8-String White LED Driver with SMBus for LCD Panel Applications

General Description

The MAX17061 is a high-efficiency driver for white lightemitting diodes (LEDs). It is designed for large liquidcrystal displays (LCDs) that employ an array of LEDs as the light source. An internal switch current-mode step-up controller drives the LED array, which can be configured for up to eight strings in parallel and 10 LEDs per string. Each string is terminated with ballast that achieves $\pm 1.5 \%$ current-regulation accuracy between strings, ensuring even LED brightness. The MAX17061 has a wide inputvoltage range from 4.5 V to 26 V , and provides a fixed 25 mA or adjustable 15 mA to 30 mA full-scale LED current. The MAX17061 internally generates a DPWM signal for accurate WLED dimming control. The DPWM frequency is resistor programmable, while DPWM duty cycle is controlled directly from an external PWM signal or through a control word through the MAX17061's SMBus ${ }^{\text {TM }}$ interface. This DPWM control provides a dimming range with 8-bit resolution and supports Intel display-power-saving technology (DPST) to maximize battery life.
The MAX17061 has multiple features to protect the controller from fault conditions. Separate feedback loops limit the output voltage under any circumstance, ensuring safe operation. Once an open string is detected, the string is disabled while other strings operate normally. The MAX17061 also features short LED detection. The shorted strings are also disabled after a 2 ms fault blanking interval. The controller features cycle-bycycle current limit to provide stable operation and softstart capability. If the MAX17061 is in current-limit condition, the step-up converter is latched off after an internal timer expires. A thermal-shutdown circuit provides another level of protection.
The MAX17061's step-up controller features an internal $150 \mathrm{~m} \Omega$ (typ), 45V (max) power MOSFET with local cur-rent-sense amplifier for accurate cycle-by-cycle current limit. This architecture greatly simplifies the external circuitry and saves PCB space. Low-feedback voltage at each LED string 625mV (typ) at 25mA LED current helps reduce power loss and improve efficiency. The MAX17061 features selectable switching frequency ($500 \mathrm{kHz}, 750 \mathrm{kHz}$, or 1 MHz), which enables a wide variety of applications that can trade off component size for operating frequency.
The MAX17061 is available in a thermally enhanced 28 -pin, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Thin QFN package.
Notebook, Subnotebook,
and Tablet Computer
Displays

Notebook, Subnotebook, and Tablet Computer Displays

> Applications

Automotive Systems
Handy Terminals

- Accurate Dimming Control Using SMBus, PWM Interface
- Dimming Range with 8-Bit Resolution
- Adjustable DPWM Frequency with 1.5\% Accuracy
- Up to Eight Parallel Strings Multiple SeriesConnected LEDs
- $\pm 1.5 \%$ Current Regulation Accuracy Between Strings
- Low String Feedback Voltage: 625 mV at 25 mA LED Current
- Full-Scale LED Current Adjustable from 15mA to 30 mA , or Preset 25 mA
- Open and Short LED Protections
- Output Overvoltage Protection
- 0.15Ω Internal HV Power MOSFET (45V max)
- Wide Input-Voltage Range from 4.5 V to 26 V
- $500 \mathrm{kHz} / 750 \mathrm{kHz} / 1 \mathrm{MHz}$ Selectable Switching Frequency
- Small 28-Pin, 4mm x 4mm, Thin QFN package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX17061ETI +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Thin QFN $(4 \mathrm{~mm} \times 4 \mathrm{~mm})$

+Denotes a lead-free package.
Simplified Operating Circuit

Pin Configuration appears at end of data sheet.
SMBus is a trademark of Intel Corp.

8-String White LED Driver with SMBus for LCD Panel Applications

ABSOLUTE MAXIMUM RATINGS

```
IN to GND
FB_, LX_ to GND
PGND_ to GND.
``` \(\qquad\)
```

-0.3 V to +28 V
-0.3 V to +45 V
-0.3 V to +0.3 V
VCC, VDD, PWMI, SDA, SCL to GND........................-0.3V to +6 V
ISET, CCV, PWMO, FSET, OSC,
OV to GND
.-0.3V to $V_{C C}+0.3 \mathrm{~V}$

```

Continuous Power Dissipation (\(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\))
28 -Pin Thin QFN (derate \(16.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(+70^{\circ} \mathrm{C}\))... 1667 mW
Operating Temperature Range \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) Junction Temperature
\(+150^{\circ} \mathrm{C}\)
Storage Temperature Range
\(-60^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (soldering, 10s)
\(+300^{\circ} \mathrm{C}\)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ELECTRICAL CHARACTERISTICS}
(Circuit of Figure 1, \(\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{C} C C V=0.022 \mu \mathrm{~F}, \mathrm{RCCV}=5.1 \mathrm{k} \Omega, \mathrm{V}_{\text {ISET }}=\mathrm{V}_{\mathrm{OSC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{C C}, \mathrm{R}_{\mathrm{FSET}}=464 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{PWMI}}=\mathrm{GND}\), \(\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\) to \(+\mathbf{8 5}{ }^{\circ} \mathbf{C}\), unless otherwise noted. Typical values are at \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & \multicolumn{2}{|l|}{CONDITIONS} & MIN & TYP & MAX & UNITS \\
\hline \multirow[b]{2}{*}{IN Input Voltage Range} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}\)} & 4.5 & & 5.5 & \multirow{2}{*}{V} \\
\hline & \multicolumn{2}{|l|}{\(V_{C C}=\) open} & 5.5 & & 26.0 & \\
\hline \multirow{2}{*}{IN Quiescent Current} & \multirow[t]{2}{*}{MAX17061 is enabled at minimum brightness, no load} & \(\mathrm{V}_{\text {IN }}=26 \mathrm{~V}\) & \multirow[t]{2}{*}{} & \multirow{2}{*}{1.24} & \multirow{2}{*}{2} & \multirow{2}{*}{mA} \\
\hline & & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}=5 \mathrm{~V}\) & & & & \\
\hline IN Quiescent Current & \multicolumn{2}{|l|}{MAX17061 is disabled, \(\mathrm{V}^{\prime} \mathrm{N}=12 \mathrm{~V}\)} & & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{VCc Output Voltage} & \multicolumn{2}{|l|}{MAX17061 is enabled, 6V < V \({ }_{\text {IN }}<26 \mathrm{~V}, 0<\mathrm{IVCC}<10 \mathrm{~mA}\)} & 4.7 & 5.0 & 5.3 & \multirow{2}{*}{V} \\
\hline & \multicolumn{2}{|l|}{MAX17061 is disabled, \(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\)} & 3.90 & 4.35 & 4.80 & \\
\hline VCC Current Limit & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}\) is forced to 4.5 V} & 15 & 40 & 70 & mA \\
\hline VCC UVLO Threshold & \multicolumn{2}{|l|}{Rising edge, typical hysteresis \(=85 \mathrm{mV}\)} & 4.00 & 4.25 & 4.45 & V \\
\hline \multicolumn{7}{|l|}{BOOST CONVERTER} \\
\hline LX On-Resistance & \multicolumn{2}{|l|}{20 mA from LX_ to PGND} & & 0.15 & 0.3 & \(\Omega\) \\
\hline LX Leakage Current & \multicolumn{2}{|l|}{45 V on LX_} & & & 1 & \(\mu \mathrm{A}\) \\
\hline \multirow{3}{*}{Operating Frequency} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {OSC }}=\mathrm{V}_{\text {CC }}\)} & 0.9 & 1.0 & 1.1 & MHz \\
\hline & \multicolumn{2}{|l|}{VosC \(=\) open} & 675 & 750 & 825 & \multirow{2}{*}{kHz} \\
\hline & \multicolumn{2}{|l|}{Vosc \(=\) GND} & 450 & 500 & 550 & \\
\hline OSC High-Level Threshold & & & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { VCC }- \\
0.4
\end{gathered}
\]} & V \\
\hline OSC Midlevel Threshold & & & 1.5 & & \[
\begin{gathered}
\text { VCC - } \\
2.0
\end{gathered}
\] & V \\
\hline OSC Low-Level Threshold & & & & & 0.4 & V \\
\hline \multirow[b]{2}{*}{Minimum Duty Cycle} & \multicolumn{2}{|l|}{PWM mode (Note 1)} & \multicolumn{3}{|c|}{10} & \multirow[t]{2}{*}{\%} \\
\hline & \multicolumn{2}{|l|}{Pulse skipping, no load (Note 1)} & \multicolumn{3}{|c|}{0} & \\
\hline Maximum Duty Cycle & & & 94.0 & 95.5 & 97.0 & \% \\
\hline LX Current Limit & \multicolumn{2}{|l|}{Duty cycle \(=75 \%\) (Note 1)} & 1.6 & & & A \\
\hline \multicolumn{7}{|l|}{CONTROL INPUT} \\
\hline SDA, SCL Logic Input-High Level & & & 2.1 & & & V \\
\hline SDA, SCL Logic Input-Low Level & & & & & 0.8 & V \\
\hline PWMI Logic Input-High Level & & & 2.1 & & & V \\
\hline PWMI Logic Input-Low Level & & & & & 0.8 & V \\
\hline
\end{tabular}

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

\section*{ELECTRICAL CHARACTERISTICS (continued)}
(Circuit of Figure 1, \(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{CCCV}=0.022 \mu \mathrm{~F}, \mathrm{RCCV}=5.1 \mathrm{k} \Omega, \mathrm{V}_{\text {ISET }}=\mathrm{V}_{\mathrm{OSC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{R}_{\mathrm{FSET}}=464 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{PWMI}}=\mathrm{GND}\), \(\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\) to \(+85^{\circ} \mathbf{C}\), unless otherwise noted. Typical values are at \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{6}{|l|}{INPUT LEAKAGE} \\
\hline PWMI Leakage Current & & -0.3 & & +0.3 & \(\mu \mathrm{A}\) \\
\hline ISET, FSET Leakage Current & ISET, FSET to VCC & & & +1 & \(\mu \mathrm{A}\) \\
\hline OV Leakage Current & & -0.1 & & +0.1 & \(\mu \mathrm{A}\) \\
\hline SDA, SCL Input Bias Current & & -1 & & +1 & \(\mu \mathrm{A}\) \\
\hline SDA Output Low-Sink Current & \(\mathrm{V}_{\text {SDA }}=0.4 \mathrm{~V}\) & 4 & & & mA \\
\hline OSC Leakage Current & & -3 & & +3 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{6}{|l|}{LED CURRENT} \\
\hline \multirow{4}{*}{Full-Scale FB_ Output Current} & ISET = VCC & 24.5 & 25.0 & 25.5 & \multirow{4}{*}{mA} \\
\hline & RISET \(=133 \mathrm{k} \Omega\) & 28.8 & 30.0 & 31.2 & \\
\hline & RISET \(=200 \mathrm{k} \Omega\) & 19.3 & 20.0 & 20.7 & \\
\hline & RISET \(=266 \mathrm{k} \Omega\) & 14.4 & 15.0 & 15.6 & \\
\hline ISET High-Level Threshold & & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}- \\
0.4
\end{gathered}
\] & & & V \\
\hline ISET Output Voltage & & 1.166 & 1.236 & 1.306 & V \\
\hline Current Regulation Between Strings & Full brightness & -1.5 & & +1.5 & \% \\
\hline \multirow{4}{*}{Minimum FB_ Regulation Voltage} & \(\mathrm{IFB}_{-}=25 \mathrm{~mA}\) & 475 & 625 & 910 & \multirow{4}{*}{mV} \\
\hline & \(\mathrm{IFB}_{-}=30 \mathrm{~mA}\) & 575 & 750 & 1100 & \\
\hline & \(\mathrm{IFB}_{-}=20 \mathrm{~mA}\) & 380 & 500 & 740 & \\
\hline & \(\mathrm{IFB}_{-}=15 \mathrm{~mA}\) & 285 & 375 & 560 & \\
\hline Maximum FB_ Ripple & \(\mathrm{IFB}_{-}=20 \mathrm{~mA}\left(\right.\) Cout \(\left.=1 \mu \mathrm{~F}, \mathrm{~V}_{\text {OSC }}=\mathrm{V}_{\text {CC }}\right)(\) Note 1\()\) & & 120 & 200 & mVP/P \\
\hline FB_ On-Resistance & \(\mathrm{V}_{\text {FB_ }}=50 \mathrm{mV}\) (includes \(10 \Omega\) sense resistor) & & 17.5 & 28.4 & \(\Omega\) \\
\hline \multirow[b]{2}{*}{FB_Leakage Current} & \(\mathrm{V}_{\text {FB_- }}=26 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & & & 1 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & \(\mathrm{V}_{\text {FB_- }}=45 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & & 2.5 & 4 & \\
\hline \multicolumn{6}{|l|}{FAULT PROTECTION} \\
\hline OV Threshold Voltage & Rising edge, typical hysteresis \(=60 \mathrm{mV}\) & 1.166 & 1.236 & 1.306 & V \\
\hline FB_ Overvoltage Threshold & VIN \(>5.5 \mathrm{~V}\) & 5.2 & 5.6 & 6.0 & V \\
\hline FB_ Undervoltage Threshold & & 130 & 175 & 220 & mV \\
\hline OV Undervoltage Threshold (Boost Global Fail) & & 48 & 84 & 120 & mV \\
\hline Thermal-Shutdown Threshold & (Note 1) & & 160 & & \({ }^{\circ} \mathrm{C}\) \\
\hline Overcurrent FAULT Shutdown Timer & IPEAK \(>3.3\) A at duty \(=0 \%\) & 88 & 128 & 168 & \(\mu \mathrm{s}\) \\
\hline FB_ Overvoltage Fault Timer & Full brightness & 1.7 & 2 & 2.3 & ms \\
\hline
\end{tabular}

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

ELECTRICAL CHARACTERISTICS (continued)
(Circuit of Figure 1, \(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{CCCV}=0.022 \mu \mathrm{~F}, \mathrm{RCCV}=5.1 \mathrm{k} \Omega, \mathrm{V}_{\text {ISET }}=\mathrm{V}_{\mathrm{OSC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{R}_{\mathrm{FSET}}=464 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{PWMI}}=\mathrm{GND}\), \(\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\) to \(+\mathbf{8 5} \mathbf{5}^{\circ} \mathbf{C}\), unless otherwise noted. Typical values are at \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{6}{|l|}{PWM FILTER} \\
\hline PWM Output Impedance & & 20 & 40 & 60 & k \(\Omega\) \\
\hline \multirow{4}{*}{DPWM Oscillator Frequency} & RFSET \(=464 \mathrm{k} \Omega\) & 197 & 200 & 203 & \multirow{2}{*}{Hz} \\
\hline & RFSET \(=113 \mathrm{k} \Omega\) & 750 & 785 & 820 & \\
\hline & RFSET \(=65 \mathrm{k} \Omega\) & 1.270 & 1.335 & 1.400 & \multirow{2}{*}{kHz} \\
\hline & RFSET \(=42 \mathrm{k} \Omega\) & & 2 & & \\
\hline PWMI Input-Frequency Range & & 5 & 10 & 100 & kHz \\
\hline PWMI Full-Range Accuracy & & & & 5 & LSB \\
\hline \multirow{3}{*}{PWMI Brightness Setting} & PWMI duty cycle \(=100 \%\) & 98 & 100 & & \multirow{3}{*}{\%} \\
\hline & PWMI duty cycle \(=50 \%\) & 48 & 50 & 52 & \\
\hline & PWMI duty cycle \(=0 \%\) & 2.6 & 2.7 & 2.8 & \\
\hline \multicolumn{6}{|l|}{SMBus TIMING SPECIFICATION} \\
\hline SMBus Frequency & FSMB & 10 & & 100 & kHz \\
\hline Bus Free Time & TBUF & 4.7 & & & \(\mu \mathrm{s}\) \\
\hline START Condition Hold Time from SCL & THD:STA & 4 & & & \(\mu \mathrm{S}\) \\
\hline START Condition Setup Time from SCL & TSU:STA & 4.7 & & & \(\mu \mathrm{S}\) \\
\hline \begin{tabular}{l}
STOP Condition Setup \\
Time from SCL
\end{tabular} & TSU:STO & 4 & & & \(\mu \mathrm{s}\) \\
\hline SDA Hold Time from SCL & THD:DAT & 300 & & & ns \\
\hline SDA Setup Time from SCL & TSU:DAT & 250 & & & ns \\
\hline SCL Low Period & TLOW & 4.7 & & & \(\mu \mathrm{S}\) \\
\hline SCL High Period & THIGH & 4 & & & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}
(Circuit of Figure 1, \(\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{CCCV}=0.022 \mu \mathrm{~F}, \mathrm{RCCV}=5.1 \mathrm{k} \Omega, \mathrm{V}_{\text {ISET }}=\mathrm{V}_{\mathrm{OSC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{RFSET}=464 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{PWMI}}=\mathrm{GND}\), \(\mathrm{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}\) to \(+\mathbf{8 5}{ }^{\circ} \mathbf{C}\), unless otherwise noted. Typical values are at \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).) (Note 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & \multicolumn{2}{|l|}{CONDITIONS} & MIN & TYP MAX & UNITS \\
\hline \multirow[b]{2}{*}{IN Input Voltage Range} & \multicolumn{2}{|l|}{V IN \(=\mathrm{V}_{\text {CC }}\)} & 4.5 & 5.5 & \multirow{2}{*}{V} \\
\hline & \multicolumn{2}{|l|}{VCC = open} & 5.5 & 26.0 & \\
\hline \multirow{3}{*}{IN Quiescent Current} & \multirow[t]{2}{*}{MAX17061 is enabled at minimum brightness, no load} & \(\mathrm{V}_{\text {IN }}=26 \mathrm{~V}\) & & 2 & \multirow{2}{*}{mA} \\
\hline & & \(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) & & 2 & \\
\hline & \multicolumn{2}{|l|}{MAX17061 is disabled, \(\mathrm{V}^{\text {IN }}=12 \mathrm{~V}\)} & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{VCC Output Voltage} & \multicolumn{2}{|l|}{} & 4.7 & 5.3 & \multirow{2}{*}{V} \\
\hline & \multicolumn{2}{|l|}{MAX17061 is disabled, \(\mathrm{V}^{\prime} \mathrm{N}=12 \mathrm{~V}\)} & 3.9 & 4.8 & \\
\hline VCC Current Limit & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}\) is forced to 4.5 V} & 12 & 70 & mA \\
\hline VCC UVLO Threshold & \multicolumn{2}{|l|}{Rising edge, typical hysteresis \(=85 \mathrm{mV}\)} & 4.00 & 4.45 & V \\
\hline
\end{tabular}

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

\section*{ELECTRICAL CHARACTERISTICS (continued)}
(Circuit of Figure 1, \(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{CCCV}=0.022 \mu \mathrm{~F}, \mathrm{RCCV}=5.1 \mathrm{k} \Omega, \mathrm{V}_{\text {ISET }}=\mathrm{V}_{\mathrm{OSC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{R}_{\mathrm{FSET}}=464 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{PWMI}}=\mathrm{GND}\), \(\mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}\) to \(+\mathbf{8 5}{ }^{\circ} \mathbf{C}\), unless otherwise noted. Typical values are at \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).) (Note 2)
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP MAX & UNITS \\
\hline \multicolumn{5}{|l|}{BOOST CONVERTER} \\
\hline LX On-Resistance & 20 mA from LX_ to PGND & & 0.3 & \(\Omega\) \\
\hline LX Leakage Current & 45 V on LX & & 1 & \(\mu \mathrm{A}\) \\
\hline \multirow{3}{*}{Operating Frequency} & \(\mathrm{V}_{\text {OSC }}=\mathrm{V}_{\text {CC }}\) & 0.89 & 1.10 & MHz \\
\hline & VosC \(=\) open & 675 & 825 & kHz \\
\hline & VOSC \(=\) GND & 450 & 560 & kHz \\
\hline OSC High-Level Threshold & & \[
\begin{gathered}
\hline \mathrm{V}_{\mathrm{CC}}- \\
0.4
\end{gathered}
\] & & V \\
\hline OSC Midlevel Threshold & & 1.5 & \[
\begin{gathered}
\hline \mathrm{VCC}^{-} \\
2.0 \\
\hline
\end{gathered}
\] & V \\
\hline OSC Low-Level Threshold & & & 0.4 & V \\
\hline Maximum Duty Cycle & & 94 & 97 & \% \\
\hline LX Current Limit & Duty cycle \(=75 \%\) & 1.6 & & A \\
\hline \multicolumn{5}{|l|}{CONTROL INPUT} \\
\hline SDA, SCL Logic Input-High Level & & 2.1 & & V \\
\hline SDA, SCL Logic Input-Low Level & & & 0.8 & V \\
\hline PWMI Logic Input-High Level & & 2.1 & & V \\
\hline PWMI Logic Input-Low Level & & & 0.8 & V \\
\hline \multicolumn{5}{|l|}{INPUT LEAKAGE} \\
\hline PWMI Leakage Current & & -0.3 & +0.3 & \(\mu \mathrm{A}\) \\
\hline ISET, FSET Leakage Current & ISET, FSET to VCC & & +1 & \(\mu \mathrm{A}\) \\
\hline OV Leakage Current & & -0.1 & +0.1 & \(\mu \mathrm{A}\) \\
\hline SDA, SCL Input Bias Current & & -1 & +1 & \(\mu \mathrm{A}\) \\
\hline SDA Output-Low Sink Current & \(\mathrm{V}_{\text {SDA }}=0.4 \mathrm{~V}\) & 4 & & mA \\
\hline OSC Leakage Current & & -3 & +3 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{5}{|l|}{LED CURRENT} \\
\hline \multirow{4}{*}{Full-Scale FB_ Output Current} & ISET = VCC & 24.5 & 25.5 & \multirow{4}{*}{mA} \\
\hline & RISET \(=133 \mathrm{k} \Omega\) & 28.6 & 31.4 & \\
\hline & RISET \(=200 \mathrm{k} \Omega\) & 19.0 & 21.0 & \\
\hline & RISET \(=266 \mathrm{k} \Omega\) & 14.3 & 15.7 & \\
\hline ISET High-Level Threshold & & \[
\begin{gathered}
\hline \mathrm{V}_{\mathrm{CC}}- \\
0.4
\end{gathered}
\] & & V \\
\hline ISET Output Voltage & & 1.166 & 1.306 & V \\
\hline Current Regulation Between Strings & Full brightness & -1.5 & +1.5 & \% \\
\hline \multirow{4}{*}{Minimum FB_ Regulation Voltage} & \(\mathrm{IFB}_{-}=25 \mathrm{~mA}\) & 425 & 910 & \multirow{4}{*}{mV} \\
\hline & \(\mathrm{IFB}_{-}=30 \mathrm{~mA}\) & 575 & 1100 & \\
\hline & \(\mathrm{IFB}_{-}=20 \mathrm{~mA}\) & 380 & 740 & \\
\hline & \(\mathrm{IFB}_{-}=15 \mathrm{~mA}\) & 285 & 560 & \\
\hline Maximum FB_ Ripple & \(\mathrm{IFB}_{\text {_ }}=20 \mathrm{~mA}\) (COUT \(=1 \mu \mathrm{~F}, \mathrm{~V}_{\text {OSC }}=\mathrm{V}_{\text {CC }}\)) & & 200 & mVP/P \\
\hline FB_ On-Resistance & \(\mathrm{V}_{\text {FB_ }}=50 \mathrm{mV}\) (includes \(10 \Omega\) sense resistor) & & 28.4 & \(\Omega\) \\
\hline
\end{tabular}

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

ELECTRICAL CHARACTERISTICS (continued)
(Circuit of Figure 1, \(\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{C} C C V=0.022 \mu \mathrm{~F}, \mathrm{RCCV}=5.1 \mathrm{k} \Omega, \mathrm{V}_{\text {ISET }}=\mathrm{V}_{\mathrm{OSC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{C C}, \mathrm{RFSET}=464 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{PWMI}}=\mathrm{GND}\), \(\mathrm{T}_{\mathbf{A}}=-\mathbf{4 0 ^ { \circ }} \mathbf{C}\) to \(+\mathbf{8 5}{ }^{\circ} \mathbf{C}\), unless otherwise noted. Typical values are at \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).) (Note 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{6}{|l|}{FAULT PROTECTION} \\
\hline OV Threshold Voltage & Rising edge, typical hysteresis \(=60 \mathrm{mV}\) & 1.166 & & 1.306 & V \\
\hline FB_ Overvoltage Threshold & & 5.2 & & 6.0 & V \\
\hline FB_ Undervoltage Threshold & & 130 & & 220 & mV \\
\hline OV Undervoltage Threshold (Boost Global Fail) & & 48 & & 120 & mV \\
\hline Overcurrent FAULT Shutdown Timer & IPEAK \(>3.3\) A at duty \(=0 \%\) & 88 & & 168 & \(\mu \mathrm{s}\) \\
\hline FB_ Overvoltage Fault Timer & & 1.6 & & 2.4 & ms \\
\hline \multicolumn{6}{|l|}{PWM FILTER} \\
\hline PWM Output Impedance & & 20 & & 60 & \(\mathrm{k} \Omega\) \\
\hline \multirow{3}{*}{DPWM Oscillator Frequency} & RFSET \(=464 \mathrm{k} \Omega\) & 197 & & 203 & kHz \\
\hline & RFSET \(=113 \mathrm{k} \Omega\) & 750 & & 820 & Hz \\
\hline & RFSET \(=65 \mathrm{k} \Omega\) & 1.27 & & 1.40 & kHz \\
\hline PWMI Input Frequency Range & & 5 & & 100 & kHz \\
\hline PWMI Full-Range Accuracy & & & & 5 & LSB \\
\hline \multirow{3}{*}{PWMI Brightness Setting} & PWMI duty cycle \(=100 \%\) & 98 & & & \multirow{3}{*}{\%} \\
\hline & PWMI duty cycle \(=50 \%\) & 48 & & 52 & \\
\hline & PWMI duty cycle \(=0 \%\) & 2.6 & & 2.8 & \\
\hline \multicolumn{6}{|l|}{SMBus TIMING SPECIFICATION} \\
\hline SMBus Frequency & FSMB & 10 & & 100 & kHz \\
\hline Bus Free Time & TBUF & 4.7 & & & \(\mu \mathrm{s}\) \\
\hline START Condition Hold Time from SCL & THD:STA & 4 & & & \(\mu \mathrm{s}\) \\
\hline START Condition Setup Time from SCL & TSU:STA & 4.7 & & & \(\mu \mathrm{s}\) \\
\hline STOP Condition Setup Time from SCL & TSU:STO & 4 & & & \(\mu \mathrm{s}\) \\
\hline SDA Hold Time from SCL & THD:DAT & 300 & & & ns \\
\hline SDA Setup Time from SCL & TSU:DAT & 250 & & & ns \\
\hline SCL Low Period & TLOW & 4.7 & & & \(\mu \mathrm{s}\) \\
\hline SCL High Period & THIGH & 4 & & & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Note 1: Specifications are guaranteed by design, not production tested.
Note 2: Specifications to \(-40^{\circ} \mathrm{C}\) are guaranteed by design, not production tested.

\title{
8-String White LED Driver with SMBus for LCD Panel Applications
}

\section*{Typical Operating Characteristics}
(Circuit of Figure 1, \(\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{CCCV}=0.022 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{CCV}}=5.1 \mathrm{k} \Omega, \mathrm{V}_{I S E T}=\mathrm{V}_{\mathrm{OSC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}\), \(\mathrm{R}_{\text {FSET }}=464 \mathrm{k} \Omega\), \(\mathrm{V}_{\mathrm{PWMI}}=\mathrm{GND}\), LEDs \(=\) 10 series \(\times 4\) parallel strings, \(T_{A}=+25^{\circ} \mathrm{C}\), unless otherwise noted.)

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

Typical Operating Characteristics (continued)
(Circuit of Figure 1, \(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{C} C C V=0.022 \mu \mathrm{~F}, \mathrm{RCCV}=5.1 \mathrm{k} \Omega\), \(\mathrm{V}_{\text {ISET }}=\mathrm{V}_{\mathrm{OSC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}\), RFSET \(=464 \mathrm{k} \Omega\), \(\mathrm{V}_{\mathrm{PWM}}=\mathrm{GND}\), LEDs \(=\) 10 series \(\times 4\) parallel strings, \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.)

STARTUP WAVEFORMS
(BRIGHTNESS = 100\%)

LED CURRENT WAVEFORMS
(SMBus = 0x80)
LED CURRENT WAVEFORMS
(SMBus = 0x04)

\title{
8-String White LED Driver with SMBus for LCD Panel Applications
}

\section*{Typical Operating Characteristics (continued)}
(Circuit of Figure 1, \(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{C} C C V=0.022 \mu \mathrm{~F}, \mathrm{RCCV}=5.1 \mathrm{k} \Omega\), \(\mathrm{V}_{\text {ISET }}=\mathrm{V}_{\mathrm{OSC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}\), RFSET \(=464 \mathrm{k} \Omega\), \(\mathrm{V}_{\mathrm{PWM}}=\mathrm{GND}\), LEDs \(=\) 10 series \(\times 4\) parallel strings, \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.)

LINE TRANSIENT RESPONSE

LINE TRANSIENT RESPONSE
(\(\mathrm{V}_{\text {IN }}=19 \mathrm{C} \rightarrow\) 12V, BRIGHTNESS \(=100 \%\))

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

Pin Description
\begin{tabular}{|c|c|c|}
\hline PIN & NAME & FUNCTION \\
\hline 1 & FB3 & LED String 3 Cathode Connection. FB3 is the open-drain output of an internal regulator, which controls current through FB3. FB3 can sink up to 30mA. If unused, connect FB3 to VCC. \\
\hline 2 & FB4 & LED String 4 Cathode Connection. FB4 is the open-drain output of an internal regulator, which controls current through FB4. FB4 can sink up to 30 mA . If unused, connect FB4 to \(\mathrm{V}_{\mathrm{Cc}}\). \\
\hline 3 & GND & Analog Ground \\
\hline 4, 6, 18 & N.C. & No Connection \\
\hline 5 & FB5 & LED String 5 Cathode Connection. FB5 is the open-drain output of an internal regulator, which controls current through FB5. FB5 can sink up to 30mA. If unused, connect FB5 to VCC. \\
\hline 7 & FB6 & LED String 6 Cathode Connection. FB6 is the open-drain output of an internal regulator, which controls current through FB6. FB6 can sink up to 30 mA . If unused, connect FB6 to \(\mathrm{V}_{\mathrm{CC}}\). \\
\hline 8 & FB7 & LED String 7 Cathode Connection. FB7 is the open-drain output of an internal regulator, which controls current through FB7. FB7 can sink up to 30mA. If unused, connect FB7 to VCC. \\
\hline 9 & FB8 & LED String 8 Cathode Connection. FB8 is the open-drain output of an internal regulator, which controls current through FB8. FB8 can sink up to 30mA. If unused, connect FB8 to VCc. \\
\hline 10 & OSC & Oscillator Frequency-Selection Pin. Connect OSC to \(\mathrm{V}_{C C}\) to set the step-up converter's oscillator frequency to 1 MHz . Connect OSC to GND to set the frequency to 500 kHz . Float OSC to set the frequency to 750 kHz . \\
\hline 11 & PWMI & PWM Signal Input. This PWM signal is used for brightness control in PWM mode or DPST mode. This signal is filtered and its duty cycle is converted into a digital signal to calculate DPWM duty cycle. In PWM mode, the DPWM duty cycle equals the input PWM duty cycle. In DPST mode, the DPWM duty cycle is the input PWM duty cycle multiplied by the SMBus brightness command. \\
\hline 12 & PWMO & Filtered PWM Signal Output. Connect a capacitor between PWMO and GND. The capacitor forms a lowpass filter with an internal \(40 \mathrm{k} \Omega\) (typ) resistor to filter the PWM signal into an analog signal whose level represents the duty-cycle information of the input PWM signal. \\
\hline 13 & FSET & \begin{tabular}{l}
DPWM Frequency Adjustment Pin. Connect a resistor from FSET to GND to set the internal DPWM frequency: \\
where: \(\alpha=10.638\)
\[
\mathrm{f} P \mathrm{WW}=\frac{10^{9}}{\alpha \times \mathrm{R}[\Omega]+\gamma}
\]
\[
\gamma=58509
\] \\
This DPWM signal directly chops WLED current with the calculated duty cycle for brightness control.
\end{tabular} \\
\hline 14 & SDA & SMBus Serial-Data Input \\
\hline 15 & SCL & SMBus Serial-Clock Input \\
\hline 16 & LX2 & Boost Regulator Internal MOSFET Drain. Connect the inductor and the Schottky diode to LX2 node. LX2 should always be shorted to LX1 externally. \\
\hline 17 & LX1 & Boost Regulator Internal MOSFET Drain. Connect the inductor and the Schottky diode to LX1 node. LX1 should always be shorted to LX2 externally. \\
\hline 19 & PGND2 & Boost Regulator Power Ground \\
\hline 20 & PGND1 & Boost Regulator Power Ground \\
\hline 21 & IN & Supply Input, 4.5 V to 26 V . \(\mathrm{V}_{\text {IN }}\) biases the internal 5 V linear regulator that powers the device. Bypass IN to GND directly at the pin with a \(0.1 \mu \mathrm{~F}\) or greater ceramic capacitor. \\
\hline
\end{tabular}

\title{
8-String White LED Driver with SMBus for LCD Panel Applications
}

Pin Description (continued)
\begin{tabular}{|c|c|c|}
\hline PIN & NAME & FUNCTION \\
\hline 22 & VDD & Boost Regulator MOSFET Gate Drive Supply. Bypass VDD to GND with a ceramic capacitor of \(1 \mu \mathrm{~F}\) or greater. \\
\hline 23 & VCC & 5V Linear Regulator Output. VCC provides power to the MAX17061. Bypass VCC to GND with a ceramic capacitor of \(1 \mu \mathrm{~F}\) or greater. If \(\mathrm{V}_{\mathrm{IN}}\) is less than or equal to 5.5 V , tie \(\mathrm{V}_{\mathrm{CC}}\) to IN to disable internal LDO and use external 5 V supply to \(\mathrm{V}_{\mathrm{Cc}}\). \\
\hline 24 & CCV & Step-Up Converter Compensation Pin. Connect a \(0.022 \mu \mathrm{~F}\) ceramic capacitor and \(5.1 \mathrm{k} \Omega\) resistor from CCV to GND. When the MAX17061 shuts down, CCV is discharged to OV through an internal 20k \(\Omega\) resistor. \\
\hline 25 & OV & Overvoltage Sense. Connect OV to the center tap of a resistive voltage-divider from Vout to ground. The detection threshold for voltage limiting at OV is 1.236V (typ). \\
\hline 26 & ISET & \begin{tabular}{l}
Full-Scale LED Current Adjustment Pin. The resistance from ISET to GND controls the full-scale current in each LED string:
\[
\text { ILEDMAX }=20 \mathrm{~mA} \times 200 \mathrm{k} \Omega / \mathrm{RISET}
\] \\
The acceptable resistance range is \(133 \mathrm{k} \Omega<\) RISET \(<266 \mathrm{k} \Omega\), which corresponds to full-scale LED current of \(30 \mathrm{~mA}>\operatorname{ILEDMAX}>15 \mathrm{~mA}\). Connect ISET to VCC for a default full-scale LED current of 25 mA .
\end{tabular} \\
\hline 27 & FB1 & LED String 1 Cathode Connection. FB1 is the open-drain output of an internal regulator, which controls current through FB1. FB1 can sink up to 30 mA . If unused, connect FB1 to \(\mathrm{V}_{\mathrm{CC}}\). \\
\hline 28 & FB2 & LED String 2 Cathode Connection. FB2 is the open-drain output of an internal regulator, which controls current through FB2. FB2 can sink up to 30mA. If unused, connect FB2 to \(\mathrm{V}_{\mathrm{CC}}\). \\
\hline - & EP & Exposed Backside Pad. Solder to the circuit board ground plane with sufficient copper connection to ensure low thermal resistance. See the PCB Layout Guidelines section. \\
\hline
\end{tabular}

\section*{Detailed Description}

The MAX17061 is a high-efficiency driver for arrays of white LEDs. It contains a fixed-frequency currentmode PWM step-up controller, a 5 V linear regulator, dimming control circuit, SMBus interface, internal power MOSFET, and eight regulated current sources (see Figure 2). When enabled, the step-up controller boosts the output voltage to provide sufficient headroom for the current sources to regulate their respective string currents. The MAX17061 features selectable switching frequency (\(500 \mathrm{kHz}, 750 \mathrm{kHz}\), or 1 MHz), which allows trade-offs between external component size and operating efficiency. The control architecture automatically skips pulses at light loads to improve efficiency and prevents overcharging the output capacitor.
WLED brightness is controlled by turning the WLEDs on and off with a DPWM signal. The DPWM frequency can be accurately adjusted with a resistor. The brightness of the LEDs is proportional to the duty cycle of the DPWM signal, which is controlled externally through either a PWM or 2-wire SMBus-compatible interface, or
both. When both interfaces are used at the same time, the product of the PWM duty cycle and SMBus command value is used for the dimming control. This DPWM control scheme provides a full dimming range with 8 -bit resolution.
The MAX17061 has multiple features to protect the controller from fault conditions. Separate feedback loops limit the output voltage in all circumstances. The MAX17061 checks each FB_ voltage during the operation. If one or more strings are open, the corresponding FB_ voltages are pulled below 175 mV (typ), and open-circuit fault is detected. As a result, the respective current sources are disabled. When one or more LEDs are shorted and the FB_ voltage exceeds \(1.1 \times \mathrm{V}_{\mathrm{CC}}\), short fault is detected and the respective current source is disabled. In either LED open or short conditions, the fault strings are disabled while other strings can still operate normally. The controller features cycle-by-cycle current limit to provide stable operation and soft-start protection. In a currentlimit condition, the controller shuts down after a \(128 \mu \mathrm{~s}\) overcurrent fault timer expires. A thermal-shutdown circuit provides another level of protection.

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

The MAX17061 includes a 5V linear regulator that provides the internal bias and gate drive for the step-up controller. When an external 5 V is available, the internal LDO can be overdriven to decrease power dissipation. Otherwise, connect the IN pin to an input greater than 5.5 V .

Fixed-Frequency Step-Up Controller The MAX17061's fixed-frequency, current-mode, stepup controller automatically chooses the lowest active FB_ voltage to regulate the output voltage. Specifically, the difference between the lowest FB_ voltage and the current-source control signal plus an offset (VSAT) is integrated at the CCV output. The resulting error signal is compared to the external switch current plus slope compensation to determine the switch on-time. As the load changes, the error amplifier sources or sinks current to the CCV output to deliver the required peakinductor current. The slope-compensation signal is added to the current-sense signal to improve stability at high duty cycles.

When the input voltage is close to the output voltage, the MAX17061 automatically skips pulses to prevent overcharging the output capacitor. In SKIP mode, the inductor current ramps up for a minimum on-time of approximately 90ns, and then discharges the stored energy to the output. The switch remains off until another pulse is needed to boost the output voltage.

\section*{Internal 5V Linear Regulator \\ Vcc and UVLO}

The MAX17061 includes an internal low-dropout linear regulator (\(\mathrm{V}_{\mathrm{CC}}\)). When \(\mathrm{V}_{\mathrm{IN}}\) is higher than 5.5 V , this linear regulator generates a 5 V supply to power internal PWM controller, control logic, and MOSFET driver. The \(\mathrm{V}_{\text {CC }}\) voltage drops to 4.35 V in shutdown. If \(\mathrm{V}_{\text {IN }}\) is less than or equal to \(5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}\) and IN can be tied together and powered from an external 5 V supply. There is an internal diode from \(\mathrm{V}_{\mathrm{CC}}\) to IN , so \(\mathrm{V}_{\text {IN }}\) must be greater than \(\mathrm{V}_{\mathrm{CC}}\) (see Figure 3).

Figure 1. Typical Operating Circuit

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

Figure 2. Control Circuit Block Diagram

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

The MAX17061 includes power-on reset (POR) and undervoltage lockout (UVLO) features. POR resets the fault latch and sets all the SMBus registers to their POR values. POR occurs when Vcc rises above 2.8V (typ). The controller is disabled until VCC exceeds the UVLO threshold of 4.25 V (typ). Hysteresis on UVLO is approximately 85 mV .
The VCC and VDD pins should be bypassed to GND with a minimum \(1 \mu \mathrm{~F}\) ceramic capacitor.

\section*{Startup}

At startup, the MAX17061 checks the OV pin to see if the Schottky diode is open. If the OV voltage is lower than 84 mV (typ), the boost converter does not start. After the OV test is done, the MAX17061 performs a diagnostic test of the LED array. The test is divided to two phases; each phase takes approximately 1.024 ms . In the first test phase, all FB_ inputs are quickly discharged down to 5.6 V (typ) and then continuously discharged by \(800 \mu \mathrm{~A}\) (typ) current sources. If a given FB_ voltage remains higher than 5.6 V (typ), the string is considered to be shorted. Otherwise, if a given FB_
voltage is higher than 3 V (typ), the string is considered to be unused. Unused strings should be tied to \(V_{C C}\). In the second phase, each FB_ is precharged by an internal \(400 \mu \mathrm{~A}\) (typ) current source. If a given FB_ voltage remains lower than 1 V (typ), the \(\mathrm{FB}_{-}\)is considered to be a short to GND and the device is disabled. After the LED string diagnostic phases are finished, the boost converter starts. The total startup time is less than 10 ms , including 4.2 ms (typ) soft-start.

\section*{Shutdown}

The MAX17061 can be placed into shutdown by clearing bit 0 of the device control register (0x01). When a critical failure is detected, the IC also enters shutdown mode. In shutdown mode, all functions of the IC are turned off including the 5V linear regulator. Only a crude linear regulator remains on, providing a 4.35 V (typ) output voltage to VCC, with \(1 \mu \mathrm{~A}\) current-sourcing capability. The fault/status register is not reset in shutdown. When bit 0 of the device control register (0x01) is set to 1, the MAX17061 exits shutdown mode and starts. The fault/status register is reset at startup.

Figure 3. Low-Input-Voltage Application Circuit

\title{
8－String White LED Driver with SMBus for LCD Panel Applications
}

\section*{Table 1．Frequency Selection}
\begin{tabular}{|c|c|}
\hline OSC PIN CONNECTION & SWITCHING FREQUENCY（kHz） \\
\hline GND & 500 \\
\hline Open & 750 \\
\hline\(V_{C C}\) & 1000 \\
\hline
\end{tabular}

Frequency Selection
A tri－level OSC input sets the internal oscillator frequen－ cy for step－up converter，as shown in Table 1．High－fre－ quency（ 1 MHz ）operation optimizes the regulator for the smallest component size，at the expense of efficien－ cy due to increased switching losses．Low－frequency （ 500 kHz ）operation offers the best overall efficiency but requires larger components and PCB area．

\section*{Overvoltage Protection}

To protect the step－up converter when the load is open， or the output voltage becomes excessive for any rea－ son，the MAX17061 features a dedicated overvoltage feedback input（OV）．The OV pin is tied to the center tap of a resistive voltage－divider from the high－voltage output．When the OV pin voltage，Vov，exceeds 1.236 V ，a comparator turns off the internal power MOS－ FET．This step－up converter switch is reenabled after the Vov drops 60 mV （typ）hysteresis below the protec－ tion threshold．This overvoltage－protection feature ensures the step－up converter fail－safe operation when the LED strings are disconnected from the output．

\section*{LED Current Sources}

Maintaining uniform LED brightness and dimming capa－ bility are critical for LCD backlight applications．The MAX17061 is equipped with a bank of eight matched current sources．These specialized current sources are accurate to within \(\pm 1.5 \%\) between strings and can be switched on and off within 15 1 s ，enabling PWM fre－ quencies of up to 2 kHz ．All LED full－scale currents are identical and are set through the ISET pin（ 15 mA ＜ILED \(<30 \mathrm{~mA}\) ）．When ISET is connected to Vcc ，the LED full－ scale current is set at the 25 mA default value．
The minimum voltage drop across each current source is approximately 625 mV when the LED current is 25 mA ． The low－voltage drop helps reduce dissipation while maintaining sufficient compliance to control the LED current within the required tolerances．
The LED current sources can be disabled by tying the respective FB＿pin to VCc at startup．When the IC is powered up，the controller scans settings for all \(\mathrm{FB}_{-}\) pins．If a FB＿pin is not tied to Vcc，an internal circuit pulls this pin low，and the controller enables the corre－ sponding current source to regulate the string current． If the FB＿pin is tied to \(\mathrm{V}_{\mathrm{Cc}}\) ，the controller disables the
corresponding current regulator．The current regulator cannot be disabled by connecting the respective FB＿ pin to \(V_{C C}\) after the IC is powered up．
All FB＿pins in use are combined to extract a lowest FB＿voltage（LVC）（see Figure 2）．LVC is fed into the step－up converter＇s error amplifier and is used to set the output voltage．

\section*{Current－Source Fault Protection}

The MAX17061 performs a diagnostic test at startup． Open／short strings are disabled．LED fault open／short is also detected after startup．When one or more strings fails after startup，the corresponding current sources are disabled．The remaining LED strings still operate normally．When a fault is detected，bit 4 or／and bit 5 of the fault／status resister are set（see the Fault／Status Register section）．

\section*{Open－Current Source Protection}

The MAX17061 step－up converter output voltage is reg－ ulated according to the minimum FB＿voltages on all the strings in use．If one or more strings are open，the respective FB＿pins are pulled to ground．For any FB＿ lower than 175 mV ，the corresponding current source is disabled．The unaffected LED strings still operate nor－ mally．If all strings in use are open，the MAX17061 shuts down the step－up converter．
The MAX17061 can tolerate A slight mismatch（4．4V） between LED strings．When severe mismatches （ \(>4.4 \mathrm{~V}\) ）or WLED shorts occur，the FB＿voltages will be uneven because mismatched voltage drops across strings．If a given FB＿voltage is higher than 5.6 V （typ） after \(24 \mu\) s blanking time when LEDs are turned on，an LED short condition is detected on the respective string．When the short continues for greater than 2 ms ， the string is disabled．The controller allows the unaf－ fected LED strings to operate normally．The LED short－ protection feature is disabled during the soft－start phase of the step－up converter．

\section*{Dimming Control}

The MAX17061 internally generates a DPWM signal for accurate WLED brightness dimming control．The DPWM frequency is adjustable through an external setting resistor and has \(1.5 \%\) accuracy for RFSET \(=464 \mathrm{k} \Omega\) ．The duty cycle of this DPWM signal can be controlled exter－ nally through two interfaces：PWM and SMBus．The ISET pin sets the amplitude of the current sources for each LED string（Figure 4）．The internal DPWM signal directly controls the duty cycle of these current sources． The resulting current is chopped and synchronized to the DPWM signal．When filtered by the slow response time of the human eye，the overall brightness is modu－ lated in a consistent flicker－free manner．

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

Figure 4. LED Current Control by DPWM Signal in Dimming

\section*{Full-Scale LED Brightness in DPWM Dimming Control}

The full-scale LED current in the DPWM dimming is determined by resistance from the ISET pin to ground:
\[
\text { LEDMAX }=\frac{20 \mathrm{~mA} \times 200 \mathrm{k} \Omega}{\mathrm{R}_{\text {ISET }}}
\]

The acceptable resistance range is \(133 \mathrm{k} \Omega\) < RISET < \(266 \mathrm{k} \Omega\), which corresponds to full-scale LED current of \(30 \mathrm{~mA}>\operatorname{ILEDMAX}>15 \mathrm{~mA}\). Connect ISET to Vcc for a default full-scale LED current of 25 mA .
The current source output is pulse-width modulated and synchronized with a DPWM signal to reduce jitter and flicker noise in the display.

DPWM Frequency Setting
The MAX17061 uses an internal DPWM signal to perform dimming control. The DPWM frequency is specified by an external resistor connected from FSET pin to GND:
\[
\mathrm{f}_{\mathrm{DPWM}}=\frac{10^{9}}{\alpha \times \mathrm{R}[\Omega]+\gamma}
\]
where: \(\alpha=10.638\)
\[
\gamma=58509
\]

The adjustable range for the FSET resistor, RFSET, is from \(42 \mathrm{k} \Omega\) to \(464 \mathrm{k} \Omega\), corresponding to the DPWM frequency of 200 Hz to 2 kHz .

Figure 5. MAX17061 PWM and SMBus Interface Circuit

\section*{Dimming Control Interfaces}

The MAX17061's dimming control circuit consists of two interfaces: PWM and SMBus. The block diagram of these two input interfaces is shown in Figure 5. The dimming can be performed in three modes: PWM, SMBus, or DPST. In PWM mode, the brightness is adjusted by the PWM signal applied to the PWMI pin. In SMBus mode, the brightness is adjusted by an \(1^{2} \mathrm{C}\) command from uplink processor through the 2-wire SMBus. In DPST mode, the brightness is adjusted by the product of the PWM duty cycle and SMBus command value. This DPWM control provides a dimming range with 8 -bit resolution down to \(2.7 \%\) and supports Intel DPST to maximize battery life.

\title{
8-String White LED Driver with SMBus for LCD Panel Applications
}

\section*{Overvoltage Protection}

The SMBus interface can be used to adjust the dimming, as well as shut down the MAX17061. Before the MAX17061 receives a turn-on command from the SMBus, it automatically remains off. In this low-power state, most of the control circuits are turned off, and only part of LDO is active to provide a loosely regulated output of about 4.35 V on the VCC pin to power the SMBus interface. Even in PWM dimming mode, only the PWMI interface is used for brightness control; the MAX17061 cannot run without the SMBus interface. For sister products without the SMBus interface, contact MAXIM Integrated Products, Inc.

\section*{Dimming Control Register Descriptions}

The MAX17061 includes four registers to monitor and control brightness, fault status, identification, and operating mode. The slave address is 0b0101100.

The MAX17061 uses two multiplexers internally to direct the dimming signal processing (Figure 5). These two multiplexers are controlled by 2 bits of the device control register, PWM_SEL, and PWM_MD, respectively. The PWM_SEL bit selects either the SMBus or the PWM input to control the brightness. The PWM_MD bit selects the mode in which the PWM input is to be interpreted. Table 2 provides a complete setting of the three dimming modes (X means don't care).
In PWM mode, the output LED brightness is solely controlled by the percentage duty cycle of the input signal to PWMI. In SMBus mode, the input of PWMI has no effect on the dimming control, and only the SMBus command to brightness control register adjusts the output brightness. In DPST mode, the overall brightness level is the normalized product of the SMBus command setting and PWM input duty cycle. The PWM signal starts from \(100 \%\) when operating in DPST mode.

Brightness control register: Address is \(0 \times 00\). This register is both readable and writable for all 8 bits, BRT0-BRT7, which are used to control the LED brightness level. In SMBus dimming mode, an SMBus write byte cycle to register \(0 \times 00\) sets the output brightness level. The SMBus setting of 0xFF for this register sets the backlight controller to the maximum brightness output, and 0x00 sets the minimum backlight brightness (about 2.7\%). The default value for register \(0 x 00\) is \(0 x F F\). A write byte cycle to register \(0 x 00\) has no effect when the backlight controller is in PWM mode. The SMBus read byte cycle to register 0x00 returns the current brightness level, regardless of the dimming mode.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{REGISTER 0x00} & \multicolumn{3}{|l|}{BRIGHTNESS CONTROL REGISTER} & \multicolumn{3}{|c|}{DEFAULT VALUE 0xFF} \\
\hline BRT7 & BRT6 & BRT5 & BRT4 & BRT3 & BRT2 & BRT1 & BRTO \\
\hline Bit 7 (R/W) & Bit 6 (R/W) & Bit 5 (R/W) & Bit 4 (R/W) & Bit 3 (R/W) & Bit 2 (R/W) & Bit 1 (R/W) & Bit 0 \\
\hline
\end{tabular}

Bit field definitions:
\begin{tabular}{|c|c|c|}
\hline BIT FIELD & DEFINITION & DESCRIPTION \\
\hline Bit [7..0] & BRT [7..0] & 8-bit brightness setting, adjusting brightness levels in 256 steps, default value is 0xFF. \\
\hline
\end{tabular}

Device control register: Address is \(0 \times 01\). This register is both readable and writable for Bit 0 to Bit 2. Bit 0, also named BL_CTL, is used as ON/OFF control for the output LEDs. Bit 1 and Bit 2, named PWM_SEL and PWM_MD, respectively, control the operating mode of the backlight controller. Bit 3 through Bit 7 are reserved bits. All reserved bits, return zero when read, and are ignored by the controller when written. A value of 1 written to BL_CTL turns on the backlight in 10 ms or less after the write cycle completes. A value of zero written to BL_CTL immediately turns off the backlight.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline REGISTE & \(0 \times 01\) & \multicolumn{3}{|l|}{DEVICE CONTROL REGISTER} & \multicolumn{3}{|c|}{DEFAULT VALUE 0x00} \\
\hline RESERVED & RESERVED & RESERVED & RESERVED & RESERVED & PWM_MD & PWM_SEL & BL_CTL \\
\hline Bit 7 & Bit 6 & Bit 5 & Bit 4 & Bit 3 & Bit 2 (R/W) & Bit 1 (R/W) & Bit 0 (R/W) \\
\hline
\end{tabular}

Bit field definitions:
\begin{tabular}{|c|c|l|}
\hline BIT FIELD & DEFINITION & \multicolumn{1}{c|}{ DESCRIPTION } \\
\hline Bit 2 & PWM_MD & PWM mode select \((1=\) absolute brightness, \(0=\%\) change \()\), default \(=0\) \\
\hline Bit 1 & PWM_SEL & Brightness MUX select \((1=\) PWM pin, \(0=\) SMBus value \()\), default \(=0\) \\
\hline Bit 0 & BL_CTL & BL on/off \((1=\) on, \(0=\) off \()\), default \(=0\) \\
\hline
\end{tabular}

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

Table 2. Operating Modes Selected by Device Control Register Bits 1 and 2
\begin{tabular}{|c|c|c|l|}
\hline PWM_MD & PWM_SEL & MODE & \multicolumn{1}{|c|}{ DPWM DUTY-CYCLE SETTING } \\
\hline\(X\) & 1 & PWM mode & PWMI input duty cycle \\
\hline 1 & 0 & SMBus mode & SMBus command \\
\hline 0 & 0 & DPST mode & Product of PWMI input duty cycle and SMBus command \\
\hline
\end{tabular}

Fault/Status Register: Address is \(0 \times 02\). This register has 6 status bits that allow monitoring the backlight controller's operating state. Bit 6 and Bit 7 are reserved bits, and Bit 3 is the status indicator or backlight. The other 5 bits are fault indicators. Bit 0 is a logical OR of all fault codes except LED open/short to simplify error detection. All the bits in this register are read only. The reserved bits return a zero when read.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{REGISTER 0x02} & \multicolumn{3}{|r|}{FAULT STATUS REGISTER} & \multicolumn{3}{|c|}{DEFAULT VALUE 0x00} \\
\hline RESERVED & RESERVED & 2_CH_SD & 1_CH_SD & BL_STAT & OV_CURR & THRM_SHDN & FAULT \\
\hline Bit 7 (R) & Bit 6 (R) & Bit 5 (R) & Bit 4 (R) & Bit 3 (R) & Bit 2 (R) & Bit 1 (R) & Bit 0 (R) \\
\hline
\end{tabular}

Bit field definitions:
\begin{tabular}{|c|c|l|}
\hline BIT FIELD & DEFINITION & \multicolumn{1}{c|}{ DESCRIPTION } \\
\hline Bit 5 & 2_CH_SD & Two or more LED output channels are faulted \((1=\) faulted, \(0=\) OK) \\
\hline Bit 4 & 1_CH_SD & One LED output channel is faulted (\(1=\) faulted, \(0=\) OK) \\
\hline Bit 3 & BL_STAT & Backlight status (\(1=\) BL on, \(0=\) BL off \()\) \\
\hline Bit 2 & OV_CURR & Input overcurrent \((1=\) overcurrent condition, \(0=\) current OK) \\
\hline Bit 1 & THRM_SHD & Thermal shutdown \((1=\) thermal fault, \(0=\) thermal OK) \\
\hline Bit 0 & FAULT & Any fault except LED open/short occurs (logic OR of all fault conditions, \(1=\) fault condition, \(0=\) no fault \()\) \\
\hline
\end{tabular}

Identification Register: Address is \(0 \times 03\). The ID register contains two bit fields to denote the manufacturer and the silicon revision of the controller IC. The bit field widths were chosen to allow up to 32 vendors with up to eight silicon revisions each. This register is read only.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{REGISTER 0x03} & \multicolumn{2}{|r|}{ID REGISTER} & & \multicolumn{3}{|c|}{DEFAULT VALUE 0x80} \\
\hline LED PANEL & MFG3 & MFG2 & MFG1 & MFG0 & REV2 & REV1 & REVO \\
\hline Bit \(7=1\) & Bit 6 (R) & Bit 5 (R) & Bit 4 (R) & Bit 3 (R) & Bit 2 (R) & Bit 1 (R) & Bit 0 (R) \\
\hline
\end{tabular}

Bit field definitions:
\begin{tabular}{|c|c|l|}
\hline BIT FIELD & DEFINITION & \\
\hline Bit 7 & LED panel & Display panel using LED backlight, bit \(7=1\) \\
\hline Bit [6.3] & MFG[3..0] & Manufacturer ID; see Table 3, default \(=0\) \\
\hline Bit \([2 . .0]\) & REV[2..0] & Silicon rev (revs 0-7 allowed for silicon spins), default \(=0\) \\
\hline
\end{tabular}

\title{
8-String White LED Driver with SMBus for LCD Panel Applications
}

The list of ID values for vendors is shown in Table 3.

Thermal Shutdown
The MAX17061 includes a thermal-protection circuit. When the local IC temperature exceeds \(+160^{\circ} \mathrm{C}\) (typ), the controller and current sources shut down and do not restart until the die temperature drops by \(15^{\circ} \mathrm{C}\). When thermal shutdown occurs, Bit 1 of fault/status register is set to 1.
Table 3. Vendor IDs
\begin{tabular}{|c|c|}
\hline ID & VENDOR \\
\hline 0 & Maxim \\
\hline 1 & Micro Semi \\
\hline 2 & MPS \\
\hline 3 & O2 Micro \\
\hline 4 & TI \\
\hline 5 & ST \\
\hline 6 & Analog Devices \\
\hline \(7-14\) & Reserved \\
\hline 15 & Vendor ID register not implemented \\
\hline
\end{tabular}

Design Procedure
All MAX17061 designs should be prototyped and tested prior to production. Table 4 provides a list of power components for the typical applications circuit. Table 5 lists component suppliers.
External component value choice is primarily dictated by the output voltage and the maximum load current, as well as maximum and minimum input voltages. Begin by selecting an inductor value. Once \(L\) is known, choose the diode and capacitors.

\section*{Step-Up Converter Current Calculation}

At light loads, the MAX17061 automatically skips pulses to improve efficiency and prevent overcharging the output capacitor. The output current for the converter SKIP operation can be calculated by the following equation:
\[
\mathrm{I}_{\mathrm{OSKIP})}<\frac{\mathrm{V}_{\text {IN }}{ }^{2} \times \mathrm{T}_{\mathrm{ON}(\mathrm{MIN})^{2} \times \mathrm{f}_{\mathrm{OSC}}}^{2 \times \mathrm{L} \times\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {DIODE }}-\mathrm{V}_{\text {IN }}\right)}}{\text { (}}
\]
where IO(SKIP) is the output current in SKIP mode, VIN is the input voltage, \(\operatorname{TON}(\mathrm{MIN})\) is the minimum on-time, and \(V_{\text {DIODE }}\) is the forward voltage of rectifier diode D .

\section*{Table 4. Component List}
\begin{tabular}{|c|c|c|}
\hline SWITCHING FREQUENCY & 1MHz & 1MHz \\
\hline White LED & Nichia NSSW008C 3.2 V (typ), 3.5 V (max) at 20 mA & Nichia NSSW008C 3.2 V (typ), 3.5 V (max) at 20 mA \\
\hline Number of WLEDs & 10 pcs \(\times 4\) strings, 25mA (max) & 10 pcs \(\times 8\) strings, 25mA (max) \\
\hline Input Voltage & 7 V to 21 V & 7 V to 21 V \\
\hline Inductor & \(10 \mu \mathrm{H}, 1.2 \mathrm{~A}\) power inductor TDK VLP6810T-100M1R2; Sumida CR6D09HPNP-100MC & \(10 \mu \mathrm{H}, 2.5 \mathrm{~A}\) power inductor TDK SLF10145T-100M2R5-PF \\
\hline Input Capacitors & \(4.7 \mu \mathrm{~F} \pm 10 \%\), 25 V X5R ceramic capacitor (1206) Murata GRM319R61E475KA12D & \(10 \mu \mathrm{~F} \pm 10 \%\), 25 V X5R ceramic capacitor (1206) Murata GRM31CR61E106KA \\
\hline Output Capacitor Cout & \begin{tabular}{l}
\(0.33 \mu \mathrm{~F} \pm 10 \%, 50 \mathrm{~V}\) X7R ceramic capacitor (1206) (6 x) Murata GRM319R71H334K \\
TDK C3216JB1H334K
\end{tabular} & \begin{tabular}{l}
\(1 \mu \mathrm{~F} \pm 10 \%\), 50 V X7R ceramic capacitor (1206) (4 x) Murata GRM31MR71H105KA \\
TDK C3216X7R1H105K
\end{tabular} \\
\hline Diode Rectifier & 0.7A, 60V Schottky diode (US-flat) Toshiba CUSO4 & 3A, 60V Schottky diode Nihon EC31QS06 \\
\hline
\end{tabular}

Table 5. Component Suppliers
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ SUPPLIER } & \multicolumn{1}{c|}{ PHONE } & \multicolumn{1}{c|}{ WEBSITE } \\
\hline Murata & \(770-436-1300\) & www.murata.com \\
\hline Nichia & \(248-352-6575\) & www.nichia.com \\
\hline Sumida & \(847-545-6700\) & www.sumida.com \\
\hline Toshiba & \(949-455-2000\) & www.toshiba.com/taec \\
\hline Vishay & \(203-268-6261\) & www.vishay.com \\
\hline
\end{tabular}

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

To ensure the stable operation, the MAX17061 includes slope compensation, which sets the minimum inductor value. In continuous-conduction mode (CCM), the minimum inductor value is calculated with the following equation:
\[
\mathrm{L}_{\mathrm{CCM}(\mathrm{MIN})}=\frac{\left(\mathrm{V}_{\mathrm{OUT}(\mathrm{MAX})}+\mathrm{V}_{\mathrm{DIODE}}-2 \times \mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}\right) \times \mathrm{R}_{\mathrm{S}}}{2 \times 24.7 \mathrm{mV} \times \mathrm{f}_{\mathrm{OSC}}(\mathrm{MIN})}
\]
where 24.7 mV is a scale factor from the slope compensation, the LCCM(MIN) is the minimum inductor value for stable operation in CCM, and RS \(=12 \mathrm{~m} \Omega\) (typ) is the equivalent sensing scale factor from the controller's internal current-sense circuit.
The controller can also operate in discontinuous conduction mode (DCM). In this mode, the inductor value can be lower, but the peak inductor current is higher than in CCM. In DCM, the maximum inductor value is calculated with the following equation:
\[
\begin{aligned}
\operatorname{LDCM}_{(\text {MAX })} & =\left(1-\frac{V_{I N(M I N)}}{V_{\text {OUT }(M A X)}+V_{\text {DIODE }}}\right) \\
& \times \frac{V_{I N(M I N)}{ }^{2} \times \eta}{2 \times \mathrm{f}_{\mathrm{OSC}(\mathrm{MAX})} \times \mathrm{V}_{\text {OUT }(\text { MAX })} \times \mathrm{l}_{\text {OUT }(M A X)}}
\end{aligned}
\]
where the \(\operatorname{LDCM}(M A X)\) is the maximum inductor value for DCM, \(\eta\) is the nominal regulator efficiency (\(85 \%\)), and IOUT(MAX) is the maximum output current.
The output current capability of the step-up converter is a function of current limit, input voltage, operating frequency, and inductor value. Because the slope compensation is used to stabilize the feedback loop, the inductor current limit depends on the duty cycle, and is determined with the following equation:
\[
\mathrm{LIM}=1.9 \mathrm{~A}+\frac{24.7 \mathrm{mV} \times(0.75-\mathrm{D})}{R_{\mathrm{S}}}
\]
where 24.7 mV is the scale factor from the slope compensation, 1.9A is a typical current limit at \(75 \%\) duty cycle, and \(D\) is the duty cycle.
The output current capability depends on the currentlimit value and operating mode. The maximum output current in CCM is governed by the following equation:
\[
\mathrm{IOUT}_{-} \mathrm{CCM}(\mathrm{MAX})=\left(\mathrm{LIM}-\frac{0.5 \times \mathrm{D} \times \mathrm{V}_{I N}}{\mathrm{f}_{\mathrm{OSC}} \times \mathrm{L}}\right)
\]
where ILIM is the current limit calculated above, \(\eta\) is the nominal regulator efficiency (\(85 \%\)), and \(D\) is the duty cycle. The corresponding duty cycle for this current is:
\[
D=\frac{V_{\text {OUT }}-V_{\text {IN }}+V_{\text {DIODE }}}{V_{\text {OUT }}-I_{\text {LIM }} \times R_{\text {ON }}+V_{\text {DIODE }}}
\]
where VDIODE is the forward voltage of the rectifier diode and RON is the internal MOSFET's on-resistance (0.15 \(\Omega\) typ).

The maximum output current in DCM is governed by the following equation:
\[
I_{O U T} \text { DCM }(M A X)=\frac{L \times I_{\text {LIM }}{ }^{2} \times f_{O S C} \times \eta}{2 \times\left(V_{\text {OUT }}+V_{\text {DIODE }}-V_{I N}\right)}
\]

Inductor Selection
The inductance, peak current rating, series resistance, and physical size should all be considered when selecting an inductor. These factors affect the converter's operating mode, efficiency, maximum output load capability, transient response time, output voltage ripple, and cost.
The maximum output current, input voltage, output voltage, and switching frequency determine the inductor value. Very high inductance minimizes the current ripple, and therefore reduces the peak current, which decreases core losses in the inductor and \(I^{2} R\) losses in the entire power path. However, large inductor values also require more energy storage and more turns of wire, which increases physical size and \(I^{2} R\) copper losses. Low inductor values decrease the physical size, but increase the current ripple and peak current. Finding the best inductor involves the compromises among circuit efficiency, inductor size, and cost.
In choosing an inductor, the first step is to determine the operating mode: continuous conduction mode (CCM) or discontinuous conduction mode (DCM). The MAX17061 has a fixed internal slope compensation that requires minimum inductor value. When CCM mode is chosen, the ripple current and the peak current of the inductor can be minimized. If a small-size inductor is required, DCM mode can be chosen. In DCM mode, the inductor value and size can be minimized, but the inductor ripple current and peak current are higher than those in CCM. The controller can be stable, independent of the internal slope compensation mode, but there is a maximum inductor value requirement to ensure the DCM operating mode.

\title{
8-String White LED Driver with SMBus for LCD Panel Applications
}

The equations used here include a constant LIR, which is the ratio of the inductor peak-to-peak ripple current to the average DC inductor current at the full load current. The controller operates in DCM mode when LIR is higher than 2.0, and it works in CCM mode when LIR is lower than 2.0. The best trade-off between inductor size and converter efficiency for step-up regulators generally has an LIR between 0.3 and 0.5. However, depending on the AC characteristics of the inductor core material and ratio of inductor resistance to other power-path resistances, the best LIR can shift up or down. If the inductor resistance is relatively high, more ripples can be accepted to reduce the number of required turns and increase the wire diameter. If the inductor resistance is relatively low, increasing inductance to lower the peak current can reduce losses throughout the power path. If extremely thin high-resistance inductors are used, as is common for LCD panel applications, LIR higher than 2.0 can be chosen for DCM operating mode.
Once a physical inductor is chosen, higher and lower values of the inductor should be evaluated for efficiency improvements in typical operating regions. The detail design procedure for CCM can be described as follows:

\section*{Inductor Selection in CCM Operation}
1) Calculate the approximate inductor value using the typical input voltage (VIN), the maximum output current (IOUT(MAX)), the expected efficiency (\(\eta_{\text {TYP }}\)) taken from an appropriate curve in the Typical Operating Characteristics, and an estimate of LIR based on the above discussion:
\[
L=\left(\frac{V_{\text {IN_MIN }}}{V_{\text {OUT }}}\right)^{2}\left(\frac{V_{\text {OUT }}-V_{\text {IN_MIN }}}{\text { IOUT(MAX) } \times \text { foSC }}\right)\left(\frac{\eta_{\text {TYP }}}{\text { LIR }}\right)
\]

The MAX17061 has a minimum inductor value limitation for a stable operation in CCM mode at low input voltage because of the internal fixed-slope compensation. The minimum inductor value for stability is calculated with the following equation:
\[
\mathrm{L}_{\mathrm{CCM}(\mathrm{MIN})}=\frac{\left(\mathrm{V}_{\text {OUT }(\mathrm{MAX})}+\mathrm{V}_{\text {DIODE }}-2 \times \mathrm{V}_{\text {IN(MIN })}\right) \times \mathrm{R}_{S}}{2 \times 24.7 \mathrm{mV} \times \mathrm{f}_{\mathrm{OSC}}(\mathrm{MIN})}
\]
where 24.7 mV is a scale factor from slope compensation, and the Rs is the equivalent current-sensing scale factor (12m \(\Omega\) typ):
1) Choose an available inductor value from an appropriate inductor family. Calculate the maximum DC input current at the minimum input voltage VIN(MIN), using conservation of energy and the expected efficiency at that operating point \(\left(\eta_{\mathrm{MIN}}\right)\) taken from an appropriate curve in the Typical Operating Characteristics:
\[
\operatorname{IIN}_{\mathrm{N}(\mathrm{DC}, \mathrm{MAX})}=\frac{\mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})} \times \mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}(\mathrm{MIN})} \times \eta_{\mathrm{MIN}}}
\]
2) Calculate the ripple current at that operating point and the peak current required for the inductor:
\[
\mathrm{I}_{\text {RIPPLE }}=\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})} \times\left(\mathrm{V}_{\mathrm{OUT}(\mathrm{MAX})}-\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}\right)}{\mathrm{L} \times \mathrm{V}_{\mathrm{OUT}(\mathrm{MAX})} \times \mathrm{f}_{\mathrm{OSC}}}
\]

\section*{Inductor Selection in DCM Operation}

When DCM operating mode is chosen to minimize the inductor value, the calculations are different from those above in CCM mode. The maximum inductor value for DCM mode is calculated with the following equation:
The peak-inductor current in DCM is calculated with following equation:
\[
\begin{aligned}
& L_{\text {DCM(MAX) }}=\left(1-\frac{V_{\text {IN(MIN })}}{V_{\text {OUT(MAX) }}+V_{\text {DIODE }}}\right) \\
& \times \frac{\mathrm{V}_{\text {IN(MIN })}{ }^{2} \times \eta}{2 \times \mathrm{f}_{\mathrm{OSC}}(\mathrm{MAX}) \times \mathrm{V}_{\text {OUT }}(\mathrm{MAX}) \times \operatorname{loUT}(\mathrm{MAX})} \\
& I_{\text {PEAK }}=I_{\text {IN(DC,MAX }}+\frac{I_{\text {RIPPLE }}}{2}
\end{aligned}
\]

The inductor's saturation current rating should exceed IPEAK and the inductor's DC current rating should exceed \(\operatorname{IIN}(D C, M A X)\). For good efficiency, choose an inductor with less than \(0.1 \Omega\) series resistance.

\section*{Inductor Selection Design}

\section*{Examples:}

Considering the Typical Operating Circuit with four 10-LED strings and 25 mA LED full-scale current, the maximum load current (IOUT(MAX)) is 100 mA with a 35.9 V output and a minimal input voltage of 7 V .

Choosing a CCM operating mode with LIR \(=1\) at 1 MHz and estimating efficiency of \(85 \%\) at this operating point:
\[
\mathrm{L}=\left(\frac{7 \mathrm{~V}}{35.9 \mathrm{~V}}\right)^{2}\left(\frac{35.9 \mathrm{~V}-7 \mathrm{~V}}{100 \mathrm{~mA} \times 1 \mathrm{MHz}}\right)\left(\frac{0.85}{1}\right)=9.44 \mu \mathrm{H}
\]

In CCM, the inductor has to be higher than \(\operatorname{LCCM}(\mathrm{MIN})\) :
\[
\mathrm{L}_{\mathrm{CCM}(\mathrm{MIN})}=\frac{(35.9 \mathrm{~V}+0.4 \mathrm{~V}-2 \times 7 \mathrm{~V}) \times 12 \mathrm{~m} \Omega}{2 \times 24.7 \mathrm{mV} \times 0.9 \mathrm{MHz}}=6.0 \mu \mathrm{H}
\]
\(\mathrm{A} 10 \mu \mathrm{H}\) inductor is chosen, which is higher than the minimum \(L\) that guarantees stability in CCM.

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

The peak-inductor current at minimum input voltage is calculated as follows:
\[
\begin{aligned}
\text { IPEAK } & =\frac{100 \mathrm{~mA} \times 35.9 \mathrm{~V}}{7 \mathrm{~V} \times 0.85} \\
& +\frac{7 \mathrm{~V} \times(35.9 \mathrm{~V}-7 \mathrm{~V})}{2 \times 10 \mu \mathrm{H} \times 35.9 \mathrm{~V} \times 0.9 \mathrm{MHz}}=0.92 \mathrm{~A}
\end{aligned}
\]

Alternatively, choosing a DCM operating mode at 750 kHz and estimating efficiency of \(85 \%\) at this operating point:
\[
\begin{aligned}
L_{\text {DCM(MAX) }} & =\left(1-\frac{7 \mathrm{~V}}{35.9 \mathrm{~V}+0.4 \mathrm{~V}}\right) \\
& \times \frac{(7 \mathrm{~V})^{2} \times 0.85}{2 \times 0.825 \mathrm{MHz} \times 35.9 \mathrm{~V} \times 100 \mathrm{~mA}}=5.6 \mu \mathrm{H}
\end{aligned}
\]

A \(4.7 \mu \mathrm{H}\) inductor is chosen. The peak inductor current at minimum input voltage is calculated as follows:
\[
\text { IPEAK }=\sqrt{\frac{100 \mathrm{~mA} \times 2 \times 35.9 \mathrm{~V} \times(35.9 \mathrm{~V}+0.4 \mathrm{~V}-7 \mathrm{~V})}{4.7 \mathrm{uH} \times 0.675 \mathrm{MHz} \times 0.85 \times(35.9 \mathrm{~V}+0.4 \mathrm{~V})}}=1.47 \mathrm{~A}
\]

\section*{Output Capacitor Selection}

The total output voltage ripple has two components: the capacitive ripple caused by the charging and discharging on the output capacitor, and the ohmic ripple due to the capacitor's equivalent series resistance (ESR):
\[
\begin{gathered}
V_{\mathrm{RIPPLE}}=\mathrm{V}_{\mathrm{RIPPLE}(\mathrm{C})}+\mathrm{V}_{\mathrm{RIPPLE}(\mathrm{ESR})} \\
V_{\mathrm{RIPPLE}(\mathrm{C})} \approx \frac{\mathrm{IOUT}(\mathrm{MAX})^{\mathrm{C}_{\mathrm{OUT}}}\left(\frac{\mathrm{~V}_{\mathrm{OUT}(\mathrm{MAX})}-\mathrm{V}_{\text {IN(MIN })}}{V_{\mathrm{OUT}(\mathrm{MAX})} \mathrm{f}_{\mathrm{OSC}}}\right)}{} .
\end{gathered}
\]
and:
\[
V_{R I P P L E(E S R)} \approx \operatorname{lPEAK} R_{E S R}(C O U T)
\]
where IPEAK is the peak inductor current (see the Inductor Selection section).
The output voltage ripple should be low enough for the FB_current-source regulation. The ripple voltage should be less than 200 mV p-p. For ceramic capacitors, the output voltage ripple is typically dominated by VRIPPLE(C). The voltage rating and temperature characteristics of the output capacitor must also be considered. The actual capacitance of a ceramic capacitor is reduced by DC voltage biasing. Ensure the selected capacitor has enough capacitance at actual DC biasing.

Rectifier Diode Selection
The MAX17061's high switching frequency demands a high-speed rectifier. Schottky diodes are recommended for most applications because of their fast recovery time and low forward voltage. The diode should be rated to handle the output voltage and the peak switch current. Make sure that the diode's peak current rating is at least IPEAK calculated in the Inductor Selection section and that its breakdown voltage exceeds the output voltage.

\section*{Overvoltage Protection Determination}

The OV protection circuit should ensure the circuit safe operation; therefore, the controller should limit the output voltage within the ratings of all MOSFET, diode, and output capacitor components, while providing sufficient output voltage for LED current regulation. The OV pin is tied to the center tap of a resistive voltage-divider (R1 and R2 in Figure 1) from the high-voltage output. When the controller detects the OV pin voltage reaching the threshold VOV_TH, typically 1.23 V , OV protection is activated. Hence, the step-up converter output overvoltage protection point is:
\[
\mathrm{V}_{\mathrm{OUT}(\mathrm{OVP})}=\mathrm{V}_{\mathrm{OV}_{-} \mathrm{TH}} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
\]

In Figure 1, the output OVP voltage is set to:
\[
\mathrm{V}_{\mathrm{OUT}}(\mathrm{OVP})=1.236 \mathrm{~V} \times\left(1+\frac{2.21 \mathrm{M} \Omega}{61.9 \mathrm{k} \Omega}\right) \approx 45 \mathrm{~V}
\]

\section*{Input Capacitor Selection}

The input capacitor (CIN) filters the current peaks drawn from the input supply and reduces noise injection into the IC. A \(10 \mu \mathrm{~F}\) ceramic capacitor is used in the Typical Operating Circuit (Figure 1) because of the high source impedance seen in typical lab setups. Actual applications usually have much lower source impedance since the step-up regulator often runs directly from the output of another regulated supply. In some applications, CIN can be reduced below the values used in the Typical Operating Circuit (Figure 1). Ensure a low-noise supply at IN by using adequate CIN. Alternatively, greater voltage variation can be tolerated on CIN if IN is decoupled from \(\mathrm{CIN}_{\mathrm{I}}\) using an RC lowpass filter.

\title{
8-String White LED Driver with SMBus for LCD Panel Applications
}

\begin{abstract}
LED Selection and Bias
The series/parallel configuration of the LED load and the full-scale bias current have a significant effect or regulator performance. LED characteristics vary significantly from manufacturer to manufacturer. Consult the respective LED data sheets to determine the range of output voltages for a given brightness and LED current. In general, brightness increases as a function of bias current. This suggests that the number of LEDs could be decreased if higher bias current is chosen; however, high current increases LED temperature and reduces operating life. Improvements in LED technology are resulting in devices with lower forward voltage and while increasing the bias current and light output.
\end{abstract}

LED manufacturers specify LED color at a given LED current. With lower LED current, the color of the emitted light tends to shift toward the blue range of the spectrum. A blue bias is often acceptable for business applications but not for high-image-quality applications such as DVD players. Direct DPWM dimming is a viable solution for reducing power dissipation while maintaining LED color integrity. Careful attention should be paid to switching noise to avoid other display quality problems.
Using fewer LEDs in a string improves step-up converter efficiency, and lowers breakdown voltage requirements of the external MOSFET and diode. The minimum number of LEDs in series should always be greater than maximum input voltage. If the diode voltage drop is lower than maximum input voltage, the voltage drop across the current-sense inputs (FB_) increases and causes excess heating in the IC. Between 8 and 12 LEDs in series are ideal for input voltages up to 20 V .

\section*{Applications Information}

\section*{LED VFB_ Variation}

The MAX17061 has accurate (\(\pm 1.5 \%\)) matching for each current source. However, the forward voltage of each white LED can vary up to \(25 \%\) from part to part. The accumulated voltage difference in each string equates to additional power loss within the IC. For the best efficiency, the voltage difference between strings should be minimized. The difference between lowest voltage string and highest voltage string should be less than 4.8 V (typ). Otherwise, the internal LED shortprotection circuit disables the high FB string.

FB Pin Maximum Voltage
The current through each FB_ pin is controlled only during the step-up converter's on-time. During the converter's off-time, the current sources are turned off. The output voltage does not discharge and stays high. The MAX17061 disables the FB current source to which the string is shorted. In this case, the step-up converter's output voltage is always applied to the disabled FB pin. The FB_ pin can withstand 45 V .

PCB Layout Guidelines Careful PCB layout is important for proper operation. Use the following guidelines for good PCB layout:
1) Minimize the area of high current switching loop of rectifier diode, internal MOSFET, and output capacitor to avoid excessive switching noise.
2) Connect high-current input and output components with short and wide connections. The high-current input loop goes from the positive terminal of the input capacitor to the inductor, to the internal MOSFET, then to the input capacitor's negative terminal. The high-current output loop is from the positive terminal of the input capacitor to the inductor, to the rectifier diode, to the positive terminal of the output capacitors, reconnecting between the output capacitor and input capacitor ground terminals. Avoid using vias in the high-current paths. If vias are unavoidable, use multiple vias in parallel to reduce resistance and inductance.
3) Create a ground island (PGND) consisting of the input and output capacitor ground and negative terminal of the current-sense resistor. Connect all these together with short, wide traces or a small ground plane. Maximizing the width of the powerground traces improves efficiency and reduces out-put-voltage ripple and noise spikes. Create an analog ground island (AGND) consisting of the overvoltage detection divider ground connection, the ISET and FSET resistor connections, CCV capacitor connections, and the device's exposed backside pad. Connect the AGND and PGND islands by connecting the GND pins directly to the exposed backside pad. Make no other connections between these separate ground planes.

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}
4) Place the overvoltage detection divider resistors as close as possible to the OV pin. The divider's center trace should be kept short. Placing the resistors far away causes the sensing trace to become antennas that can pick up switching noise. Avoid running the sensing traces near LX.
5) Place IN pin bypass capacitor as close as possible to the device. The ground connection of the IN bypass capacitor should be connected directly to GND pins with a wide trace.
6) Minimize the size of the LX node while keeping it wide and short. Keep the LX node away from the feedback node and ground. If possible, avoid running the LX node from one side of the PCB to the other. Use DC traces as shield if necessary.
Refer to the MAX17061 evaluation kit for an example of proper board layout.

Pin Configuration

Chip Information
TRANSISTOR COUNT: 21,800
PROCESS: BiCMOS

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

\section*{8-String White LED Driver with SMBus for LCD Panel Applications}
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.```

