

LM79M05AHX LM79M05AJX

MECHANICAL DATA

H Package - TO-39 Metal

Pin 1 = Ground Pin 2 = Vout Pin 3 = Vin

J Package = 8 Pin Ceramic DIP

_	
Pin 1 = Ground	Pin $5 = N/C$
Pin $2 = N/C$	Pin 6 = Vin
Pin $3 = N/C$	Pin $7 = N/C$
Pin 4 = Vout	Pin $8 = N/C$

5 VOLT NEGATIVE VOLTAGE REGULATOR

FEATURES

- 0.01%/V LINE REGULATION
- 0.3%/A LOAD REGULATION
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- SAFE OPERATING AREA PROTECTION
- 2% OUTPUT VOLTAGE TOLERANCE

DESCRIPTION

The LM79M05AH and LM79M05AJ are 5V negative 0.5A Voltage Regulators providing 0.01% per Volt Line Regulation and 0.3% per amp load regulation.

Protection includes safe operating Area current limiting and thermal.

ABSOLUTE MAXIMUM RATINGS ($T_{case} = 25$ °C unless otherwise stated)

V_{I}	DC Input Voltage $V_O = -5V$	35V
P_{D}	Power Dissipation	Internally limited
T _i	Operating Junction Temperature Range	–55°C to +125°C
•	Maximum Junction Temperature	125°C
T_{stg}	Storage Temperature Range	–65°C to +150°C
T_L	Lead Temperature (Soldering, 10 sec)	300°C

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

LM79M05AHX LM79M05AJX

ELECTRICAL CHARACTERISTICS ($T_j = 25$ °C unless stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
		I _O = 100mA	V _{IN} = -10V	- 4.9	- 5	- 5.1		
Vo	Output Voltage*	$I_O = 5$ mA to 350 mA	$P_D \le P_{MAX}$	- 4.8		- 5.2	V	
		$T_j = -55 \text{ to } +125^{\circ}\text{C}$		$(V_{IN} = -8 \text{ to } -20V)$				
ΔV _O	Line Regulation*	I _O = 500mA				100		
				$(V_{IN} = -7 \text{ to } -25V)$			m\/	
		I _O = 500mA				50	_ mV	
				$(V_{IN} = -8 \text{ to } -12V)$				
ΔVO	Load Regulation*	$I_O = 5$ mA to 500mA	V _{IN} = -10V			100	mV	
I _d	Quiescent Current*	I _O = 350mA	V _{IN} = -10V			3	mA	
$\Delta I_{\mathbf{Q}}$	Quiescent Current Change*	I _O = 5 to 500 mA	V _{IN} = -10V			0.5		
		$T_j = -55 \text{ to } +125^{\circ}\text{C}$				0.5	mA	
		I _O = 500mA				1.3	mA	
		$T_j = -55 \text{ to } +125^{\circ}\text{C}$		(V _I	$_{N} = -8 \text{ to } -1$	2V)		
V _N	Output Noise Voltage	f = 10Hz to 100kHz			100		μV	
ΔV_{IN}	Dinnle Dejection	f = 120Hz	I _O = 500mA	54	60		40	
$\overline{\Delta V_{O}}$	Ripple Rejection	$T_j = -55 \text{ to } +125^{\circ}\text{C}$			$(V_{IN} = -10)$)	dB	
	Dropout Voltage*	I _O = 500mA			1.4		V	
I _{SC}	Short Circuit Current*	V _{IN} = -10V			2.1		А	
I _{PK}	Peak Output Current*	V _{IN} = -10V			2.5		А	
	Average Temperature $I_O = 5$ mA			-0.4			mV	
	Coefficient of Output Voltage*	T _j = -55 to +125°C				/°C		

^{*} Pulse Test: $t_{_{D}} \leq 10 ms$, $\delta \leq 5\%.$

All characteristics are measured with a capacitor across the input of $0.22\mu F$ and a capacitor across the output of $0.1\mu F$. Output Voltage changes due to changes in internal temperature must be taken into account separately.

Although power dissipation is internally limited, these specifications apply for up to 2W for the TO-39 package, and 1.05W for the CERDIP (J package).

THERMAL DATA

R _{THj-case}	Thermal Resistance Junction – Case	TO-39 (H Package)	20°C / W Typ.
R-11:	Thermal Resistance Junction – Ambient	CERDIP (J Package)	120°C / W Typ.
RTHj-amb	Derate above 25°C	CERDIP (J Package)	8.4 mW / °C

1/01

E-mail: sales@semelab.co.uk