

Approved by:

Checked by:

Issued by:

SPECIFICATION

PRODUCT: SAW FILTER

MODEL: HF916.5 F-11

HOPE MICROELECTRONICS CO., LIMITED

Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: <u>sales@hoperf.com</u> http://www.hoperf.com Page 1 of 3

SAW Filter

The **HF916.5** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) filter in a low-profile metal **F-11** case designed to provide front-end selectivity in **916.500** MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

1.Package Dimension (F-11)

3.Matching Circuit

Color: Black or Blue

HF916.5

L=2 turns of 0.5mm insulated Copper, 2.0mm ID

4.Typical Frequency Response

2.Marking

Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com

5.Performance

5-1.Maximum Rating

Rating		Value	Unit
CW RF Power Dissipation	Р	+10	dBm
DC Voltage Between Any Two Pins	$V_{\rm DC}$	± 30V	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	
Operating Temperature Range	T _A	-10 to +60	

5-2. Electronic Characteristics

Characteristic		Minimum	Typical	Maximum	Unit	
Center Frequency (center frequency between 3dB points)		f _C		916.500		MHz
Insertion Loss		IL		3.5	5.0	dB
3dB Pass band		BW ₃		1,200		kHz
Rejection	at $f_{\rm C}$ -21.4MHz (Image)		33	45		
	at <i>f</i> _C -10.7MHz (LO)		20	35		dB
	Ultimate			60		
Temperature	Turnover Temperature	To	25		55	
	Turnover Frequency	f _O		fc		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50 test system with VSWR 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail <u>sales@hoperf.com</u>.