns	at fcp	25 MHz	
					2.7 V to 3.3 V	tcp*	2	20		2	20	ns	at fcp	16 MHz	
					2.7 V to 3.3 V	tcp*	2	64	tcp*	2	64	ns	at fcp	5 MHz	

* : tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

MB90480B/485B Series

(3) Reset Input Standards

				(Vcc 2.7 V to 3.6 V, Vss	$0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}$		40 C to 85 C
Parameter	Symbol	$\underset{\text { Pin }}{\text { name }}$	Conditions	Value		Unit	Remarks
				Min	Max		
Reset input time	$\mathrm{t}_{\text {fsti }}$	$\overline{\text { RST }}$		16 tcp*1		ns	Normal operation
				Oscillator oscillation time ${ }^{\star 2}$ 4 tcp $^{* 1}$		ms	Stop mode

*1: tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".
*2 : Oscillator oscillation time is the time to 90 of amplitude. For a crystal oscillator this is on the order of several milliseconds to tens of milliseconds. For a ceramic oscillator, this is several hundred microseconds to several milliseconds. For an external clock signal the value is 0 ms .

- In stop mode

- Condition for measurement of AC standards

$C_{\llcorner }$: Load capacitance applied to pins during testing
CLK, ALE : Cl 30 pF
AD15 to AD00 (address data bus) , $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$,
A23 to A00/D15 to D00: CL 30 pF

MB90480B/485B Series

(5) Bus Read Timing
(Vcc 2.7 V to 3.6 V , $\mathrm{V}_{\mathrm{ss}} \quad 0.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}} 0 \mathrm{C}$ to 70 C)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
ALE pulse width	tLHLL	ALE		tcp* 215		ns	$\begin{aligned} & 16 \mathrm{MHz}<\mathrm{fcp} \\ & 25 \mathrm{MHz} \end{aligned}$
				tcp* 220		ns	$\begin{aligned} & 8 \mathrm{MHz}<\mathrm{fcp} \\ & 16 \mathrm{MHz} \end{aligned}$
				tcp* 235		ns	fcp 8 MHz
Valid address ALE time	tavll	Address, ALE		$\begin{array}{lcl}\text { tcp* } & 2 & 17\end{array}$		ns	
				tcp* 240		ns	fcp 8 MHz
ALE address valid time	tlıax	ALE, Address		tcp* 215		ns	
Valid address RD time	tavgl	$\overline{\mathrm{RD}}$, Address		tcp* 25		ns	
Valid address valid data input	tavov	Address, Data			5 tcp* 255	ns	
					5 top* $^{*} 280$	ns	fop 8 MHz
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$		3 tcp* 225		ns	$\begin{aligned} & 16 \mathrm{MHz}<\mathrm{fcp} \\ & 25 \mathrm{MHz} \end{aligned}$
				3 tcp* 220		ns	8 MHz < fcp 16 MHz
$\overline{R D}$ valid data input	trLDv	$\overline{\mathrm{RD}}$, Data			3 tcp* 255	ns	
					3 tcp* $^{*} 280$	ns	fcp 8 MHz
$\overline{\mathrm{RD}}$ data hold time	trhdx	$\overline{\mathrm{RD}}$, Data		0		ns	
$\overline{\mathrm{RD}}$ ALE time	trнцн	RD, ALE		tcp* 215		ns	
$\begin{aligned} & \overline{\overline{R D}} \\ & \text { address valid time } \end{aligned}$	trhax	Address, $\overline{\mathrm{RD}}$		tcp* 210		ns	
Valid address CLK time	tavch	Address, CLK		tcp* 217		ns	
$\overline{\mathrm{RD}}$ CLK time	trLCH	$\overline{\mathrm{RD}}, \mathrm{CLK}$		tcp* 217		ns	
ALE $\overline{\mathrm{RD}}$ time	tLlRL	$\overline{\mathrm{RD}}, \mathrm{ALE}$		tcp* 215		ns	

* : tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

MB90480B/485B Series

MB90480B/485B Series

(6) Bus Write Timing

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Valid address $\overline{\mathrm{WR}}$ time	tavwL	Address, $\overline{\mathrm{WR}}$		tcp* 15		ns	
$\overline{\text { WR }}$ pulse width	twLwh	$\overline{\text { WRL, }} \overline{\text { WRH }}$		3 tcp* 225		ns	$\begin{aligned} & 16 \mathrm{MHz}<\mathrm{fcp} \\ & 25 \mathrm{MHz} \end{aligned}$
				3 tcp* 220		ns	$\begin{aligned} & 8 \mathrm{MHz}<\mathrm{fcp} \\ & 16 \mathrm{MHz} \end{aligned}$
Valid data output $\overline{\mathrm{WR}}$ time	tovw	Data, $\overline{\mathrm{WR}}$		3 tcp** 215		ns	
$\overline{W R}$ data hold time	twhox	$\overline{\mathrm{WR}}$, Data		10		ns	$\begin{array}{\|l\|l\|} \hline 16 \mathrm{MHz}<\mathrm{fcp} \\ 25 \mathrm{MHz} \\ \hline \end{array}$
				20		ns	$\begin{aligned} & 8 \mathrm{MHz}<\mathrm{fcp} \\ & 16 \mathrm{MHz} \end{aligned}$
				30		ns	fcp 8 MHz
WR \quad address valid time	twhax	$\overline{\text { WR, Address }}$		tcp* 210		ns	
$\overline{\overline{W R}}$ ALE time	twHLL	$\overline{\text { WR, ALE }}$		tcp* 215		ns	
$\overline{\overline{W R}}$ CLK time	twLCH	$\overline{\text { WR, CLK }}$		tcp* 217		ns	

*: tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

MB90480B/485B Series

(7) Ready Input Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
RDY setup time	tryHs	RDY		35		ns	
				70		ns	at fcp 8 MHz
RDY hold time	trYнн			0		ns	

MB90480B/485B Series

- Internal shift clock mode

- External shift clock mode

MB90480B/485B Series

- Internal shift clock mode

- External shift clock mode

MB90480B/485B Series

(14) Trigger Input Timing
(Vcc 2.7 V to 3.6 V , $\mathrm{V}_{\mathrm{ss}} \quad 0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \quad 40 \mathrm{C}$ to 85 C)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Max			
Input pulse width	tTRGH tTRGL	ADTG, IRQ0 to IRQ7		5 ttp** *		ns	Normal operation
		1		s	Stop mode		

* : tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

(15) Up-down Counter Timing

(Vcc			2.7V to 3.6 V, Vss	$0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}$	40 C to	$85 \mathrm{C})$
Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
AIN input "H" pulse width	tahl	AINO, AIN1, BINO, BIN1	Load conditions 80 pF	8 tcp*		ns
AIN input "L" pulse width	tall			8 tcp*		ns
BIN input "H" pulse width	tвнL			8 tcp*		ns
BIN input "L" pulse width	tвLL			8 tcp*		ns
AIN BIN time	taubu			4 tcp*		ns
BIN AIN time	teuad			4 tcp*		ns
AIN BIN time	tabbi			4 tcp*		ns
BIN AIN time	tbdau			4 tcp*		ns
BIN AIN time	teuau			4 tcp*		ns
AIN BIN time	taubd			4 tcp*		ns
BIN AIN time	tbdad			4 tcp*		ns
AIN BIN time	tadbu			4 tcp*		ns
ZIN input "H" pulse width	tzHL	ZINO, ZIN1		4 tcp*		ns
ZIN input "L" pulse width	tzuL			4 tcp*		ns

* : tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

MB90480B/485B Series

(16) Chip Select Output Timing

		(Vcc 2.7 V to 3.6 V, V		ss $0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}$	40 C to	$85 \mathrm{C})$
Parameter	Symbol	Pin name	Conditions	Val		
Parameter	Symbol	Pin name	Conditions	Min	Max	
Chip select output valid time RD	tsvaL	$\mathrm{CSO} \frac{\text { to }}{\frac{\mathrm{RD}}{}}$		tcp* 27		ns
Chip select output valid time WR	tsvwL	$\begin{aligned} & \text { CSO to CS3, } \\ & \hline \text { WRH, WRL } \end{aligned}$		tcp* 27		ns
$\overline{\mathrm{RD}} \quad$ chip select output valid time	trhsv	$\begin{gathered} \overline{\mathrm{RD}}, \\ \text { CSO to } \mathrm{CS} 3 \end{gathered}$		tcp* 217		ns
WR chip select output valid time	twhsv	$\overline{\mathrm{WRH}}, \overline{\mathrm{WRL}}$, CSO to CS3		tcp* 217		ns

* : tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".

Note : Due to the configuration of the internal bus, the chip select output signals are changed simultaneously and therefore may cause the bus conflict conditions. AC cannot be warranted between the ALE output signal and the chip select output signal.

			$+$			
\square		\square				

MB90480B/485B Series

About the external impedance of the analog input and its sampling time

- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.
- Analog input equivalent circuit

Analog input

MB90487B
R

MB90F481B/F482B 1.9 k
MB90F488B/F489B 1.9 k
(N
C

Note: The values are reference values.

- To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
The relationship between external impedance and minimum sampling time

- If the sampling time cannot be sufficient, connect a capacitor of about 0.1 F to the analog input pin.

About errors

As |AVRH AVss| becomes smaller, values of relative errors grow larger.
Note : Concerning sampling time, and compare time when $3.6 \mathrm{~V} \quad \mathrm{AV}$ cc 2.7 V , then
Sampling time : 1.92 s , compare time: 1.1 s
Settings should ensure that actual values do not go below these values due to operating frequency changes.
\square

MB90480B/485B Series

(Continued)

MB90480B/485B Series

MB90480B/485B Series

(Continued)

MB90480B/485B Series

■ ORDERING INFORMATION

Part number	Package
MB90F481BPF	
MB90F482BPF	
MB90487BPF	100-pin plastic QFP
MB90488BPF	(FPT-100P-M06)
MB90F488BPF	
MB90483CPF	
MB90F489BPF	
MB90483CPMC	100-pin plastic LQFP
MB904878PMC	(FPT-100P-M20)
MB90488BPMC	
MB90F481BPMC	
MB90F482BPMC	
MB90F488BPMC	
MB90F489BPMC	

MB90480B/485B Series

PACKAGE DIMENSIONS

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

MB90480B/485B Series

(Continued)

(100-pin plastic QFP	Lead pitch	0.65 mm
	Package width \times package length	$14.00 \times 20.00 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	3.35 mm MAX
	Code (Reference)	P-QFP100-14×20-0.65
100P-M06)		

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/

MB90480B/485B Series

MEMO

