

LM3S316 Microcontroller

DATA SHEET

Copyright © 2006 Luminary Micro, Inc.

Legal Disclaimers and Trademark Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.

Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro sales office or your distributor to obtain the latest specifications before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2006 Luminary Micro, Inc. All rights reserved. Stellaris and the Luminary Micro logo are trademarks of Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks, and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Luminary Micro, Inc. 2499 South Capital of Texas Hwy, Suite A-100 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com

LUMINARYMICRO

Table of Contents

Legal	Disclaimers and Trademark Information	. 2
Revisi	on History	18
About	This Document	19
Audiend	ce	19
About T	his Manual	19
Related	Documents	19
Docume	entation Conventions	19
1.	Architectural Overview	22
1.1	Product Features	22
1.2	Target Applications	26
1.3	High-Level Block Diagram	27
1.4	Functional Overview	28
1.4.1	ARM Cortex™-M3	28
1.4.2	Motor Control Peripherals	28
1.4.3	Analog Peripherals	29
1.4.4	Serial Communications Peripherals	
1.4.5	System Peripherals	
1.4.6	Memory Peripherals	
1.4.7	Additional Features	
1.4.8	Hardware Details	
1.5	System Block Diagram	
2.	ARM Cortex-M3 Processor Core	
2.1	Block Diagram	
2.2	Functional Description	35
2.2.1	Serial Wire and JTAG Debug	
2.2.2	Embedded Trace Macrocell (ETM)	
2.2.3	Trace Port Interface Unit (TPIU)	
2.2.4	ROM Table	
2.2.5	Memory Protection Unit (MPU)	
2.2.6	Nested Vectored Interrupt Controller (NVIC)	
3.	Метогу Мар	
4.	Interrupts	39
5.	JTAG Interface	42
5.1	Block Diagram	43
5.2	Functional Description	
5.2.1	JTAG Interface Pins	
5.2.2	JTAG TAP Controller	
5.2.3	Shift Registers	
5.2.4	Operational Considerations	
5.3	Initialization and Configuration	
5.4	Register Descriptions	
5.4.1	Instruction Register (IR)	
5.4.2	Data Registers	
6.	System Control	
6.1	Functional Description	
6.1.1	Device Identification	52

6.1.2	Reset Control	52
6.1.3	Power Control	
6.1.4	Clock Control	
6.1.5	System Control	
6.2	Initialization and Configuration	
6.3	Register Map	
6.4	Register Descriptions	59
7.	Internal Memory	94
7.1	Block Diagram	
7.2	Functional Description	
7.2.1	SRAM Memory	
7.2.2	Flash Memory	
7.3	Initialization and Configuration	
7.3.1	Changing Flash Protection Bits	
7.3.2	Flash Programming	
7.4	Register Map	
7.5	Register Descriptions	98
8.	General-Purpose Input/Outputs (GPIOs)	108
8.1	Block Diagram	
8.2	Functional Description	
8.2.1	Data Register Operation	
-		
8.2.2	Data Direction	
8.2.3	Interrupt Operation	
8.2.4	Mode Control	
8.2.5	Pad Configuration	
8.2.6	Identification	
8.3	Initialization and Configuration	
8.4	Register Map	114
8.5	Register Descriptions	115
9.	General-Purpose Timers	146
9.1	Block Diagram	
9.2	Functional Description	
9.2.1	GPTM Reset Conditions	
9.2.1	32-Bit Timer Operating Modes	
9.2.2 9.2.3	16-Bit Timer Operating Modes	
9.2.3 9.3	Initialization and Configuration	
9.3.1	32-Bit One-Shot/Periodic Timer Mode	
9.3.2	32-Bit Real-Time Clock (RTC) Mode	
9.3.3	16-Bit One-Shot/Periodic Timer Mode	
9.3.4	16-Bit Input Edge Count Mode	
9.3.5	16-Bit Input Edge Timing Mode	
9.3.6	16-Bit PWM Mode	
9.4	Register Map	156
9.5	Register Descriptions	157
10.	Watchdog Timer	178
10.1	Block Diagram	
10.1	Functional Description	
	•	
10.3	Initialization and Configuration	
10.4	Register Map	179

10.5	Register Descriptions	. 180
11.	Analog-to-Digital Converter (ADC)	201
11.1	Block Diagram	
11.2	Functional Description	. 202
11.2.1	Sample Sequencers	. 202
11.2.2	Module Control	. 203
11.2.3	Hardware Sample Averaging Circuit	. 204
11.2.4	Analog-to-Digital Converter	. 204
11.2.5	Test Modes	
11.2.6	Internal Temperature Sensor	
11.3	Initialization and Configuration	
11.3.1	Module Initialization	
11.3.2	Sample Sequencer Configuration	
11.4	Register Map	
11.5	Register Descriptions	
12.	Universal Asynchronous Receivers/Transmitters (UARTs)	
12.1	Block Diagram	
12.2	Functional Description	
12.2.1	Transmit/Receive Logic	
12.2.2	Baud-Rate Generation	
12.2.3	Data Transmission	
12.2.4 12.2.5	FIFO Operation Interrupts	
12.2.5	Loopback Operation	
12.2.0	Initialization and Configuration	
12.4	Register Map	
12.5	Register Descriptions	
13.	Synchronous Serial Interface (SSI)	
13.1	Block Diagram	
13.2	Functional Description	
13.2.1	Bit Rate Generation	
13.2.2	FIFO Operation	
13.2.3	Interrupts	
13.2.4	Frame Formats	
13.3	Initialization and Configuration	. 276
13.4	Register Map	. 277
13.5	Register Descriptions	. 278
14.	Inter-Integrated Circuit (I2C) Interface	302
14.1	Block Diagram	
14.2	Functional Description	
14.2.1	I ² C Bus Functional Overview	
14.2.2	Available Speed Modes	
14.3	Initialization and Configuration	. 311
14.4	Register Map	. 311
14.5	Register Descriptions (I2C Master)	. 312
14.6	Register Descriptions (I2C Slave)	. 326
15.	Analog Comparator	334
15.1	Block Diagram	
15.2	Functional Description	
	·	

15.2.1 15.3	Internal Reference Programming Initialization and Configuration	336
15.4 15.5	Register Map Register Descriptions	
16.	Pulse Width Modulator (PWM)	
16.1	Block Diagram	
16.2	Functional Description	345
16.2.1	PWM Timer	345
16.2.2	PWM Comparators	
16.2.3	PWM Signal Generator	
16.2.4 16.2.5	Dead-Band Generator Interrupt/ADC-Trigger Selector	
16.2.5	Synchronization Methods	
16.2.7	Fault Conditions	
16.2.8	Output Control Block	
16.3	Initialization and Configuration	
16.4	Register Map	
16.5	Register Descriptions	
17.	Pin Diagram	
18.	Signal Tables	378
19.	Operating Characteristics	388
20.	Electrical Characteristics	
20.1	DC Characteristics	
20.1.1	Maximum Ratings	
20.1.2	Recommended DC Operating Conditions	
20.1.3 20.1.4	On-Chip Low Drop-Out (LDO) Regulator Characteristics	
20.1.4	Flash Memory Characteristics	
20.2	AC Characteristics	
20.2.1	Load Conditions	
20.2.2	Clocks	
	Temperature Sensor	
	Analog-to-Digital Converter	
20.2.5	Analog Comparator	394
	I ² C Synchronous Serial Interface (SSI)	
ZU.Z.1	SAUCUTODORS SERVICIEDAGE (220	390
		208
20.2.8	JTAG and Boundary Scan	
20.2.8 20.2.9	JTAG and Boundary Scan General-Purpose I/O	400
20.2.8 20.2.9	JTAG and Boundary Scan	400 400
20.2.8 20.2.9 20.2.10 21.	JTAG and Boundary Scan General-Purpose I/O Reset	400 400 403
20.2.8 20.2.9 20.2.10 21.	JTAG and Boundary Scan General-Purpose I/O Reset Package Information	400 400 403 404
20.2.8 20.2.9 20.2.10 21. Appen A.1 A.1.1	JTAG and Boundary Scan General-Purpose I/O Reset Package Information dix A. Serial Flash Loader	400 400 403 404 404
20.2.8 20.2.9 20.2.10 21. A.1 A.1.1 A.1.1 A.1.2	JTAG and Boundary Scan	400 400 403 404 404 404 404
20.2.8 20.2.9 20.2.10 21. Appen A.1 A.1.1 A.1.2 A.2	JTAG and Boundary Scan	400 400 403 404 404 404 404 404
20.2.8 20.2.9 20.2.10 21. Appen A.1 A.1.1 A.1.2 A.2 A.2.1	JTAG and Boundary Scan	400 400 403 404 404 404 404 404 405
20.2.8 20.2.9 20.2.10 21. Appen A.1 A.1.1 A.1.2 A.2 A.2.1 A.2.1 A.2.2	JTAG and Boundary Scan	400 400 403 404 404 404 404 404 405 405
20.2.8 20.2.9 20.2.10 21. Appen A.1 A.1.1 A.1.2 A.2 A.2.1	JTAG and Boundary Scan	400 400 403 404 404 404 404 405 405 405

COMMAND_PING (0x20)	406
COMMAND_GET_STATUS (0x23)	406
COMMAND_DOWNLOAD (0x21)	406
COMMAND_SEND_DATA (0x24)	406
COMMAND RUN (0x22)	407
COMMAND_RESET (0x25)	
Ordering and Contact Information	
ng Information	
Development Kit	
Company Information	
rt Information	
	COMMAND_DOWNLOAD (0x21). COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25) ing and Contact Information pment Kit uny Information

List of Figures

Figure 1-1.	Stellaris High-Level Block Diagram	27
Figure 1-2.	LM3S316 Controller System-Level Block Diagram	33
Figure 2-1.	CPU Block Diagram	35
Figure 2-2.	TPIU Block Diagram	36
Figure 5-1.	JTAG Module Block Diagram	43
Figure 5-2.	Test Access Port State Machine	
Figure 5-3.	IDCODE Register Format	50
Figure 5-4.	BYPASS Register Format	
Figure 5-5.	Boundary Scan Register Format	
Figure 6-1.	External Circuitry to Extend Reset	
Figure 6-2.	Main Clock Tree	
Figure 7-1.	Flash Block Diagram	94
Figure 8-1.	GPIO Module Block Diagram	
Figure 8-2.	GPIO Port Block Diagram	
Figure 8-3.	GPIODATA Write Example	
Figure 8-4.	GPIODATA Read Example	
Figure 9-1.	GPTM Module Block Diagram	
Figure 9-2.	16-Bit Input Edge Count Mode Example	
Figure 9-3.	16-Bit Input Edge Time Mode Example	
Figure 9-4.	16-Bit PWM Mode Example	
Figure 10-1.	WDT Module Block Diagram	178
Figure 11-1.	ADC Module Block Diagram	202
Figure 11-2.	Internal Temperature Sensor Characteristic	204
Figure 12-1.	UART Module Block Diagram	232
Figure 12-2.	UART Character Frame	233
Figure 13-1.	SSI Module Block Diagram	267
Figure 13-2.	TI Synchronous Serial Frame Format (Single Transfer)	269
Figure 13-3.	TI Synchronous Serial Frame Format (Continuous Transfer)	270
Figure 13-4.	Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0	271
Figure 13-5.	Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0	271
Figure 13-6.	Freescale SPI Frame Format with SPO=0 and SPH=1	272
Figure 13-7.	Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0	272
Figure 13-8.	Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0	273
Figure 13-9.	Freescale SPI Frame Format with SPO=1 and SPH=1	273
Figure 13-10.	MICROWIRE Frame Format (Single Frame)	274
Figure 13-11.	MICROWIRE Frame Format (Continuous Transfer)	275
Figure 13-12.	MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements	276
Figure 14-1.	I ² C Block Diagram	302
Figure 14-2.	I ² C Bus Configuration	
Figure 14-3.	Data Validity During Bit Transfer on the I ² C Bus	
Figure 14-4.	START and STOP Conditions	303
Figure 14-5.	Complete Data Transfer with a 7-Bit Address	304
Figure 14-6.	R/S Bit in First Byte	
Figure 14-7.	Master Single SEND	
Figure 14-8.	Master Single RECEIVE	
Figure 14-9.	Master Burst SEND	307

	Master Burst RECEIVE	
Figure 14-11.	Master Burst RECEIVE after Burst SEND	. 309
Figure 14-12.	Master Burst SEND after Burst RECEIVE	. 309
Figure 14-13.	Slave Command Sequence	. 310
Figure 15-1.	Analog Comparator Module Block Diagram	. 334
Figure 15-2.	Structure of Comparator Unit	. 335
Figure 15-3.	Comparator Internal Reference Structure	. 336
Figure 16-1.	PWM Module Block Diagram	. 345
Figure 16-2.	PWM Count-Down Mode	. 346
Figure 16-3.	PWM Count-Up/Down Mode	
Figure 16-4.	PWM Generation Example In Count-Up/Down Mode	. 347
Figure 16-5.	PWM Dead-Band Generator	
Figure 17-1.	Pin Connection Diagram	
Figure 20-1.	Load Conditions	. 392
Figure 20-2.	I ² C Timing	. 395
Figure 20-3.	SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement	
Figure 20-4.	SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer	. 397
Figure 20-5.	SSI Timing for SPI Frame Format (FRF=00), with SPH=1	. 397
Figure 20-6.	JTAG Test Clock Input Timing	
Figure 20-7.	JTAG Test Access Port (TAP) Timing	. 399
Figure 20-8.	JTAG TRST Timing	. 399
Figure 20-9.	External Reset Timing (RST)	. 401
-	Power-On Reset Timing	
Figure 20-11.	Brown-Out Reset Timing	. 401
Figure 20-12.	Software Reset Timing	. 401
Figure 20-13.	Watchdog Reset Timing	. 402
-	LDO Reset Timing	
Figure 21-1.	48-Pin LQFP Package	. 403

List of Tables

Table 0-1.	Documentation Conventions	19
Table 3-1.	Memory Map	37
Table 4-1.	Exception Types	39
Table 4-2.	Interrupts	40
Table 5-1.	JTAG Port Pins Reset State	
Table 5-2.	JTAG Instruction Register Commands	48
Table 6-1.	System Control Register Map	58
Table 6-2.	VADJ to VOUT	71
Table 6-3.	PLL Mode Control	
Table 6-4.	Default Crystal Field Values and PLL Programming	83
Table 7-1.	Flash Protection Policy Combinations	96
Table 7-2.	Flash Register Map	97
Table 8-1.	GPIO Pad Configuration Examples	. 113
Table 8-2.	GPIO Interrupt Configuration Example	. 113
Table 8-3.	GPIO Register Map	. 114
Table 9-1.	16-Bit Timer With Prescaler Configurations	. 150
Table 9-2.	GPTM Register Map	. 156
Table 10-1.	WDT Register Map	. 179
Table 11-1.	Samples and FIFO Depth of Sequencers	202
Table 11-2.	ADC Register Map	. 205
Table 12-1.	UART Register Map	. 236
Table 13-1.	SSI Register Map	
Table 14-1.	Examples of I ² C Master Timer Period versus Speed Mode	
Table 14-2.	I ² C Register Map	
Table 14-3.	Write Field Decoding for I2CMCS[3:0] Field	
Table 15-1.	Comparator 0 Operating Modes	
Table 15-2.	Internal Reference Voltage and ACREFCTL Field Values	
Table 15-3.	Analog Comparator Register Map	
Table 16-1.	PWM Register Map	. 350
Table 16-2.	PWM Generator Action Encodings	
Table 18-1.	Signals by Pin Number	
Table 18-2.	Signals by Signal Name	
Table 18-3.	Signals by Function, Except for GPIO	
Table 18-4.	GPIO Pins and Alternate Functions	
Table 19-1.	Temperature Characteristics	
Table 19-2.	Thermal Characteristics	. 388
Table 20-1.	Maximum Ratings	
Table 20-2.	Recommended DC Operating Conditions	
Table 20-3.	LDO Regulator Characteristics	
Table 20-4.	Power Specifications	
Table 20-5.	Flash Memory Characteristics	
Table 20-6.	Phase Locked Loop (PLL) Characteristics	
Table 20-7.	Clock Characteristics	
Table 20-8.	Temperature Sensor Characteristics	
Table 20-9.	ADC Characteristics	
Table 20-10.	Analog Comparator Characteristics	. 394
Table 20-11.	Analog Comparator Voltage Reference Characteristics	
Table 20-12.	I ² C Characteristics	

Table 20-13.	SSI Characteristics	. 396
Table 20-14.	JTAG Characteristics	. 398
Table 20-15.	GPIO Characteristics	. 400
Table 20-16.	Reset Characteristics	. 400

List of Registers

System C	ontrol	
Register 1:	Device Identification 0 (DID0), offset 0x000	60
Register 2:	Device Identification 1 (DID1), offset 0x004	61
Register 3:	Device Capabilities 0 (DC0), offset 0x008	63
Register 4:	Device Capabilities 1 (DC1), offset 0x010	64
Register 5:	Device Capabilities 2 (DC2), offset 0x014	66
Register 6:	Device Capabilities 3 (DC3), offset 0x018	67
Register 7:	Device Capabilities 4 (DC4), offset 0x01C	
Register 8:	Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030	70
Register 9:	LDO Power Control (LDOPCTL), offset 0x034	
Register 10	: Software Reset Control 0 (SRCR0), offset 0x040	72
Register 11	: Software Reset Control 1 (SRCR1), offset 0x044	73
Register 12		
Register 13		
Register 14		
Register 15	: Masked Interrupt Status and Clear (MISC), offset 0x058	
Register 16	: Reset Cause (RESC), offset 0x05C	79
Register 17		
Register 18		
Register 19	: Run-Mode Clock Gating Control 0 (RCGC0), offset 0x100	
Register 20		
Register 21		
Register 22		
Register 23		
Register 24		
Register 25		
Register 26		
Register 27		
Register 28		
Register 29		
Register 30		
	lemory	
Register 1:	Flash Memory Protection Read Enable (FMPRE), offset 0x130	
Register 2:	Flash Memory Protection Program Enable (FMPPE), offset 0x134	
Register 3:	USec Reload (USECRL), offset 0x140	
Register 4:	Flash Memory Address (FMA), offset 0x000	
Register 5:	Flash Memory Data (FMD), offset 0x004	
Register 6:	Flash Memory Control (FMC), offset 0x008	
Register 7:	Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C	
Register 8:	Flash Controller Interrupt Mask (FCIM), offset 0x010	
Register 9:	Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014	
	Purpose Input/Outputs (GPIOs)	
Register 1:	GPIO Data (GPIODATA), offset 0x000	
Register 2:	GPIO Direction (GPIODIR), offset 0x400	
Register 3:	GPIO Interrupt Sense (GPIOIS), offset 0x404	
Register 4:	GPIO Interrupt Both Edges (GPIOIBE), offset 0x408	

Register 5:	GPIO Interrupt Event (GPIOIEV), offset 0x40C	120
Register 6:	GPIO Interrupt Mask (GPIOIM), offset 0x410	121
Register 7:	GPIO Raw Interrupt Status (GPIORIS), offset 0x414	122
Register 8:	GPIO Masked Interrupt Status (GPIOMIS), offset 0x418	123
Register 9:	GPIO Interrupt Clear (GPIOICR), offset 0x41C	
Register 10:	GPIO Alternate Function Select (GPIOAFSEL), offset 0x420	125
Register 11:	GPIO 2-mA Drive Select (GPIODR2R), offset 0x500	126
Register 12:	GPIO 4-mA Drive Select (GPIODR4R), offset 0x504	127
Register 13:	GPIO 8-mA Drive Select (GPIODR8R), offset 0x508	128
Register 14:	GPIO Open Drain Select (GPIOODR), offset 0x50C	129
Register 15:	GPIO Pull-Up Select (GPIOPUR), offset 0x510	
Register 16:	GPIO Pull-Down Select (GPIOPDR), offset 0x514	
Register 17:	GPIO Slew Rate Control Select (GPIOSLR), offset 0x518	
Register 18:	GPIO Digital Input Enable (GPIODEN), offset 0x51C	
Register 19:	GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0	
Register 20:	GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4	
Register 21:	GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8	
Register 22:	GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC	137
Register 23:	GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0	
Register 24:	GPIO Peripheral Identification 1(GPIOPeriphID1), offset 0xFE4	139
Register 25:	GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8	140
Register 26:	GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC	141
Register 27:	GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0	
Register 28:	GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4	143
Register 29:	GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8	144
Register 30:	GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC	145
General-Pur	pose Timers	146
Register 1:	GPTM Configuration (GPTMCFG), offset 0x000	158
Register 2:	GPTM TimerA Mode (GPTMTAMR), offset 0x004	159
Register 3:	GPTM TimerB Mode (GPTMTBMR), offset 0x008	
Register 4:	GPTM Control (GPTMCTL), offset 0x00C	161
Register 5:	GPTM Interrupt Mask (GPTMIMR), offset 0x018	
Register 6:	GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C	165
Register 7:	GPTM Masked Interrupt Status (GPTMMIS), offset 0x020	
Register 8:	GPTM Interrupt Clear (GPTMICR), offset 0x024	
Register 9:	GPTM TimerA Interval Load (GPTMTAILR), offset 0x028	168
Register 10:	GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C	169
Register 11:	GPTM TimerA Match (GPTMTAMATCHR), offset 0x030	170
Register 12:	GPTM TimerB Match (GPTMTBMATCHR), offset 0x034	171
Register 13:	GPTM TimerA Prescale (GPTMTAPR), offset 0x038	172
Register 14:	GPTM TimerB Prescale (GPTMTBPR), offset 0x03C	173
Register 15:	GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040	
Register 16:	GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044	
Register 17:	GPTM TimerA (GPTMTAR), offset 0x048	
Register 18:	GPTM TimerB (GPTMTBR), offset 0x04C	177
Watchdog T	imer	178
Register 1:	Watchdog Load (WDTLOAD), offset 0x000	
Register 2:	Watchdog Value (WDTVALUE), offset 0x004	

Register 3:	Watchdog Control (WDTCTL), offset 0x008	183
Register 4:	Watchdog Interrupt Clear (WDTICR), offset 0x00C	184
Register 5:	Watchdog Raw Interrupt Status (WDTRIS), offset 0x010	185
Register 6:	Watchdog Masked Interrupt Status (WDTMIS), offset 0x014	186
Register 7:	Watchdog Lock (WDTLOCK), offset 0xC00	187
Register 8:	Watchdog Test (WDTTEST), offset 0x418	188
Register 9:	Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0	189
Register 10:	Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4	
Register 11:	Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8	
Register 12:	Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC	192
Register 13:	Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0	193
Register 14:	Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4	194
Register 15:	Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8	195
Register 16:	Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC	
Register 17:	Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0	
Register 18:	Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4	
Register 19:	Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8	
Register 20:	Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC	
•	ligital Converter (ADC)	
Register 1:	ADC Active Sample Sequencer (ADCACTSS), offset 0x000	
Register 2:	ADC Raw Interrupt Status (ADCRIS), offset 0x004	
Register 3:	ADC Interrupt Mask (ADCIM), offset 0x008	
Register 4:	ADC Interrupt Status and Clear (ADCISC), offset 0x00C	
Register 5:	ADC Overflow Status (ADCOSTAT), offset 0x010	
Register 6:	ADC Event Multiplexer Select (ADCEMUX), offset 0x014	
Register 7:	ADC Underflow Status (ADCUSTAT), offset 0x018	
Register 8:	ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020	
Register 9:	ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028	
Register 10:	ADC Sample Averaging Control (ADCSAC), offset 0x030	
Register 11:	ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040	
Register 12:	ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044	
Register 12:	ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048	
Register 14:	ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C	
Register 15:	ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060	
Register 16:	ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064	
Register 17:	ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068	
Register 18:	ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C	
Register 19:	ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080	
Register 20:	ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084	
Register 21:	ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088	
Register 22:	ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C	
Register 23:	ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0	
Register 24:	ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x064	
Register 25:	ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8	
Register 26:	ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC	
Register 27:	ADC Test Mode Loopback (ADCTMLB), offset 0x100	
Universal A	synchronous Receivers/Transmitters (UARTs)	231
Register 1:	UART Data (UARTDR), offset 0x000	

Register 2:	UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004	
Register 3:	UART Flag (UARTFR), offset 0x018	
Register 4:	UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024	
Register 5:	UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028	
Register 6:	UART Line Control (UARTLCRH), offset 0x02C	
Register 7:	UART Control (UARTCTL), offset 0x030	
Register 8:	UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034	
Register 9:	UART Interrupt Mask (UARTIM), offset 0x038	
Register 10:	UART Raw Interrupt Status (UARTRIS), offset 0x03C	
Register 11:	UART Masked Interrupt Status (UARTMIS), offset 0x040	
Register 12:	UART Interrupt Clear (UARTICR), offset 0x044	
Register 13:	UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0	
Register 14:	UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4	
Register 15:	UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8	
Register 16:	UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC	
Register 17:	UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0	
Register 18:	UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4	
Register 19:	UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8	
Register 20:	UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC	
Register 21:	UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0	
Register 22:	UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4	
Register 23:	UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8	
Register 24:	UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC	
Synchronou	is Serial Interface (SSI)	
Register 1:	SSI Control 0 (SSICR0), offset 0x000	
Register 2:	SSI Control 1 (SSICR1), offset 0x004	
Register 3:	SSI Data (SSIDR), offset 0x008	
Register 4:	SSI Status (SSISR), offset 0x00C	
Register 5:	SSI Clock Prescale (SSICPSR), offset 0x010	
Register 6:	SSI Interrupt Mask (SSIIM), offset 0x014	
Register 7:	SSI Raw Interrupt Status (SSIRIS), offset 0x018	
Register 8:	SSI Masked Interrupt Status (SSIMIS), offset 0x01C	
Register 9:	SSI Interrupt Clear (SSIICR), offset 0x020	
Register 10:	SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0	
Register 11:	SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4	
Register 12:	SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8	
Register 13:	SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC	
Register 14:	SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0	
Register 15:	SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4	
Register 16:	SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8	
Register 17:	SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC	
Register 18:	SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0	
Register 19:	SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4	
Register 20:	SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8	
Register 21:	SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC	
Inter-Integra	ted Circuit (I2C) Interface	302
Register 1:	I2C Master Slave Address (I2CMSA), offset 0x000	
Register 2:	I2C Master Control/Status (I2CMCS), offset 0x004	

Register 3:	I2C Master Data (I2CMDR), offset 0x008	
Register 4:	I ² C Master Timer Period (I2CMTPR), offset 0x00C	
Register 5:	I ² C Master Interrupt Mask (I2CMIMR), offset 0x010	
Register 6:	I ² C Master Raw Interrupt Status (I2CMRIS), offset 0x014	
Register 7:	I ² C Master Masked Interrupt Status (I2CMMIS), offset 0x018	
Register 8:	I ² C Master Interrupt Clear (I2CMICR), offset 0x01C	
Register 9:	I ² C Master Configuration (I2CMCR), offset 0x020	
Register 10:	I ² C Slave Own Address (I2CSOAR), offset 0x000	
Register 11:	I ² C Slave Control/Status (I2CSCSR), offset 0x004	
Register 12:	I ² C Slave Data (I2CSDR), offset 0x008	
Register 13:	I ² C Slave Interrupt Mask (I2CSIMR), offset 0x00C	
Register 14:	I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x010	331
Register 15:	I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x014	
Register 16:	I ² C Slave Interrupt Clear (I2CSICR), offset 0x018	
•	parator	
Register 1:	Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00	
Register 1:	Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04	
-	Analog Comparator Interrupt Enable (ACINTEN), offset 0x04	
Register 3:		
Register 4:	Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10	
Register 5:	Analog Comparator Status 0 (ACSTAT0), offset 0x20	
Register 6:	Analog Comparator Control 0 (ACCTL0), offset 0x24	
	Modulator (PWM)	
Register 1:	PWM Master Control (PWMCTL), offset 0x000	
Register 2:	PWM Time Base Sync (PWMSYNC), offset 0x004	
Register 3:	PWM Output Enable (PWMENABLE), offset 0x008	
Register 4:	PWM Output Inversion (PWMINVERT), offset 0x00C	
Register 5:	PWM Output Fault (PWMFAULT), offset 0x010	
Register 6:	PWM Interrupt Enable (PWMINTEN), offset 0x014	
Register 7:	PWM Raw Interrupt Status (PWMRIS), offset 0x018	
Register 8:	PWM Interrupt Status and Clear (PWMISC), offset 0x01C	359
Register 9:	PWM Status (PWMSTATUS), offset 0x020	
Register 10:	PWM0 Control (PWM0CTL), offset 0x040	
Register 11:	PWM1 Control (PWM1CTL), offset 0x080	
Register 12:	PWM0 Interrupt/Trigger Enable (PWM0INTEN), offset 0x044	
Register 13:	PWM1 Interrupt/Trigger Enable (PWM1INTEN), offset 0x084	
Register 14:	PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048	
Register 15:	PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088	
Register 16:	PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C	
Register 17:	PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C	
Register 18:	PWM0 Load (PWM0LOAD), offset 0x050	
Register 19:	PWM1 Load (PWM1LOAD), offset 0x090	
Register 20:	PWM0 Counter (PWM0COUNT), offset 0x054	
Register 21:	PWM1 Counter (PWM1COUNT), offset 0x094	
Register 22:	PWM0 Compare A (PWM0CMPA), offset 0x058	
Register 23:	PWM1 Compare A (PWM1CMPA), offset 0x098	
Register 24:	PWM0 Compare B (PWM0CMPB), offset 0x05C	
Register 25:	PWM1 Compare B (PWM1CMPB), offset 0x09C	
Register 26:	PWM0 Generator A Control (PWM0GENA), offset 0x060	
Register 27:	PWM1 Generator A Control (PWM1GENA), offset 0x0A0	

Register 28:	PWM0 Generator B Control (PWM0GENB), offset 0x064	
Register 29:	PWM1 Generator B Control (PWM1GENB), offset 0x0A4	
Register 30:	PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068	
Register 31:	PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8	
Register 32:	PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C	
Register 33:	PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC	
Register 34:	PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070	
Register 35:	PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0	
rtogiotor oo.	T With Boad Band Failing Eage Boldy (FWith BBF AEE), enout except	

Revision History

This table provides a summary of the document revisions.

Date	Revision	Description
May 2006	00	Initial public release of LM3S301, LM3S310, LM3S315, and LM3S316 data sheets.
July 2006	01	Second release of LM3S301, LM3S310, LM3S315, and LM3S316 data sheets. Includes the following changes:
		 Added initialization and configuration content into PWM, I2C, Comparators, and JTAG chapters. Modified MAXADCSPD bit description to show how to set speed lower. Clarified that peripheral clock must be set before enabling peripherals in "Initialization and Configuration" sections.
October 2006	02	Third release of LM3S301, LM3S310, LM3S315, and LM3S316 data sheets. Includes the following changes:
		 Added information on hardware averaging to the ADC chapter. Updated the clocking examples in the I2C chapter. Added Serial Flash Loader usage information. Added "5-V-tolerant" description for GPIOs to feature list, GPIO chapter, and Electrical chapter. Added maximum values for 20 MHz and 25 MHz parts to Table 9-1, "16-Bit
		 Timer With Prescaler Configurations" in the Timers chapter. Made the following changes in the System Control chapter: Updated field descriptions in the Run-Mode Clock Configuration (RCC) register and the Device Identification 1 (DID1) register. Updated the internal oscillator clock speed. Added the Deep-Sleep Clock Configuration (DSLPCFG) register. Added bus fault information to the clock gating registers.

About This Document

This data sheet provides reference information for the LM3S316 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex[™]-M3 core.

Audience

This manual is intended for system software developers, hardware designers, and application developers.

About This Manual

This document is organized into sections that correspond to each major feature.

Related Documents

The following documents are referenced by the data sheet, and available on the documentation CD or from the Luminary Micro web site at www.luminarymicro.com:

- ARM® Cortex™-M3 Technical Reference Manual
- CoreSight™ Design Kit Technical Reference Manual
- ARM® v7-M Architecture Application Level Reference Manual

The following related documents are also referenced:

IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the Luminary Micro web site for additional documentation, including application notes and white papers.

Documentation Conventions

This document uses the conventions shown in Table 0-1.

Table 0-1. Documentation Conventions

Notation	Meaning	
General Register Notation		
REGISTER	APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, SRCRn represents any (or all) of the three Software Reset Control registers: SRCR0 , SRCR1 , and SRCR2 .	
bit	A single bit in a register.	
bit field	Two or more consecutive and related bits.	
offset 0x <i>nnn</i>	A hexadecimal increment to a register's address, relative to that module's base address as specified in Table 3-1, "Memory Map," on page 37.	

Table 0-1. Do	umentation Conventions
---------------	------------------------

Notation	Meaning
Register N	Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software.
reserved	Register bits marked reserved are reserved for future use. Reserved bits return an indeterminate value, and should never be changed. Only write a reserved bit with its current value.
yy:xx	The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register.
Register Bit/Field Types	This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field.
RO	Software can read this field. Always write the chip reset value.
R/W	Software can read or write this field.
R/W1C	Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.
	This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read.
W1C	Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data.
	This register is typically used to clear the corresponding bit in an interrupt register.
WO	Only a write by software is valid; a read of the register returns no meaningful data.
Register Bit/Field Reset Value	This value in the register bit diagram shows the bit/field value after any reset, unless noted.
0	Bit cleared to 0 on chip reset.
1	Bit set to 1 on chip reset.
-	Nondeterministic.
Pin/Signal Notation	
[]	Pin alternate function; a pin defaults to the signal without the brackets.
pin	Refers to the physical connection on the package.

Table 0-1. Documentation Conventions

Notation	Meaning
assert a signal	Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below).
deassert a signal	Change the value of the signal from the logically True state to the logically False state.
SIGNAL	Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert $\overline{\text{SIGNAL}}$ is to drive it Low; to deassert $\overline{\text{SIGNAL}}$ is to drive it High.
SIGNAL	Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.
Numbers	
X	An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on.
0x	Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF. Binary numbers are indicated with a b suffix, for example, 1011b. Decimal numbers are written without a prefix or suffix.

1 Architectural Overview

The Luminary Micro Stellaris[™] family of microcontrollers—the first ARM® Cortex[™]-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint.

The LM3S316 controller in the Stellaris family offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the controller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost.

Luminary Micro offers a complete solution to get to market quickly, with a customer development board, white papers and application notes, and a strong support, sales, and distributor network.

1.1 **Product Features**

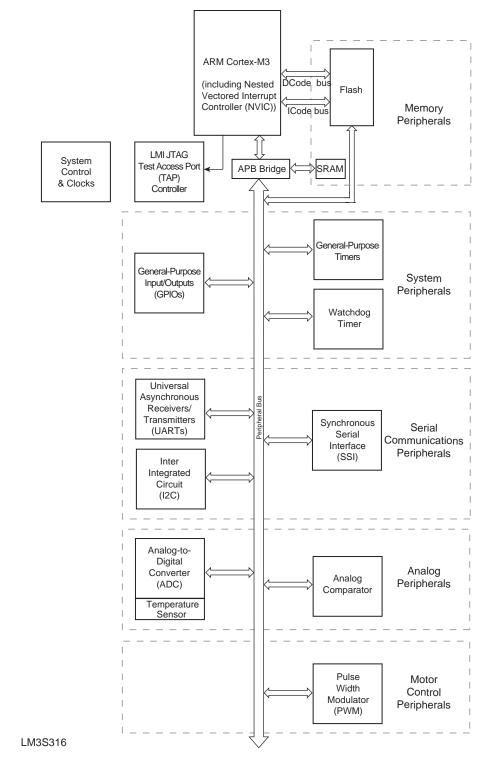
The LM3S316 microcontroller includes the following product features:

- 32-Bit RISC Performance
 - 32-bit ARM® Cortex[™]-M3 v7M architecture optimized for small-footprint embedded applications
 - Thumb®-compatible Thumb-2-only instruction set processor core for high code density
 - 25-MHz operation
 - Hardware-division and single-cycle-multiplication
 - Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt handling
 - 26 interrupts with eight priority levels
 - Memory protection unit (MPU) provides a privileged mode for protected operating system functionality
 - Unaligned data access, enabling data to be efficiently packed into memory
 - Atomic bit manipulation (bit-banding) delivers maximum memory utilization and streamlined peripheral control
- Internal Memory
 - 16 KB single-cycle flash
 - User-managed flash block protection on a 2-KB block basis
 - · User-managed flash data programming
 - User-defined and managed flash-protection block
 - 4 KB single-cycle SRAM
- General-Purpose Timers
 - Three timers, each of which can be configured: as a single 32-bit timer, as two 16-bit timers, or to initiate an ADC event
 - 32-bit Timer modes:
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input

- User-enabled stalling in periodic and one-shot mode when the controller asserts the CPU Halt flag during debug
- ADC event trigger
- 16-bit Timer modes:
 - General-purpose timer function with an 8-bit prescaler
 - Programmable one-shot timer
 - Programmable periodic timer
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
 - ADC event trigger
- 16-bit Input Capture modes:
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode:
 - Simple PWM mode with software-programmable output inversion of the PWM signal
- ARM FiRM-compliant Watchdog Timer
 - 32-bit down counter with a programmable load register
 - Separate watchdog clock with an enable
 - Programmable interrupt generation logic with interrupt masking
 - Lock register protection from runaway software
 - Reset generation logic with an enable/disable
 - User-enabled stalling when the controller asserts the CPU Halt flag during debug
- Synchronous Serial Interface (SSI)
 - Master or slave operation
 - Programmable clock bit rate and prescale
 - Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
 - Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
 - Programmable data frame size from 4 to 16 bits
 - Internal loopback test mode for diagnostic/debug testing
- UART
 - Two fully programmable 16C550-type UARTs
 - Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt service loading
 - Programmable baud-rate generator with fractional divider
 - Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
 - FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
 - Standard asynchronous communication bits for start, stop, and parity

- False-start-bit detection
- Line-break generation and detection
- ADC
 - Single- and differential-input configurations
 - Four 10-bit channels (inputs) when used as single-ended inputs
 - Sample rate of 250 thousand samples/second
 - Flexible, configurable analog-to-digital conversion
 - Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
 - Each sequence triggered by software or internal event (timers, analog comparators, PWM or GPIO)
- Analog Comparator
 - Configurable for output to: drive an output pin, generate an interrupt, or initiate an ADC sample sequence
 - Compare external pin input to external pin input or to internal programmable voltage reference
- I²C
 - Master and slave receive and transmit operation with transmission speed up to 100 Kbps in Standard mode and 400 Kbps in Fast mode
 - Interrupt generation
 - Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing mode
- PWM
 - Two PWM generator blocks, *each* with one 16-bit counter, two comparators, a PWM generator, and a dead-band generator
 - One 16-bit counter
 - Runs in Down or Up/Down mode
 - Output frequency controlled by a 16-bit load value
 - Load value updates can be synchronized
 - Produces output signals at zero and load value
 - Two comparators
 - · Comparator value updates can be synchronized
 - Produces output signals on match
 - PWM generator
 - Output PWM signal is constructed based on actions taken as a result of the counter and comparator output signals
 - Produces two independent PWM signals
 - Dead-band generator
 - Produces two PWM signals with programmable dead-band delays suitable for driving a half-H bridge

- Can be bypassed, leaving input PWM signals unmodified
- Flexible output control block with PWM output enable of each PWM signal
 - PWM output enable of each PWM signal
 - Optional output inversion of each PWM signal (polarity control)
 - Optional fault handling for each PWM signal
 - Synchronization of timers in the PWM generator blocks
 - Synchronization of timer/comparator updates across the PWM generator blocks
 - Interrupt status summary of the PWM generator blocks
- Can initiate an ADC sample sequence
- GPIOs
 - 3 to 32 GPIOs, depending on configuration
 - 5-V-tolerant input/outputs
 - Programmable interrupt generation as either edge-triggered or level-sensitive
 - Bit masking in both read and write operations through address lines
 - Can initiate an ADC sample sequence
 - Programmable control for GPIO pad configuration:
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables
- Power
 - On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable from 2.25 V to 2.75 V
 - Low-power options on controller: Sleep and Deep-sleep modes
 - Low-power options for peripherals: software controls shutdown of individual peripherals
 - User-enabled LDO unregulated voltage detection and automatic reset
 - 3.3-V supply brownout detection and reporting via interrupt or reset
 - On-chip temperature sensor
- Flexible Reset Sources
 - Power-on reset (POR)
 - Reset pin assertion
 - Brown-out (BOR) detector alerts to system power drops
 - Software reset
 - Watchdog timer reset
 - Internal low drop-out (LDO) regulator output goes unregulated
- Additional Features


- Six reset sources
- Programmable clock source control
- Clock gating to individual peripherals for power savings
- IEEE 1149.1-1990 compliant Test Access Port (TAP) controller
- Debug access via JTAG and Serial Wire interfaces
- Full JTAG boundary scan
- Industrial-range 48-pin RoHS-compliant LQFP package

1.2 Target Applications

- Factory automation and control
- Industrial control power devices
- Building and home automation
- Stepper motors

1.3 High-Level Block Diagram

1.4 Functional Overview

The following sections provide an overview of the features of the LM3S316 microcontroller. The chapter number in parenthesis indicates where that feature is discussed in detail. Ordering and support information can be found in "Ordering and Contact Information" on page 408.

1.4.1 ARM Cortex[™]-M3

1.4.1.1 Processor Core (Section 2 on page 34)

All members of the Stellaris product family, including the LM3S316 microcontroller, are designed around an ARM Cortex[™]-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

Section 2, "ARM Cortex-M3 Processor Core," on page 34 provides an overview of the ARM core; the core is detailed in the ARM® CortexTM-M3 Technical Reference Manual.

1.4.1.2 Nested Vectored Interrupt Controller (NVIC)

The LM3S316 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM Cortex-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 26 interrupts.

Section 4, "Interrupts," on page 39 provides an overview of the NVIC controller and the interrupt map. Exceptions and interrupts are detailed in the *ARM*® *Cortex™-M3 Technical Reference Manual*.

1.4.2 Motor Control Peripherals

To enhance motor control, the LM3S316 controller features Pulse Width Modulation (PWM) outputs.

1.4.2.1 PWM

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control.

On the LM3S316, PWM motion control functionality can be achieved through dedicated, flexible motion control hardware (the PWM pins) or through the motion control features of the general-purpose timers (using the CCP pins).

PWM Pins (Section 16 on page 345)

The LM3S316 PWM module consists of two PWM generator blocks and a control block. Each PWM generator block contains one timer (16-bit down or up/down counter), two comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. The control block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals or a single pair of complementary signals with dead-band delays inserted. The output of the PWM generation blocks are managed by the output control block before being passed to the device pins.

CCP Pins ("16-Bit PWM Mode" on page 155)

The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable to support a simple PWM mode with a software-programmable output inversion of the PWM signal.

1.4.3 Analog Peripherals

To handle analog signals, the LM3S316 controller offers an Analog-to-Digital Converter (ADC) and an analog comparator.

1.4.3.1 ADC (Section 11 on page 201)

An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number.

The Stellaris ADC module features 10-bit conversion resolution and supports four input channels, plus an internal temperature sensor. Four buffered sample sequences allow rapid sampling of up to eight analog input sources without controller intervention. Each sample sequence provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequence priority.

1.4.3.2 Analog Comparator (Section 15 on page 334)

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S316 controller provides one independent integrated analog comparators that can be configured to drive an output or generate an interrupt or ADC event.

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge.

1.4.4 Serial Communications Peripherals

The LM3S316 controller supports both asynchronous and synchronous serial communications with two fully programmable 16C550-type UARTs, SSI and I²C serial communications.

1.4.4.1 UART (Section 12 on page 231)

A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

The LM3S316 controller includes two fully programmable 16C550-type UARTs that support data transfer speeds up to 460.8 Kbps. (Although similar in functionality to a 16C550 UART, it is not register compatible.)

Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading. The UART can generate individually masked interrupts from the RX, TX, modem status, and error conditions. The module provides a single combined interrupt when any of the interrupts are asserted and are unmasked.

1.4.4.2 SSI (Section 13 on page 267)

Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.

The Stellaris SSI module provides the functionality for synchronous serial communications with peripheral devices, and can be configured to use the Freescale SPI, MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also configurable, and can be set between 4 and 16 bits, inclusive.

The SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral.

1.4.4.3 I²C (Section 14 on page 302)

The Inter-Integrated Circuit (I²C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL).

The I²C bus interfaces to external I²C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I²C bus may also be used for system testing and diagnostic purposes in product development and manufacture.

The Stellaris I^2C module provides the ability to communicate to other IC devices over an I^2C bus. The I^2C bus supports devices that can both transmit and receive (write and read) data.

Devices on the I²C bus can be designated as either a master or a slave. The I²C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. The four I²C modes are: Master Transmit, Master Receive, Slave Transmit, and Slave Receive.

The Stellaris I²C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I^2C master and slave can generate interrupts. The I^2C master generates interrupts when a transmit or receive operation completes (or aborts due to an error). The I^2C slave generates interrupts when data has been sent or requested by a master.

1.4.5 System Peripherals

1.4.5.1 **Programmable GPIOs (Section 8 on page 108)**

General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris GPIO module is composed of five physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 3 to 32 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see Table 18-4 on page 386 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in both read and write operations through address lines.

1.4.5.2 Three Programmable Timers (Section 9 on page 146)

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM block provides two 16-bit timer/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions.

When configured in 32-bit mode, a timer can run as a one-shot timer, periodic timer, or Real-Time Clock (RTC). When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event capture or Pulse Width Modulation (PWM) generation.

1.4.5.3 Watchdog Timer (Section 10 on page 178)

A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way.

The Stellaris Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

1.4.6 Memory Peripherals

The Stellaris controllers offer both SRAM and Flash memory.

1.4.6.1 SRAM (Section 7.2.1 on page 94)

The LM3S316 static random access memory (SRAM) controller supports 4 KB SRAM. The internal SRAM of the Stellaris devices is located at address 0x20000000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

1.4.6.2 Flash (Section 7.2.2 on page 95)

The LM3S316 Flash controller supports 16 KB of flash memory. The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

1.4.7 Additional Features

1.4.7.1 Memory Map (Section 3 on page 37)

A memory map lists the location of instructions and data in memory. The memory map for the LM3S316 controller can be found on page 37. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

The ARM® Cortex[™]-M3 Technical Reference Manual provides further information on the memory map.

1.4.7.2 JTAG TAP Controller (Section 5 on page 42)

The Joint Test Action Group (JTAG) port provides a standardized serial interface for controlling the Test Access Port (TAP) and associated test logic. The TAP, JTAG instruction register, and JTAG data registers can be used to test the interconnects of assembled printed circuit boards, obtain manufacturing information on the components, and observe and/or control the inputs and outputs of the controller during normal operation. The JTAG port provides a high degree of testability and chip-level access at a low cost.

The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The LMI JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while LMI JTAG instructions select the LMI TDO outputs. The multiplexer is controlled by the LMI JTAG controller, which has comprehensive programming for the ARM, LMI, and unimplemented JTAG instructions.

1.4.7.3 System Control and Clocks (Section 6 on page 52)

System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

1.4.8 Hardware Details

Details on the pins and package can be found in the following sections:

- Section 17, "Pin Diagram," on page 377
- Section 18, "Signal Tables," on page 378
- Section 19, "Operating Characteristics," on page 388
- Section 20, "Electrical Characteristics," on page 389
- Section 21, "Package Information," on page 403

1.5 System Block Diagram

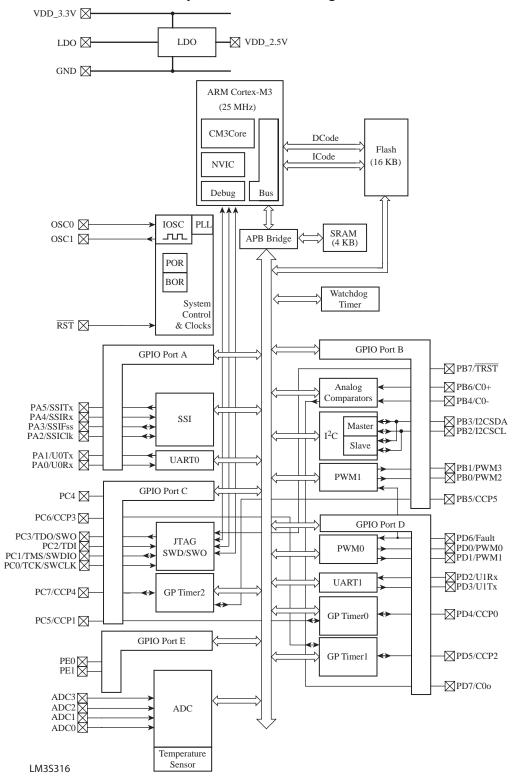
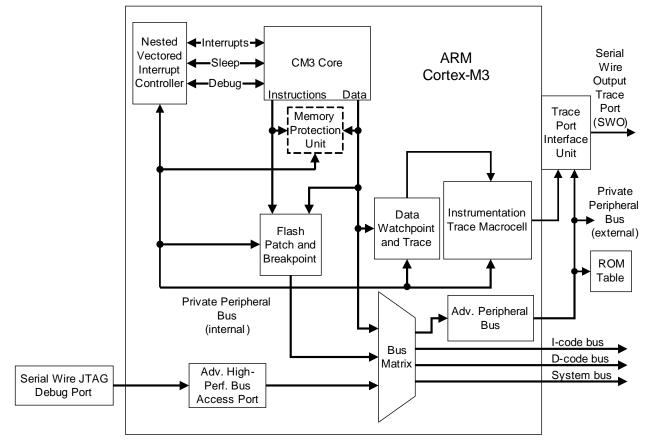


Figure 1-2. LM3S316 Controller System-Level Block Diagram

2 ARM Cortex-M3 Processor Core

The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include:


- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Full-featured debug solution with a:
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer

The Stellaris family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, and building and home automation.

For more information on the ARM Cortex-M3 processor core, see the *ARM*® *Cortex™-M3 Technical Reference Manual*. For information on SWJ-DP, see the *CoreSight™ Design Kit Technical Reference Manual*.

2.1 Block Diagram

2.2 Functional Description

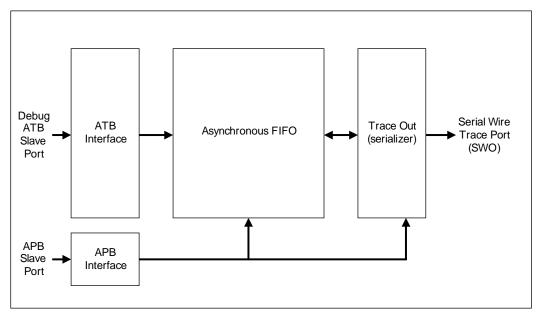
Important: The ARM® Cortex[™]-M3 Technical Reference Manual describes all the features of an ARM Cortex-M3 in detail. However, these features differ based on the implementation. This section describes the Stellaris implementation.

Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1. As noted in the *ARM*® *Cortex™-M3 Technical Reference Manual*, several Cortex-M3 components are flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.

2.2.1 Serial Wire and JTAG Debug

Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight[™]-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12, "Debug Port," of the *ARM® Cortex[™]-M3 Technical Reference Manual* does not apply to Stellaris devices.

The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the *CoreSight™ Design Kit Technical Reference Manual* for details on SWJ-DP.


2.2.2 Embedded Trace Macrocell (ETM)

ETM was not implemented in the Stellaris devices. This means Chapters 15 and 16 of the *ARM*® *Cortex™-M3 Technical Reference Manual* can be ignored.

2.2.3 Trace Port Interface Unit (TPIU)

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer. The Stellaris devices have implemented TPIU as shown in Figure 2-2. This is similar to the non-ETM version described in the *ARM® Cortex™-M3 Technical Reference Manual*, however, SWJ-DP only provides SWV output for the TPIU.

Figure 2-2. TPIU Block Diagram

2.2.4 ROM Table

The default ROM table was implemented as described in the *ARM*[®] Cortex[™]-M3 Technical Reference Manual.

2.2.5 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) is included on the LM3S316 controller and supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

2.2.6 Nested Vectored Interrupt Controller (NVIC)

2.2.6.1 Interrupts

The ARM® Cortex[™]-M3 Technical Reference Manual describes the maximum number of interrupts and interrupt priorities. The LM3S316 microcontroller supports 26 interrupts with eight priority levels.

2.2.6.2 SysTick Calibration Value Registers

The SysTick Calibration Value register is not implemented.

3 Memory Map

The memory map for the LM3S316 is provided in Table 3-1. In this manual, register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map. See also Chapter 4, "Memory Map" in the *ARM® Cortex™-M3 Technical Reference Manual*.

Start	End	Description	For details on registers, see	
Memory			1	
0x00000000	0x00003FFF	On-chip flash	page 98	
0x00004000	0x1FFFFFFF	Reserved ^a		
0x20000000	0x20000FFF	Bit-banded on-chip SRAM	-	
0x20001000	0x200FFFFF	Reserved ^a	-	
0x22000000	0x2201FFFF	Bit-band alias of 0x20000000 through 0x20000FFF	-	
0x22020000	0x23FFFFFF	Reserved ^a	-	
FiRM Peripher	als			
0x40000000	0x40000FFF	Watchdog timer	page 180	
0x40001000	0x40003FFF	Reserved for three additional watchdog timers (per FiRM specification) ^a	-	
0x40004000	0x40004FFF	GPIO Port A	page 115	
0x40005000	0x40005FFF	GPIO Port B	page 115	
0x40006000	0x40006FFF	GPIO Port C	page 115	
0x40007000	0x40007FFF	GPIO Port D		
0x40008000	0x40008FFF	SSI	page 278	
0x40009000	0x4000BFFF	Reserved for three additional SSIs (per FiRM specification) ^a	-	
0x4000C000	0x4000CFFF	UART0	page 237	
0x4000D000	0x4000DFFF	UART1	page 237	
0x4000E000	0x4000FFFF	Reserved for two additional UARTs (per FiRM specification) ^a	-	
0x40010000	0x4001FFFF	Reserved for future FiRM peripherals ^a	-	
Peripherals				
0x40020000	0x400207FF	I ² C Master	page 312	
0x40020800	0x40020FFF	I ² C Slave	page 326	
0x40021000	0x40023FFF	Reserved ^a	-	

 Table 3-1.
 Memory Map (Sheet 1 of 2)

Table 3-1.	Memory M	/lap (Sheet	2 of 2)
------------	----------	-------------	---------

Start	End	Description	For details on registers, see
0x40024000	0x40024FFF	GPIO Port E	page 115
0x40025000	0x40025FFF	Reserved ^a	-
0x40028000	0x40028FFF	PWM	page 351
0x40029000	0x4002BFFF	Reserved ^a	-
0x4002C000	0x4002FFFF	Reserved ^a	-
0x40030000	0x40030FFF	Timer0	page 157
0x40031000	0x40031FFF	Timer1	page 157
0x40032000	0x40032FFF	Timer2	page 157
0x40033000	0x40037FFF	Reserved ^a	-
0x40038000	0x40038FFF	ADC	page 206
0x40039000	0x4003BFFF	Reserved ^a	-
0x4003C000	0x4003CFFF	Analog comparator	page 337
0x4003D000	0x400FCFFF	Reserved ^a	-
0x400FD000	0x400FDFFF	Flash control	page 98
0x400FE000	0x400FFFFF	System control	page 59
0x40100000	0x41FFFFFF	Reserved ^a	-
0x42000000	0x43FFFFFF	Bit-band alias of 0x40000000 through 0x400FFFFF	-
0x44000000	0xDFFFFFFF	Reserved ^a	-
Private Periphe	ral Bus		
0xE0000000	0xE0000FFF	Instrumentation Trace Macrocell (ITM)	ARM® Cortex™-M3
0xE0001000	0xE0001FFF	Data Watchpoint and Trace (DWT)	Technical Reference Manual
0xE0002000	0xE0002FFF	Flash Patch and Breakpoint (FPB)	
0xE0003000	0xE000DFFF	Reserved ^a	-
0xE000E000	0xE000EFFF	Nested Vectored Interrupt Controller (NVIC)	
0xE000F000	0xE003FFFF	Reserved ^a	
0xE0040000	0xE0040FFF	Trace Port Interface Unit (TPIU)	
0xE0041000	0xE0041FFF	Reserved ^a	-
0xE0042000	0xE00FFFFF	Reserved ^a	-
0xE0100000	0xFFFFFFFF	Reserved for vendor peripherals ^a	-

a. All reserved space returns a bus fault when read or written.

4 Interrupts

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration.

Table 4-1 lists all the exceptions. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 26 interrupts (listed in Table 4-2). Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt Priority registers. You can also group priorities by splitting priority levels into pre-emption priorities and subpriorities. All the interrupt registers are described in Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM® Cortex™-M3 Technical Reference Manual*.

Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and a Hard Fault. Note that 0 is the default priority for all the settable priorities.

If you assign the same priority level to two or more interrupts, their hardware priority (the lower the position number) determines the order in which the processor activates them. For example, if both GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.

See Chapter 5, "Exceptions" and Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM® Cortex™-M3 Technical Reference Manual* for more information on exceptions and interrupts.

Exception Type	Position	Priority ^a	Description
-	0	-	Stack top is loaded from first entry of vector table on reset.
Reset	1	-3 (highest)	Invoked on power up and warm reset. On first instruction, drops to lowest priority (and then is called the base level of activation). This is asynchronous.
Non-Maskable Interrupt (NMI)	2	-2	Cannot be stopped or preempted by any exception but reset. This is asynchronous.
			An NMI is only producible by software, using the NVIC Interrupt Control State register.
Hard Fault	3	-1	All classes of Fault, when the fault cannot activate due to priority or the configurable fault handler has been disabled. This is synchronous.
Memory Management	4	settable	MPU mismatch, including access violation and no match. This is synchronous.
			The priority of this exception can be changed.
Bus Fault	5	settable	Pre-fetch fault, memory access fault, and other address/memory related faults. This is synchronous when precise and asynchronous when imprecise. You can enable or disable this fault.

 Table 4-1.
 Exception Types

Exception Type	Position	Priority ^a	Description
Usage Fault	6	settable	Usage fault, such as undefined instruction executed or illegal state transition attempt. This is synchronous.
-	7-10	-	Reserved.
SVCall	11	settable	System service call with SVC instruction. This is synchronous.
Debug Monitor	12	settable	Debug monitor (when not halting). This is synchronous, but only active when enabled. It does not activate if lower priority than the current activation.
-	13	-	Reserved.
PendSV	14	settable	Pendable request for system service. This is asynchronous and only pended by software.
SysTick	15	settable	System tick timer has fired. This is asynchronous.
Interrupts	16 and above	settable	Asserted from outside the ARM Cortex-M3 core and fed through the NVIC (prioritized). These are all asynchronous. Table 4-2 lists the interrupts on the LM3S316 controller.

 Table 4-1.
 Exception Types (Continued)

a. 0 is the default priority for all the settable priorities.

Table 4-2. Interrupts

Interrupt (Bit in Interrupt Registers)	Description
0	GPIO Port A
1	GPIO Port B
2	GPIO Port C
3	GPIO Port D
4	GPIO Port E
5	UART0
6	UART1
7	SSI
8	I ² C
9	PWM Fault
10	PWM Generator 0
11	PWM Generator 1
12	Reserved

Interrupt (Bit in Interrupt Registers)	Description
13	Reserved
14	ADC Sequence 0
15	ADC Sequence 1
16	ADC Sequence 2
17	ADC Sequence 3
18	Watchdog timer
19	Timer0a
20	Timer0b
21	Timer1a
22	Timer1b
23	Timer2a
24	Timer2b
25	Analog Comparator 0
26	Reserved
27	Reserved
28	System Control
29	Flash Control
30	Reserved
31	Reserved

Table 4-2. Interrupts (Continued)

5 JTAG Interface

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The LMI JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while LMI JTAG instructions select the LMI TDO outputs. The multiplexer is controlled by the LMI JTAG controller, which has comprehensive programming for the ARM, LMI, and unimplemented JTAG instructions.

The JTAG module has the following features:

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions:
 - BYPASS instruction
 - IDCODE instruction
 - SAMPLE/PRELOAD instruction
 - EXTEST instruction
 - INTEST instruction
- ARM additional instructions:
 - APACC instruction
 - DPACC instruction
 - ABORT instruction
- Integrated ARM Serial Wire Debug (SWD)

See the ARM® CortexTM-M3 Technical Reference Manual for more information on the ARM JTAG controller.

5.1 Block Diagram

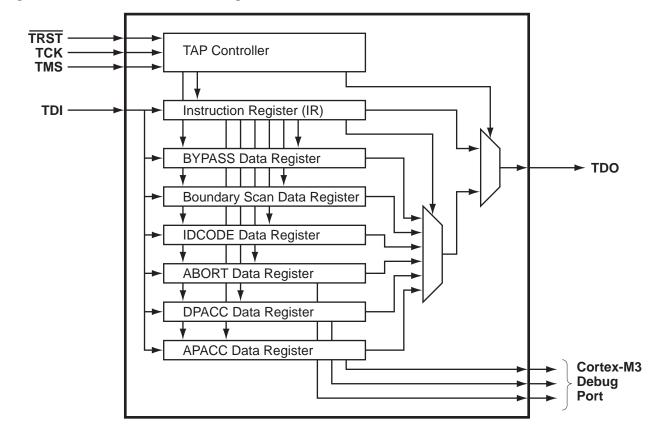


Figure 5-1. JTAG Module Block Diagram

5.2 Functional Description

A high-level conceptual drawing of the JTAG module is shown in Figure 5-1. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and TMS inputs. The current state of the TAP controller depends on the current value of TRST and the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 5-2 on page 48 for a list of implemented instructions).

See "JTAG and Boundary Scan" on page 398 for JTAG timing diagrams.

5.2.1 JTAG Interface Pins

The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and their associated reset state are given in Table 5-1. Detailed information on each pin follows.

Pin Name	Data Direction	Internal Pull-Up	Internal Pull-Down	Drive Strength	Drive Value
TRST	Input	Enabled	Disabled	N/A	N/A
ТСК	Input	Enabled	Disabled	N/A	N/A
TMS	Input	Enabled	Disabled	N/A	N/A
TDI	Input	Enabled	Disabled	N/A	N/A
TDO	Output	Enabled	Disabled	2-mA driver	High-Z

Table 5-1.	JTAG Port Pins Reset State
------------	----------------------------

5.2.1.1 Test Reset Input (TRST)

The $\overline{\text{TRST}}$ pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP controller and associated JTAG circuitry. When $\overline{\text{TRST}}$ is asserted, the TAP controller resets to the Test-Logic-Reset state and remains there while $\overline{\text{TRST}}$ is asserted. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE.

By default, the internal pull-up resistor on the $\overline{\text{TRST}}$ pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled on PB7/TRST; otherwise JTAG communication could be lost.

5.2.1.2 Test Clock Input (TCK)

The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source.

5.2.1.3 Test Mode Select (TMS)

The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TMS to change on the falling edge of TCK.

Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine can be seen in its entirety in Figure 5-2 on page 46.

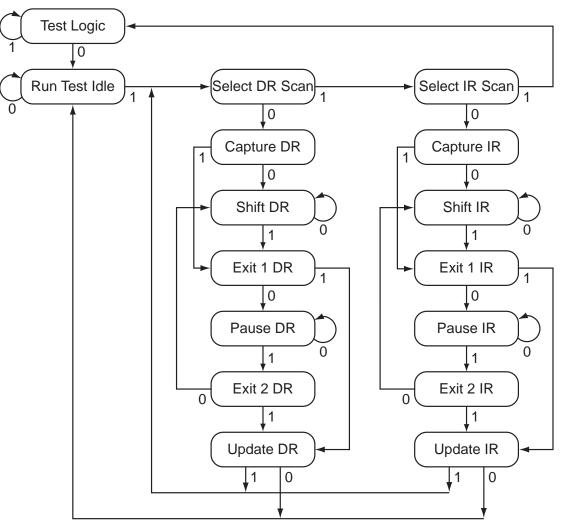
By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost.

5.2.1.4 Test Data Input (TDI)

The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TDI to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost.

5.2.1.5 Test Data Output (TDO)


The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the *IEEE Standard 1149.1* expects the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states.

5.2.2 JTAG TAP Controller

The JTAG TAP controller state machine is shown in Figure 5-2 on page 46. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR) or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to *IEEE Standard 1149.1*.

5.2.3 Shift Registers

The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller's CAPTURE states and allows this information to be shifted out of TDO during the TAP controller's SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller's UPDATE states. Each of the shift registers is discussed in detail in "Shift Registers" on page 46.

5.2.4 Operational Considerations

There are certain operational considerations when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes requires clarification.

5.2.4.1 GPIO Functionality

When the controller is reset with either a POR or \overline{RST} , the JTAG port pins default to their JTAG configurations. The default configuration includes enabling the pull-up resistors (setting **GPIOPUR**

to 1 for PB7 and PC[3:0]) and enabling the alternate hardware function (setting **GPIOAFSEL** to 1 for PB7 and PC[3:0]) on the JTAG pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and PC[3:0] in the **GPIOAFSEL** register. If the user does not require the JTAG port for debugging or board-level testing, this provides five more GPIOs for use in the design.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply RST or power-cycle the part

In addition, it is possible to create a software sequence that prevents the debugger from connecting to the Stellaris microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger does not have enough time to connect and halt the controller before the JTAG pin functionality switches. This locks the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality using an external trigger.

5.2.4.2 ARM Serial Wire Debug (SWD)

In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the SWD session begins.

The preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Capture IR, Exit1 IR, Update IR, Run Test Idle, Select DR, Select IR, Capture IR, Run Test Idle, Select DR, Select IR, and Test-Logic-Reset states.

Stepping through the JTAG TAP Instruction Register (IR) load sequences of the TAP state machine twice without shifting in a new instruction enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the *ARM*® *Cortex™-M3 Technical Reference Manual* and the *ARM*® *CoreSight Technical Reference Manual*.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the *IEEE Standard 1149.1*. This is the only instance where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low probability of this sequence occuring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface.

5.3 Initialization and Configuration

After a Power-On-Reset or an external reset (\mathbb{RST}), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. This is done by enabling the five JTAG pins (PB7 and PC[3:0]) for their alternate function using the **GPIOAFSEL** register.

5.4 Register Descriptions

There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The registers within the JTAG controller are all accessed serially through the TAP Controller. The registers can be broken down into two main categories: Instruction Registers and Data Registers.

5.4.1 Instruction Register (IR)

The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register connected between the JTAG TDI and TDO pins. When the TAP Controller is placed in the correct states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the Instruction Register bits is shown in Table 5-2. A detailed explanation of each instruction, along with its associated Data Register, follows.

IR[3:0]	Instruction	Description
0000	EXTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads.
0001	INTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller.
0010	SAMPLE / PRELOAD	Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in.
1000	ABORT	Shifts data into the ARM Debug Port Abort Register.
1010	DPACC	Shifts data into and out of the ARM DP Access Register.
1011	APACC	Shifts data into and out of the ARM AC Access Register.
1110	IDCODE	Loads manufacturing information defined by the <i>IEEE Standard 1149.1</i> into the IDCODE chain and shifts it out.
1111	BYPASS	Connects TDI to TDO through a single Shift Register chain.
All Others	Reserved	Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.

Table 5-2. JTAG Instruction Register Commands

5.4.1.1 EXTEST Instruction

The EXTEST instruction does not have an associated Data Register chain. The EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. This allows tests to be developed that drive known values out of the controller, which can be used to verify connectivity.

5.4.1.2 INTEST Instruction

The INTEST instruction does not have an associated Data Register chain. The INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/ PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. This allows

tests to be developed that drive known values into the controller, which can be used for testing. It is important to note that although the \overline{RST} input pin is on the Boundary Scan Data Register chain, it is only observable.

5.4.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. Please see "Boundary Scan Data Register" on page 50 for more information.

5.4.1.4 ABORT Instruction

The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. Please see the "ABORT Data Register" on page 51 for more information.

5.4.1.5 DPACC Instruction

The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. Please see "DPACC Data Register" on page 51 for more information.

5.4.1.6 APACC Instruction

The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to internal components and buses through the Debug Port. Please see "APACC Data Register" on page 51 for more information.

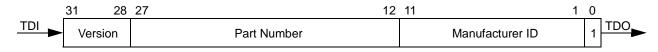
5.4.1.7 IDCODE Instruction

The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure their input and output data streams. IDCODE is the default instruction that is loaded into the JTAG Instruction Register when a power-on-reset (POR) is asserted, TRST is asserted, or the Test-Logic-Reset state is entered. Please see "IDCODE Data Register" on page 50 for more information.

5.4.1.8 BYPASS Instruction

The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. Please see "BYPASS Data Register" on page 50 for more information.

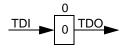
5.4.2 Data Registers


The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed in the following sections.

5.4.2.1 IDCODE Data Register

The format for the 32-bit IDCODE Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-3. The standard requires that every JTAG-compliant device implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

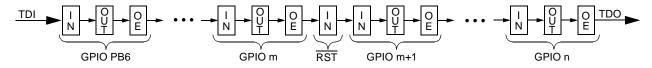
The major uses of the JTAG port are for manufacturer testing of component assembly, and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x1BA00477. This value indicates an ARM Cortex-M3, Version 1 processor. This allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug.


Figure 5-3. IDCODE Register Format

5.4.2.2 BYPASS Data Register

The format for the 1-bit BYPASS Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-4. The standard requires that every JTAG-compliant device implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This allows auto configuration test tools to determine which instruction is the default instruction.

Figure 5-4. BYPASS Register Format


5.4.2.3 Boundary Scan Data Register

The format of the Boundary Scan Data Register is shown in Figure 5-5. Each GPIO pin, in a counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data Register. Each GPIO pin has three associated digital signals that are included in the chain. These

signals are input, output, and output enable, and are arranged in that order as can be seen in the figure. In addition to the GPIO pins, the controller reset pin, \overline{RST} , is included in the chain. Because the reset pin is always an input, only the input signal is included in the Data Register chain.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. These instructions either force data out of the controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.

Figure 5-5. Boundary Scan Register Format

For detailed information on the order of the input, output, and output enable bits for each of the GPIO ports, please refer to the Stellaris Family Boundary Scan Description Language (BSDL) files, downloadable from www.luminarymicro.com.

5.4.2.4 APACC Data Register

The format for the 35-bit APACC Data Register defined by ARM is described in the *ARM*® *Cortex™-M3 Technical Reference Manual.*

5.4.2.5 DPACC Data Register

The format for the 35-bit DPACC Data Register defined by ARM is described in the *ARM*® *Cortex™-M3 Technical Reference Manual.*

5.4.2.6 ABORT Data Register

The format for the 35-bit ABORT Data Register defined by ARM is described in the *ARM*® *Cortex™-M3 Technical Reference Manual.*

6 System Control

System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

6.1 Functional Description

The System Control module provides the following capabilities:

- Device identification, see page 52
- Local control, such as reset (see page 52), power (see page 55) and clock control (see page 55)
- System control (Run, Sleep, and Deep-Sleep modes), see page 57

6.1.1 Device Identification

Seven read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, Flash size, and other features. See the **DID0**, **DID1** and **DC0-DC4** registers starting on page 60.

6.1.2 Reset Control

This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence.

6.1.2.1 Reset Sources

The controller has six sources of reset:

- **1.** External reset input pin (\overline{RST}) assertion, see page 52.
- 2. Power-on reset (POR), see page 53.
- 3. Internal brown-out (BOR) detector, see page 53.
- 4. Software-initiated reset (with the software reset registers), see page 54.
- 5. A watchdog timer reset condition violation, see page 54.
- 6. Internal low drop-out (LDO) regulator output, see page 55.

After a reset, the **Reset Cause (RESC)** register (see page 79) is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an external reset is the cause, and then all the other bits in the **RESC** register are cleared.

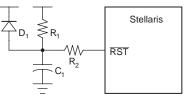
Note: The main oscillator is used for external resets and power-on resets; the internal oscillator is used during the internal process by internal reset and clock verification circuitry.

6.1.2.2 RST Pin Assertion

The external reset pin (\overline{RST}) resets the controller. This resets the core and all the peripherals except the JTAG TAP controller (see "JTAG Interface" on page 42). The external reset sequence is as follows:

- **1.** The external reset pin (RST) is asserted and then de-asserted.
- 2. After RST is de-assserted, the main crystal oscillator must be allowed to settle and there is an internal main oscillator counter that takes from 15-30 ms to account for this. During this time, internal reset to the rest of the controller is held active.

3. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.


The external reset timing is shown in Figure 20-9 on page 401.

6.1.2.3 Power-On Reset (POR)

The Power-On Reset (POR) circuitry detects a rise in power-supply voltage and generates an on-chip reset pulse. To use the on-chip circuitry, the \overline{RST} input needs a pull-up resistor (1K to 10K Ω).

The device must be operating within the specified operating parameters at the point when the on-chip power-on reset pulse is complete. The specified operating parameters include supply voltage, frequency, temperature, and so on. If the operating conditions are not met at the point of POR end, the Stellaris controller does not operate correctly. In this case, the reset must be extended using external circuitry. The \overline{RST} input may be used with the circuit as shown in Figure 6-1.

Figure 6-1. External Circuitry to Extend Reset

The R_1 and C_1 components define the power-on delay. The R_2 resistor mitigates any leakage from the \overline{RST} input. The diode discharges C_1 rapidly when the power supply is turned off.

The Power-On Reset sequence is as follows:

- **1.** The controller waits for the later of external reset (\mathbb{RST}) or internal POR to go inactive.
- 2. After the resets are inactive, the main crystal oscillator must be allowed to settle and there is an internal main oscillator counter that takes from 15-30 ms to account for this. During this time, internal reset to the rest of the controller is held active.
- 3. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The internal POR is only active on the initial power-up of the controller. The Power-On Reset timing is shown in Figure 20-10 on page 401.

6.1.2.4 Brown-Out Reset (BOR)

A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if V_{DD} drops below V_{BTH} . The circuit is provided to guard against improper operation of logic and peripherals that operate off V_{DD} and not the LDO voltage. If a brown-out condition is detected, the system may generate a controller interrupt or a system reset. The BOR circuit has a digital filter that protects against noise-related detection. This feature may be optionally enabled.

Brown-out resets are controlled with the **Power-On and Brown-Out Reset Control (PBORCTL)** register (see page 70). The BORIOR bit in the **PBORCTL** register must be set for a brown-out to trigger a reset. The brown-out reset sequence is as follows:

- 1. When V_{DD} drops below V_{BTH} , an internal BOR condition is set.
- 2. If the BORWT bit in the **PBORCTL** register is set, the BOR condition is resampled sometime later (specified by BORTIM) to determine if the original condition was caused by noise. If the BOR condition is not met the second time, then no action is taken.
- 3. If the BOR condition exists, an internal reset is asserted.
- 4. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.
- 5. The internal \overline{BOR} signal is released after 500 µs to prevent another BOR condition from being set before software has a chance to investigate the original cause.

The internal Brown-Out Reset timing is shown in Figure 20-11 on page 401.

6.1.2.5 Software Reset

Each peripheral can be reset by software. There are three registers that control this function (see the **SRCRn** registers, starting on page 72). If the bit position corresponding to a peripheral is set, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see "System Control" on page 57). Writing a bit lane with a value of 1 initiates a reset of the corresponding unit. Note that all reset signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.

The entire system can be reset by software also. Setting the SYSRESETREQ bit in the Cortex-M3 Application Interrupt and Reset Control register resets the entire system including the core. The software-initiated system reset sequence is as follows:

- 1. A software system reset in initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register.
- 2. An internal reset is asserted.
- 3. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The software-initiated system reset timing is shown in Figure 20-12 on page 401.

6.1.2.6 Watchdog Timer Reset

The watchdog timer module's function is to prevent system hangs. The watchdog timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of the **Watchdog Timer Load (WDTLOAD)** register (see page 181), and the timer resumes counting down from that value. If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset sequence is as follows:

- 1. The watchdog timer times out for the second time without being serviced.
- 2. An internal reset is asserted.

3. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The watchdog reset timing is shown in Figure 20-13 on page 402.

6.1.2.7 Low Drop-Out

A reset can be made when the internal low drop-out (LDO) regulator output goes unregulated. This is initially disabled and may be enabled by software. LDO is controlled with the **LDO Power Control (LDOPCTL)** register (see page 71). The LDO reset sequence is as follows:

- 1. LDO goes unregulated and the LDOARST bit in the LDOARST register is set.
- 2. An internal reset is asserted.
- The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The LDO reset timing is shown in Figure 20-14 on page 402.

6.1.3 Power Control

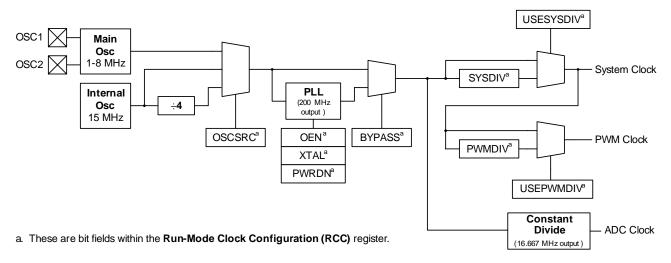
The LDO regulator permits the adjustment of the on-chip output voltage (V_{OUT}). The output may be adjusted in 50 mV increments between the range of 2.25 V through 2.75 V. The adjustment is made through the VADJ field of the **LDO Power Control (LDOPCTL)** register (see page 71).

6.1.4 Clock Control

System control determines the clocking and control of clocks in this part.

6.1.4.1 Fundamental Clock Sources

There are two fundamental clock sources for use in the device:


- The main oscillator, driven from either an external crystal or a single-ended source. As a crystal, the main oscillator source is specified to run from 1-8 MHz. However, when the crystal is being used as the PLL source, it must be from 3.579545–8.192 MHz to meet PLL requirements. As a single-ended source, the range is from DC to the specified speed of the device.
- The internal oscillator, which is an on-chip free running clock. The internal oscillator is specified to run at 12 MHz ± 50%. It can be used to clock the system, but the tolerance of frequency range must be met.

The internal system clock may be driven by either of the above two reference sources as well as the internal PLL, provided that the PLL input is connected to a clock source that meets its AC requirements.

Nearly all of the control for the clocks is provided by the **Run-Mode Clock Configuration (RCC)** register (see page 80).

Figure 6-2 shows the logic for the main clock tree. The peripheral blocks are driven by the System Clock signal and can be programmatically enabled/disabled. The ADC clock signal is automatically divided down to 14-18 MHz for proper ADC operation. The PWM clock signal is a synchronous divide by of the system clock to provide the PWM circuit with more range.

Figure 6-2. Main Clock Tree

6.1.4.2 PLL Frequency Configuration

The user does not have direct control over the PLL frequency, but is required to match the external crystal used to an internal PLL-Crystal table. This table is used to create the best fit for PLL parameters to the crystal chosen. Not all crystals result in the PLL operating at exactly 200 MHz, though the frequency is within \pm 1%. The result of the lookup is kept in the **XTAL to PLL Translation (PLLCTL)** register (see page 85).

Table 6-4 on page 83 describes the available crystal choices and default programming of the **PLLCTL** register. The crystal number is written into the XTAL field of the **Run-Mode Clock Configuration (RCC)** register (see page 80). Any time the XTAL field changes, a read of the internal table is performed to get the correct value. Table 6-4 on page 83 describes the available crystal choices and default programming values.

6.1.4.3 PLL Modes

The PLL has two modes of operation: Normal and Power-Down

- Normal: The PLL multiplies the input clock reference and drives the output.
- Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the **RCC** register fields as shown in Table 6-4 on page 83.

6.1.4.4 PLL Operation

If the PLL configuration is changed, the PLL output is not stable for a period of time (PLL T_{READY} =0.5 ms) and during this time, the PLL is not usable as a clock reference.

The PLL is changed by one of the following:

- Change to the XTAL value in the RCC register (see page 80)—writes of the same value do not cause a relock.
- Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the T_{READY} requirement. The counter is clocked by the main oscillator. The range of the main oscillator has been taken into account and the down counter is set to 0x1200 (that is, ~600 µs at a 8.192-MHz external oscillator clock). Hardware is provided to keep the PLL from being used as a system clock until the T_{READY} condition is met after one of the

two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the **RCC** register is switched to use the PLL.

6.1.4.5 Clock Verification Timers

There are three identical clock verification circuits that can be enabled though software. The circuit checks the faster clock by a slower clock using timers:

- The main oscillator checks the PLL.
- The main oscillator checks the internal oscillator.
- The internal oscillator divided by 64 checks the main oscillator.

If the verification timer function is enabled and a failure is detected, the main clock tree is immediately switched to a working clock and an interrupt is generated to the controller. Software can then determine the course of action to take. The actual failure indication and clock switching does not clear without a write to the **CLKVCLR** register, an external reset, or a POR reset. The clock verification timers are controlled by the PLLVER, IOSCVER, and MOSCVER bits in the **RCC** register (see page 80).

6.1.5 System Control

For power-savings purposes, the **RCGCn**, **SCGCn**, and **DCGCn** registers control the clock gating logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep mode, respectively. The **DC1**, **DC2** and **DC4** registers act as a write mask for the **RCGCn**, **SCGCn**, and **DCGCn** registers.

In Run mode, the controller is actively executing code. In Sleep mode, the clocking of the device is unchanged but the controller no longer executes code (and is no longer clocked). In Deep-Sleep mode, the clocking of the device may change (depending on the Run mode clock configuration) and the controller no longer executes code (and is no longer clocked). An interrupt returns the device to Run mode from one of the sleep modes; the sleep modes are entered on request from the code. Each mode is described in more detail in this section.

6.1.5.1 Run Mode

Run mode provides normal operation of the processor and all of the peripherals that are currently enabled by the **RCGCn** registers. The system clock can be any of the available clock sources including the PLL.

6.1.5.2 Sleep Mode

In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **SCGCn** register when Auto Clock Gating is enabled (see **RCC** register on page 80) or the **RCGCn** register when the Auto Clock Gating is disabled. The System Clock has the same source and frequency as that during Run mode.

6.1.5.3 Deep-Sleep Mode

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **DCGCn** register when Auto Clock Gating is enabled (see **RCC** register) or the **RCGCn** register when the Auto Clock Gating is disabled. The system clock source is the main oscillator by default or the internal oscillator specified in the **DSLPCLKCFG** register if one is enabled (see page 91). When the **DSLPCLKCFG** register is used, the internal oscillator is powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the time of the WFI instruction, hardware powers the PLL down and overrides the SYSDIV field of the active **RCC** register to be /16 or /64 respectively. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that were stopped during the Deep-Sleep duration.

6.2 Initialization and Configuration

The PLL is configured using direct register writes to the **Run-Mode Clock Configuration (RCC)** register. The steps required to successfully change the PLL-based system clock are:

- Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the RCC register. This configures the system to run off a "raw" clock source (using the main oscillator or internal oscillator) and allows for the new PLL configuration to be validated before switching the system clock to the PLL.
- 2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN and OE bits in RCC. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN and OE bits powers and enables the PLL and its output.
- 3. Select the desired system divider (SYSDIV) and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the **Raw Interrupt Status (RIS**) register. If the PLL doesn't lock, the configuration is invalid.
- 5. Enable use of the PLL by clearing the BYPASS bit in RCC.

Important: If the BYPASS bit is cleared before the PLL locks, it is possible to render the device unusable.

6.3 Register Map

Table 6-1 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400FE000.

Offset	Name	Reset	Туре	Description	See page			
Device Id	Device Identification and Capabilities							
0x000	DID0	-	RO	Device identification 0	60			
0x004	DID1	-	RO	Device identification 1	61			
0x008	DC0	0x000F0007	RO	Device capabilities 0	63			
0x010	DC1	0x0000007	RO	Device capabilities 1	64			
0x014	DC2	0x01071013	RO	Device capabilities 2	66			
0x018	DC3	0x3F0F01CF	RO	Device Capabilities 3	67			
0x01C	DC4	0x0000001F	RO	Device Capabilities 4	69			
Local Co	ntrol							
0x030	PBORCTL	0x00007FFD	R/W	Power-On and Brown-Out Reset Control	70			
0x034	LDOPCTL	0x00000000	R/W	LDO Power Control	71			
0x040	SRCR0	0x00000000	R/W	Software Reset Control 0	72			

Table 6-1. System Control Register Map (Sheet 1 of 2)

Offset	Name	Reset	Туре	Description	See page
0x044	SRCR1	0x00000000	R/W	Software Reset Control 1	73
0x048	SRCR2	0x00000000	R/W	Software Reset Control 2	74
0x050	RIS	0x00000000	RO	Raw Interrupt Status	75
0x054	IMC	0x00000000	R/W	Interrupt Mask Control	76
0x058	MISC	0x00000000	R/W1C	Masked Interrupt Status and Clear	78
0x05C	RESC	-	R/W	Reset Cause	79
0x060	RCC	0x078E3AC0	R/W	Run-Mode Clock Configuration	80
0x064	PLLCFG	-	RO	XTAL to PLL translation	85
System C	Control			·	
0x100	RCGC0	0x00000001	R/W	Run-Mode Clock Gating Control 0	86
0x104	RCGC1	0x00000000	R/W	Run-Mode Clock Gating Control 1	88
0x108	RCGC2	0x00000000	R/W	Run-Mode Clock Gating Control 2	90
0x110	SCGC0	0x00000001	R/W	Sleep-Mode Clock Gating Control 0	86
0x114	SCGC1	0x00000000	R/W	Sleep-Mode Clock Gating Control 1	88
0x118	SCGC2	0x00000000	R/W	Sleep-Mode Clock Gating Control 2	90
0x120	DCGC0	0x00000001	R/W	Deep-Sleep-Mode Clock Gating Control 0	86
0x124	DCGC1	0x00000000	R/W	Deep-Sleep-Mode Clock Gating Control 1	88
0x128	DCGC2	0x00000000	R/W	Deep-Sleep-Mode Clock Gating Control 2	90
0X144	DSLPCLKCFG	0x07800000	R/W	Deep-Sleep Clock Configuration	91
0x150	CLKVCLR	0x00000000	R/W	Clock verification clear	92
0x160	LDOARST	0x00000000	R/W	Allow unregulated LDO to reset the part	93

 Table 6-1.
 System Control Register Map (Sheet 2 of 2)

6.4 Register Descriptions

The remainder of this section lists and describes the System Control registers, in numerical order by address offset.

Register 1: Device Identification 0 (DID0), offset 0x000

This register identifies the version of the device.

	Device I Offset 0x00		cation 0 (DID0)															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	reserved		VER							rese	rved		•						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	I		ı ı	MA	JOR		1 1			I	I	MI	NOR	I	1				
Type Reset	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO	RO -	RO -	RO -	RO -	RO -	RO -	RO -			
Bi	t/Field 31		Name eserved		Type RO		Reset 0		Descripti		ituro ar	indete	rminate	value	and sh	ould			
	51		6361760		NO		0	never be changed.											
3	80:28		VER		RO		0	0 This field defines the version of the DID0 register format:											
								0=Register version for the Stellaris microcontrollers											
2	27:16	r	eserved		RO		0												
	15:8	٦	MAJOR		RO		-		This field The majo as a lette This field	or revisi er (A for	on num first re	nber is i vision, l	ndicate B for se	d in the	part nu	ımber			
									0: Revisi	ion A (ir	itial de	vice)							
									1: Revisi	ion B (fi	rst revis	sion)							
									and so o	n.									
	7:0	I	MINOR		RO		-		This field This field	-						device.			
									0: No ch	anges. I	Major r	evision	was mo	ost rece	nt upda	ate.			
									1: One ir update.	nterconr	nect cha	ange m	ade sin	ce last	major re	evision			
									2: Two in update.	iterconn	ect cha	anges m	ade sir	nce last	major re	evision			
									and so o	n.									

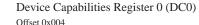
Register 2: Device Identification 1 (DID1), offset 0x004

This register identifies the device family, part number, temperature range, and package type.

Note: The bit diagram indicates some values are device-specific. The table below indicates values for your part.

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		V	ER	•	'		FAM					PAR	TNO			
pe set	RO 0	RO 0	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -						
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'			rese	rved					TEMP	1	PI	I KG	RoHS	QU	i Jal
e et	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO -	RO -	RO -	RO 0	RO 1	RO 1	RO -	RO -
Bit	/Field		Name		Туре		Reset	I	Descript	ion						
3.	1:28		VER		RO		0x0	-	This field	d define	s the vi	ersion o	of the D	ID1 regi	ster for	mat.
0	1.20		VEIX		NO		0,00							icrocontr		mat.
2	7:24		FAM		RO		0x0		- amily							
								-	-					ation of t rtfolio.	he dev	vice
									The 0x0 nicroco			s the St	ellaris f	amily of		
2	3:16	F	PARTNC)	RO		0x14	I	Part Nur	mber						
									This field amily.	d provid	es the	part nur	mber of	the dev	ice witl	hin tł
								-	The 0x1	4 value	indicat	es the L	_M3S3^	16 micro	control	ler.
1	5:8	r	eserved	l	RO		0		Reserve never be			n indete	rminate	e value, a	and sh	ould
-	7:5		TEMP		RO		see table	, -	Tempera	ature Ra	ange					
									This field This field					ating of t	he dev	ice.
									TEN	lΡ	Desc	ription				
									00	0	Com 70°C		tempe	rature ra	nge (0	°C to
									00	1	Indus 85°C		nperati	ure range	e (-40°	C to
									010-	111	Rese	erved				
4	4:3		PKG		RO		0x1		This field a 48-pin				e type.	A value	of 1 ind	dicat

Device Identification 1 (DID1)


Bit/Field	Name	Туре	Reset	Description	
2	RoHS	RO	1	RoHS-Complia	ance
				A 1 in this bit s	specifies the device is RoHS-compliant.
1:0	QUAL	RO	see table	•	ifies the qualification status of the device. coded as follows:
				QUAL	Description
				00	Engineering Sample (unqualified)
				01	Pilot Production (unqualified)
				10	Fully Qualified
				11	Reserved

Register 3: Device Capabilities 0 (DC0), offset 0x008

This register is predefined by the part and can be used to verify features.

Note: The bit diagram indicates the values are device-specific. The table below indicates values for your specific part.

		Cupuon	nies neg	,15001 0 1	(200)											
	Offset 0x0	004														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1 1		1 1	an		1	1	I		1	1	
								SR	AMSZ							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
- 1			1		1 1		1 1		1	1	1	1		1	1	
								FL	SHSZ							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ri	t/Field		Name		Туре		Reset		Descripti	ion						
			Name		турс		Reset	1	Descripti							
2	1:16	0	RAMSZ	7	RO		0x000F	-	Indicates	tho ciz	o of the	o on chi			luo of 0	
J	1.10	0		-	ĸu		0x000		ndicates				p SRAI	vi. A va		
	. = .	_						-								
	15:0	ŀ	LSHSZ	-	RO		0x0007		Indicates 0x0007 i					memor	y. A va	lue of
											5 . 5 H L					

Register 4: Device Capabilities 1 (DC1), offset 0x010

	Device (Offset 0x0	-	ities 1 (I	DC1)													
Ì	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1	I		reserved			1	•	1	PWM		reserved		ADC	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1	
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		MINS	YSDIV	•		MAXA	DCSPD		MPU	reserved	TEMP	PLL	WDT	SWO	SWD	JTAG	
Type Reset	RO 0	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	
Bit	/Field		Name		Тур	e	Rese	et	Descri	otion							
3	1:21	I	reserve	d	RO)	0			ved bits be chan		an inde	termina	ite value	e, and s	hould	
	20		PWM ^a	l	RO)	1	1 A 1 in this bit indicates the presence of the PWM modu									
1	9:17	ļ	reserve	d	RO)	0	never be changed.									
	16		ADC ^a		RO)	1	A 1 in this bit indicates the presence of the ADC module									
15:12 MINSYSDIV RO 0x07 The reset specifies RCC regi divisor us								es a 25- egister (MHz cl page 8	ock wit 0) for he	h a PLI ow to c	_ divider	of 8. S	ee the			
1	11:8	MA	XADCS	SPD ^a	RO)	0x1			es data.				te at wh tes 250I		-	
	7		MPU		RO)	1		(MPU)	in the C U is no	Cortex-N	//3 is av	ailable	ory Prote . A 0 in t tes the N	his bit i		
										e <i>ARM</i> @ ails on t			Techn	ical Refe	erence	Manual	
	6	I	reserve	d	RO)	0	Reserved bits return an indeterminate value, and shou never be changed.								hould	
	5		TEMP		RO)	1		This bi sensor	-	es the	presend	ce of ar	n interna	ll tempe	erature	
	4		PLL		RO)	1			his bit i the dev		s the pi	resence	e of an ii	mpleme	ented	
3 WDT ^a RO 1 A								A 1 in t	this bit i	ndicate	s a wat	chdog	timer on	the de	vice.		

Bit/Field	Name	Туре	Reset	Description
2	SWO ^a	RO	1	A 1 in this bit indicates the presence of the ARM Serial Wire Output (SWO) trace port capabilities.
1	SWD ^a	RO	1	A 1 in this bit indicates the presence of the ARM Serial Wire Debug (SWD) capabilities.
0	JTAG ^a	RO	1	A 1 in this bit indicates the presence of a JTAG port.

a. These bits mask the Run-Mode Clock Gating Control 0 (RCGC0) register (see page 113), Sleep-Mode Clock Gating Control 0 (SCGC0) register (see page 113), and Deep-Sleep-Mode Clock Gating Control 0 (DCGC0) register (see page 113). Bits that are not noted are passed as 0. ADCSP is clipped to the maximum value specified in DC1.

Register 5: Device Capabilities 2 (DC2), offset 0x014

Note: The bit diagram indicates all possible features. The table below indicates values for your specific part.

	Device	Capabilit	ies 2 (I	DC2)												
,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1 1		reserved	l		1	COMP0		1	reserved	1 I		GPTM2	GPTM1	GPTM0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		I2C			•	reserved	.	'	•	SSI	rese	erved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 1
Bit	/Field	1	Name		Туре		Reset	t C	escript	ion						
3	1:25	re	servec	l	RO		0			d bits re change		indeter	minate	e value,	and sho	ould
	24	С	OMP0		RO		1		1 in th ompara	is bit inc ator 0.	dicates	the pres	sence o	of analo	g	
2	3:19	re	servec	I	RO		0			d bits re change		indeter	minate	e value,	and sho	ould
	18	G	iPTM2		RO		1			is bit inc odule 2.		the pres	sence o	of Gene	ral-Purp	oose
	17	G	PTM1		RO		1			is bit inc odule 1.		the pres	sence o	of Gene	ral-Purp	oose
	16	G	PTM0		RO		1			is bit inc odule 0.		the pres	sence o	of Gene	ral-Purp	oose
1	5:13	re	servec	I	RO		0			d bits re change		indeter	minate	e value,	and sho	ould
	12		I2C		RO		1	A	1 in th	is bit inc	dicates	the pres	sence o	of the I ²	C modu	ıle.
	11:5	re	servec	I	RO		0			ed bits re		indeter	minate	e value,	and sho	buld
	4		SSI		RO		1	A	1 in th	is bit inc	dicates	the pres	sence o	of the S	SI modu	ule.
	3:2	re	servec	I	RO		0			d bits re change		indeter	minate	e value,	and sho	ould
	1	U	JART1		RO		1	A	1 in th	is bit inc	dicates	the pres	sence o	of the U	ART1 m	nodule.
	0	U	IART0		RO		1	A	.1 in th	is bit inc	dicates	the pres	sence o	of the U	ART0 m	nodule.

Register 6: Device Capabilities 3 (DC3), offset 0x018

Note: The bit diagram indicates all possible features. The table below indicates values for your specific part.

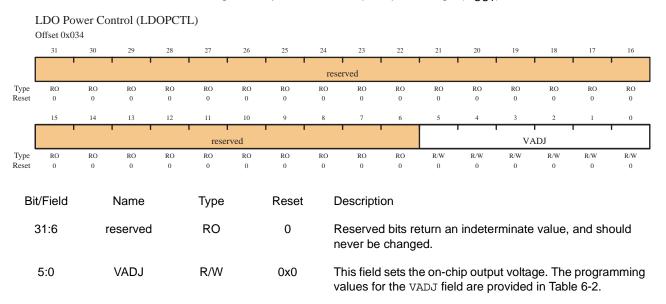
	Device (Offset 0x0	-	ities 3 (I	DC3)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reser	rved	CCP5	CCP4	CCP3	CCP2	CCP1	CCP0		reser	ved		ADC3	ADC2	ADC1	ADC0
Type Reset	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Turi				reserved				C0o	C0+	C0-	reser		PWM3	PWM2	PWM1	PWM0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1
Bit	/Field		Name		Туре		Reset	C	Descripti	on						
3	1:30	r	eservec	I	RO		0		Reserveo lever be			indete	rminate	value,	and sh	bluc
	29		CCP5		RO		1		1 in thi Compare			he pres	sence o	f the Ca	apture/	
	28		CCP4		RO		1		1 in thi Compare			he pres	sence o	f the Ca	apture/	
	27		CCP3		RO		1		1 in thi Compare			he pres	sence o	f the Ca	apture/	
	26		CCP2		RO		1		1 in thi Compare			he pres	sence o	f the Ca	apture/	
	25		CCP1		RO		1		1 in thi Compare			he pres	sence o	f the Ca	apture/	
	24		CCP0		RO		1		1 in thi Compare			he pres	sence o	f the Ca	apture/	
2	3:20	r	eservec	l	RO		0		Reserved lever be			indete	rminate	value,	and sh	ould
	19		ADC3		RO		1	A	1 in thi	s bit ind	icates t	he pres	sence o	f the Al	DC3 pir	۱.
	18		ADC2		RO		1	A	1 in thi	s bit ind	icates t	he pres	sence o	f the Al	DC2 pir	۱.
	17		ADC1		RO		1	A	1 in thi	s bit ind	icates t	he pres	sence o	f the Al	DC1 pir	۱.
	16		ADC0		RO		1	A	1 in thi	s bit ind	icates t	he pres	sence o	f the Al	DC0 pir	۱.
1	15:9	r	eservec	I	RO		0		Reserved lever be			indete	rminate	value,	and sh	ould
	8		C0o		RO		1	A	1 in thi	s bit ind	icates t	he pres	sence o	f the C	0o pin.	
	7		C0+		RO		1	A	1 in thi	s bit ind	icates t	he pres	sence o	f the C	0+ pin.	

Bit/Field	Name	Туре	Reset	Description
6	C0-	RO	1	A 1 in this bit indicates the presence of the C0- pin.
5:4	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
3	PWM3	RO	1	A 1 in this bit indicates the presence of the PWM3 pin.
2	PWM2	RO	1	A 1 in this bit indicates the presence of the PWM2 pin.
1	PWM1	RO	1	A 1 in this bit indicates the presence of the PWM1 pin.
0	PWM0	RO	1	A 1 in this bit indicates the presence of the PWM0 pin.

Register 7: Device Capabilities 4 (DC4), offset 0x01C

	Device (Offset 0x0	-	ties 4 (D	C4)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[I I	ľ	, I	1	T		reserved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[I I	I	I	reserved	I		1 1			PORTE	PORTD	PORTC	PORTB	PORTA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1
Bit	/Field		Name		Туре		Reset	[Descripti	on						
3			RO		0		Reserved never be			indete	rminate	value,	and sho	ould		
	4	F	PORTE		RO		1	1	A 1 in thi	s bit inc	licates	the pres	sence o	f GPIO	Port E.	
	3	F	PORTD		RO		1	/	A 1 in thi	s bit inc	licates	the pres	sence o	f GPIO	Port D.	
	2	F	PORTC		RO		1	/	A 1 in thi	s bit inc	licates	the pres	sence o	f GPIO	Port C.	
	1	F	PORTB		RO		1	1	A 1 in thi	s bit inc	licates	the pres	sence o	f GPIO	Port B.	
	1PORTBRO10PORTARO1			1	/	A 1 in thi	s bit inc	licates	the pres	sence o	f GPIO	Port A.				

Register 8: Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030


This register is responsible for controlling reset conditions after initial power-on reset.

	Offset 0x0		10 10 10	ut Rest	et Contro	I (I DC	(KCTL)									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			'					re	eserved	'	'		'	•	'	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1				BOR	TIM	I	I	1	1	•	1	BORIOR	BORWT
Type Reset	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1
Bi	t/Field	I	Name		Туре		Reset		Descript	ion						
3	31:16	re	served		RO		0		Reserve never be			n indete	rminate	value,	and sh	ould
	15:2	В	ORTIM		R/W		0x1FFF		This field delayed bit is set	before						
									The widt and the i 50%. At	internal	oscillat	or (IOS	C) frequ	uency o	of 15 M	Hz ±
	1	В	ORIOR		R/W		0		BOR Inte	errupt o	r Reset	t				
									This bit of controlle	r. If set,						
	0	В	ORWT		R/W		1		BOR Wa	it and C	Check f	or Noise	9			
									This bit s assertion IOSC pe asserted BOR res assertion suppress the output enabled.	n. If BOF riods be ample i ample i was lil sed. If B ut and a	RWT is s efore re als a B is deas kely noi BORWT is	et to 1, esamplir OR cond serted, t ise and s 0, BOF	the con ng the E dition in the cau the inte R assert	ntroller 3OR ou terrupt se of th errupt o tions do	waits Bo Itput, ar or rese ne initial r reset i o not res	DRTIM nd if t. If the s sample

Power-On and Brown-Out Reset Control (PBORCTL)

Register 9: LDO Power Control (LDOPCTL), offset 0x034

The VADJ field in this register adjusts the on-chip output voltage (V_{OUT}).

Table 6-2. VADJ to VOUT

VADJ Value	V _{OUT} (V)	VADJ Value	V _{OUT} (V)	VADJ Value	V _{OUT} (V)
0x1B	2.75	0x1F	2.55	0x03	2.35
0x1C	2.70	0x00	2.50	0x04	2.30
0x1D	2.65	0x01	2.45	0x05	2.25
0x1E	2.60	0x02	2.40	0x06-0x3F	Reserved

Register 10: Software Reset Control 0 (SRCR0), offset 0x040

Writes to this register are masked by the bits in the **Device Capabilities 1 (DC1)** register (see page 64).

Software Reset Control 0 (SRCR0) Offset 0x040 31 30 20 19 18 17 16 28 25 24 23 21 PWM ADC reserved reserved R/W Туре RO R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 Δ 3 2 0 WDT reserved reserved R/W Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:21 RO 0 Reserved bits return an indeterminate value, and should reserved never be changed. 20 PWM R/W 0 Reset control for the PWM units. 19:17 0 Reserved bits return an indeterminate value, and should reserved RO never be changed. 16 ADC R/W 0 Reset control for the ADC units.

0 Reserved bits return an indeterminate value, and should 15:4 reserved RO never be changed. 3 WDT R/W 0 Reset control for the Watchdog unit. 0 2:0 reserved RO Reserved bits return an indeterminate value, and should

never be changed.

October 8, 2006

Register 11: Software Reset Control 1 (SRCR1), offset 0x044

Writes to this register are masked by the bits in the **Device Capabilities 2 (DC2)** register (see page 66).

	Softwa Offset 0x	re Reset C	Control	1 (SRCI	R1)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1 1		reserved		1		COMP0		I	reserved			GPTM2	GPTM1	GPTM0
Type	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		I2C				reserved		1	I	SSI	rese	rved	UART1	UART0
Туре	RO	RO	RO	R/W	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:25	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
24	COMP0	R/W	0	Reset control for analog comparator 0.
23:19	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
18	GPTM2	R/W	0	Reset control for General-Purpose Timer module 2.
17	GPTM1	R/W	0	Reset control for General-Purpose Timer module 1.
16	GPTM0	R/W	0	Reset control for General-Purpose Timer module 0.
15:13	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
12	12C	R/W	0	Reset control for the I ² C units.
11:5	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
4	SSI	R/W	0	Reset control for the SSI units.
3:2	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
1	UART1	R/W	0	Reset control for the UART1 module.
0	UART0	R/W	0	Reset control for the UART0 module.

Register 12: Software Reset Control 2 (SRCR2), offset 0x048

Writes to this register are masked by the bits in the **Device Capabilities 4 (DC4)** register (see page 69).

	Software Reset Control (SRCR2) Offset 0x048															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		·	· ·						reserved	·						
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1		T	reserved	1		T	T	I	PORTE	PORTD	PORTC	PORTB	PORTA
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	it/Field		Name		Туре		Reset		Descript	ion						
	31:5	I	reserved		RO		0		Reserve never be			n indete	rminate	value,	and sh	ould
	4		PORTE		R/W		0		Reset co	ontrol fo	r GPIO	Port E.				
	3		PORTD		R/W		0		Reset co	ontrol fo	r GPIO	Port D.				
	2		PORTC		R/W		0 Reset control for GPIO Port C.									
	1		PORTB		R/W	0 Reset control for GPIO Port B.										
	0		PORTA		R/W	0 Reset control for GPIO Port A.										

Register 13: Raw Interrupt Status (RIS), offset 0x050

Central location for system control raw interrupts. These are set and cleared by hardware.

	Raw Interrupt Status (RIS) Offset 0x050															
ſ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								res	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		г т	r	eserved		1 1		1	PLLLRIS	CLRIS	IOFRIS	MOFRIS	LDORIS	BORRIS	PLLFRIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit	t/Field		Name		Туре		Reset	Ľ	Descripti	on						
;	31:7	r	eserved		RO		0			d bits re change		indete	rminate	value,	and sho	ould
	6	F	LLLRIS		RO		0	F	LL Locl	k Raw Ir	nterrup	t Status	5			
										s set wh	•			imer as	serts.	
	5 CLRIS RO				0	C	Current l	imit Ra	w Inter	rupt Sta	atus					
									his bit i	s set if t	he LDC)'s CLE	output	asserts	S.	
	4	I	IOFRIS		RO		0	l	nternal (Oscillato	or Fault	Raw Ir	nterrupt	Status		
								Т	his bit i	s set if a	an inter	nal osc	illator fa	ault is d	etected	
	3	Ν	/OFRIS		RO		0	Ν	lain Os	cillator F	ault Ra	aw Inte	rrupt St	atus		
								Т	his bit i	s set if a	a main (oscillate	or fault	is detec	ted.	
	2	L	DORIS		RO		0	L	.DO Pov	ver Unre	egulate	d Raw	Interrup	ot Status	5	
								Т	his bit i	s set if a	a LDO v	/oltage	is unre	gulated		
1 BORRIS RO 0 Brown-Out Reset Raw In					Interrup	ot Statu	S									
							This bit is the raw interrupt status for any brown-out conditions. If set, a brown-out condition was detected. A interrupt is reported if the BORIM bit in the IMC register set and the BORIOR bit in the PBORCTL register is clea							er is		
	0	P	PLLFRIS		RO		0	F	PLL Fau	t Raw I	nterrup	t Status	6			
								Т	his bit i	s set if a	a PLL fa	ault is d	letectec	l (stops	oscillat	ing).

Register 14: Interrupt Mask Control (IMC), offset 0x054

Central location for system control interrupt masks.

	nterrup Offset 0x(ot Mask ()54	Control	(IMC)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							· ·	rese	erved					·		'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				1	reserved				'	PLLLIM	CLIM	IOFIM	MOFIM	LDOIM	BORIM	PLLFIM
lype leset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit	/Field		Name		Туре		Reset	C	Descript	ion						
3	81:7	r	eserved	I	RO		0			ed bits re e change		n indete	rminate	e value,	and sh	bluc
	6	F	PLLLIM		R/W		0	F	LL Loc	k Interru	ipt Mas	sk				
								p g	romote enerate	specifies d to a co ed if PLI enerated	ontrolle	r interru	upt. If se	et, an ir	nterrupt	
	5		CLIM		R/W		0	C	Current	Limit Int	errupt l	Mask				
								 Current Limit Interrupt Mask This bit specifies whether a current limit detection is promoted to a controller interrupt. If set, an interrupt is generated if CLRIS is set; otherwise, an interrupt is not generated. 								
	4		IOFIM		R/W		0	h	nternal	Oscillato	or Fault	Interru	pt Mas	k		
								d ir	etection nterrupt	specifies n is pror is gene is not g	noted t rated if	o a con IOFRI	troller i	nterrupt	. If set,	
	3	ſ	MOFIM		R/W		0	Ν	lain Os	cillator F	-ault In	terrupt	Mask			
							This bit specifies whether a main oscillator fault detection promoted to a controller interrupt. If set, an interrupt is generated if MOFRIS is set; otherwise, an interrupt is no generated.						is			
	2		LDOIM		R/W		0	L	DO Po	wer Unr	egulate	d Interi	upt Ma	sk		
						s ir	ituation nterrupt	specifies is prom is gene is not g	oted to rated if	a cont	roller in	terrupt.	If set, a	an		

Bit/Field	Name	Туре	Reset	Description
1	BORIM	R/W	0	Brown-Out Reset Interrupt Mask
				This bit specifies whether a brown-out condition is promoted to a controller interrupt. If set, an interrupt is generated if BORRIS is set; otherwise, an interrupt is not generated.
0	PLLFIM	R/W	0	PLL Fault Interrupt Mask
				This bit specifies whether a PLL fault detection is promoted to a controller interrupt. If set, an interrupt is generated if PLLFRIS is set; otherwise, an interrupt is not generated.

Register 15: Masked Interrupt Status and Clear (MISC), offset 0x058

Central location for system control result of RIS AND IMC to generate an interrupt to the controller. All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the **RIS** register (see page 75).

	Offset 0x05	-	n Status i	anu C		-)											
	31	30	29	28	27	26	25		24	23	22	21	20	19	18	17	16
[i		i i		i i		i	1	rese	erved	1 1		i i		I	i	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
[I				reserved					1	PLLLMIS	CLMIS	IOFMIS	MOFMIS	LDOMIS	BORMIS	PLLFMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0
resser	0	0	0	0	0	0	0		0	0	0	0	Ū	0	0	0	0
Bit	t/Field		Name		Туре		Res	et	D	escript	tion						
	31:7	re	eserved		RO		0				ed bits re e change		n indeter	minate	value,	and sho	ould
	6	Р	LLLMIS		R/W1C		0		Ρ	LL Loc	k Maske	ed Inter	rupt Sta	tus			
									T ir	his bit hterrup	is set wh t is clear	nen the ed by v	PLL T _R writing a	_{EADY} ti 1 to th	mer as is bit.	serts. T	he
	5	(CLMIS		R/W1C		0		С	Current	Limit Ma	asked I	nterrupt	Status			
											is set if tl ed by wri				asserts	. The in	terrupt
4 IOFMIS R/W1C 0 Interna					nternal	Oscillato	or Faul	t Masked	d Interr	upt Sta	tus						
											is set if a t is clear					etected	. The
	3	Ν	IOFMIS		R/W1C		0		Ν	lain Os	scillator F	ault M	lasked Ir	nterrup	t Status	6	
											is set if a t is clear					cted. Th	е
	2	L	DOMIS		R/W1C		0		L	DO Po	wer Unr	egulate	ed Maske	ed Inte	rrupt St	atus	
											is set if L by writin				ated. T	he inter	rupt is
	1	В	ORMIS		R/W1C		0		В	Brown-C	Dut Rese	et Masł	ked Inter	rupt St	atus		
								This bit is the masked interrupt status for any brown- conditions. If set, a brown-out condition was detected interrupt is reported if the BORIM bit in the IMC regist set and the BORIOR bit in the PBORCTL register is cl The interrupt is cleared by writing a 1 to this bit.						d. An ter is			
	0	Ρ	LLFMIS		R/W1C		0		P	LL Fau	ult Maske	ed Inte	rrupt Sta	tus			
											is set if a errupt is o						ing).

Masked Interrupt Status and Clear (MISC)

Register 16: Reset Cause (RESC), offset 0x05C

This field specifies the cause of the reset event to software. The reset value is determined by the cause of the reset. When an external reset is the cause (EXT is set), all other reset bits are cleared. However, if the reset is due to any other cause, the remaining bits are sticky, allowing software to see all causes.

	Offset 0x(KESC)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1		1 1		1		1	i	i	i	i	i	i	
T	DO	DO							eserved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1		reserved				1	1	LDO	SW	WDT	BOR	POR	EXT
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-
Bi	t/Field		Name		Туре		Reset		Descript	on						
	04.0						0		Decembra	ما ام الم				value	م ام م	اما ، ، ،
	31:6		reserved		RO		0		Reserve never be			Indete	rminate	value,	and she	bula
										onung	00.					
			When se	t to 1, L	DO po	wer OK	lost is t	he cau	se of the	e reset						
									event.							
	4		SW		R/W		-		When se	et to 1. a	a softwa	are rese	et is the	cause (of the re	eset
			•						event.							
	_															
	3		WDT		R/W		-		When se event.	et to 1, a	a watch	dog res	set is the	e cause	of the	reset
									event.							
	2		BOR		R/W		-		When se	et to 1, a	a brown	-out res	set is th	e cause	e of the	reset
									event.							
	1		POR		R/W				Whon or	tto 1		on roc	ot is the		of the r	rocot
	1		FUR		r./ V V		-		When se event.	ιυ I, č	a power	-on res		e cause		6961
									0.000							
	0		EXT		R/W		-		When se				et (RST	asserti	on) is th	ne
	-								cause of	the res	et ever	nt.				

Reset Cause (RESC)

Register 17: Run-Mode Clock Configuration (RCC), offset 0x060

This register is defined to provide source control and frequency speed.

	Run-Mo Offset 0x0		ck Config	guratior	n (RCC)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	resei	i i rved		ACG	ľ	i SYS	DIV	Î	USESYSDIV	reserved	JSEPWMDIV		PWMDIV		reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W	R/W	R/W	R/W 1	R/W 0	RO 0	R/W 0	R/W	R/W	R/W 1	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[res	erved	PWRDN	OEN	BYPASS	PLLVER		:	I XTAL	1	OS	CSRC	IOSCVER	MOSCVER	IOSCDIS	MOSCDIS
Type Reset	RO 0	RO 0	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 1	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0
Bit	eset 0 0 1		Name		Туре		Reset		Descript	ion						
			0		Reserve never be			n indete	erminate	e value,	and sh	ould				
	27		ACG		R/W		0		Auto Clo	ock Gati	ing					
									This bit s	•			2		•	

Clock Gating Control (SCGCn) registers (see page 86) and Deep-Sleep-Mode Clock Gating Control (DCGCn) registers (see page 86) if the controller enters a Sleep or Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers are used to control the clocks distributed to the peripherals when the controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating Control (RCGCn) registers (see page 86) are used when the controller enters a sleep mode.

The **RCGCn** registers are always used to control the clocks in Run mode.

This allows peripherals to consume less power when the controller is in a sleep mode and the peripheral is unused.

Bit/Field	Name	Туре	Reset	Description						
				•	Divisor					
26:23	SYSDIV	R/W	0xF	System Clock						
					output (200 MHz	to generate the system clock 2).				
				Binary Value	Divisor (BYPASS=1)	Frequency (BYPASS=0)				
				0000	reserved	reserved				
				0001	/2	reserved				
				0010	/3	reserved				
				0011	/4	reserved				
				0100	/5	reserved				
				0101	/6	reserved				
				0110	/7	reserved				
				0111	/8	25 MHz				
				1000	/9	22.22 MHz				
				1001	/10	20 MHz				
				1010	/11	18.18 MHz				
				1011	/12	16.67 MHz				
				1100	/13	15.38 MHz				
				1101	/14	14.29 MHz				
				1110	/15	13.33 MHz				
				1111	/16	12.5 MHz (default)				
				When reading the Run-Mode Clock Configuration (RCC) register (see page 80), the SYSDIV value is MINSYSDIV if a lower divider was requested and the PLL is being used. This lower value is allowed to divide a non-PLL source.						
22	USESYSDIV	R/W	0	clock. The sy		as the source for the system er is forced to be used when Irce.				
21	reserved	RO	0	0 Reserved bits return an indeterminate value, and should never be changed.						
20	USEPWMDIV	R/W	0	Use the PWM clock divider as the source for the PWM						

Use the PWM clock divider as the source for the PWM clock.

Bit/Field	Name	Туре	Reset	Description
19:17	PWMDIV	R/W	0x7	PWM Unit Clock Divisor
				This field specifies the binary divisor used to predivide the system clock down for use as the timing reference for the PWM module. This clock is only power 2 divide and rising edge is synchronous without phase shift from PCLK/HCLK.
				Value Divisor
				000 /2
				001 /4
				010 /8
				011 /16
				100 /32
				101 /64
				110 /64
				111 /64 (default)
16:14	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
13	PWRDN	R/W	1	PLL Power Down
				This bit connects to the PLL PWRDN input. The reset value of 1 powers down the PLL. See Table 6-4 on page 83 for PLL mode control.
12	OEN	R/W	1	PLL Output Enable
				This bit specifies whether the PLL output driver is enabled. If cleared, the driver transmits the PLL clock to the output. Otherwise, the PLL clock does not oscillate outside the PLL module.
				Note: Both PWRDN and OEN must be cleared to run the PLL.
11	BYPASS	R/W	1	PLL Bypass
				Chooses whether the system clock is derived from the PLL output or the OSC source. If set, the clock that drives the system is the OSC source. Otherwise, the clock that drives the system is the PLL output clock divided by the system divider.
				Note: The ADC module cannot be used when the PLL is in Bypass mode (BYPASS set to 1).
10	PLLVER	R/W	0	PLL Verification
				This bit controls the PLL verification timer function. If set, the verification timer is enabled and an interrupt is generated if the PLL becomes inoperative. Otherwise, the verification timer is not enabled.

Bit/Field	Name	Туре	Reset	Description					
9:6	XTAL	R/W	0xB	This field specifies the crystal value attached to the main oscillator. The encoding for this field is provided in Table 6-4 on page 83.					
			Oscillato	r-Related Bits					
5:4	OSCSRC	R/W	0x0	Picks among the four input sources for the OSC. The values are:					
				Value Input Source					
				00 Main oscillator (default)					
				01 Internal oscillator					
				10 Internal oscillator / 4 (this is necessary if used as input to PLL)					
				11 reserved					
3	IOSCVER	R/W	0	This bit controls the internal oscillator verification timer function. If set, the verification timer is enabled and an interrupt is generated if the timer becomes inoperative. Otherwise, the verification timer is not enabled.					
2	MOSCVER	R/W	0	This bit controls the main oscillator verification timer function. If set, the verification timer is enabled and an interrupt is generated if the timer becomes inoperative. Otherwise, the verification timer is not enabled.					
1	IOSCDIS	R/W	0	Internal Oscillator Disable					
				0: Internal oscillator is enabled.					
				1: Internal oscillator is disabled.					
0	MOSCDIS	R/W	0	Main Oscillator Disable					
				0: Main oscillator is enabled.					
				1: Main oscillator is disabled.					

Table 6-3. PLL Mode Control

PWRDN	OEN	Mode
1	Х	Power down
0	0	Normal

Table 6-4. Default Crystal Field Values and PLL Programming

Crystal Number (XTAL Binary Value)	Crystal Frequency (MHz)
0000-0011	reserved
0100	3.579545 MHz
0101	3.6864 MHz

Crystal Number (XTAL Binary Value)	Crystal Frequency (MHz)
0110	4 MHz
0111	4.096 MHz
1000	4.9152 MHz
1001	5 MHz
1010	5.12 MHz
1011	6 MHz (reset value)
1100	6.144 MHz
1101	7.3728 MHz
1110	8 MHz
1111	8.192 MHz

Table 6-4. Default Crystal Field Values and PLL Programming (Continued)

Register 18: XTAL to PLL Translation (PLLCFG), offset 0x064

This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the **Run-Mode Clock Configuration (RCC)** register (see page 80).

	Offset 0x0	/04															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1				1 1	re	served		T	1	1		I	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	D			1 1		F		I	1	T		I	R	I	1	
Type Reset	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	
Bi	it/Field Name Type Reset Description							ion									
3									Reserved bits return an indeterminate value, and should never be changed.								
1	15:14 OD RO -								This field specifies the value supplied to the PLL's OD input								
	13:5 F RO -							This field specifies the value supplied to the PLL's F in									
	13:5		F		RO		-		This field	d specif	fies the	value s	upplied	to the	PLL's F	input.	

XTAL to PLL Translation (PLLCFG) Offset 0x064

Register 19: Run-Mode Clock Gating Control 0 (RCGC0), offset 0x100

Register 20: Sleep-Mode Clock Gating Control 0 (SCGC0), offset 0x110

Register 21: Deep-Sleep-Mode Clock Gating Control 0 (DCGC0), offset 0x120

These registers control the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts.

RCGC0 is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration** (**RCC**) register (see page 80) specifies that the system uses sleep modes.

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	T		1 1		1 1	rese	rved		1			PWM		reserved		ADC			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	R/W 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
[1		erved				DCSPD			rese		1	WDT	SWO	SWD	JTAG			
Type Reset	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 1			
Bit	Bit/Field Name 31:21 reserved				Туре	e	Res	et	Description										
3	31:21 reserved			d	RO 0				Reserv never b			an indet	ermina	te value	e, and s	hould			
	20 PWM			R/W	I	0		set, the	unit rea	ceives a	lock gat a clock a disable	and fun							
1	9:17		reserve	d	RO		0		Reserved bits return an indeterminate value, and should never be changed.										
	16		ADC		R/W	I	1		This bit controls the clock gating for the ADC module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. ^a										
15:12 reserved		RO		0		Reserv never b			an indet	ermina	te value	e, and s	hould						

Run-Mode, Sleep-Mode and Deep-Sleep-Mode Clock Gating Control 0 (RCGC0, SCG0, and DCGC0) Offset 0x100, 0x110, 0x120

Bit/Field	Name	Туре	Reset	Description							
11:8	MAXADCSPD	R/W	0x1	value of 0x1 indicates th	at which the ADC samples data. A he maximum rate of 250K samples t set the rate higher than the						
				You can set the sample as follows:	rate by setting the MAXADCSPD bit						
				Value	Sample Rate						
				0x0	125K samples/second						
				0x1	250K samples/second						
7:4	reserved	RO	0	Reserved bits return ar never be changed.	n indeterminate value, and should						
3	WDT	R/W	0		ck gating for the WDT module. If clock and functions. Otherwise, the isabled. ^a						
2	SWO	R/W	0	set, the unit receives a	ck gating for the SWO module. If clock and functions. Otherwise, the isabled. ^a						
1	SWD	R/W	0	unit is unclocked and disabled. ^a This bit controls the clock gating for the SWD module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. ^a							
0	JTAG	R/W	1	This bit controls the clock gating for the JTAG module. The reset state for this bit is 1. At reset, the unit receives clock and functions. Setting this bit to 0 leaves the unit unclocked and disabled. ^a							

a. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 22: Run-Mode Clock Gating Control 1 (RCGC1), offset 0x104

Register 23: Sleep-Mode Clock Gating Control 1 (SCGC1), offset 0x114

Register 24: Deep-Sleep-Mode Clock Gating Control 1 (DCGC1), offset 0x124

These registers control the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts.

RCGC1 is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration** (**RCC**) register (see page 80) specifies that the system uses sleep modes.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1		reserved	- T		1	COMP	0		reserved			GPTM2	GPTM1	GPTM0
Туре	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		I2C				reserve	d			SSI	rese	erved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	/Field		Name		Туре		Reset	t I	Descripti	on						
3	1:25				RO		0		Reserveo never be			indeter	minate	e value,	and sh	buld
)	R/W			I	This bit c module. I Otherwis	f set, tl	he unit r	eceives	a cloc	k and fi	unction	
2	3:19	e reserved			RO				Reserveo never be			indeter	minate	e value,	and sh	ould
	18	GPTM2			R/W		0	-	This bit controls the clock gating for the General Purpose Timer 2 module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. ^a							
	17	(GPTM1		R/W		0	-	This bit c Timer 1 r functions	nodule	. If set, t	he unit	receiv	es a clo	ck and	
	16	(GPTM0	1	R/W		0	-	This bit c Timer 0 r functions	nodule	. If set, t	he unit	receiv	es a clo	ck and	

Run-Mode, Sleep-Mode, and Deep-Sleep-Mode Clock Gating Control 1 (RCGC1, SCGC1, and DCGC1) Offset 0x104, 0x114, and 0x124

Bit/Field	Name	Туре	Reset	Description
15:13	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
12	I2C	R/W	0	This bit controls the clock gating for the I ² C module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. ^a
11:5	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
4	SSI	R/W	0	This bit controls the clock gating for the SSI module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. ^a
3:2	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
1	UART1	R/W	0	This bit controls the clock gating for the UART1 module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. ^a
0	UART0	R/W	0	This bit controls the clock gating for the UART0 module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. ^a

a. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 25: Run-Mode Clock Gating Control 2 (RCGC2), offset 0x108

Register 26: Sleep-Mode Clock Gating Control 2 (SCGC2), offset 0x118

Register 27: Deep-Sleep-Mode Clock Gating Control 2 (DCGC2), offset 0x128

These registers control the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts.

RCGC2 is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration** (**RCC**) register (see page 80) specifies that the system uses sleep modes.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
					1 1				reserved			1	1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	· ·					reserved					l	PORTE	PORTD	PORTC	PORTB	PORTA		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit	/Field																	
;	never be changed.												rminate	value,	and sho	ould		
	4		PORTE		R/W		0	This bit controls the clock gating for the GPIO Port module. If set, the unit receives a clock and function Otherwise, the unit is unclocked and disabled. ^a										
	3		PORTD		R/W		0		This bit co module. I Otherwise	f set, th	ne unit	receive	s a cloc	k and fi	unctions.			
	2		PORTC		R/W		0	This bit controls the clock gating for the module. If set, the unit receives a clock Otherwise, the unit is unclocked and d							unctions			
	1		PORTB		R/W		0	This bit controls the clock gating for the GPIO Port B module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. ^a										
	0		PORTA		R/W		0		This bit co module. I Otherwise	f set, tł	ne unit	receive	s a cloc	k and fu	unctions			

Run-Mode, Sleep-Mode, and Deep-Sleep-Mode Clock Gating Control 2 (RCGC2, SCGC2, and DCGC2) Offset 0x108, 0x118, and 0x128

a. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 28: Deep-Sleep Clock Configuration (DSLPCLKCFG), offset 0x144

This register is used to automatically switch from the main oscillator to the internal oscillator when entering Deep-Sleep mode. The system clock source is the main oscillator by default. When this register is set, the internal oscillator is powered up and the main oscillator is powered down. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode.

	Offset 0x1	44														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			l l		1	1	1 1								1	
									reserved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	, i		l l		1	1	1 1		1 1		1			1	1	
								rese	erved							IOSC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре		Reset	C	escripti	on						
:	31:1	R	eserved	l	RO 0				ever be			indete	rminate	e value,	and sh	ould
0 IOSC					R/W		0	C ir n	This field Deep-Sle Internal o node. Ot ystem c	ep moo scillato herwise	de is rui r to be e, the m	nning. V the cloc	Vhen se k sourc	et, this f ce durin	ield for g Deep	ces the Sleep

Deep-Sleep Clock Configuration (DSLPCLKCFG)

Register 29: Clock Verification Clear (CLKVCLR), offset 0x150

This register is provided as a means of clearing the clock verification circuits by software. Since the clock verification circuits force a known good clock to control the process, the controller is allowed the opportunity to solve the problem and clear the verification fault. This register clears all clock verification faults. To clear a clock verification fault, the VERCLR bit must be set and then cleared by software. This bit is not self-clearing.

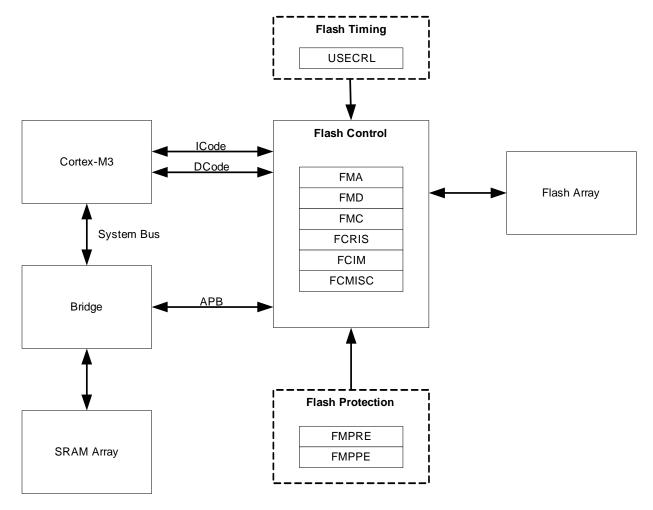
(Offset 0x150 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16																	
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	l						1		reserved		1	1	1		I	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	1		1				1 1	rese	rved		1	T	•	I	I	VERCLR		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
									Description									
31:1 Reserved			RO 0				Reserved bits return an indeterminate value, and should never be changed.											
	0 VERCLR			ł	R/W 0				Clear clock verification faults.									

Clock Verification Clear (CLKVCLR)

Register 30: Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160

This register is provided as a means of allowing the LDO to reset the part if the voltage goes unregulated. Use this register to choose whether to automatically reset the part if the LDO goes unregulated, based on the design tolerance for LDO fluctuation.

Allow Unregulated LDO to Reset the Part (LDOARST) Offset 0x160


	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1								reserved		1	•		•		<u>'</u>
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0							
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		т т		т т			res	erved		I	1		1	1	LDOARST
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре		Reset	[Descripti	on						
31:1 Reserved			I	RO				Reserved bits return an indeterminate value, and should never be changed.								
	0	LI	DOARS	Г	R/W		0	5	Set to 1 t	o allow	/ unregu	ulated L	DO out	put to r	eset th	e part.

7 Internal Memory

The LM3S316 microcontroller comes with 4 KB of bit-banded SRAM and 16 KB of flash memory. The flash controller provides a user-friendly interface, making flash programming a simple task. Flash protection can be applied to the flash memory on a 2-KB block basis.

7.1 Block Diagram

Figure 7-1. Flash Block Diagram

7.2 Functional Description

This section describes the functionality of both memories.

7.2.1 SRAM Memory

The internal SRAM of the Stellaris devices is located at address 0x20000000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)

For example, if bit 3 at address 0x20001000 is to be modified, the bit-band alias is calculated as:

0x22000000 + (0x1000 * 32) + (3 * 4) = 0x2202000C

With the alias address calculated, an instruction performing a read/write to address 0x2202000C allows direct access to only bit 3 of the byte at address 0x20001000.

For details about bit-banding, please refer to Chapter 4, "Memory Map" in the ARM® Cortex[™]-M3 Technical Reference Manual.

7.2.2 Flash Memory

The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

7.2.2.1 Flash Memory Timing

The timing for the flash is automatically handled by the flash controller. However, in order to do so, it must know the clock rate of the system in order to time its internal signals properly. The number of clock cycles per microsecond must be provided to the flash controller for it to accomplish this timing. It is software's responsibility to keep the flash controller updated with this information via the **USec Reload (USECRL)** register (see page 100).

On reset, **USECRL** is loaded with a value that configures the flash timing so that it works with the selected crystal value. If software changes the system operating frequency, the new operating frequency must be loaded into **USECRL** before any flash modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value of 0x13 must be written to the **USECRL** register.

7.2.2.2 Flash Memory Protection

The user is provided two forms of flash protection per 2-KB flash blocks in two 32-bit wide registers. The protection policy for each form is controlled by individual bits (per policy per block) in the **FMPPE** and **FMPRE** registers (see page 99).

- Flash Memory Protection Program Enable (FMPPE): If set, the block may be programmed (written) or erased. If cleared, the block may not be changed.
- Flash Memory Protection Read Enable (FMPRE): If set, the block may be executed or read by software or debuggers. If cleared, the block may only be executed. The contents of the memory block are prohibited from being accessed as data and traversing the DCode bus.

The policies may be combined as shown in Table 7-1.

FMPPE	FMPRE	Protection
0	0	Execute-only protection. The block may only be executed and may not be written or erased. This mode is used to protect code.
1	0	The block may be written, erased or executed, but not read. This combination is unlikely to be used.
0	1	Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access.
1	1	No protection. The block may be written, erased, executed or read.

 Table 7-1.
 Flash Protection Policy Combinations

An access that attempts to program or erase a PE-protected block is prohibited. A controller interrupt may be optionally generated (by setting the AMASK bit in the **FIM** register) to alert software developers of poorly behaving software during the development and debug phases.

An access that attempts to read an RE-protected block is prohibited. Such accesses return data filled with all 0s. A controller interrupt may be optionally generated to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the **FMPRE** and **FMPPE** registers are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence.

7.2.2.3 Flash Memory Programming

Writing the flash memory requires that the code be executed out of SRAM to avoid corrupting or interrupting the bus timing. Flash pages can be erased on a page basis (1 KB in size), or by performing a mass erase of the entire flash.

All erase and program operations are performed using the Flash Memory Address (FMA), Flash Memory Data (FMD) and Flash Memory Control (FMC) registers. See section 7.3 for examples.

7.3 Initialization and Configuration

This section shows examples for using the flash controller to perform various operations on the contents of the flash memory.

7.3.1 Changing Flash Protection Bits

As discussed in Section 7.2.2.2, changes to the protection bits must be committed before they take effect. The sequence to change and commit a bit in software is as follows:

- 1. The Flash Memory Protection Read Enable (FMPRE) and Flash Memory Protection Program Enable (FMPPE) registers are written, changing the intended bit(s). The action of these changes can be tested by software while in this state.
- 2. The Flash Memory Address (FMA) register (see page 101) bit 0 is set to 1 if the FMPPE register is to be committed; otherwise, a 0 commits the FMPRE register.
- 3. The Flash Memory Control (FMC) register (see page 103) is written with the COMT bit set. This initiates a write sequence and commits the changes.

7.3.2 Flash Programming

The Stellaris devices provide a user-friendly interface for flash programming. All erase/program operations are handled via three registers: **FMA**, **FMD** and **FMC**.

The flash is programmed using the following sequence:

- 1. Write source data to the **FMD** register.
- 2. Write the target address to the **FMA** register.
- 3. Write the flash write key and the WRITE bit (a value of 0xA4420001) to the FMC register.
- 4. Poll the **FMC** register until the WRITE bit is cleared.

To perform an erase of a 1-KB page:

- 1. Write the page address to the **FMA** register.
- 2. Write the flash write key and the ERASE bit (a value of 0xA4420002) to the FMC register.
- 3. Poll the FMC register until the ERASE bit is cleared.

To perform a mass erase of the flash:

- 1. Write the flash write key and the MERASE bit (a value of 0xA4420004) to the **FMC** register.
- 2. Poll the FMC register until the MERASE bit is cleared.

7.4 Register Map

Table 7-2 lists the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address, relative to the Flash control base address of 0x400FD000, except for **FMPRE** and **FMPPE**, which are relative to the System Control base address of 0x400FE000.

Offset	Name	Reset	Туре	Description	See page
0x130 ^a	FMPRE	0x000000FF	R/W0	Flash memory read protect	99
0x134 ^a	FMPPE	0x000000FF	R/W0	Flash memory program protect	99
0X140 ^a	USECRL	0x00000018	R/W	USec reload	100
0x000	FMA	0x00000000	R/W	Flash memory address	101
0x004	FMD	0x00000000	R/W	Flash memory data	102
0x008	FMC	0x00000000	R/W	Flash memory control	103
0x00C	FCRIS	0x00000000	RO	Flash controller raw interrupt status	105
0x010	FCIM	0x00000000	R/W	Flash controller interrupt mask	106
0x014	FCMISC	0x00000000	R/W1C	Flash controller masked interrupt status and clear	107

Table 7-2. Flash Register Map

a. Relative to System Control base address of 0x400FE000.

7.5 Register Descriptions

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset.

Register 1: Flash Memory Protection Read Enable (FMPRE), offset 0x130

Register 2: Flash Memory Protection Program Enable (FMPPE), offset 0x134

Note: Offset is relative to System Control base address of 0x400FE000

These registers store the read-only (**FMPRE**) and execute-only (**FMPPE**) protection bits for each 2 KB flash block. This register is loaded during the power-on reset sequence.

The factory settings for the **FMPRE** and **FMPPE** registers are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1).

The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence.

For additional information, see "Flash Memory Protection" on page 95.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	I		1 1	I				rese	rved							1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			1 1	reser	ved			1	Block7	Block6	Block5	Block4	Block3	Block2	Block1	Block0	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W0 1	R/W0 1	R/W0 1	R/W0 1	R/W0 1	R/W0 1	R/W0 1	R/W0 1	
	t/Field		Name		Туре		F	Reset		escripti							
3	31:8 reserved			RO			0					bits return an indeterminate value, and ver be changed.					
	7:0		Block7- Block0		R/W	0		1	(F re	nable 2 MPPE egister). Table 7	registe The po	r), or ex plicies n	ecuted	or read	(FMPI	RE	

Flash Memory Protection Read Enable and Program Enable (FMPRE and FMPPE) Offset 0x130 and 0x134 _____

Register 3: USec Reload (USECRL), offset 0x140

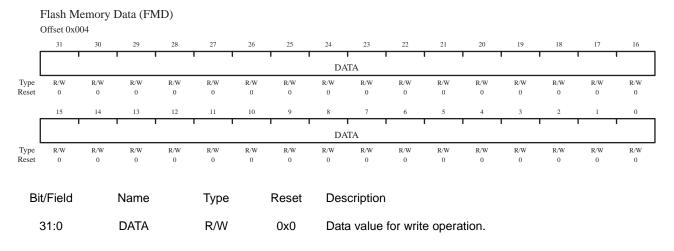
Note: Offset is relative to System Control base address of 0x400FE000

This register is provided as a means of creating a 1 µs tick divider reload value for the flash controller. The internal flash has specific minimum and maximum requirements on the length of time the high voltage write pulse can be applied. It is required that this register contain the operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is required to change this value if the clocking conditions are changed for a flash erase/program operation.

1	Usec Re	eload (U	JSECRL))												
	Offset 0x1	40														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1		1	1 1		1		I	1			1	1
I									reserved							
Type Reset	RO 0	RO	RO	RO	RO 0	RO	RO 0	RO	RO	RO	RO	RO 0	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1			1	1 1			1	I	I		1	1	
I				reserved								USE				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W	R/W 1	R/W 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0		1	0	0	0
Bit	t/Field		Name		Туре		Reset		Descripti	on						
:	31:8	I	reserved		RO		0		Reserved	d bits re	eturn ar	n indeter	rminate	value,	and sh	ould
								1	never be	change	ed.					
										Ũ						
	7:0		USEC		R/W		0x16		MHz -1 c	of the co	ontrolle	r clock v	when th	e flash	is bein	a
									erased o							0
									USEC sho				1 MHz)	whene	ver the	flash is
								l	being era	ased or	progra	mmed.				

October 8, 2006

Register 4: Flash Memory Address (FMA), offset 0x000


During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned address and specifies which page is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable.

,	Oliset 0x0	00														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	i		i i		i i		1 1		i i			i	i	I	i i	
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reser	ved			I I		1 1		OFF	SET		I	I			
Туре	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	t/Field		Name		Туре		Reset	Des	cription							
3	31:14 reserve			RO			0x0		erved b er be ch			determ	inate va	alue, an	d shoul	d
	13:0	OFFSET			R/W	0x0	Add	ress off	ffset in flash where operation is performed.							

Flash Memory Address (FMA) Offset 0x000

Register 5: Flash Memory Data (FMD), offset 0x004

This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during the erase cycles.

Register 6: Flash Memory Control (FMC), offset 0x008

When this register is written, the flash controller initiates the appropriate access cycle for the location specified by the **Flash Memory Address (FMA)** register (see page 101). If the access is a write access, the data contained in the **Flash Memory Data (FMD)** register (see page 102) is written.

This is the final register written and initiates the memory operation. There are four control bits in the lower byte of this register that, when set, initiate the memory operation. The most used of these register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are unpredictable.

	Flash M Offset 0x0	-	Control (FMC)														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	I	•						WR	KEY		I	•	•		Į	1		
ype eset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			1 1		1	n	eserved		1			1	COMT	MERASE	ERASE	WRITI		
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0		
Bit	t/Field		Name		Туре		Reset	C	escripti	on								
31:16 WRKEY WO 0x0 This field contains a write key, which is used to mini incidence of accidental flash writes. The value 0xA4 be written into this field for a write to occur. Writes FMC register without this WRKEY value are ignore read of this field returns the value 0. 15:4 reserved RO 0 Reserved bits return an indeterminate value, and served bits return an indeterminate value.													0xA44 /rites to	2 mus the				
1	15:4	r	eserved		RO		0		leserve ever be			indete	erminate	e value,	and sh	ould		
	3		COMT		R/W		0							nvolatile f this bit.		e. A		
								lf o	the pre	vious c e, if the	ommit a	access	is com	nit acces plete, a t comple	0 is ret	urned;		
								Т	his can	take up	o to 50	µs.						
	2	Ν	IERASE	E	R/W		0	Ν	lass era	ase flas	h memo	ory						
										If this bit is set, the flash main memory of the device is all erased. A write of 0 has no effect on the state of this bit.								
								р 0	rovided	. If the p ned; oth	oreviou nerwise	s mass , if the	erase previou	s erase a access i us mass	s comp	olete, a		
								Т	his can	take ur	o to 250	ms						

Bit/Field	Name	Туре	Reset	Description
1	ERASE	R/W	0	Erase a page of flash memory
				If this bit is set, the page of flash main memory as specified by the contents of FMA is erased. A write of 0 has no effect on the state of this bit.
				If read, the state of the previous erase access is provided. If the previous erase access is complete, a 0 is returned; otherwise, if the previous erase access is not complete, a 1 is returned.
				This can take up to 25 ms.
0	WRITE	R/W	0	Write a word into flash memory
				If this bit is set, the data stored in FMD is written into the location as specified by the contents of FMA . A write of 0 has no effect on the state of this bit.
				If read, the state of the previous write update is provided. If the previous write access is complete, a 0 is returned; otherwise, if the write access is not complete, a 1 is returned.
				This can take up to 50 μ s.

Register 7: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C

This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled if the corresponding **FCIM** register bit is set.

	Offset 0x0)0C														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		i i	1	1	1	1	1	1	1	1	1	1	1	1	1	1
								res	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		'	1			1		reserve	i I	'	·	1	1	1	PRIS	ARIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name	9	Тур	e	Rese	et l	Descrip	tion						
:	31:2		reserve	ed	RC)	0			ed bits r e chang		n indet	erminate	e value,	and sh	ould
	1		PRIS		RC)	0	I	Progran	nming F	Raw Inte	errupt S	Status			
								This bit indicates the current state of the prog cycle. If set, the programming cycle complete the programming cycle has not completed. Pr cycles are either write or erase actions genera the Flash Memory Control (FMC) register bir page 103).							ed; if cle Program rated th	eared, ming rough
	0		ARIS		RC)	0		Access	Raw Int	terrupt	Status				
								: 	set, the policy a Enable Enable	prograr s set in (FMPR (FMPP	n tried t the Fla E) and I E) regis	to acce sh Me i Flash I sters (s	vas imp ess the f mory P Memory ee page y access	lash cou rotectio Protec 99). O	unter to on Read tion Pr therwise	the I ogram

Flash Controller Raw Interrupt Status (FCRIS)

Register 8: Flash Controller Interrupt Mask (FCIM), offset 0x010

This register controls whether the flash controller generates interrupts to the controller.

	Flash Co Offset 0x01		r Interruj	pt Masl	(FCIM))														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
					1		1 1	rese	rved	I	T	1		I	1	I				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	-				1		1 1	reserved	I	T	1	1		I	PMASK	AMASK				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0				
Bit/FieldNameTypeResetDescription31:2reservedRO0Reserved bits return an in never be changed.1PMASKR/W0Programming Interrupt Matrix												minate	e value,	and sh	ould					
		·	W/ Cr		10,00		0	T ir p c	This bit controls the reporting of the programming raw interrupt status to the controller. If set, a programming-generated interrupt is promoted to the controller. Otherwise, interrupts are recorded but suppressed from the controller.											
	0 AMASK R/W 0									Access Interrupt Mask This bit controls the reporting of the access raw interrupt status to the controller. If set, an access-generated interrupt is promoted to the controller. Otherwise, interrupts are recorded but suppressed from the controller.										

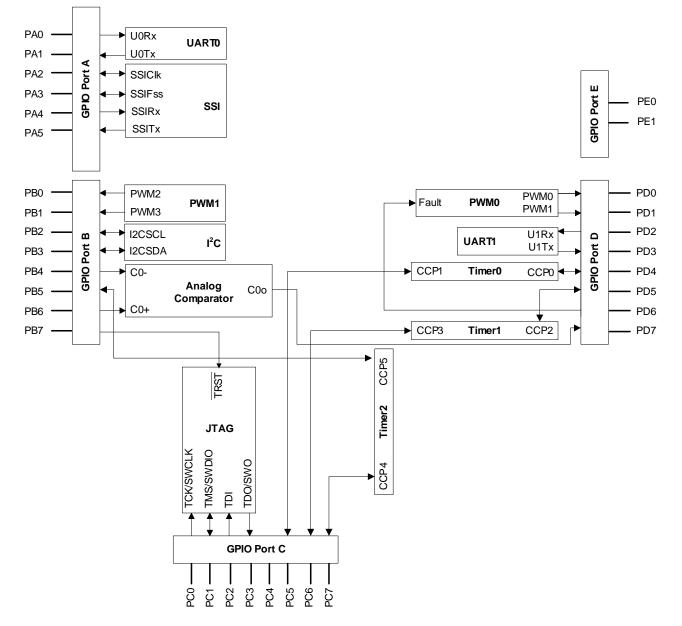
Register 9: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting.

	Offset 0x0	14																			
	31	30	29	28		27	26	25		24	23	22	21	20		19	18	17	16		
			1	1	1		i –	1	1	1		i	1	1	1		1	1	1		
										reser	ved										
Туре	RO	RO	RO	RO		RO	RO	RO		RO	RO	RO	RO	RO		RO	RO	RO	RO		
Reset	0	0	0	0		0	0	0		0	0	0	0	0		0	0	0	0		
	15	14	13	12		11	10	9		8	7	6	5	4		3	2	1	0		
			-	1	1			1		1		1	1	1			1				
									res	erved								PMISC	AMISC		
Туре	RO	RO	RO	RO)	RO	RO	RO		RO	RO	RO	RO	RO		RO	RO	R/W1C	R/W1C		
Reset	0	0	0	0		0	0	0		0	0	0	0	0		0	0	0	0		
			None			T		Dee	- 1												
BI	t/Field		Name	3		Туре		Res	et	D	escripti	on									
	24.0			1				0		-			- 4	a ta dar							
	31:2		reserve	ea		RO		0						in Inde	term	inate	e value	, and sh	buid		
										ne	never be changed.										
	1		PMIS	C	F	R/W10	2	0		Ρı	Programming Masked Interrupt Status and Clear										
										This bit indicates whether an interrupt was signaled											
																•		id was n	ot		
															-	-		Ne PRIS			
												•	•	e page	910	5) IS	also cle	eared wh	ien the		
										PN	AISC b	it is cle	ared.								
	_			_	_		_	_			-			-							
	0		AMIS	C	F	R/W10	2	0		A	ccess N	Aasked	Interr	upt Sta	tus	and	Clear				
										Tł	nis bit i	ndicate	s whet	her an	inte	errun	t was s	ignaled			
																•		and wa	s not		
																		e ARIS			
															-	-					
												Jo regis	sier is a	aiso cie	are	uwr	ien me	AMISC	JIL 15		
										Cle	eared.										

Flash Controller Masked Interrupt Status and Clear (FCMISC)

8 General-Purpose Input/Outputs (GPIOs)


The GPIO module is composed of five physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, and Port E). The GPIO module is FiRM-compliant and supports 3 to 32 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:

- Programmable control for GPIO interrupts:
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - Level-sensitive on High or Low values
- 5-V-tolerant input/outputs
- Bit masking in both read and write operations through address lines
- Programmable control for GPIO pad configuration:
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables

8.1 Block Diagram

8.2 Functional Description

Important: All GPIO pins are inputs by default (**GPIODIR=0** and **GPIOAFSEL=0**), with the exception of the five JTAG pins (PB7 and PC[3:0]. The JTAG pins default to their JTAG functionality (**GPIOAFSEL=1**). Asserting a Power-On-Reset (POR) or an external reset (RST) puts both groups of pins back to their default state.

Each GPIO port is a separate hardware instantiation of the same physical block (see Figure 8-2). The LM3S316 microcontroller contains five ports and thus five of these physical GPIO blocks.

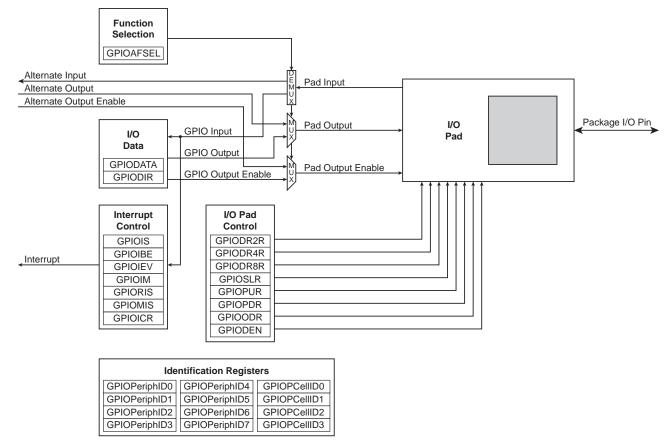
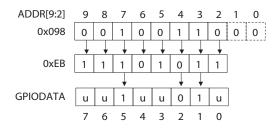


Figure 8-2. GPIO Port Block Diagram


8.2.1 Data Register Operation

To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the **GPIO Data (GPIODATA)** register (see page 116) by using bits [9:2] of the address bus as a mask. This allows software drivers to modify individual GPIO pins in a single instruction, without affecting the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write operation to set or clear an individual GPIO pin. To accommodate this feature, the **GPIODATA** register covers 256 locations in the memory map.

During a write, if the address bit associated with that data bit is set to 1, the value of the **GPIODATA** register is altered. If it is cleared to 0, it is left unchanged.

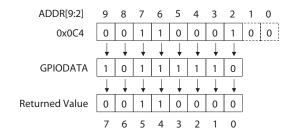

For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in Figure 8-3, where u is data unchanged by the write.

Figure 8-3. GPIODATA Write Example

During a read, if the address bit associated with the data bit is set to 1, the value is read. If the address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 8-4.

Figure 8-4. GPIODATA Read Example

8.2.2 Data Direction

The **GPIO Direction (GPIODIR)** register (see page 117) is used to configure each individual pin as an input or output.

8.2.3 Interrupt Operation

The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these registers, it is possible to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

- **GPIO Interrupt Sense (GPIOIS)** register (see page 118)
- **GPIO Interrupt Both Edges (GPIOIBE)** register (see page 119)
- **GPIO Interrupt Event (GPIOIEV)** register (see page 120)

Interrupts are enabled/disabled via the **GPIO Interrupt Mask (GPIOIM)** register (see page 121). When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the **GPIO Raw Interrupt Status (GPIORIS)** and **GPIO Masked Interrupt Status (GPIOMIS)** registers (see pages 122 and 123). As the name implies, the **GPIOMIS** register only shows interrupt conditions that are allowed to be passed to the controller. The **GPIORIS** register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (**GPIOIM** is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC interrupt needs to be disabled in the SETNA register and the PortB interrupt handler polls the ADC registers until the conversion is completed.

Interrupts are cleared by writing a 1 to the **GPIO Interrupt Clear (GPIOICR)** register (see page 124).

When programming interrupts, the interrupts should be masked (**GPIOIM** set to 0). Writing any value to an interrupt control register (**GPIOIS**, **GPIOIBE**, or **GPIOIEV**) can generate a spurious interrupt if the corresponding bits are enabled.

8.2.4 Mode Control

The GPIO pins can be controlled by either hardware or software. When hardware control is enabled via the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 125), the pin state is controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO mode, where the **GPIODATA** register is used to read/write the corresponding pins.

8.2.5 Pad Configuration

The pad configuration registers allow for GPIO pad configuration by software based on the application requirements. The pad configuration registers include the **GPIODR2R**, **GPIODR4R**, **GPIODR8R**, **GPIODR8R**, **GPIODR**, **GPIOPUR**, **GPIOPDR**, **GPIOSLR**, and **GPIODEN** registers.

8.2.6 Identification

The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the **GPIOPeriphID0-GPIOPeriphID7** registers as well as the **GPIOPCeIIID0-GPIOPCeIIID3** registers.

8.3 Initialization and Configuration

To use the GPIO, the peripheral clock must be enabled by setting PORTA, PORTB, PORTC, PORTD, and PORTE in the **RCGC2** register.

On reset, all GPIO pins (except for the five JTAG pins) default to general-purpose input mode (**GPIODIR** and **GPIOAFSEL** both set to 0). Table 8-1 shows all possible configurations of the

GPIO pads and the control register settings required to achieve them. Table 8-2 shows how a rising edge interrupt would be configured for pin 2 of a GPIO port.

				Re	egister	Bit Valu	ie ^a			
Configuration	GPIOAFSEL	GPIODIR	GPIOODR	GPIODEN	GPIOPUR	GPIOPDR	GPIODR2R	GPIODR4R	GPIODR8R	GPIOSLR
Digital Input (GPIO)	0	0	0	1	?	?	Х	Х	Х	Х
Digital Output (GPIO)	0	1	0	1	?	?	?	?	?	?
Open Drain Input (GPIO)	0	0	1	1	Х	Х	Х	Х	Х	Х
Open Drain Output (GPIO)	0	1	1	1	Х	Х	?	?	?	?
Open Drain Input/Output (I ² C)	1	Х	1	1	Х	Х	?	?	?	?
Digital Input (Timer CCP)	1	Х	0	1	?	?	Х	Х	Х	Х
Digital Output (PWM)	1	Х	0	1	?	?	?	?	?	?
Digital Output (Timer PWM)	1	Х	0	1	?	?	?	?	?	?
Digital Input/Output (SSI)	1	Х	0	1	?	?	?	?	?	?
Digital Input/Output (UART)	1	Х	0	1	?	?	?	?	?	?
Analog Input (Comparator)	0	0	0	0	0	0	Х	х	Х	Х
Digital Output (Comparator)	1	Х	0	1	?	?	?	?	?	?

 Table 8-1.
 GPIO Pad Configuration Examples

a. X=Ignored (don't care bit)

?=Can be either 0 or 1, depending on the configuration

Table 8-2. GPIO Interrupt Configuration Example

Register	Desired Interrupt				Pin 2 Bi	t Value ^a			
Register	Event Trigger	7	6	5	4	3	2	1	0
GPIOIS	0=edge 1=level	Х	Х	Х	Х	Х	0	Х	х
GPIOIBE	0=single edge 1=both edges	Х	Х	Х	Х	Х	0	Х	Х
GPIOIEV	0=Low level, or negative edge 1=High level, or positive edge	Х	Х	Х	Х	Х	1	Х	х
GPIOIM	0=masked 1=not masked	0	0	0	0	0	1	0	0

a. X=Ignored (don't care bit)

8.4 Register Map

Table 8-2 lists the GPIO registers. The offset listed is a hexadecimal increment to the register's address, relative to that GPIO port's base address:

- GPIO Port A: 0x40004000
- GPIO Port B: 0x40005000
- GPIO Port C: 0x40006000
- GPIO Port D: 0x40007000
- GPIO Port E: 0x40024000

Important: The GPIO registers in this chapter are duplicated in each GPIO block, however, depending on the block, all eight bits may not be connected to a GPIO pad (see Figure 8-1 on page 109). In those cases, writing to those unconnected bits has no effect and reading those unconnected bits returns no meaningful data.

Offset	Name	Reset	Туре	Description	See page
0x000	GPIODATA	0x00000000	R/W	Data	116
0x400	GPIODIR	0x00000000	R/W	Data direction	117
0x404	GPIOIS	0x00000000	R/W	Interrupt sense	118
0x408	GPIOIBE	0x00000000	R/W	Interrupt both edges	119
0x40C	GPIOIEV	0x00000000	R/W	Interrupt event	120
0x410	GPIOIM	0x00000000	R/W	Interrupt mask enable	121
0x414	GPIORIS	0x00000000	RO	Raw interrupt status	122
0x418	GPIOMIS	0x00000000	RO	Masked interrupt status	123
0x41C	GPIOICR	0x00000000	W1C	Interrupt clear	124
0x420	GPIOAFSEL	see note ^a	R/W	Alternate function select	125
0x500	GPIODR2R	0x000000FF	R/W	2-mA drive select	126
0x504	GPIODR4R	0x00000000	R/W	4-mA drive select	127
0x508	GPIODR8R	0x00000000	R/W	8-mA drive select	128
0x50C	GPIOODR	0x00000000	R/W	Open drain select	129
0x510	GPIOPUR	0x000000FF	R/W	Pull-up select	130
0x514	GPIOPDR	0x00000000	R/W	Pull-down select	131
0x518	GPIOSLR	0x00000000	R/W	Slew rate control select	132
0x51C	GPIODEN	0x000000FF	R/W	Digital input enable	133
0xFD0	GPIOPeriphID4	0x00000000	RO	Peripheral identification 4	134

Table 8-3. GPIO Register Map

Offset	Name	Reset	Туре	Description	See page
0xFD4	GPIOPeriphID5	0x00000000	RO	Peripheral identification 5	135
0xFD8	GPIOPeriphID6	0x00000000	RO	Peripheral identification 6	136
0xFDC	GPIOPeriphID7	0x00000000	RO	Peripheral identification 7	137
0xFE0	GPIOPeriphID0	0x00000061	RO	Peripheral identification 0	138
0xFE4	GPIOPeriphID1	0x00000000	RO	Peripheral identification 1	139
0xFE8	GPIOPeriphID2	0x00000018	RO	Peripheral identification 2	140
0xFEC	GPIOPeriphID3	0x00000001	RO	Peripheral identification 3	141
0xFF0	GPIOPCellID0	0x000000D	RO	GPIO PrimeCell identification 0	142
0xFF4	GPIOPCellID1	0x000000F0	RO	GPIO PrimeCell identification 1	143
0xFF8	GPIOPCellID2	0x00000005	RO	GPIO PrimeCell identification 2	144
0xFFC	GPIOPCellID3	0x000000B1	RO	GPIO PrimeCell identification 3	145

 Table 8-3.
 GPIO Register Map (Continued)

a. The default reset value for the **GPIOAFSEL** register is 0x0000000 for all GPIO pins, with the exception of the five JTAG pins (PB7 and PC[3:0]. These five pins default to JTAG functionality. Because of this, the default reset value of **GPIOAFSEL** for GPIO Port B is 0x00000080 while the default reset value of **GPIOAFSEL** for Port C is 0x0000000F.

8.5 Register Descriptions

The remainder of this section lists and describes the GPIO registers, in numerical order by address offset.

Register 1: GPIO Data (GPIODATA), offset 0x000

The **GPIODATA** register is the data register. In software control mode, values written in the **GPIODATA** register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the **GPIO Direction (GPIODIR)** register (see page 117).

In order to write to **GPIODATA**, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause the corresponding bits in **GPIODATA** to be read, and bits that are 0 in the address mask cause the corresponding bits in **GPIODATA** to be read as 0, regardless of their value.

A read from **GPIODATA** returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset.

space. To facilitate the reading and writing of data to these registers by independent drivers, the data read from and the data written to the registers are masked by the eight address lines ipaddr[9:2]. Reads from this register return its current state. Writes to this register only affect bits that are not masked by ipaddr[9:2] and are configured as outputs. See "Data Register Operation" on page 110 for examples of reads and writes.

Register 2: GPIO Direction (GPIODIR), offset 0x400

The **GPIODIR** register is the data direction register. Bits set to 1 in the **GPIODIR** register configure the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

(Offset 0x4		(,												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	l				1	1		rese	rved		I	1			1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1	rese	erved	1		1			1	I D	IR	I	I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit									ption							
÷	31:8	r	eserved		RO		0	Reserv be cha	ved bits inged.	return	an inde	etermina	ate valu	e, and s	should	never
	7:0		DIR		R/W	0×	:00	GPIO	Data Di	rection						
								0: Pins	s are inp	outs.						
								1: Pins	s are ou	tputs.						

GPIO Direction (GPIODIR)

Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404

The **GPIOIS** register is the interrupt sense register. Bits set to 1 in **GPIOIS** configure the corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits are cleared by a reset.

	Offset 0x4	04														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1 1		1								1
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			т т			1 1		1				1			I	
				rese	rved							I	S			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре	Re	set	Descri	ption							
					71											
:	31:8	r	eserved		RO	(C	Reserv	/ed bits	return a	an inde	termina	ate valu	e. and s	should	never
								be cha								
	7:0		IS		R/W	0x	00	GPIO	Interrur	t Sense	ź					
			.0			0,										
								0: Edg	e on co	rrespor	iding pi	n is det	ected (edge-se	ensitive).
								1.1.00		rrocpor	dina ni	in is dat	octod (ncitivo	`
							1: Level on corresponding pin is detected (level-sensitive).									

GPIO Interrupt Sense (GPIOIS)

Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408

The **GPIOIBE** register is the interrupt both-edges register. When the corresponding bit in the **GPIO Interrupt Sense (GPIOIS)** register (see page 118) is set to detect edges, bits set to High in **GPIOIBE** configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the **GPIO Interrupt Event (GPIOIEV)** register (see page 120). Clearing a bit configures the pin to be controlled by **GPIOIEV**. All bits are cleared by a reset.

	Offset 0x4	08														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		1 1					resei	ved	1	1	1		I	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1 1	rese	rved			1		I	I	I II	I BE	I	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							Descri	otion								
Bit/Field Name Type Reset Description 31:8 reserved RO 0 Reserved be chang								return	an inde	etermina	ate valu	ie, and s	should I	never		
	7:0		IBE		R/W	0>	(00	GPIO I	nterrup	ot Both	Edges					
												trolled je 142).		GPIO In	terrupt	Event
						1: Both edges on the corresponding pin trigger an interrupt.									ot.	
								Note:	•	le edge DIEV.	is dete	ermined	by the	corresp	onding	bit in

GPIO Interrupt Both Edges (GPIOIBE)

GPIO Interrupt Event (GPIOIEV)

Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C

The **GPIOIEV** register is the interrupt event register. Bits set to High in **GPIOIEV** configure the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the **GPIO Interrupt Sense (GPIOIS)** register (see page 118). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in **GPIOIS**. All bits are cleared by a reset.

	Offset 0x4	HOC I	,		,											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1	1 1		1	· .		1	1	1	1	1	1
								rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I I		1	1 1		1		1	1	1	1	1	1	1
					erved								EV			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	Bit/Field Name Type Rese						set	Descr	iption							
;	31:8	r	eserved		RO	()		ved bits anged.	s return	an inde	etermina	ate valu	ie, and s	should	never
	7:0		IEV		R/W	0x	00	GPIO	Interrup	ot Even	t					
							0: Fall interru		je or Lo	w levels	s on co	rrespor	iding pir	ns trigg	er	
								1: Risi interru		e or Hig	gh levels	s on co	rrespor	nding pir	ns trigg	jer

Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410

The **GPIOIM** register is the interrupt mask register. Bits set to High in **GPIOIM** allow the corresponding pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing a bit disables interrupt triggering on that pin. All bits are cleared by a reset.

	Offset 0x4	10														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	l l		1 1		1	1	1	1	1	1	1	1	1	1	1	1
								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			т т		1					T	1	1	1	1	1	
				res	erved								IME			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре	Re	eset	Descr	iption							
					21				•							
	31:8	r	eserved		RO		0	Reser	ved bits	s return	an ind	etermir	nate valu	ie, and	should	never
								be cha	anged.					,		
	7:0		IME		R/W	0:	x00	GPIO	Interru	pt Mask	Enable	e				
						•			-							
								0: Cor	respon	ding pin	interru	upt is m	nasked.			
								1. Cor	reenon	dina nin	intorri	int is n	ot mask	od		
								1.001	respon	ung pin	interit	ipi is ii	ormask	eu.		

GPIO Interrupt Mask (GPIOIM) Offset 0x410

Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414

The **GPIORIS** register is the raw interrupt status register. Bits read High in **GPIORIS** reflect the status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the requirements have been met, before they are finally allowed to trigger by the **GPIO Interrupt Mask (GPIOIM)** register (see page 121). Bits read as zero indicate that corresponding input pins have not initiated an interrupt. All bits are cleared by a reset.

(Offset 02	x414														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	1		rese	rved	I	1		I	1	,	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	res	erved	1 1				I	1	R	I IS	I		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit	/Field	I	Name		Туре	Re	set	Descri	ption							
:	31:8		reserved	b	RO		C	Reserv be cha		s return	an inde	termina	ate valu	e, and s	should	never
	7:0		RIS		RO	0×	:00	GPIO	Interrup	ot Raw	Status					
										atus of maskin	interrup g).	t trigge	r condit	ion dete	ection (on pins
								0: Cori	respon	ding pir	n interru	pt requ	irement	s not m	et.	

GPIO Raw Interrupt Status (GPIORIS)

1: Corresponding pin interrupt has met requirements.

Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418

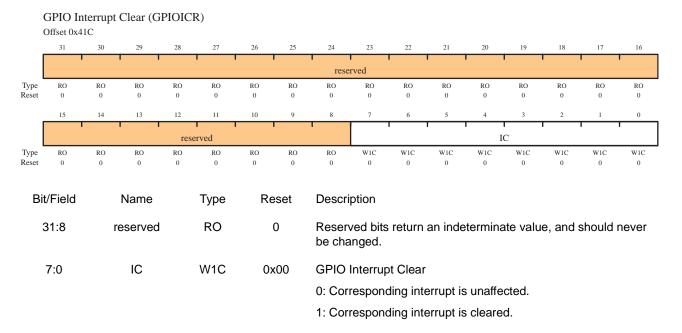
The **GPIOMIS** register is the masked interrupt status register. Bits read High in **GPIOMIS** reflect the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has been generated, or the interrupt is masked.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (**GPIOIM** is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register (see page 212) is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC interrupt needs to be disabled in the SETNA register and the PortB interrupt handler polls the ADC registers until the conversion is completed.

GPIOMIS is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)


Offset 0x418

	31	30	29	28	27	26	25	. 24	23	22	21	20	19	18	17	16
	I				1			rese	rved					I	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ			rese	rved			1				N	4IS	I	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/Field Name Type Reset Description																
;	31:8	ı	reserved		RO	()	Reserv be cha		return	an inde	termina	te valu	e, and s	should	never
	7:0		MIS		RO	0x	00	GPIO	Masked	l Interru	pt Statu	JS				
		Masked value of interrupt due to corresponding pin.														
								0: Cor	respond	ding GP	IO line	interrup	ot not a	ctive.		

1: Corresponding GPIO line asserting interrupt.

Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C

The **GPIOICR** register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect.

October 8, 2006

Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420

The **GPIOAFSEL** register is the mode control select register. Writing a 1 to any bit in this register selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore no GPIO line is set to hardware control by default.

Caution – All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the exception of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG functionality (GPIOAFSEL=1). Asserting a Power-On-Reset (POR) or an external reset (RST) puts both groups of pins back to their default state.

If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply RST or power-cycle the part.

In addition, it is possible to create a software sequence that prevents the debugger from connecting to the Stellaris microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

	Offset 0x4	420														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	1	1	1	1	I	rese	rved	I	1	1	1	I	I	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	res	erved	1	•	1		1	I	AF	FSEL	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W _
Bi	t/Field		Name		Туре	Re	eset	Descri	ption							
	31:8		reserved	ł	RO		0	Reserv be cha		s return	an inde	termin	ate valu	e, and	should	never
	7:0		AFSEL		R/W	see	note	GPIO .	Alterna	te Func	tion Se	lect				
								0: Soft	ware c	ontrol of	f corres	pondin	ig GPIO	line (G	PIO mo	ode).
									dware o are fun		of corre	spondi	ng GPI	D line (a	alternate	9
								Note:	0x00 JTA0 defa defa 0x80) for all G pins (ult to J1 ult rese	GPIO p PB7 ar AG fun t value he defa	ins, with nd PC loctional of GPI	r the GF th the e: [3 : 0]) lity. Bec: OAFSE et value	xception . These ause of L for G	n of the five pir this, th PIO Po	five ns e rt B is

GPIO Alternate Function Select (GPIOAFSEL)

Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500

The **GPIODR2R** register is the 2-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the **GPIODR4R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

	Offset 0x5	00														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1 1			1 1				l l		i I				i
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		т т	1	I	1 1		1		T T		I				I
				rese	rved							DR	V2			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Bi	t/Field		Name		Туре	Re	set	Descri	ntion							
DI			Nume		Type		001	Dooon	puon							
	31:8	r	eserved		RO	(C	Roson	ad hite	return a	an inde	tormina	ato valu	hne e	should	novor
	01.0		eserveu		NO		0	be cha		Tetuint				5, anu .	Should	
								De cha	ngeu.							
	7.0					0.		0				h				
	7:0 DRV2 R/W 0xFF								Pad 2	mA Driv	/e ⊨na	bie				
								A write	of 1 to	either (GPIOD	R4[n]	or GPI	ODR8	[n] clea	rs the
										2-mA e						
								501165	ponding	,	nubic	Sit. The	Jonany		551170 0	ii uio

second clock cycle after the write.

GPIO 2-mA Drive Select (GPIODR2R)

Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504

The **GPIODR4R** register is the 4-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

	Offset 0x50)4														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	i		1 1			i i				í		i I				i
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		I I	1		I I		1		1		1				I
				rese	rved							DR	.V4			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре	Re	set	Descri	otion							
					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
	31:8	r	eserved		RO	()	Reserv	ed hits	return	an inde	termina	te valu	e and s	should	never
	0110		0001700					be cha		lotaint			tio valu	o, and c	nould	
									ingeu.							
	7:0 DRV4 R/W 0x00						00	Outout	Dod 4		10 Eno	blo				
	7:0 DRV4 R/VV 0X00							Output	Pad 4-		ve Ena	DIE				
								A write	e of 1 to	either (GPIOD	DR2[n]	or GPI	ODR8	' n1 clea	rs the
												bit. The		-		

second clock cycle after the write.

GPIO 4-mA Drive Select (GPIODR4R)

Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508

The **GPIODR8R** register is the 8-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV4 bit in the **GPIODR4R** register are automatically cleared by hardware.

	Offset 0x5	08														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	l l		1 1			1		1		l l		i i			1	1
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		т т	1		1				T T		I I			1	I
				rese	rved							DR	LV8			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре	Re	set	Descri	ntion							
Di			Name		туре		301	Descri	puon							
	31:8	r	eserved		RO		0	Pocon	ad hite	return a	on inde	torming	to volu	a and	chould	novor
	51.0	1	eserveu		κυ		0			Tetuina			ale value	s, anu s	Shoulu	lievei
								be cha	ingea.							
					-		~~	• • • •			_					
	7:0 DRV8 R/W 0x00								Pad 8	mA Driv	/e Ena	bie				
								Δ write	of 1 to	either ()R2[n]	or GPI		[n] clea	irs the
									ponung	98-mA e	enable	DIL THE	schang		ective C	nue

second clock cycle after the write.

GPIO 8-mA Drive Select (GPIODR8R)

Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C

The **GPIOODR** register is the open drain control register. Setting a bit in this register enables the open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the corresponding bit should also be set in the **GPIO Digital Input Enable (GPIODEN)** register (see page 133). Corresponding bits in the drive strength registers (**GPIODR2R**, **GPIODR4R**,

GPIODR8R, and **GPIOSLR**) can be set to achieve the desired rise and fall times. The GPIO acts as an open drain input if the corresponding bit in the **GPIODIR** register is set to 0; and as an open drain output when set to 1.

When using the I²C module, the **GPIO Alternate Function Select (GPIOAFSEL)** register bit for PB2 and PB3 should be set to 1 (see examples in "Initialization and Configuration" on page 112).

31 30 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0 ODE reserved Туре RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W RO RO R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Description Name Type Reset 31:8 reserved RO 0 Reserved bits return an indeterminate value, and should never be changed. 7:0 ODE R/W 0x00 Output Pad Open Drain Enable 0: Open drain configuration is disabled. 1: Open drain configuration is enabled.

GPIO Open Drain Select (GPIOODR) Offset 0x50C

Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510

The **GPIOPUR** register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up resistor on the corresponding GPIO signal. Setting a bit in **GPIOPUR** automatically clears the corresponding bit in the **GPIO Pull-Down Select (GPIOPDR)** register (see page 131).

	Unset 0x5	10														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1 I		1	i	i	1	1		i	i		i	1	
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		г г		1	1		1			I	1		I	1	
				rese	erved							PU	JE			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Bi	Bit/Field Name Type Res								ption							
:	31:8 reserved RO 0								ved bits inged.	return	an inde	termina	ite valu	e, and	should	never
7:0 PUE R/W 0xFF								Pad W	/eak Pu	ll-Up Er	nable					
								GPIO] enable	es. The] clears change				econd

GPIO Pull-Up Select (GPIOPUR) Offset 0x510

Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514

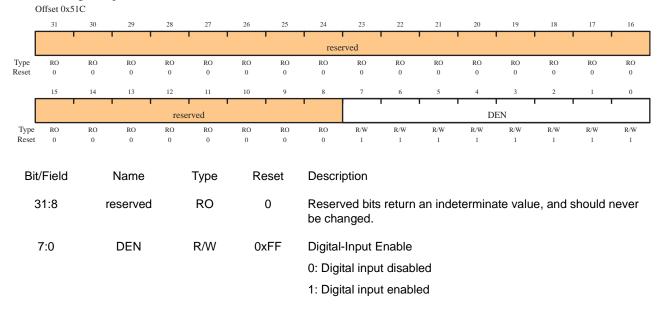
The **GPIOPDR** register is the pull-down control register. When a bit is set to 1, it enables a weak pull-down resistor on the corresponding GPIO signal. Setting a bit in **GPIOPDR** automatically clears the corresponding bit in the **GPIO Pull-Up Select (GPIOPUR)** register (see page 130).

	Offset 0x5	14														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1					1	1		1			1	1	
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1		1 1		1			1		I	1	1	1	1	T	
				rese	erved							PL	DE			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	t/Field		Name		Туре		set	Descri							- 1 1 - 1 - 1	
31:8 reserved RO 0								keser be cha		return	an inde	etermina	ate valu	e, and	snouid	never
	7:0		PDE		R/W	0x	00	Pad W	/eak Pu	ll-Down	n Enable	е				
								GPIO	PDR[n		es. The] clears change				cond

GPIO Pull-Down Select (GPIOPDR) Offset 0x514

Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518

The **GPIOSLR** register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the **GPIO 8-mA Drive Select (GPIODR8R)** register (see page 128).


GPIO Slew Rate Control Select (GPIOSLR)

			e contro		()										
(Offset 0x5	518														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		i i	1 1		1	1 1		1	i	1		1	i	i	1	1
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		1	1 1		1	1 1		1		1		1	1	1	1	
				rese	erved							SI	RL			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	/Field		Name		Туре	Re	set	Descri	ption							
3	31:8	r	eserved		RO		C	Reserv be cha		s return	an inde	etermina	ate valu	e, and	should	never
	7:0		SRL		R/W	(0	Slew F	Rate Lir	mit Enat	ole (8-n	nA drive	e only)			
								0: Slev	w rate c	control d	lisableo	ł.				
								1: Slev	w rate c	control e	nabled	l.				

October 8, 2006

Register 18: GPIO Digital Input Enable (GPIODEN), offset 0x51C

The **GPIODEN** register is the digital input enable register. By default, all GPIO signals are configured as digital inputs at reset. The only time that a pin should not be configured as a digital input is when the GPIO pin is configured to be one of the analog input signals for the analog comparators.

GPIO Digital Input Enable (GPIODEN)

Register 19: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)

,	Unset UXF	D0														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	í		i i		i i		i i		1	1 1		1			1	1
								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		resei	rved								PI	D4		1	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	/Field		Name		Туре		Reset	D)escripti	ion						
:	31:8	re	eserved		RO		0			d bits re change		n indetei	rminate	value,	and sh	ould
	7:0		PID4		RO		0x00	G	βΡΙΟ Ρε	eriphera	I ID Re	gister[7	:0]			

16

RO

0

0

RO

0

Register 20: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4

The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

Offset 0xFD4 31 30 26 25 28 27 24 23 21 19 18 17 29 22 20 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 PID5 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:8 reserved RO 0 Reserved bits return an indeterminate value, and should never be changed. 7:0 PID5 RO 0x00 GPIO Peripheral ID Register[15:8]

GPIO Peripheral Identification 5 (GPIOPeriphID5)

Register 21: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6) Offset 0xFD8

(JIISet UXF	08														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	i i				i i		i i		1	1		1			i	1
								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Í					1 1		1 1			1 1		1			I	
l			reser	rved								PI	D6			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	/Field		Name		Туре		Reset	D	Descripti	on						
									-							
3	31:8	re	eserved		RO		0					n indeter	rminate	value,	and sh	ould
								n	ever be	change	ed.					
	7:0		PID6		RO		0x00	Ģ	PIO Pe	ripheral	I ID Re	gister[2	3:161			
							0.100					9.0.01[-	55]			

Register 22: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

'	Unset 0xr	DC														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			i i		1 1		i i		1	i i		i i		i	i I	
								rese	erved							
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	,	1 1		г т			1 1				1	I	·
I			rese	rved								PII)/			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	t/Field		Name		Туре		Reset	D	escripti	ion						
ć	31:8	r	eserved	1	RO		0	R	leserve	d bits re	turn ar	n indeter	minate	value.	and sho	bluc
							-			change				,		
	7:0		PID7		RO		0x00	G		ripheral	ID Re	aister[3	1.241			
	1.0						0,00			mpriora		9.0.010	··~ (]			

GPIO Peripheral Identification 7 (GPIOPeriphID7) Offset 0xFDC

Register 23: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0) Offset 0xFE0

	Offset UXF	EO														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	l l		i i		1	i i		i i	i i				i			
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					1			1								
			reser	ved								PI	D0			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1
Bi	t/Field		Name		Туре	Re	set	Descri	otion							
					.) 0											
	31:8	r	eserved		RO	()	Reserv	ved bits	return	an inde	termina	ate valu	e and o	should	never
	01.0		0001700		NO		5	be cha		lotann				o, ana c	noulu	10101
									ingeu.							
	7:0		PID0		RO	0.	61	CDIO	Dorinho		Pogisto	12.01				
	7:0 PID0 RO 0x6								Periphe		register	[7.0]				
								Can be	e used b	ov softv	/are to	identifv	the pre	sence	of this	
								periph		,		,	· · F·•			
								1								

October 8, 2006

Register 24: GPIO Peripheral Identification 1(GPIOPeriphID1), offset 0xFE4

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)	
Offset 0xFE4	

,	Unset UXFI	14														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		1	l l		rese	rved					1		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		rese	rved	1			1				PI	D1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit	t/Field		Name		Туре	Re	set	Descri	ption							
:	31:8	r	eserved		RO	(D	Reserv be cha	ved bits anged.	return	an inde	termina	ite valu	e, and s	should	never
	7:0 PID1 RO 0				0x	00	GPIO	Periphe	ral ID F	Register	[15:8]					
								Can be periph	e used k eral.	by softv	vare to i	identify	the pre	esence	of this	

Register 25: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2) Offset 0xFE8

	Offset UXF	Eð																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	í		i		i	i i		i i	i i				i	i i				
	reserved																	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	I		I		I			1										
	reserved								PID2									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0		
Bi	t/Field	Field Name			Туре	Re	set	Descri	ntion									
					Type	100001 20000			puon									
	31:8	1:8 reserved			RO	()	Roson	ved bits	roturn	an indo	tormina	nto valu	o and o	should	novor		
•	51.0	.o leserveu							letuin		(CIIIIII)	ale valu	e, anu s	siloulu	IEVEI			
								be changed.										
			DIDO		D O	0x18												
	7:0	0 PID2			RO	ÛX	18	GPIO Peripheral ID Register[23:16]										
								Can be used by software to identify the presence of this										
									peripheral.									

October 8, 2006

16

RO

0

0

RO

Register 26: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC

The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

Offset 0xFEC 31 30 28 26 25 24 21 19 17 29 27 23 22 20 18 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 12 11 10 8 7 5 4 2 15 14 9 6 3 PID3 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Description Name Type Reset 31:8 RO 0 Reserved bits return an indeterminate value, and should never reserved be changed. 7:0 PID3 RO 0x01 GPIO Peripheral ID Register[31:24] Can be used by software to identify the presence of this peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)

Register 27: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO Primecell Identification 0 (GPIOPCellID0)

Offset 0xFF0																			
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		•			•	•		1	•			•	•	•	·	' '			
								rese	rved										
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
		•	1 1		·	•		1			1		1	1		'			
I				res	erved				CID0										
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1			
Bit	Bit/Field		Name		Туре	Reset		Descri	Description										
;	31:8		:8 reserved		RO	0		Reserved bits return an indeterminate value, and should neve be changed.											
	7:0		CID0		RO		0x0D		GPIO PrimeCell ID Register[7:0]										
								Provides software a standard cross-peripheral identification system.											

Register 28: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

	Offset UXF	F4																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	Í		1 1		i	1 1		rese	rved	ĺ		i		i		1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved							•	CID1									
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0		
Bi	t/Field	Field Name			Туре	Re	set	Descri	Description									
:	31:8	r	eserved		RO	0		Reserved bits return an indeterminate value, and should never be changed.										
	7:0		CID1		RO		0xF0		GPIO PrimeCell ID Register[15:8]									
									Provides software a standard cross-peripheral identification system.									

GPIO Primecell Identification 1 (GPIOPCellID1) Offset 0xFF4

Register 29: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO Primecell Identification 2 (GPIOPCellID2)

Offset 0xFF8																			
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
ſ		1	1 1		1	1		1	1	i I	1	1	1	1	1	1			
								rese	rved										
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7		5		3	2		0			
	15	14	13	12	11	10	9	•		6		4	3	2	1	-			
	reserved						CID2												
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1			
Bit	Bit/Field		Name		Туре	Reset		Descri	Description										
:	31:8		3 reserved		RO	0		Reserved bits return an indeterminate value, and should never be changed.											
	7:0		CID2		RO		0x05 GPIC		PIO PrimeCell ID Register[23:16]										
								Provides software a standard cross-peripheral identification system.											

October 8, 2006

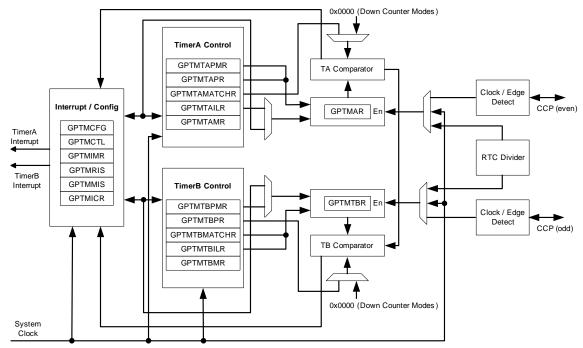
Register 30: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

	Offset 0xF	FC														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1 1		i	1 1		rese	rved		1 1		i	1		i
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1	rese	rved	1		1			1	CI	D3	l		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1
Bi	t/Field		Name		Туре	Re	set	Descri	ption							
:	31:8	r	eserved		RO	(C	Reserv be cha	ved bits anged.	return	an inde	termina	ate valu	e, and s	should	never
	7:0		CID3		RO	0x	B1	GPIO	PrimeCe	ell ID R	Register	[31:24]				
								Provid systen	es softw n.	are a s	standaro	d cross	-periphe	eral idei	ntificatio	on

GPIO Primecell Identification 3 (GPIOPCellID3) Offset 0xFFC

9 General-Purpose Timers


Programmable timers can be used to count or time external events that drive the Timer input pins.

The LM3S316 controller General-Purpose Timer Module (GPTM) contains three GPTM blocks (Timer0, Timer1, and Timer 2). Each GPTM block provides two 16-bit timer/counters (referred to as TimerA and TimerB) that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions. The trigger signals from all of the general-purpose timers are ORed together before reaching the ADC module, so only one timer should be used to trigger ADC events.

The following modes are supported:

- 32-bit Timer modes:
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock using 32.768-KHz input clock
 - Software-controlled event stalling (excluding RTC mode)
- 16-bit Timer modes:
 - General-purpose timer function with an 8-bit prescaler
 - Programmable one-shot timer
 - Programmable periodic timer
 - Software-controlled event stalling
- 16-bit Input Capture modes:
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode:
 - Simple PWM mode with software-programmable output inversion of the PWM signal

9.1 Block Diagram

Figure 9-1. GPTM Module Block Diagram

9.2 Functional Description

The main components of each GPTM block are two free-running 16-bit up/down counters (referred to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit load/initialization registers and their associated control functions. The exact functionality of each GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using the **GPTM Configuration (GPTMCFG)** register (see page 158), the **GPTM TimerA Mode (GPTMTAMR)** register (see page 159), and the **GPTM TimerB Mode (GPTMTBMR)** register (see page 160). When in one of the 32-bit modes, the timer can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers configured in any combination of the 16-bit modes.

9.2.1 GPTM Reset Conditions

After reset has been applied to the GPTM module, the module is in an inactive state, and all control registers are cleared and in their default states. Counters TimerA and TimerB are initialized to 0xFFFF, along with their corresponding load registers: the GPTM TimerA Interval Load (GPTMTAILR) register (see page 168) and the GPTM TimerB Interval Load (GPTMTBILR) register (see page 169). The prescale counters are initialized to 0x00: the GPTM TimerA Prescale (GPTMTAPR) register (see page 172) and the GPTM TimerB Prescale (GPTMTBPR) register (see page 173).

9.2.2 32-Bit Timer Operating Modes

Note: Both the odd- and even-numbered CCP pins are used for 16-bit mode. Only the even-numbered CCP pins are used for 32-bit mode.

This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1 (RTC mode) to the **GPTM Configuration (GPTMCFG)** register. In both configurations, certain GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:

- **GPTM TimerA Interval Load (GPTMTAILR)** register [15:0], see page 168
- GPTM TimerB Interval Load (GPTMTBILR) register [15:0], see page 169
- **GPTM TimerA (GPTMTAR)** register [15:0], see page 176
- **GPTM TimerB (GPTMTBR)** register [15:0], see page 177

In the 32-bit modes, the GPTM translates a 32-bit write access to **GPTMTAILR** into a write access to both **GPTMTAILR** and **GPTMTBILR**. The resulting word ordering for such a write operation is: GPTMTBILR [15:0]:GPTMTAILR [15:0]. Likewise, a read access to **GPTMTAR** returns the value: GPTMTBR [15:0]:GPTMTAR [15:0].

9.2.2.1 32-Bit One-Shot/Periodic Timer Mode

In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is determined by the value written to the TAMR field of the **GPTM TimerA Mode (GPTMTAMR)** register (see page 159), and there is no need to write to the **GPTM TimerB Mode (GPTMTBMR)** register.

When software writes the TAEN bit in the **GPTM Control (GPTMCTL)** register (see page 161), the timer begins counting down from its preloaded value. Once the 0x000000000 state is reached, the timer reloads its start value from the concatenated **GPTMTAILR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the GPTM generates interrupts and output triggers when it reaches the 0x0000000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status (GPTMRIS) register (see page 165), and holds it until it is cleared by writing the GPTM Interrupt Clear (GPTMICR) register (see page 167). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTIMR) register (see page 163), the GPTM also sets the TATOMIS bit in the GPTM Masked Interrupt Status (GPTMISR) register (see page 163).

The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x00000000 state, and deasserted on the following clock cycle. It is enabled by setting the TAOTE bit in **GPTMCTL**, and can trigger SoC-level events such as ADC conversions.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the **GPTMCTL** register is asserted, the timer freezes counting until the signal is deasserted.

9.2.2.2 32-Bit Real-Time Clock Timer Mode

In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is loaded with a value of 0x00000001. All subsequent load values must be written to the **GPTM TimerA Match (GPTMTAMATCHR)** register (see page 170) by the controller.

The input clock on the CCP0, CCP2 or CCP4 pins is required to be 32.768 KHz in RTC mode. The clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in **GPTMCTL**, the counter starts counting up from its preloaded value of 0x00000001. When the current count value matches the preloaded value in **GPTMTAMATCHR**, it rolls over to a value of 0x00000000 and continues counting until either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs, the GPTM asserts the RTCRIS bit in **GPTMISR**. If the RTC interrupt is enabled in **GPTIMR**, the GPTM also sets the RTCMIS bit in **GPTMISR** and generates a controller interrupt. The status flags are cleared by writing the RTCCINT bit in **GPTMICR**.

If the TASTALL and/or TBSTALL bits in the **GPTMCTL** register are set, the timer does not freeze if the RTCEN bit is set in **GPTMCTL**.

9.2.3 16-Bit Timer Operating Modes

The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the **GPTM Configuration** (**GPTMCFG**) register (see page 158). This section describes each of the GPTM 16-bit modes of operation. Timer A and Timer B have identical modes, so a single description is given using an **n** to reference both.

9.2.3.1 16-Bit One-Shot/Periodic Timer Mode

In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The selection of one-shot or periodic mode is determined by the value written to the TnMR field of the **GPTMTnMR** register. The optional prescaler is loaded into the **GPTM Timern Prescale** (**GPTMTnPR**) register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer begins counting down from its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from **GPTMTNILR** and **GPTMTNPR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TnEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the timer generates interrupts and output triggers when it reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the **GPTMRIS** register, and holds it until it is cleared by writing the **GPTMICR** register. If the time-out interrupt is enabled in **GPTIMR**, the GPTM also sets the TnTOMIS bit in **GPTMISR** and generates a controller interrupt.

The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000 state, and deasserted on the following clock cycle. It is enabled by setting the TnOTE bit in the **GPTMCTL** register, and can trigger SoC-level events such as ADC conversions.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TnSTALL bit in the **GPTMCTL** register is enabled, the timer freezes counting until the signal is deasserted.

The following example shows a variety of configurations for a 16-bit free running timer while using the prescaler. All values assume a 25-MHz clock with Tc=20 ns (clock period).

Prescale	#Clock (T _C) ^a	Max Time	Units
0000000	1	2.6214	mS
0000001	2	5.2428	mS
00000010	3	7.8642	mS
1111100	254	665.8458	mS
1111110	255	668.4672	mS
11111111	256	671.0886	mS

Table 9-1. 16-Bit Timer With Prescaler Configurations

a. T_C is the clock period.

9.2.3.2 16-Bit Input Edge Count Mode

In Edge Count mode, the timer is configured as a down-counter capable of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit of the **GPTMTnMR** register must be set to 0. The type of edge that the timer counts is determined by the TnEVENT fields of the **GPTMCTL** register. During initialization, the **GPTM Timern Match** (**GPTMTnMATCHR**) register is configured so that the difference between the value in the **GPTMTnILR** register and the **GPTMTnMATCHR** register equals the number of edge events that must be counted.

When software writes the TnEN bit in the **GPTM Control (GPTMCTL)** register, the timer is enabled for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count matches **GPTMTnMATCHR**. When the counts match, the GPTM asserts the CnMRIS bit in the **GPTMRIS** register (and the CnMMIS bit, if the interrupt is not masked). The counter is then reloaded using the value in **GPTMTnILR**, and stopped since the GPTM automatically clears the TnEN bit in the **GPTMCTL** register. Once the event count has been reached, all further events are ignored until TnEN is re-enabled by software.

Figure 9-2 shows how input edge count mode works. In this case, the timer start value is set to **GPTMnILR**=0x000A and the match value is set to **GPTMnMATCHR**=0x0006 so that four edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after the current count matches the value in the **GPTMnMR** register.

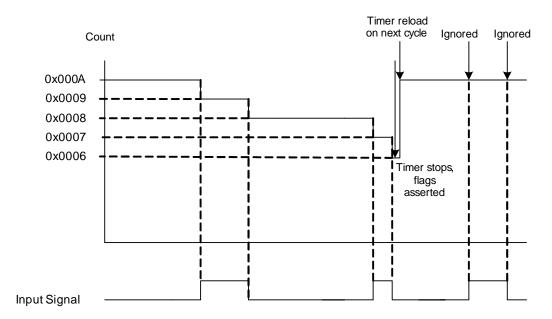
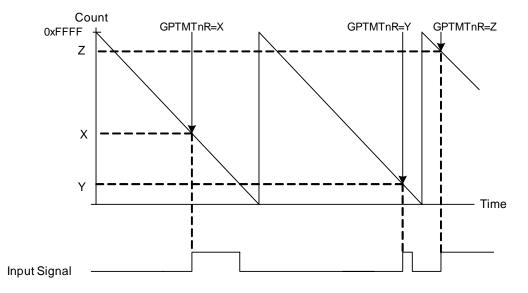


Figure 9-2. 16-Bit Input Edge Count Mode Example

9.2.3.3 16-Bit Input Edge Time Mode


In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value loaded in the **GPTMTnILR** register (or 0xFFFF at reset). This mode allows for event capture of both rising and falling edges. The timer is placed into Edge Time mode by setting the TnCMR bit in the **GPTMTnMR** register, and the type of event that the timer captures is determined by the TnEVENT fields of the **GPTMCTL** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer is enabled for event capture. When the selected input event is detected, the current **Tn** counter value is captured in the **GPTMTnR** register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and the CnEMIS bit, if the interrupt is not masked).

After an event has been captured, the timer does not stop counting. It continues to count until the TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the **GPTMnILR** register.

Figure 9-3 shows how input edge timing mode works. In the diagram, it is assumed that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the **GPTMTnR** register, and is held there until another rising edge is detected (at which point the new count value is loaded into **GPTMTnR**).

Figure 9-3. 16-Bit Input Edge Time Mode Example

9.2.3.4 16-Bit PWM Mode

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a down-counter with a start value (and thus period) defined by **GPTMTnILR**. PWM mode is enabled with the **GPTMTnMR** register by setting the TnAMS bit to 0x1, the TNCMR bit to 0x0, and the TnMR field to 0x2.

PWM mode can take advantage of the 8-bit prescaler by using the **GPTM Timern Prescale Register (GPTMTnPR)** and the **GPTM Timern Prescale Match Register (GPTMTnPMR)**. This effectively extends the range of the timer to 24 bits.

When software writes the TnEN bit in the **GPTMCTL** register, the counter begins counting down until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from **GPTMTNILR** (and **GPTMTNPR** if using a prescaler) and continues counting until disabled by software clearing the TnEN bit in the **GPTMCTL** register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the **GPTMTnILR** register (its start state), and is deasserted when the counter value equals the value in the **GPTM Timern Match Register (GPTMnMATCHR)**. Software has the capability of inverting the output PWM signal by setting the TnPWML bit in the **GPTMCTL** register.

Figure 9-4 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle assuming a 50-MHz input clock and **TnPWML**=0 (duty cycle would be 33% for the **TnPWML**=1 configuration). For this example, the start value is **GPTMnIRL**=0xC350 and the match value is **GPTMnMR**=0x411A.

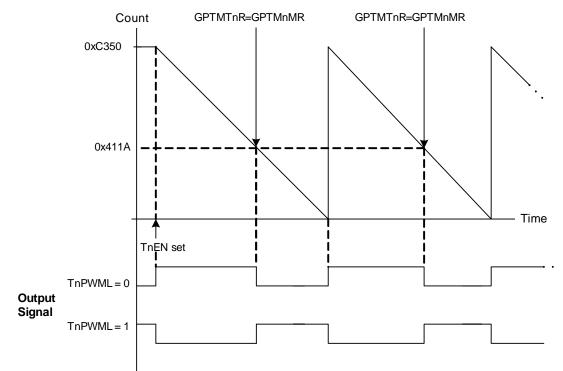


Figure 9-4. 16-Bit PWM Mode Example

9.3 Initialization and Configuration

To use the general purpose timers, the peripheral clock must be enabled by setting the GPTM0, GPTM1, and GPTM2 bits in the **RCGC1** register.

This section shows module initialization and configuration examples for each of the supported timer modes.

9.3.1 32-Bit One-Shot/Periodic Timer Mode

The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TAEN bit in the **GPTMCTL** register is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.
- 3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
 - a. Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
- 5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the **GPTMCTL** register to enable the timer and start counting.
- 7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

9.3.2 32-Bit Real-Time Clock (RTC) Mode

To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2 or CCP4 pins. To enable the RTC feature, follow these steps:

- 1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
- 3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
- 4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
- 5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the **GPTMCTL** register to enable the timer and start counting.

When the timer count equals the value in the **GPTMTAMATCHR** register, the counter is re-loaded with 0x00000000 and begins counting. If an interrupt is enabled, it does not have to be cleared.

9.3.3 16-Bit One-Shot/Periodic Timer Mode

A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
- 3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
 - a. Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register (GPTMTnPR).
- 5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).
- 6. If interrupts are required, set the TnTOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 7. Set the TnEN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start counting.
- 8. Poll the TnTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TnTOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 8. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

9.3.4 16-Bit Input Edge Count Mode

A timer is configured to Input Edge Count mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR field to 0x3.

- 4. Configure the type of event(s) that the timer captures by writing the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
- 7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 8. Set the TnEN bit in the **GPTMCTL** register to enable the timer and begin waiting for edge events.
- 9. Poll the CnMRIS bit in the **GPTMRIS** register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the **GPTM Interrupt Clear (GPTMICR)** register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat steps 4-9.

9.3.5 16-Bit Input Edge Timing Mode

A timer is configured to Input Edge Timing mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR field to 0x3.
- 4. Configure the type of event that the timer captures by writing the TnEVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 7. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
- 8. Poll the CnERIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the GPTM Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained by reading the GPTM Timern (GPTMTnR) register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected, but the timer interval can be changed at any time by writing the **GPTMTnILR** register. The change takes effect at the next cycle after the write.

9.3.6 16-Bit PWM Mode

A timer is configured to PWM mode using the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TNCMR bit to 0x0, and the TnMR field to 0x2.
- 4. Configure the output state of the PWM signal (whether or not it is inverted) in the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.

- 7. If a prescaler is going to be used, configure the GPTM Timern Prescale (GPTMTnPR) register and the GPTM Timern Prescale Match (GPTMTnPMR) register.
- 8. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and begin generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The PWM period can be adjusted at any time by writing the **GPTMTnILR** register, and the change takes effect at the next cycle after the write.

9.4 Register Map

Table 9-1 lists the GPTM registers. The offset listed is a hexadecimal increment to the register's address, relative to that timer's base address:

- Timer0: 0x40030000
- Timer1: 0x40031000
- Timer2: 0x40032000

Table 9-2.	GPTM	Register Map)
------------	------	---------------------	---

Offset	Name	Reset	Туре	Description	See page
0x000	GPTMCFG	0x0000000	R/W	Configuration	158
0x004	GPTMTAMR	0x0000000	R/W	TimerA mode	159
0x008	GPTMTBMR	0x0000000	R/W	TimerB mode	160
0x00C	GPTMCTL	0x0000000	R/W	Control	161
0x018	GPTMIMR	0x0000000	R/W	Interrupt mask	163
0x01C	GPTMRIS	0x0000000	RO	Interrupt status	165
0x020	GPTMMIS	0x0000000	RO	Masked interrupt status	166
0x024	GPTMICR	0x0000000	W1C	Interrupt clear	167
0x028	GPTMTAILR	0x0000FFFF ^a 0xFFFFFFFF	R/W	TimerA interval load	168
0x02C	GPTMTBILR	0x0000FFFF	R/W	TimerB interval load	169
0x030	GPTMTAMATCHR	0x0000FFFF ^a 0xFFFFFFFF	R/W	TimerA match	170
0x034	GPTMTBMATCHR	0x0000FFFF	R/W	TimerB match	171
0x038	GPTMTAPR	0x0000000	R/W	TimerA prescale	172
0x03C	GPTMTBPR	0x0000000	R/W	TimerB prescale	173
0x040	GPTMTAPMR	0x0000000	R/W	TimerA prescale match	174
0x044	GPTMTBPMR	0x0000000	R/W	TimerB prescale match	175

Table 9-2.	GPTM Register M	(Continued)
------------	------------------------	-------------

Offset	Name	Reset	Туре	Description	See page
0x048	GPTMTAR	0x0000FFFF ^a 0xFFFFFFFF	RO	TimerA	176
0x04C	GPTMTBR	0x0000FFFF	RO	TimerB	177

a. The default reset value for the **GPTMTAILR**, **GPTMTAMATCHR**, and **GPTMTAR** registers is 0x0000FFFF when in 16-bit mode and 0xFFFFFFFF when in 32-bit mode.

9.5 Register Descriptions

The remainder of this section lists and describes the GPTM registers, in numerical order by address offset.

Register 1: GPTM Configuration (GPTMCFG), offset 0x000

This register configures the global operation of the GPTM module. The value written to this register determines whether the GPTM is in 32- or 16-bit mode.

	GPTM Offset 0x	-	ration (C	GPTMC	CFG)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	i i		1	1	1	i	1 1	1		i i		i i	i	
								rese	erved							
Type Reset	RO 0	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1			1	1	reserved	1				1			GPTMCF	G
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		r	Name eserved	I	Type RO		eset 0	Descr Reser be cha	ved bits	return	an inde	etermina	ite valu	e, and	should i	never
								GPTM 0x0: 3 0x1: 3	l Config 2-bit tim	ier conf al-time d	•	on. RTC) co	unter co	onfigura	ation.	
								0x3: F	leserved	d.						
												uration, : FMTBM		n is con	trolled I	by bits

October 8, 2006

Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to 0x2.

(Offset 0x00)4	,													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								reser	ved				•			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ			і і		1	rese	rved	1 1			1		TAAMS	TACMR	ТА	MR
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	/Field		Name		Туре	Re	eset	Descri	otion							
3	31:4	r	eserved		RO	1	0	Reserv be cha		return	an inde	termina	ate valu	e, and sł	nould i	never
	3	-	TAAMS		R/W		0	GPTM	Timer/	Altern	ate Moo	de Sele	ect			
								0: Cap	ture mo	ode is e	nabled.					
								1: PWI	M mode	e is ena	bled.					
								Note:			WM mo	-		also clea	r the 🗅	ACMR
	2	٦	TACMR		R/W		0	GPTM	Timer/	A Captu	re Mod	е				
								0: Edg	e-Cour	t mode						
								1: Edg	e-Time	mode.						
	1:0		TAMR		R/W		0	GPTM	Timer/	A Mode						
								0x0: R	eserve	d.						
								0x1: O	ne-Sho	t Timer	mode.					
								0x2: P	eriodic	Timer n	node.					
								0x3: C	apture	mode.						
													ner con 16-or 32	figuratior 2-bit).	n defin	ed by
									it timer for Tin		uration,	TAMR	controls	the 16-b	oit time	r
											uration, MTBMR			ontrols th	e moo	le and

GPTM TimerA Mode (GPTMTAMR)

GPTM TimerB Mode (GPTMTBMR)

Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to 0x2.

(Offset 0x0	08														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				•			•	reser	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	T			1	1	rese	rved	1 1			1	1	TBAMS	TBCMR	TI	I BMR
Гуре Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	/Field		Name		Туре	Re	eset	Descri	ption							
3	31:4	re	eserveo	ł	RO		0	Reserv be cha		return	an inde	etermina	ate valu	ie, and s	hould	never
	3	Т	BAMS		R/W		0	GPTM	TimerE	3 Altern	ate Mo	de Sele	ect			
								0: Cap	ture mo	ode is e	enabled					
								1: PWI	M mode	e is ena	bled.					
								Note:			WM mo he твм			also clea	ar the	TBCMR
	2	Т	BCMR		R/W		0	GPTM	TimerE	3 Captu	ire Mod	е				
								0: Edg	e-Cour	t mode) .					
								1: Edg	e-Time	mode.						
	1:0		TBMR		R/W		0	GPTM	TimerE	3 Mode						
								0x0: R	eserve	d.						
								0x1: O	ne-Shc	t Timer	mode.					
								0x2: P	eriodic	Timer r	node.					
								0x3: C	apture	mode.						
											ased on CFG re		ier conf	iguratior	n defin	ed by
									oit timer for Tin		uration,	these l	bits cor	itrol the "	16-bit	timer
									oit timer PTMTA			this reg	gister's	contents	s are i	gnorec

Register 4: GPTM Control (GPTMCTL), offset 0x00C

This register is used alongside the **GPTMCFG** and **GMTMTnMR** registers to fine-tune the timer configuration, and to enable other features such as timer stall and the output trigger. The output trigger can be used to initiate transfers on the ADC module.

	Offset 0x	00C		-1L)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						l	·	rese	rved	•						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[res	TBPWML	TBOTE	res	TBEV	ENT	TBSTALL	TBEN	res	TAPWML	TAOTE	RTCEN	TAEV	ENT	TASTALL	TAEN
Type Reset	RO 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
reser	0	0	0	0	0	Ū	0	0	0	0	0	0	0	0	0	0
Bit	t/Field		Name		Туре	Re	eset	Descri	ption							
3	1:15	re	eserved		RO		0	Reserv be cha		return	an inde	termina	te valu	e, and	should r	never
	14	Т	BPWML	_	R/W		0	GPTM	TimerE	3 PWM	Output	Level				
										naffecte	-					
								-		verted.						
	13	-	ТВОТЕ		R/W		0	GPTM	Timor		t Triage	er Enabl	۵			
	10		IDOIL		10,00		0			•		is disat				
									-			is enab				
	40						0									
	12	re	eserved		RO		0	be cha		return	an inde	termina	te valu	e, and	should r	lever
1	1:10	TE	BEVEN	Г	R/W		0	GPTM	TimerE	3 Event	Mode					
								00: Po	sitive e	dge.						
								01: Ne	gative	edge.						
								10: Re	served							
								11: Bo	th edge	es.						
	9	Т	BSTALL	-	R/W		0	GPTM	TimerE	3 Stall E	nable					
								0: Tim	erB sta	lling is c	lisableo	ł.				
								1: Tim	erB sta	lling is e	enabled					
	8		TBEN		R/W		0	GPTM	TimerE	3 Enable	е					
								0: Time	erB is c	lisabled						
												gins cou ICFG re		or the c	apture l	ogic is
	7	re	eserved		RO		0	Reserv be cha		return	an inde	termina	te valu	e, and	should r	never

GPTM Control (GPTMCTL)

Bit/Field	Name	Туре	Reset	Description
6	TAPWML	R/W	0	GPTM TimerA PWM Output Level 0: Output is unaffected. 1: Output is inverted.
5	ΤΑΟΤΕ	R/W	0	GPTM TimerA Output Trigger Enable 0: The output TimerA trigger is disabled. 1: The output TimerA trigger is enabled.
4	RTCEN	R/W	0	GPTM RTC Enable 0: RTC counting is disabled. 1: RTC counting is enabled.
3:2	TAEVENT	R/W	0	GPTM TimerA Event Mode 00: Positive edge. 01: Negative edge. 10: Reserved. 11: Both edges.
1	TASTALL	R/W	0	GPTM TimerA Stall Enable 0: TimerA stalling is disabled. 1: TimerA stalling is enabled.
0	TAEN	R/W	0	GPTM TimerA Enable0: TimerA is disabled.1: TimerA is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.

Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018

This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables the interrupt, while writing a 0 disables it.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								reser	ved				'	'	·	
pe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved		1	CBEIM	CBMIM	TBTOIM		reser	ved	1	RTCIM	CAEIM	CAMIM	ТАТО
pe set	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/	/Field		Name		Туре	Re	eset	Descrip	otion							
3′	1:11	r	eserved		RO		0	Reserv be cha		return a	an inde	etermin	ate valu	e, and s	should i	never
	10		CBEIM		R/W		0	GPTM	Captur	eB Eve	nt Inte	rrupt M	ask			
								0: Inter	rupt is	disable	d.					
								1: Inter	rupt is	enabled	ł.					
	9		CBMIM		R/W		0	GPTM	Captur	eB Mate	ch Inte	rrupt N	lask			
								0: Inter	rupt is	disable	d.					
								1: Inter	rupt is	enabled	l.					
	8	-	ГВТОІМ		R/W		0	GPTM	TimerE	Time-C	Dut Int	errupt I	Mask			
								0: Inter	rupt is	disable	d.					
								1: Inter	rupt is	enabled	ł.					
7	7:4	r	eserved		RO		0	Reserv be cha		return a	an inde	etermin	ate valu	e, and s	should i	never
	3		RTCIM		R/W		0	GPTM	RTC Ir	terrupt	Mask					
								0: Inter	rupt is	disable	d.					
								1: Inter	rupt is	enabled	l.					
	2		CAEIM		R/W		0	GPTM	Captur	eA Eve	nt Inte	rrupt M	ask			
								0: Inter	rupt is	disable	d.					
								1: Inter	runt is	onahlor						

Bit/Field	Name	Туре	Reset	Description
1	CAMIM	R/W	0	GPTM CaptureA Match Interrupt Mask 0: Interrupt is disabled. 1: Interrupt is enabled.
0	ΤΑΤΟΙΜ	R/W	0	GPTM TimerA Time-Out Interrupt Mask 0: Interrupt is disabled. 1: Interrupt is enabled.

Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C

This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or not the interrupt is masked in the **GPTMIMR** register. Each bit can be cleared by writing a 1 to its corresponding bit in **GPTMICR**.

(Offset 0x01	IC																	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	· · · ·				'	'		reser	rved			'	'	•	'	' I			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	'		reserved		'	CBERIS	CBMRIS	TBTORIS		rese	rved	1	RTCRIS	CAERIS	CAMRIS	TATORIS			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
Bit	/Field		Name		Туре	Re	eset	Description Reserved bits return an indeterminate value, and should never											
3	1:11	r	eserved		RO		0	Reserv be cha		return	an inde	etermina	ate valu	e, and s	should	never			
	10	C	CBERIS		RO		0	GPTM CaptureB Event Raw Interrupt											
								This is the CaptureB Event interrupt status prior to masking.											
	9	C	CBMRIS		RO		0	GPTM	Captu	reB Mat	ch Raw	/ Interru	ıpt						
								This is	the Ca	ptureB	Match i	interrup	ot status	s prior to	o mask	ing.			
	8	Т	BTORIS		RO		0	GPTM	Timer	3 Time-(Out Rav	w Interr	upt						
								This is	the Tir	nerB tin	ne-out i	nterrup	t status	prior to	o maski	ng.			
	7:4	r	eserved		RO		0	Reserv be cha		return	an inde	etermina	ate valu	e, and s	should	never			
	3	F	RTCRIS		RO		0	GPTM	RTC F	Raw Inte	rrupt								
								This is	the RT	C Even	t interro	upt stat	us prior	to mas	king.				
	2	(CAERIS		RO		0	GPTM	Captu	reA Eve	nt Raw	Interru	pt						
								This is the CaptureA Event interrupt status prior to masking.											
	1	C	CAMRIS		RO		0	GPTM CaptureA Match Raw Interrupt											
								This is the CaptureA Match interrupt status prior to masking.											
	0	Т	ATORIS		RO		0	GPTM	Timer/	A Time-(Out Rav	w Interr	upt						
								This th	e Time	rA time	-out inte	errupt s	tatus pi	rior to n	nasking	I.			

GPTM Raw Interrupt Status (GPTMRIS)

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020

This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in **GPTMIMR**, and there is an event that causes the interrupt to be asserted, the corresponding bit is set in this register. All bits are cleared by writing a 1 to the corresponding bit in **GPTMICR**.

GPTM Masked	Interrupt Status	(GPTMMIS)
or rist stabiled	meenapeoutas	(01 111110)

	Offset 0x(a meen ap																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		'	1	•	1	•	•	reser	ved	'	•	1	1	•	•	'			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			reserved			CBEMIS	CBMMIS	TBTOMIS		rese	rved		RTCMIS	CAEMIS	CAMMIS	TATOMIS			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
resor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Bi	t/Field		Name		Туре	Re	eset	Descrip	otion										
-	31:11		reserved	4	RO		0	Poson	od hit	s return	an ind	otormin	ato volu	a and	should	novor			
)		leseivet	4	RO		0	be cha		sietuin		elemina	ale valu	e, anu i	siloulu	nevei			
	10		CBEMIS	3	RO		0	GPTM CaptureB Event Masked Interrupt											
								This is the CaptureB event interrupt status after masking.											
	9		CBMMIS	2	RO		0	GPTM	Cantu	reB Mat	ch Ma	skad Int	orrunt						
	0		OBININ	,	RO		0		-				-	offerm	aakina				
								This is	ine Ca	aptureB	match	interrup	n status	altern	lasking	-			
	8	-	TBTOMI	S	RO		0	GPTM	Timer	B Time-	Out Ma	asked In	terrupt						
								This is	the Ti	merB tin	ne-out	interrup	t status	after m	asking				
							_	-											
	7:4		reserved	l	RO		0	Reserv be cha		s return	an inde	etermina	ate valu	e, and s	should	never			
								be cha	iyeu.										
	3		RTCMIS	6	RO		0	GPTM	RTC N	Masked	Interru	pt							
								This is	the R ⁻	TC even	t interr	upt stat	us after	maskir	ıg.				
	2		CAEMIS				0	ODTM	Contu		nt Mor	alcod lat	o rrunt						
	2		CAEIVIIS)	RO		0			reA Eve									
								This is the CaptureA event interrupt status after masking.											
	1		CAMMIS	3	RO		0	GPTM	Captu	reA Mat	ch Ma	sked Int	errupt						
								This is the CaptureA match interrupt status after masking.											
	0	-	TATOMIS	5	RO		0	GPTM	Timer	A Time-	Out Ma	asked In	terrupt						
								This is	the Ti	merA tin	ne-out	interrup	t status	after m	asking				

Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024

This register is used to clear the status bits in the **GPTMRIS** and **GPTMMIS** registers. Writing a 1 to a bit clears the corresponding bit in the **GPTMRIS** and **GPTMMIS** registers.

	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1		1	1	1	rese	rved	I	I	•	1	1	1	'
e RO t 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	<u> </u>	reserved	,	<u>'</u>	CBECINT	CBMCIN	T TBTOCIN	ſ	res	erved	.	RTCCINT	CAECINT	CAMCINI	TATO
e RO t O	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W10 0
Bit/Field	d	Name		Туре	Re	eset	Descri	ption							
31:11		reserved		RO		0	Reserv be cha		return	an inde	termir	nate valu	ie, and	should	neve
10		CBECIN	Г	W1C		0	GPTM	Captu	eB Eve	ent Inter	rupt C	lear			
							0: The	interru	pt is un	affected	d.				
							1: The	interru	pt is cle	eared.					
9	(CBMCIN	Г	W1C		0	GPTM	Captu	eB Ma	tch Inte	rrupt C	Clear			
							0: The	interru	pt is un	affected	d.				
							1: The	interru	pt is cle	eared.					
8	Т	BTOCIN	т	W1C		0	GPTM	Timer	3 Time-	Out Inte	errupt	Clear			
							0: The	interru	pt is un	affected	d.				
							1: The	interru	pt is cle	eared.					
7:4		reserved		RO		0	Reserv be cha		return	an inde	etermin	nate valu	ie, and	should	neve
3		RTCCIN	Г	W1C		0	GPTM	RTC I	nterrupt	Clear					
							0: The	interru	pt is un	affected	d.				
							1: The	interru	pt is cle	eared.					
2		CAECIN	Г	W1C		0	GPTM	Captu	eA Eve	ent Inter	rupt C	lear			
										affected	J.				
							1: The	interru	pt is cle	eared.					
1	(CAMCIN	Г	W1C		0	GPTM	Captu	eA Ma	tch Rav	/ Inter	rupt			
							This is	the Ca	ptureA	match	interru	pt status	s after n	nasking	•
0	٦	ATOCIN	Т	W1C		0	GPTM	Timer/	A Time-	Out Ra	w Inte	rrupt			
							0: The	interru	pt is un	affected	J.				

Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028

This register is used to load the starting count value into the timer. When GPTM is configured to one of the 32-bit modes, GPTMTAILR appears as a 32-bit register (the upper 16-bits correspond to the contents of the GPTM TimerB Interval Load (GPTMTBILR) register). In 16-bit mode, the upper 16 bits of this register read as 0s and have no effect on the state of GPTMTBILR.

	Offset 0x0)28														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1		1	I	I		TAI	LRH		1			I	I	
Type Reset	R/W 1/0															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		•	•	•		TAI	LRL		•			•	•	
Type Reset	R/W 1															

GPTM TimerA Interval Load (GPTMTAILR)

Offset 0x028

1/0 = 1 if timer is configured in 32-bit mode; 0 if timer is configured in 16-bit mode.

Bit/Field	Name	Туре	Reset	Description
31:16	TAILRH	R/W	0xFFFF	GPTM TimerA Interval Load Register High
			(32-bit mode) 0x0000	When configured for 32-bit mode via the GPTMCFG register, the GPTM TimerB Interval Load (GPTMTBILR) register loads this value on a write. A read returns the current value of GPTMTBILR .
		0x0000 (16-bit mode) In 16-bi		In 16-bit mode, this field reads as 0 and does not have an effect on the state of GPTMTBILR .
15:0	TAILRL	R/W	0xFFFF	GPTM TimerA Interval Load Register Low
				For both 16- and 32-bit modes, writing this field loads the counter for TimerA. A read returns the current value of GPTMTAILR .

Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C

This register is used to load the starting count value into TimerB. When the GPTM is configured to a 32-bit mode, **GPTMTBILR** returns the current value of TimerB and ignores writes.

	Onset one	20														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1			1			TBI	LRL		•	1	1	I	I	'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bi	Bit/Field Name Type Rese						eset	Desc	ription							
3	1:16	r	eserved		RO		0		rved bit anged.	s returr	n an ind	etermir	ate val	ue, and	should	never
	15:0		TBILRL		R/W	0xF	FFF	GPTM TimerB Interval Load Register								
								When the GPTM is not configured as a 32-bit timer, a this field updates GPTMTBILR . In 32-bit mode, writes ignored, and reads return the current value of GPTM						rites a	е	

GPTM TimerB Interval Load (GPTMTBILR) Offset 0x02C

Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

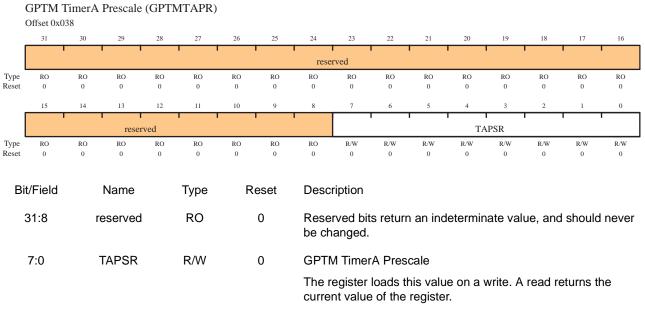
(Offset 0x0)30														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ				1	I		I	TAI	MRH				I	1		
Type Reset	R/W 1/0															
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TAMRL															
Type Reset	R/W 1															

GPTM TimerA Match (GPTMTAMATCHR)

1/0 = 1 if timer is configured in 32-bit mode; 0 if timer is configured in 16-bit mode.

Bit/Field	Name	Туре	Reset	Description
31:16	TAMRH	R/W	0xFFFF	GPTM TimerA Match Register High
			(32-bit mode) 0x0000	When configured for 32-bit Real-Time Clock (RTC) mode via the GPTMCFG register, this value is compared to the upper half of GPTMTAR , to determine match events.
			(16-bit mode)	In 16-bit mode, this field reads as 0 and does not have an effect on the state of GPTMTBMATCHR .
15:0	TAMRL	R/W	0xFFFF	GPTM TimerA Match Register Low
				When configured for 32-bit Real-Time Clock (RTC) mode via the GPTMCFG register, this value is compared to the lower half of GPTMTAR , to determine match events.
				When configured for PWM mode, this value along with GPTMTAILR , determines the duty cycle of the output PWM signal.
				When configured for Edge Count mode, this value along with GPTMTAILR , determines how many edge events are counted. The total number of edge events counted is equal to the value in GPTMTAILR minus this value.

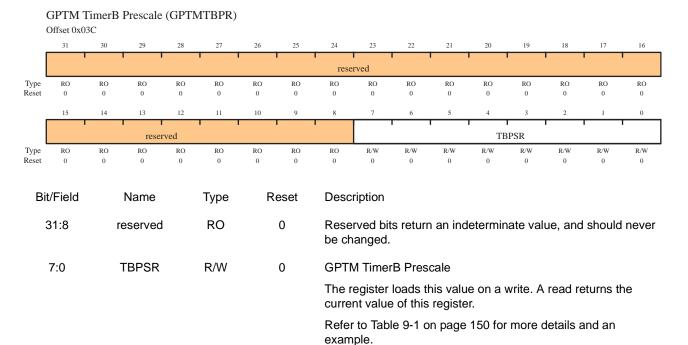
Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034


This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

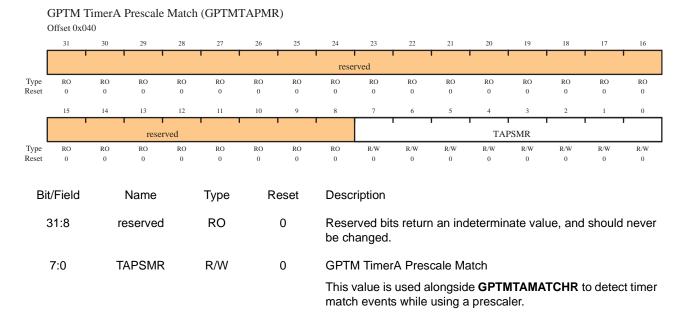
	Offset 0x0	34															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1 1		1	1	1	rese	rved	1	1	1	1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	I		г т		1	1	1	TB	MRL	I	1	1	1	T	T		
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W 0	
Reset	0	0	0	0	0	0	0	0 0 0 0 0 0 0 0									
Bi	t/Field		Name		Туре	F	Reset	Desc	ription								
3	81:16	r	eserved		RO		0	Reserved bits return an indeterminate value, and should never be changed.									
	15:0	-	FBMRL		R/W	0>	FFFF	GPTI	M Timei	B Matc	h Reg	ister Lo	w				
									MTBILF				, this va ty cycle		•	WM	
								When configured for Edge Count mode, this value along with GPTMTBILR , determines how many edge events are counter. The total number of edge events counted is equal to the value in GPTMTBILR minus this value.								ounted.	

GPTM TimerB Match (GPTMTBMATCHR)

Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038


This register allows software to extend the range of the 16-bit timers.

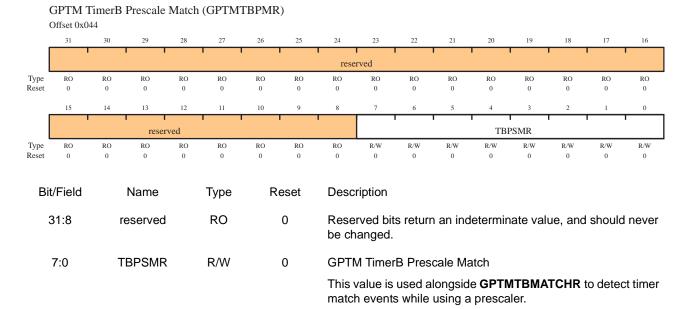
Refer to Table 9-1 on page 150 for more details and an example.


Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C

This register allows software to extend the range of the 16-bit timers.

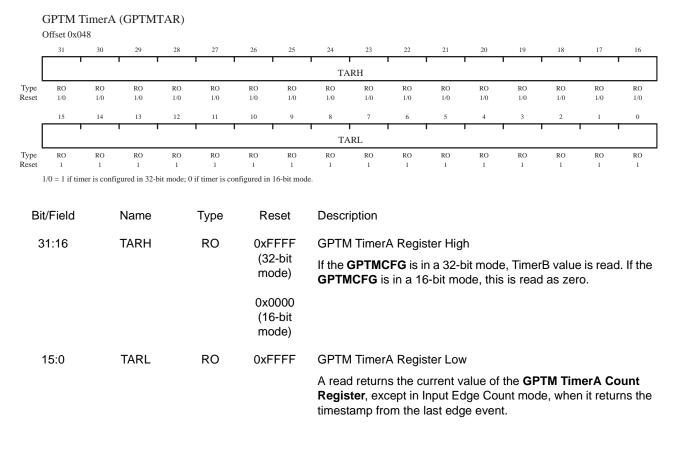
Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040

This register effectively extends the range of GPTMTAMATCHR to 24 bits.



October 8, 2006

174


Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044

This register effectively extends the range of GPTMTBMATCHR to 24 bits.

Register 17: GPTM TimerA (GPTMTAR), offset 0x048

This register shows the current value of the TimerA counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

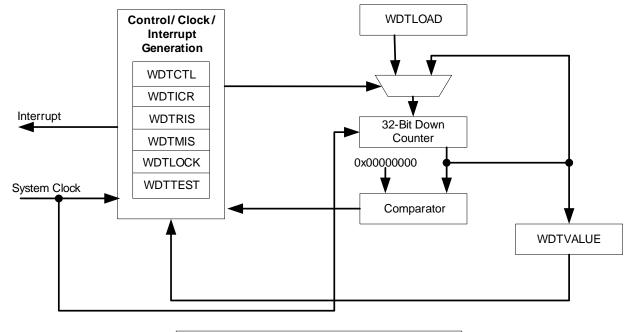
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C

This register shows the current value of the TimerB counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

(Offset 0x04	4C														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			г т		1	і I		1								•
I								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I				I			TB	RL							1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit/Field Name Type Reset Description																
31:16 reserved RO 0)		ved bits anged.	s return	an inde	etermina	ate valu	ie, and	should	never
	15:0		TBRL		RO	0xF	FFF	GPTM	1 Timer	3						
								A read returns the current value of the GPTM TimerB C Register , except in Input Edge Count mode, when it retu timestamp from the last edge event.								

GPTM TimerB (GPTMTBR)

10 Watchdog Timer


A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or due to the failure of an external device to respond in the expected way.

The Stellaris Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, a locking register, and user-enabled stalling.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

10.1 Block Diagram

Identification Registers									
WDTPCellID0	WDTPeriphID0	WDTPeriphID4							
WDTPCellID1	WDTPeriphID1	WDTPeriphID5							
WDTPCellID2	WDTPeriphID2	WDTPeriphID6							
WDTPCellID3	WDTPeriphID3	WDTPeriphID7							

10.2 Functional Description

The Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register. Once the Watchdog Timer has been configured, the **Watchdog Timer Lock (WDTLOCK)** register is written, which prevents the timer configuration from being inadvertently altered by software.

The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt. After the first time-out event, the 32-bit counter is re-loaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting resumes from that value.

If **WDTLOAD** is written with a new value while the Watchdog Timer counter is counting, then the counter is loaded with the new value and continues counting.

Writing to **WDTLOAD** does not clear an active interrupt. An interrupt must be specifically cleared by writing to the **Watchdog Interrupt Clear (WDTICR)** register.

The Watchdog module interrupt and reset generation can be enabled or disabled as required. When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its last state.

10.3 Initialization and Configuration

To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the **RCGC0** register. The Watchdog Timer is configured using the following sequence:

- 1. Load the **WDTLOAD** register with the desired timer load value.
- 2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
- 3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.

If software requires that all of the watchdog registers are locked, the Watchdog Timer module can be fully locked by writing any value to the **WDTLOCK** register. To unlock the Watchdog Timer, write a value of 0x1ACCE551.

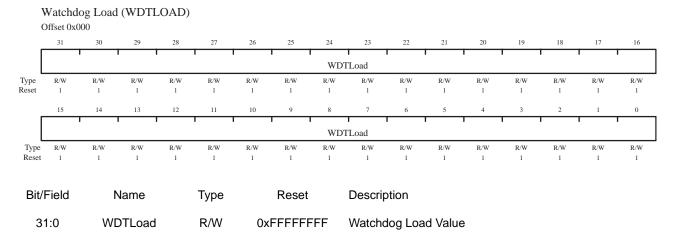
10.4 Register Map

Table 10-1 lists the Watchdog registers. The offset listed is a hexadecimal increment to the register's address, relative to the Watchdog Timer base address of 0x40000000.

Offset	Name	Reset	Туре	Description	See page
0x000	WDTLOAD	0xFFFFFFFF	R/W	Load	181
0x004	WDTVALUE	0xFFFFFFFF	RO	Current value	182
0x008	WDTCTL	0x0000000	R/W	Control	183

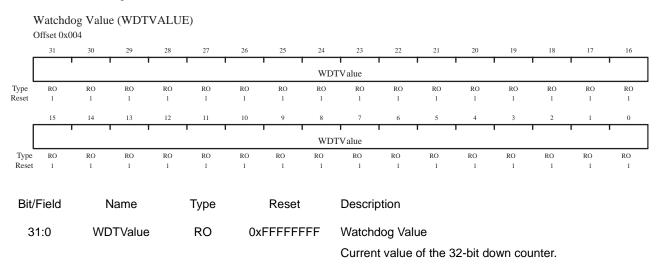
Table 10-1. WDT Register Map

Offset	Name	Reset	Туре	Description	See page
0x00C	WDTICR	-	WO	Interrupt clear	184
0x010	WDTRIS	0x00000000	RO	Raw interrupt status	185
0x014	WDTMIS	0x00000000	RO	Masked interrupt status	186
0x418	WDTTEST	0x00000000	R/W	Watchdog stall enable	188
0xC00	WDTLOCK	0x00000000	R/W	Lock	187
0xFD0	WDTPeriphID4	0x00000000	RO	Peripheral identification 4	189
0xFD4	WDTPeriphID5	0x00000000	RO	Peripheral identification 5	190
0xFD8	WDTPeriphID6	0x00000000	RO	Peripheral identification 6	191
0xFDC	WDTPeriphID7	0x00000000	RO	Peripheral identification 7	192
0xFE0	WDTPeriphID0	0x00000005	RO	Peripheral identification 0	193
0xFE4	WDTPeriphID1	0x0000018	RO	Peripheral identification 1	194
0xFE8	WDTPeriphID2	0x0000018	RO	Peripheral identification 2	195
0xFEC	WDTPeriphID3	0x0000001	RO	Peripheral identification 3	196
0xFF0	WDTPCellID0	0x000000D	RO	PrimeCell identification 0	197
0xFF4	WDTPCellID1	0x000000F0	RO	PrimeCell identification 1	198
0xFF8	WDTPCellID2	0x00000005	RO	PrimeCell identification 2	199
0xFFC	WDTPCellID3	0x000000B1	RO	PrimeCell identification 3	200


Table 10-1. WDT Register Map (Continued)

10.5 Register Descriptions

The remainder of this section lists and describes the WDT registers, in numerical order by address offset.


Register 1: Watchdog Load (WDTLOAD), offset 0x000

This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the value is immediately loaded and the counter restarts counting down from the new value. If the **WDTLOAD** register is loaded with 0x00000000, an interrupt is immediately generated.

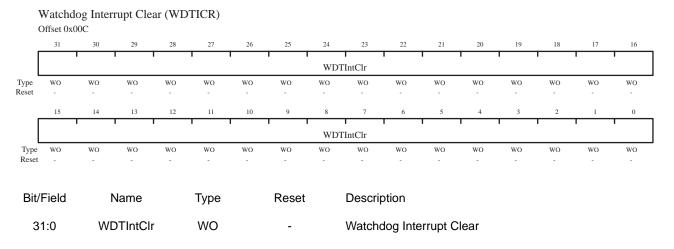
Register 2: Watchdog Value (WDTVALUE), offset 0x004

This register contains the current count value of the timer.

Register 3: Watchdog Control (WDTCTL), offset 0x008

This register is the watchdog control register. The watchdog timer can be configured to generate a reset signal (upon second time-out) or an interrupt on time-out.

When the watchdog interrupt has been enabled, all subsequent writes to the control register are ignored. The only mechanism that can re-enable writes is a hardware reset.


(Offset 0x	.008														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1 1		I	1	1	1 1	roc	erved	1	1	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		1 1		1	1	1	1 1		1	1	i –	1	1	1		
l				rved											RESEN	INTEN
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0
D:4/	Tiold				Turne		Deeet		Deeer							
BIt/	Field	N	lame		Туре		Reset		Descr	iption						
3	1:2	res	served		RO		0		Reser	ved bits	return	an inde	etermina	ate valu	e, and s	hould
									never	be chan	ged.					
							0		10/			- 1- 1 -				
	1	RI	ESEN		R/W		0		water	dog Res	set Ena	able				
									0: Dis	abled.						
									1: Ena	able the	Watch	dog mo	dule res	set outp	ut.	
												0				
	0	IN	ITEN		R/W		0		Watch	ndog Inte	errupt E	Enable				
									0: Inte	errupt ev	ent dis	abled (once thi	is bit is :	set. it ca	an only
										ared by					.,	- ,
										errupt ev	ent en	abled. C	Once er	abled. a	all writes	sare

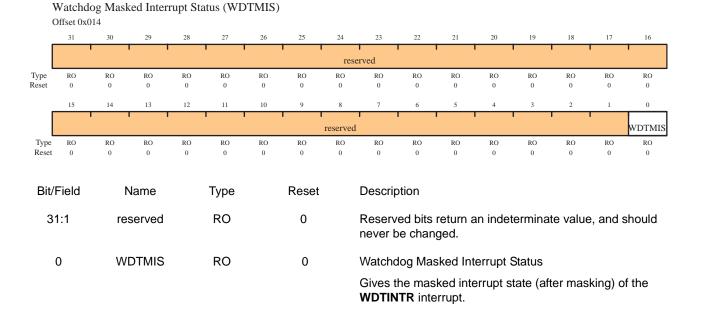
ignored.

Watchdog Control (WDTCTL)

Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C

This register is the interrupt clear register. A write of any value to this register clears the Watchdog interrupt and reloads the 32-bit counter from the **WDTLOAD** register. Value for a read or reset is indeterminate.

Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010


This register is the raw interrupt status register. Watchdog interrupt events can be monitored via this register if the controller interrupt is masked.

(Offset 0x0	10														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ					1	1	1	1	1	1	1		1	1	1	1
L								res	erved							
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	1	T		1	1			1	1	1	1	1	1	1	
			reser	ved												WDTRIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/	Field	N	lame		Туре		Rese	et	Descri	iption						
3	1:1	res	served		RO		0			ved bits be char	return a nged.	an inde	termina	te value	e, and	should
	0	WDTRIS RO 0				Watch	dog Ra	w Interr	upt Stat	tus						
							Gives WDTII		interrup	ot state	(prior to	o maski	ing) of			

Watchdog Raw Interrupt Status (WDTRIS)

Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014

This register is the masked interrupt status register. The value of this register is the logical AND of the raw interrupt bit and the Watchdog interrupt enable bit.

October 8, 2006

Register 7: Watchdog Lock (WDTLOCK), offset 0xC00

Writing 0x1ACCE551 to the **WDTLOCK** register enables write access to all other registers. Writing any other value to the **WDTLOCK** register re-enables the locked state for register writes to all the other registers. Reading the **WDTLOCK** register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are disabled, reading the **WDTLOCK** register returns 0x00000001 (when locked; otherwise, the returned value is 0x00000000 (unlocked)).

	Watchd Offset 0x0	og Lock 200	(WDTL	LOCK)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I			1	1	T	WD	TLock	1	1	1	1	T	T	1
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WDTLock												1	T	T		
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	Field 1:0		Name DTLock		Type R/W		Reset			dog Loc						
								registe	rs for w	rite acc	ess. A	E551 u write of g any re	any oth	ner valu	ie	

A read of this register returns the following values:

Locked: 0x00000001

Unlocked: 0x0000000

Register 8: Watchdog Test (WDTTEST), offset 0x418

This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag during debug.

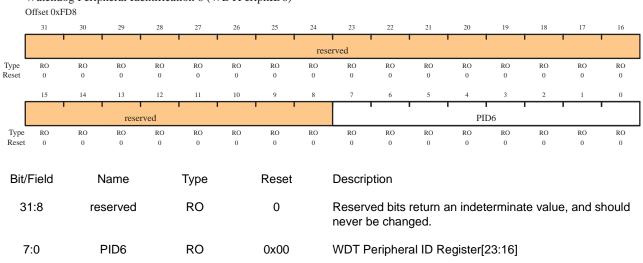
1	Watch	dog Test	(WDTT	TEST)												
(Offset 0x	418														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		1	1	1	1	1	1 1		1	1		1 1		1	1	1
l									erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		·	<u>'</u>	reserved		<u>'</u>	1	STALL				resei	rved			•
Туре	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Field		Name		Туре		Reset		Descri							
3	1:9	re	served		RO		0			ved bits be chan		an indet	ermina	te value	e, and s	hould
	8	5	STALL		R/W		0		Watcho	dog Stal	l Enabl	е				
									with a d the mid	debugge	er, the v oller is	Stellaris vatchdog restarte	g timer	stops c	ounting	. Once
7:0 reserved RO			0			ved bits be chan		an indet	ermina	te value	e, and s	hould				

Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

	wateria	og i enp	nerui iu	cintined		10110	ipino i)									
(Offset 0x1	FD0														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ					1	1	1 1		1		i	1 1		i	i	i
l								res	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		I I			1	1	т т				1	1 1		1		
			reser	rved								PII	D4			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Di+/	/Field	N	lame		Туре		Reset		Descrip	tion						
DII/	Field	P	Name		Type		Resei		Descrip	non						
2	1.0		o nu o d				0		Decer	ad hita	roturn	an indat	ormino	to volue		hould
3	1:8	res	served		RO		0		never b			an indet	ermina	te value	e, and s	noula
-	7.0	r	PID4		PO		0200			orinhor		o giotor["	7.01			
	7:0	I	-1D4		RO		0x00		VVDTP	enpher	and R	egister[7	<i>[</i> .0]			

Watchdog Peripheral Identification 4 (WDTPeriphID4)


Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4

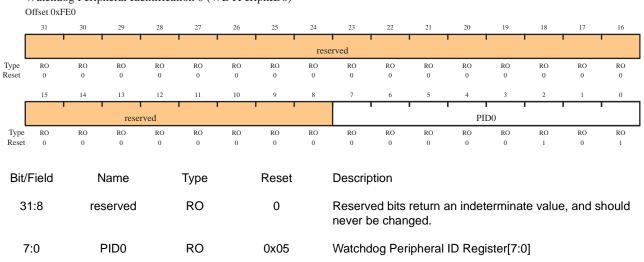
The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 5 (WDTPeriphID5) Offset 0xFD4 31 30 26 24 23 22 16 28 25 21 20 19 18 reserved Type Reset RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PID5 reserved RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Description Name Туре Reset 31:8 RO 0 Reserved bits return an indeterminate value, and should reserved never be changed. WDT Peripheral ID Register[15:8] 7:0 PID5 RO 0x00

Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

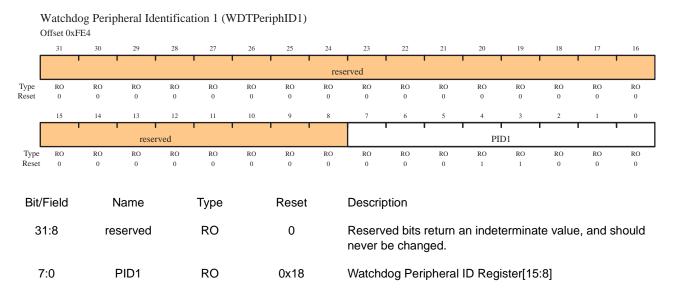
Watchdog Peripheral Identification 6 (WDTPeriphID6)


Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 7 (WDTPeriphID7) Offset 0xFDC 31 30 26 24 23 22 16 28 27 25 21 20 19 18 17 reserved Type Reset RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PID7 reserved RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:8 reserved RO 0 Reserved bits return an indeterminate value, and should never be changed. 7:0 PID7 RO 0x00 WDT Peripheral ID Register[31:24]

Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0


The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 0 (WDTPeriphID0)

Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4

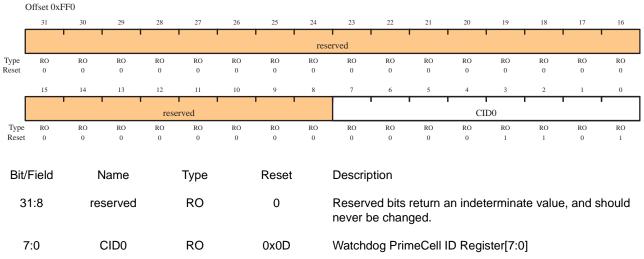
The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

'	watchdo	og Perip	neral Ic	lentifica	1000 2 ()	wDTPe	ripniD2)									
(Offset 0xF	E8														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Г	1	1		1	1	1	1 1		1	1	1	1	1	1	1	1
								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г				1	1	1				1	1	1		1	1	1
			rese	erved				PI	D2							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
Bit/	Field	Ν	lame		Туре		Reset		Descrip	otion						
3	1:8	res	served		RO		0		Reserv never b			an indet	ermina	ate value	e, and s	should
7	' :0	F	PID2		RO		0x18		Watcho	dog Per	ipheral	ID Reg	ister[23	3:16]		

Watchdog Peripheral Identification 2 (WDTPeriphID2)


Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 3 (WDTPeriphID3) Offset 0xFEC 31 30 26 24 23 22 16 28 25 21 20 19 18 reserved Type Reset RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PID3 reserved RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 **Bit/Field** Description Name Type Reset 31:8 RO 0 Reserved bits return an indeterminate value, and should reserved never be changed. 7:0 PID3 Watchdog Peripheral ID Register[31:24] RO 0x01

Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Primecell Identification 0 (WDTPCellID0) Offset 0xFF0

Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Primecell Identification 1 (WDTPCellID1) Offset 0xFF4 31 30 25 24 23 22 16 28 26 21 20 19 18 reserved Type Reset RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CID1 reserved RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 **Bit/Field** Description Name Туре Reset 31:8 0 Reserved bits return an indeterminate value, and should reserved RO never be changed. Watchdog PrimeCell ID Register[15:8] 7:0 CID1 RO 0xF0

Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

	Offset 0xF	0		mmean	011 2 (W	Dirce	$IIID_{2}$									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	Î	i	i		1	1 1	rese	erved					1		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'		'	reser	rved							CI	D2	1	•	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset Bit/	° Field	0 N	o lame	0	туре	0	° Reset	0	0 Descrip	otion	0	0	0	1	0	1
3	1:8		served		RO		0		Reserv never b			an indet	ermina	te value	e, and s	should
7	' :0	(CID2		RO		0x05		Watchd	og Prin	neCell I	D Regi	ster[23	:16]		

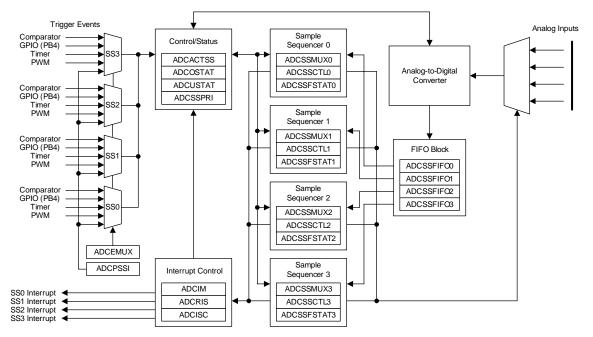
Watchdog Primecell Identification 2 (WDTPCellID2)

Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Primecell Identification 3 (WDTPCellID3) Offset 0xFFC 31 30 28 25 24 23 22 16 27 26 21 20 19 18 reserved Type Reset RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CID3 reserved RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 **Bit/Field** Name Туре Reset Description 31:8 reserved RO 0 Reserved bits return an indeterminate value, and should never be changed. 7:0 CID3 RO 0xB1 Watchdog PrimeCell ID Register[31:24]

11 Analog-to-Digital Converter (ADC)


An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number.

The Stellaris ADC module features 10-bit conversion resolution and supports four input channels, plus an internal temperature sensor. The ADC module contains a programmable sequencer which allows for the sampling of multiple analog input sources without controller intervention. Each sample sequence provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequence priority.

The Stellaris ADC provides the following features:

- Four analog input channels
- Single-ended and differential-input configurations
- Internal temperature sensor
- Sample rate of 250 thousand samples/second
- Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
- Flexible trigger control
 - Controller (software)
 - Timers
 - Analog Comparators
 - PWM
 - GPIO
- Hardware averaging of up to 64 samples for improved accuracy

11.1 Block Diagram

Figure 11-1. ADC Module Block Diagram

11.2 Functional Description

The Stellaris ADC collects sample data by using a programmable sequence-based approach instead of the traditional single or double-sampling approach found on many ADC modules. Each *sample sequence* is a fully programmed series of consecutive (back-to-back) samples, allowing the ADC to collect data from multiple input sources without having to be re-configured or serviced by the controller. The programming of each sample in the sample sequence includes parameters such as the input source and mode (differential versus single-ended input), interrupt generation on sample completion, and the indicator for the last sample in the sequence.

11.2.1 Sample Sequencers

The sampling control and data capture is handled by the Sample Sequencers. All of the sequencers are identical in implementation except for the number of samples that can be captured and the depth of the FIFO. Table 11-1 shows the maximum number of samples that each Sequencer can capture and its corresponding FIFO depth. In this implementation, each FIFO entry is a 32-bit word, with the lower 10 bits containing the conversion result.

Sequencer	Number of Samples	Depth of FIFO
SS3	1	1
SS2	4	4
SS1	4	4
SS0	8	8

Table 11-1.	Samples and FIFO Depth of Sequencers

For a given sample sequence, each sample is defined by two 4-bit nibbles in the ADC Sample Sequence Input Multiplexer Select (ADCSSMUXn) and ADC Sample Sequence Control (ADCSSCTLn) registers, where "n" corresponds to the sequence number. The ADCSSMUXn nibbles select the input pin, while the ADCSSCTLn nibbles contain the sample control bits corresponding to parameters such as temperature sensor selection, interrupt enable, end of sequence, and differential input mode. Sample Sequencers are enabled by setting the respective ASENn bit in the ADC Active Sample Sequencer (ADCACTSS) register, but can be configured before being enabled.

When configuring a sample sequence, multiple uses of the same input pin within the same sequence is allowed. In the **ADCSSCTLn** register, the Interrupt Enable (IE) bits can be set for any combination of samples, allowing interrupts to be generated after every sample in the sequence if necessary. Also, the END bit can be set at any point within a sample sequence. For example, if Sequencer 0 is used, the END bit can be set in the nibble associated with the fifth sample, allowing Sequencer 0 to complete execution of the sample sequence after the fifth sample.

After a sample sequence completes execution, the result data can be retrieved from the ADC Sample Sequence Result FIFO (ADCSSFIFOn) registers. The FIFOs are simple circular buffers that read a single address to "pop" result data. For software debug purposes, the positions of the FIFO head and tail pointers are visible in the ADC Sample Sequence FIFO Status (ADCSSFSTATn) registers along with FULL and EMPTY status flags. Overflow and underflow conditions are monitored using the ADCOSTAT and ADCUSTAT registers.

11.2.2 Module Control

Outside of the Sample Sequencers, the remainder of the control logic is responsible for tasks such as interrupt generation, sequence prioritization, and trigger configuration.

Most of the ADC control logic runs at the ADC clock rate of 14-18 MHz. The internal ADC divider is configured automatically by hardware when the system XTAL is selected. The automatic clock divider configuration targets 16.667 MHz operation for all Stellaris devices.

11.2.2.1 Interrupts

The Sample Sequencers dictate the events that cause interrupts, but they don't have control over whether the interrupt is actually sent to the interrupt controller. The ADC module's interrupt signal is controlled by the state of the MASK bits in the ADC Interrupt Mask (ADCIM) register. Interrupt status can be viewed at two locations: the ADC Raw Interrupt Status (ADCRIS) register, which shows the raw status of a Sample Sequencer's interrupt signal, and the ADC Interrupt Status and Clear (ADCISC) register, which shows the logical AND of the ADCRIS register's INR bit and the ADCIM register's MASK bits. Interrupts are cleared by writing a 1 to the corresponding IN bit in ADCISC.

11.2.2.2 Prioritization

When sampling events (triggers) happen concurrently, they are prioritized for processing by the values in the **ADC Sample Sequencer Priority (ADCSSPRI)** register. Valid priority values are in the range of 0-3, with 0 being the highest priority and 3 being the lowest. Multiple active Sample Sequencer units with the same priority do not provide consistent results, so software must ensure that all active Sample Sequencer units have a unique priority value.

11.2.2.3 Sampling Events

Sample triggering for each Sample Sequencer is defined in the **ADC Event Multiplexer Select** (ADCEMUX) register. The external peripheral triggering sources vary by Stellaris family member, but all devices share the "Controller" and "Always" triggers. Software can initiate sampling by setting the CH bits in the ADC Processor Sample Sequence Initiate (ADCPSSI) register.

When using the "Always" trigger, care must be taken. If a sequence's priority is too high, it is possible to starve other lower priority sequences.

11.2.3 Hardware Sample Averaging Circuit

Higher precision results can be generated using the hardware averaging circuit, however, the improved results are at the cost of throughput. Up to 64 samples can be accumulated and averaged to form a single data entry in the sequencer FIFO. Throughput is decreased proportionally to the number of samples in the averaging calculation. For example, if the averaging circuit is configured to average 16 samples, the throughput is decreased by a factor of 16.

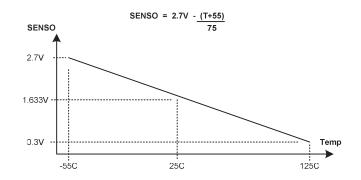
By default the averaging circuit is off and all data from the converter passes through to the sequencer FIFO. The averaging hardware is controlled by the **ADC Sample Averaging Control** (**ADCSAC**) register (see page 216). There is a single averaging circuit and all input channels receive the same amount of averaging whether they are single-ended or differential.

11.2.4 Analog-to-Digital Converter

The converter itself generates a 10-bit output value for selected analog input. Special analog pads are used to minimize the distortion on the input.

11.2.5 Test Modes

There is a user-available test mode that allows for loopback operation within the digital portion of the ADC module. This can be useful for debugging software without having to provide actual analog stimulus. This mode is available through the **ADC Test Mode Loopback (ADCTMLB)** register (see page 229).


11.2.6 Internal Temperature Sensor

The internal temperature sensor provides an analog temperature reading as well as a reference voltage. The voltage at the output terminal SENSO is given by the following equation:

SENSO = 2.7 - ((T + 55) / 75)

This relation is shown in Figure 11-2 on page 204.

Figure 11-2. Internal Temperature Sensor Characteristic

11.3 Initialization and Configuration

In order for the ADC module to be used, the PLL must be enabled and using a supported crystal frequency (see the **RCC** register on page 80). Using unsupported frequencies can cause faulty operation in the ADC module.

11.3.1 Module Initialization

Initialization of the ADC module is a simple process with very few steps. The main steps include enabling the clock to the ADC and reconfiguring the Sample Sequencer priorities (if needed).

The initialization sequence for the ADC is as follows:

- 1. Enable the ADC clock by writing a value of 0x00010000 to the **RCGC1** register in the System Control module.
- If required by the application, reconfigure the Sample Sequencer priorities in the ADCSSPRI register. The default configuration has Sample Sequencer 0 with the highest priority, and Sample Sequencer 3 as the lowest priority.

11.3.2 Sample Sequencer Configuration

Configuration of the Sample Sequencers is slightly more complex than the module initialization since each sample sequence is completely programmable.

The configuration for each Sample Sequencer should be as follows:

- Ensure that the Sample Sequencer is disabled by writing a 0 to the corresponding ASEN bit in the ADCACTSS register. Programming of the Sample Sequencers is allowed without having them enabled. Disabling the Sequencer during programming prevents erroneous execution if a trigger event were to occur during the configuration process.
- 2. Configure the trigger event for the Sample Sequencer in the **ADCEMUX** register.
- 3. For each sample in the sample sequence, configure the corresponding input source in the **ADCSSMUXn** register.
- 4. For each sample in the sample sequence, configure the sample control bits in the corresponding nibble in the ADCSSCTLn register. When programming the last nibble, ensure that the END bit is set. Failure to set the END bit causes unpredictable behavior.
- 5. If interrupts are to be used, write a 1 to the corresponding MASK bit in the **ADCIM** register.
- 6. Enable the Sample Sequencer logic by writing a 1 to the corresponding ASEN bit in the **ADCACTSS** register.

11.4 Register Map

Table 11-2 lists the ADC registers. The offset listed is a hexadecimal increment to the register's address, relative to the ADC base address of 0x40038000.

Offset	Name	Reset	Туре	Description	See page
0x000	ADCACTSS	0x00000000	R/W	Active sample sequencer	207
0x004	ADCRIS	0x00000000	RO	Raw interrupt status and clear	208
0x008	ADCIM	0x00000000	R/W	Interrupt mask	209
0x00C	ADCISC	0x00000000	R/W1C	Interrupt status and clear	210
0x010	ADCOSTAT	0x00000000	R/W1C	Overflow status	211
0x014	ADCEMUX	0x00000000	R/W	Event multiplexer select	212
0x018	ADCUSTAT	0x00000000	R/W1C	Underflow status	213

Table 11-2. ADC Register Map

Offset	Name	Reset	Туре	Description	See page
0x020	ADCSSPRI	0x00003210	R/W	Sample sequencer priority	214
0x028	ADCPSSI	-	WO	Processor sample sequence initiate	215
0x030	ADCSAC	0x00000000	R/W	Sample averaging control	216
0x040	ADCSSMUX0	0x00000000	R/W	Sample sequence input multiplexer select 0	217
0x044	ADCSSCTL0	0x00000000	R/W	Sample sequence control 0	219
0x048	ADCSSFIF00	0x00000000	RO	Sample sequence result FIFO 0	221
0x04C	ADCSSFSTAT0	0x00000100	RO	Sample sequence FIFO 0 status	222
0x060	ADCSSMUX1	0x00000000	R/W	Sample sequence input multiplexer select 1	223
0x064	ADCSSCTL1	0x00000000	R/W	Sample sequence control 1	224
0x068	ADCSSFIF01	0x00000000	RO	Sample sequence result FIFO 1	224
0x06C	ADCSSFSTAT1	0x00000100	RO	Sample sequence FIFO 1 status	224
0x080	ADCSSMUX2	0x00000000	R/W	Sample sequence input multiplexer select 2	225
0x084	ADCSSCTL2	0x00000000	R/W	Sample sequence control 2	226
0x088	ADCSSFIFO2	0x00000000	RO	Sample sequence result FIFO 2	226
0x08C	ADCSSFSTAT2	0x00000100	RO	Sample sequence FIFO 2 status	226
0x0A0	ADCSSMUX3	0x00000000	R/W	Sample sequence input multiplexer select 3	227
0x064	ADCSSCTL3	0x00000002	R/W	Sample sequence control 3	228
0x0A8	ADCSSFIF03	0x00000000	RO	Sample sequence result FIFO 3	228
0x0AC	ADCSSFSTAT3	0x00000100	RO	Sample sequence FIFO 3 status	228
0x100	ADCTMLB	0x00000000	R/W	Test mode loopback	229

Table 11-2. ADC Register Map (Continued)

11.5 Register Descriptions

The remainder of this section lists and describes the ADC registers, in numerical order by address offset.

Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000

This register controls the activation of the Sample Sequencers. Each Sample Sequencer can be enabled/disabled independently.

	Offset 0x0	00														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	-		I		1	I		rese	rved			I	1		I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		I		I	reser	rved			1		1	ASEN3	ASEN2	ASEN1	ASEN0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
									ion							
chang						Reserve changed		eturn an	i indete	rminate	e value,	and sh	ould ne	ver be		
	3	A	SEN3		R/W	0		Specifies sample s Sequence	sequen	ce logic		•				
	2	ASEN2 R/W 0						Specifies sample s Sequence	sequen	ce logic						
	1	ASEN1 R/W 0						Specifies sample s Sequence	sequen	ce logic	•	•				
	0	A	SEN0		R/W	0	0 Specifies whether Sample Sequencer 0 is a sample sequence logic for Sequencer 0 is a Sequencer is inactive.									

ADC Active Sample Sequencer (ADCACTSS)

Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004

This register shows the status of the raw interrupt signal of each Sample Sequencer. These bits may be polled by software to look for interrupt conditions without having to generate controller interrupts.

	Offset 0x0	04														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	i		1 1	1			i i			Í		i	İ		i	
									rved							
Type Reset	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
reser	0				-	-					-				0	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						rese	rved						INR3	INR2	INR1	INR0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре		Reset	Des	cription							
:	31:4	I	reserved		RO		0	Res	erved b	its retui	m an in	ndeterm	inate va	alue, an	d shoul	d
								nev	er be ch	anged.						
	3		INR3		RO		0		by hard							
									CSSCTI						This bi	t is
								clea	red by v	writing a	a 1 to th	he ADC	ISC IN	з bit.		
	_							-								
	2		INR2		RO		0		by hard							
									CSSCTI			•			I his bi	t is
								clea	red by v	writing a	a 1 to th	he ADC	ISC IN	2 bit.		
					50		0	<u> </u>								
	1		INR1		RO		0		by hard							
									CSSCTL			•			I his di	t is
								clea	red by v	writing a	a 1 to th	ne ADC	ISC IN	1 DIT.		
	0		INR0		RO		0	Sat	by hard	woro w	honad	ampla	with ite	rocood	tivo	
	0		ININU		ΝU		0					•		•		tic
									red by v							115
								CIEd	ieu by I	winning a				ο bit.		

ADC Raw Interrupt Status (ADCRIS)

Register 3: ADC Interrupt Mask (ADCIM), offset 0x008

This register controls whether the Sample Sequencer raw interrupt signals are promoted to controller interrupts. The raw interrupt signal for each Sample Sequencer can be masked independently.

	Offset 0	x008																							
	31		30	29		28	27		26	25		24	23		22		21		20		19		18	17	16
		1		1	1		1	1		1	1	re	served			1		1		1		1		1	'
Туре	RO 0		RO	RO 0		RO	RO 0		RO 0	RO		RO	RO 0		RO		RO 0		RO 0		RO		RO 0	RO 0	RO
Reset			0			0				0		0			0						0			0	0
1	15	-	14	13	-	12	11	-	10	9	-	8	7	-	6	1	5	-	4	_	3	_	2	1	0
									res	served											MASI	K3	MASK2	MASKI	MASK0
Type Reset	RO 0		RO 0	RO 0		RO 0	RO 0		RO 0	RO 0		RO 0	RO 0		RO 0		RO 0		RO 0		R/W 0		R/W 0	R/W 0	R/W 0
Reset	0		0	0		0	0		0	0		0	0		0		0		0		0		0	0	0
Bi	t/Field	ł		Nam	ne		Тур	e	I	Reset		Des	criptior	n											
	31:4		I	reser	/ed		RC)		0			erved k hange		etur	n a	n in	de	tern	nina	ate v	alu	ie, and	shoul	d never
	3			MAS	K3		RΛ	N		0		Seq cont	cifies w uencer roller in ntrolle	3 (A nterr	ADC upt.	RIS If s	3 re et, t	gis the	ter : raw	INF / int	23 bi terru	it) i ıpt	s prom	oted to	o a noted to
	2			MAS	K2		RΛ	N		0		Seq cont	cifies w uencer roller in ntrolle	2 (A nterr	ADC upt.	RIS If s	3 re et, t	gis the	ter : raw	INF / inf	2 bi terru	it) i ıpt	s prom	oted to	o a noted to
	1			MAS	K1		RΛ	N		0		Seq cont	cifies w uencer roller in ntrolle	1 (A nterr	ADC upt.	RIS If s	3 re et, t	gis the	ter∷ raw	INF	20 bi terru	it) i ıpt	s prom	oted to	o a noted to
	0			MAS	K0		RΛ	N		0		Seq cont	cifies w uencer troller in ntrolle	0 (A	ADC upt.	RIS If s	3 re et, t	gis the	ter : raw	INF	20 bi terru	it) i ıpt	s prom	oted to	o a noted to

ADC Interrupt Mask (ADCIM)

Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C

This register provides the mechanism for clearing interrupt conditions, and shows the status of controller interrupts generated by the Sample Sequencers. When read, each bit field is the logical AND of the respective INR and MASK bits. Interrupts are cleared by writing a 1 to the corresponding bit position. If software is polling the **ADCRIS** instead of generating interrupts, the INR bits are still cleared via the **ADCISC** register, even if the IN bit is not set.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1						1	reser	ved				1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15	14	13	12	1 1	10	9	· · ·	,	0		4	3	2	1	0
l							rved						IN3	IN2	IN1	IN0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0
Bi	t/Field		Name		Туре	R	eset	Descr	iption							
:	31:4		reserved		RO		0		ved bit anged.	s return	n an ind	etermir	nate val	ue, and	should	never
	3		IN3		R/W1C		0	both 1	l, provi	ding a l	evel-ba	sed inte	ne MASE errupt to ears the	the co	ntroller.	
	2		IN2		R/W1C		0	both 1	l, provi	ding a l	evel ba	sed inte	ne MASE errupt to ears the	the co	ntroller.	
	1		IN1		R/W1C		0	both 1	l, provi	ding a l	evel ba	sed inte	ne MASE errupt to ears the	the co	ntroller.	
	0		IN0		R/W1C		0	both 1	l, provi	ding a l	evel ba	sed inte	ne MASE errupt to ears the	the co	ntroller.	

ADC Interrupt Status and Clear (ADCISC) Offset 0x00C

Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010

This register indicates overflow conditions in the Sample Sequencer FIFOs. Once the overflow condition has been handled by software, the condition can be cleared by writing a 1 to the corresponding bit position.

(Offset 0x01	0														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					• •		• •	rese	rved		'					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						res	served				•	•	OV3	OV2	OV1	OV0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0
	/Field		Name		Туре		Reset		cription							
3	31:4	r	eserved		RO		0		erved b er be ch			determ	inate va	alue, an	d shoul	d
	3		OV3		R/W1C		0	hit a was rece indic	n overf reques nt write	low cor ited. Wl e is drop	ndition v hen an oped an	vhere tl overflo id this b	or Samp ne FIFC w is det oit is set ed data.) is full a ected, t by hare	and a w he mos dware t	rite t o
	2		OV2		R/W1C		0	hit a was rece indic	n overf reques nt write	low cor ited. Wl e is drop	ndition v hen an oped an	vhere tl overflo id this b	or Samp ne FIFC w is det oit is set ed data.) is full a ected, t by hare	and a w he mos dware t	rite t o
	1		OV1		R/W1C		0	hit a was rece indic	n overf reques nt write	low cor ited. Wl e is drop	ndition v hen an oped an	vhere tl overflo id this b	or Samp ne FIFC w is det oit is set ed data.) is full a ected, t by hare	and a w he mos dware t	rite t o
	0		OV0		R/W1C		0	hit a was rece indic	n overf reques nt write	low cor ited. Wl is drop	ndition v hen an oped an	vhere tl overflo id this b	or Samp ne FIFC w is det oit is set ed data.) is full a ected, t by hare	and a w he mos dware t	rite t o

ADC Overflow Status (ADCOSTAT)

Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014

The **ADCEMUX** selects the event (trigger) that initiates sampling for each Sample Sequencer. Each Sample Sequencer can be configured with a unique trigger source.

	Offset 0x0		intpiexer	Select	ADCEN	107)										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
l									rved							
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
уре	R/W	EN R/W	13 R/W	R/W	R/W	El R/W	M2 R/W	R/W	R/W	EM R/W	11 R/W	R/W	R/W	EN R/W	10 R/W	R/W
eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	t/Field		Name		Туре		Reset	De	escriptic	n						
3	1:16	I	reserved	ł	RO		0			bits ret changeo		indeterr	minate	value, a	and sho	uld
1	5:12		EM3		R/W		0	Th	is field	selects	the trig	gger sou	rce for	Sample	Seque	ncer 3
								Th	e valid	configu	rations	for this	field ar	e:		
									EM Bir	nary Val	lue	Event				
									C	0000		Control	ler (def	ault)		
								C	0001		Analog	Compa	arator 0			
									(010		Reserv	ed			
									(0011		Reserv	ed			
									(0100		Externa	al (GPIC) PB4)		
									(0101		Timer				
									(0110		PWM0				
									(0111		PWM1				
									1	000		Reserv	ed			
									100	1-1110		reserve	ed			
										1111		Always	(contin	uously	sample)
	11:8 EM2				R/W		0					ger sou				ncer 2
	7:4		EM1		R/W		0					ger sou same as				ncer 1
	3:0		EM0		R/W		0					ger sou same as				ncer (

Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018

This register indicates underflow conditions in the Sample Sequencer FIFOs. The corresponding underflow condition can be cleared by writing a 1 to the relevant bit position.

	Offset 0x0		v Status	ADCC	51AI)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'							rese	rved		'	'	'	'	'	
Fype Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						re	served						UV3	UV2	UV1	UV0
Гуре Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0
Bit	t/Field		Name		Туре		Reset	Des	cription							
3	31:4	re	eserved		RO		0		erved b er be ch			ideterm	inate va	alue, an	d shoul	d
	3		UV3		R/W1C	;	0	hit a read the	an unde d was re	rflow c equeste	onditior ed. The	n where proble	or Sam the FII matic re turned.	FO is ei ead doe	mpty ar es not n	nd a nove
	2		UV2		R/W1C	;	0	hit a read FIF	an unde d was re	rflow co queste	ondition d. The	where problen	or Samp the FIF natic rea ed. This	O is en ad does	npty and not mo	d a ove the
	1		UV1		R/W1C	;	0	hit a read FIF	an unde d was re	rflow co queste	ondition d. The	where problen	or Samp the FIF natic rea ed. This	O is en ad does	npty and not mo	d a ove the
	0		UV0		R/W1C	;	0	hit a read FIF	an unde d was re	rflow co queste	ondition d. The	where problen	or Samp the FIF natic rea ed. This	O is en ad does	npty and not mo	d a ove the

Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020

This register sets the priority for each of the Sample Sequencers. Out of reset, Sequencer 0 has the highest priority, and sample sequence 3 has the lowest priority. When reconfiguring sequence priorities, each sequence must have a unique priority or the ADC behavior is inconsistent.

(Offset 0x0	20														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	i		1 1	i	i		İ	i rese	i erved	i i		1 1	ĺ		Í	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reser	ved	SS	3	rese	rved	SS	32	rese	rved	SS	31	resei	rved	SS	80
Туре	RO	RO	R/W	R/W	RO	RO	R/W	R/W	RO	RO	R/W	R/W	RO	RO	R/W	R/W
Reset	0	0	1	1	0	0	1	0	0	0	0	1	0	0	0	0
	t/Field 31:14	I	Name reserved	I	Type RO		Reset 0	Re				ndetern	ninate v	value, a	nd sho	uld
1	3:12		SS3		R/W		0x3	the en as	e priority coding signed t	/ encod of 0 is h to the S	ing of S iighest equenc	binary-e Sample S and 3 is ers mus at if two	Sequer lowest st be un	ncer 3. / The p niquely i	A priorit priorities mapped	y I. ADC
1	1:10	I	reserved	I	RO		0			bits retu changed		ndetern	ninate v	alue, a	nd sho	uld
	9:8		SS2		R/W		0x2					binary-e Sample S			that sp	ecifies
	7:6	I	reservec	I	RO		0			bits retu changed		ndetern	ninate v	value, a	nd sho	uld
	5:4		SS1		R/W		0x1					binary-e Sample S			that sp	ecifies
	3:2	I	reserved	I	RO		0			bits reto changed		ndetern	ninate v	value, a	nd sho	uld
	1:0		SS0		R/W		0x0					binary-e Sample S			that sp	ecifies

ADC Sample Sequencer Priority (ADCSSPRI)

Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028

This register provides a mechanism for application software to initiate sampling in the Sample Sequencers. Sample sequences can be initiated individually or in any combination. When multiple sequences are triggered simultaneously, the priority encodings in **ADCSSPRI** dictate execution order.

,	Onset 0x0	028														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1	1		ľ	rese	rved							
Type Reset	WO -	WO -	WO -	WO -	WO -	WO -	WO -	WO -	WO -	WO -	WO -	WO -	WO -	WO -	WO -	WO -
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				'		resei	ved						SS3	SS2	SS1	SS0
Type	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Bit/Field	Name	Туре	Reset	Description
31:4	reserved	WO	-	Only a write by software is valid; a read of the register returns no meaningful data.
3	SS3	WO	-	Only a write by software is valid; a read of the register returns no meaningful data. When set by software, sampling is triggered on Sample Sequencer 3, assuming the Sequencer is enabled in the ADCACTSS register.
2	SS2	WO	-	Only a write by software is valid; a read of the register returns no meaningful data. When set by software, sampling is triggered on Sample Sequencer 2, assuming the Sequencer is enabled in the ADCACTSS register.
1	SS1	WO	-	Only a write by software is valid; a read of the register returns no meaningful data. When set by software, sampling is triggered on Sample Sequencer 1, assuming the Sequencer is enabled in the ADCACTSS register.
0	SS0	WO	-	Only a write by software is valid; a read of the register returns no meaningful data. When set by software, sampling is triggered on Sample Sequencer 0, assuming the

Sequencer is enabled in the ADCACTSS register.

ADC Processor Sample Sequence Initiate (ADCPSSI)

Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030

This register controls the amount of hardware averaging applied to conversion results. The final conversion result stored in the FIFO is averaged from 2^{AVG} consecutive ADC samples at the specified ADC speed. If AVG is 0, the sample is passed directly through without any averaging. If AVG is 6, 64 consecutive ADC samples are averaged to generate one result in the sequencer FIFO. An AVG = 7 provides unpredictable results.

(Offset 0x0	30														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1 1	1	1		1 1	rese	rved	'						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1 1	1	1		reserved			1	l				AVG	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
Bi	t/Field		Name		Туре		Reset	De	scriptio	า						
:	Bit/Field 31:3		reservec	I	RO		0		served ver be c			ndetern	ninate v	/alue, a	nd shou	blu
	2:0		AVG		R/W		0	ap bet	ecifies t olied to tween 0 sults.	ADC sa	mples.	The AV	/G field	can be	any va	lue

ADC Sample Averaging Control (ADCSAC)

Register 11: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 0.

This register is 32-bits wide and contains information for eight possible samples.

ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0) Offset 0x040

·	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	resei	rved	MU	JX7	reser	ved	М	IUX6	rese	rved	MU	X5	rese	rved	MU	X4
Type Reset	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	R0 0	R/W 0	R/W 0
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	resei	rved	MU	JX3	reser	rved	М	IUX2	rese	rved	MU	X1	rese	rved	MU	X0
Type Reset	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	R0 0	R/W 0	R/W 0
Bi	t/Field	I	Name	-	Гуре	Res	et	Descrip	tion							
3	1:30	re	eserved		RO	0		Reserve change		return a	n indete	erminate	e value,	and sh	iould ne	ver be
2	9:28	executed with Sample Sequencer 0. It specifies which of th analog inputs is sampled for the analog-to-digital conversior value set here indicates the corresponding pin, for example value of 1 indicates the input is ADC1. 26 reserved RO 0 Reserved bits return an indeterminate value, and should new												e n. The		
2	7:26	re	eserved		RO	0										ver be
2	5:24	1	MUX6	I	R/W	0		The MUX execute analog	ed with	Sample	Seque	ncer 0 a	and spe	cifies v	vhich of	the
2	3:22	re	eserved		RO	0		Reserve change		return a	n indete	erminate	e value,	and sh	iould ne	ver be
2	1:20	1	MUX5	I	R/W	0		The MUX execute analog	d with	Sample	Seque	ncer 0 a	and spe	cifies v	which of	the
1	9:18	re	eserved		RO	0		Reserve change		return a	n indete	erminate	e value,	and sh	iould ne	ver be
1	7:16	I	MUX4	I	R/W	0										the
1	5:14	re	eserved		RO	0										ver be
1	3:12	1	MUX3	I	R/W	0		The MUX execute analog	d with	Sample	Seque	ncer 0 a	and spe	cifies v	vhich of	the

Bit/Field	Name	Туре	Reset	Description
11:10	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
9:8	MUX2	R/W	0	The MUX2 field is used during the third sample of a sequence executed with Sample Sequencer 0 and specifies which of the analog inputs is sampled for the analog-to-digital conversion.
7:6	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
5:4	MUX1	R/W	0	The MUX1 field is used during the second sample of a sequence executed with Sample Sequencer 0 and specifies which of the analog inputs is sampled for the analog-to-digital conversion.
3:2	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
1:0	MUX0	R/W	0	The MUX0 field is used during the first sample of a sequence executed with Sample Sequencer 0 and specifies which of the analog inputs is sampled for the analog-to-digital conversion.

Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 0. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between.

This register is 32-bits wide and contains information for eight possible samples.

	Offset 0x0															
1	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	TS7	IE7	END7	D7	TS6	IE6	END6	D6	TS5	IE5	END5	D5	TS4	IE4	END4	D4
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bi	t/Field		Name		Туре	R	eset	Desc	ription							
	31		TS7		R/W		0	seque	ence ar emperat	id speci ure ser		e input s ead. Ot	source o herwise	of the sa e, the in	he samp ample. I put pin	
	30		IE7		R/W		0	seque bit) is MASK prom raw ir	ence ar asserte to bit in oted to nterrupt	d specied at th the AD a contro is asse	ifies wh e end o CIM reg oller-lev	ether th f the sa gister is vel inter herwise	ie raw ii imple's set, the rupt. Wi e it is no	nterrupt converse interru hen this ot. It is l	s bit is s egal to	(INR0 he et, the
	29		END7		R/W		0	seque positi END may l some which to ha	ence. It on. Sar are not be non- where n only h ve the 1	is poss nples d reques zero. It within t as a sin END0 bi	sible to lefined sted for is requine he sequingle sau it set.)	end the after th conver iired tha uence. mple in	e seque e samp rsion ev at softw (Sampl the sec	nce on le conta en thou are wri e Sequ quence	le of the any sa aining a ugh the te the E encer 3 , is harc	mple i set fields ND bit , lwired
	28		D7		R/W		0	seque The I samp to the The t	once. 7 bit in led. Th pair nu empera	dicates e corres mber "i ture se	that the spondin ", where	e analog Ig ADC Ie the pa Ies not l	g input SSMUX hired inp	is to be X nibbl outs are differen	differer e must "2i and tial option	ntially be set 2i+1".
	27		TS6		R/W		0							-	nth sam	ıple.
	26		IE6		R/W		0	Same	e definit	ion as :	IE7 but	used d	luring th	e seve	nth sam	ple.
	25		END6		R/W		0	Same	e definit	ion as I	END7 b l	ut used	during	the sev	enth sa	mple.

ADC Sample Sequence Control 0 (ADCSSCTL0) Offset 0x044

Bit/Field	Name	Туре	Reset	Description
24	D6	R/W	0	Same definition as D7 but used during the seventh sample.
23	TS5	R/W	0	Same definition as ${\tt TS7}$ but used during the sixth sample.
22	IE5	R/W	0	Same definition as IE7 but used during the sixth sample.
21	END5	R/W	0	Same definition as END7 but used during the sixth sample.
20	D5	R/W	0	Same definition as D7 but used during the sixth sample.
19	TS4	R/W	0	Same definition as ${\tt TS7}$ but used during the fifth sample.
18	IE4	R/W	0	Same definition as IE7 but used during the fifth sample.
17	END4	R/W	0	Same definition as END7 but used during the fifth sample.
16	D4	R/W	0	Same definition as D7 but used during the fifth sample.
15	TS3	R/W	0	Same definition as TS7 but used during the fourth sample.
14	IE3	R/W	0	Same definition as IE7 but used during the fourth sample.
13	END3	R/W	0	Same definition as END7 but used during the fourth sample.
12	D3	R/W	0	Same definition as D7 but used during the fourth sample.
11	TS2	R/W	0	Same definition as ${\tt TS7}$ but used during the third sample.
10	IE2	R/W	0	Same definition as IE7 but used during the third sample.
9	END2	R/W	0	Same definition as END7 but used during the third sample.
8	D2	R/W	0	Same definition as $D7$ but used during the third sample.
7	TS1	R/W	0	Same definition as ${\tt TS7}$ but used during the second sample.
6	IE1	R/W	0	Same definition as IE7 but used during the second sample.
5	END1	R/W	0	Same definition as END7 but used during the second sample.
4	D1	R/W	0	Same definition as ${\tt D7}$ but used during the second sample.
3	TS0	R/W	0	Same definition as ${\tt TS7}$ but used during the first sample.
2	IE0	R/W	0	Same definition as IE7 but used during the first sample.
1	END0	R/W	0	Same definition as END7 but used during the first sample. Since this sequencer has only one entry, this bit must be set.
0	D0	R/W	0	Same definition as D7 but used during the first sample.

Register 13: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048

This register contains the conversion results for samples collected with Sample Sequencer 0. Reads of this register return conversion result data in the order sample 0, sample 1, and so on, until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

	Offset OA															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		i	1 1		1 1		i i	1	i			i	i	i	I	
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	reser	rved				1			DA	TA	1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре	F	Reset	Desc	ription							
3	31:10	l	reserved	ł	RO		0		rved bit anged.	s return	n an ind	letermir	nate val	ue, and	should	never
	9:0		DATA		RO		0	Conv	ersion r	esult da	ata.					

ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0) Offset 0x048

Register 14: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C

This register provides a window into the Sample Sequencer FIFO 0, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO.

ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0)

	Offset 0x	04C														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1 1			i			1		1		1	I	I	i	1
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		FULL		reserved		EMPTY		HP'	ГR	I		TP	I PTR	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре	R	eset	Desc	ription							
	1.40						0	Deee	بلم المحيية						ماريمام	
	31:13	16	eserve	L	RO		0				i an inc	letermin	ate var	ue, and	should	never
								be ch	anged.							
	12		FULL		RO		0	Wher	n set in	dicates	that th	e FIFO	is curre	ntly full		
	12		IOLL		no		U	Who	1 000, 11	aloatoo	and an	01110		indy run	•	
	11:9	re	eserve	b	RO		0	Rese	rved bit	s return	an inc	letermin	ate val	ue. and	should	never
	-				-		-		anged.					-,		
									J							
	8	E	EMPTY	•	RO		1	Wher	n set, in	dicates	that th	e FIFO	is curre	ently em	ipty.	
														-		
	7:4		HPTR		RO		0	This f	ield co	ntains th	ne curre	ent "hea	ad" poin	iter inde	ex for th	e
								FIFO	, that is	, the ne	xt entry	y to be v	written.			
	3:0		TPTR		RO		0					ent "tail"	' pointe	r index	for the	FIFO,
								that is	s, the n	ext entr	y to be	read.				

16

RO

0

0

R/W

0

MUX0

Register 15: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 1.

This register is 16-bits wide and contains information for four possible samples. This register's bit fields are as shown in the diagram below. Bit field definitions are the same as those in the **ADCSSMUX0** register (see page 217) but are for Sample Sequencer 1.

31 28 27 26 25 24 23 22 21 17 30 29 20 19 18 reserved RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 7 4 3 2 9 8 6 MUX3 MUX2 MUX1 reserved reserved reserved reserved Туре RO RO R/W R/W RO RO R/W R/W RO RO R/W R/W RO R0 R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1) Offset 0x060

Register 16: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 1. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between.

This register is 16-bits wide and contains information for four possible samples. This register's bit fields are as shown in the diagram below. Bit field definitions are the same as those in the **ADCSSCTL0** register (see page 219) but are for Sample Sequencer 1.

	Offset 0x0	064														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I		1		1	rese	rved		1					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0

ADC Sample Sequence Control 1 (ADCSSCTL1)

Register 17: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068

This register contains the conversion results for samples collected with Sample Sequencer 1. Reads of this register return conversion result data in the order sample 0, sample 1, and so on, until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

Bit fields and definitions are the same as ADCSSFIFO0 (see page 221) but are for FIFO 1.

Register 18: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C

This register provides a window into the Sample Sequencer FIFO 1, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO.

This register has the same bit fields and definitions as **ADCSSFSTAT0** (see page 222) but is for FIFO 1.

Register 19: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 2.

This register is 16-bits wide and contains information for four possible samples. This register's bit fields are as shown in the diagram below. Bit field definitions are the same as those in the **ADCSSMUX0** register (see page 217) but are for Sample Sequencer 2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO RO Type Reset RO RO RO RO RO RO RO RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 1110 9 8 7 6 4 3 2 0 5 1 MUX3 MUX2 reserved MUX1 reserved MUX0 reserved reserved Туре RO R/W R/W RO RO R/W R/W RO RO R/W R/W RO R0 R/W RO R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2) Offset 0x080

Register 20: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 2. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between.

This register is 16-bits wide and contains information for four possible samples. This register's bit fields are as shown in the diagram below. Bit field definitions are the same as those in the **ADCSSCTL0** register (see page 219) but are for Sample Sequencer 2.

Oliset 0xt	004														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1		1		1 1	rese	rved		1				1	
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	31 RO 0 15 TS3 R/W	RO RO 0 0 15 14 TS3 IE3 R/W R/W	31 30 29 RO RO RO 0 0 0 15 14 13 TS3 IE3 END3 R/W R/W R/W	31 30 29 28 RO RO RO RO RO 10 11 12 TS3 IE3 END3 D3 RV R/W R/W	31 30 29 28 27 R0 R0 R0 R0 R0 R0 10 10 11 15 14 13 12 11 11 15 15 14 13 12 11 15 15 163 END3 D3 TS2 R/W <	31 30 29 28 27 26 RO RO </td <td>31 30 29 28 27 26 25 RO 0 RO 0</td> <td>31 30 29 28 27 26 25 24 rese RO RO</td> <td>31 30 29 28 27 26 25 24 23 reserved RO RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 TS3 IE3 END3 D3 TS2 IE2 END2 D2 TS1 R/W R/W R/W R/W R/W R/W R/W R/W R/W</td> <td>31 30 29 28 27 26 25 24 23 22 reserved RO RO RO RO RO RO RO 0</td> <td>31 30 29 28 27 26 25 24 23 22 21 reservet RO <</td> <td>31 30 29 28 27 26 25 24 23 22 21 20 reserve RO <t< td=""><td>31 30 29 28 27 26 25 24 23 22 21 20 19 reservet RO <</td><td>31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved R0 R0</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<></td>	31 30 29 28 27 26 25 RO 0 RO 0	31 30 29 28 27 26 25 24 rese RO RO	31 30 29 28 27 26 25 24 23 reserved RO RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 TS3 IE3 END3 D3 TS2 IE2 END2 D2 TS1 R/W R/W R/W R/W R/W R/W R/W R/W R/W	31 30 29 28 27 26 25 24 23 22 reserved RO RO RO RO RO RO RO 0	31 30 29 28 27 26 25 24 23 22 21 reservet RO <	31 30 29 28 27 26 25 24 23 22 21 20 reserve RO RO <t< td=""><td>31 30 29 28 27 26 25 24 23 22 21 20 19 reservet RO <</td><td>31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved R0 R0</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<>	31 30 29 28 27 26 25 24 23 22 21 20 19 reservet RO <	31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved R0 R0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

ADC Sample Sequence Control 2 (ADCSSCTL2)

Register 21: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088

This register contains the conversion results for samples collected with Sample Sequencer 2. Reads of this register return conversion result data in the order sample 0, sample 1, and so on, until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

Bit fields and definitions are the same as **ADCSSFIFO0** (see page 221) but are for FIFO 2.

Register 22: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C

This register provides a window into the Sample Sequencer FIFO 2, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO.

This register has the same bit fields and definitions as **ADCSSFSTAT0** (see page 222) but is for FIFO 2.

Register 23: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 3.

This register is 4-bits wide and contains information for one possible sample. This register's bit fields are as shown in the diagram below. Bit field definitions are the same as those in the **ADCSSMUX0** register (see page 217) but are for Sample Sequencer 3.

ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3) Offset 0x0A0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1		1	1					1			
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	•		1	1					1			
						res	erved								MU	X0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Register 24: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x064

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 3. The END bit is always set since there is only one sample in this sequencer.

This register is 4-bits wide and contains information for one possible sample. This register's bit fields are as shown in the diagram below. Bit field definitions are the same as those in the **ADCSSCTL0** register (see page 219) but are for Sample Sequencer 3.

ADC Sample Sequence Control 3 (ADCSSCTL3) Offset 0x0A4

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1 1			1			rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1 1			1	rese	rved						TS0	IE0	END0	D0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Register 25: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8

This register contains the conversion results for samples collected with Sample Sequencer 3. Reads of this register return the conversion result data. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

Bit fields and definitions are the same as **ADCSSFIFO0** (see page 221) but are for FIFO 3.

Register 26: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC

This register provides a window into the Sample Sequencer FIFO 3, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO.

This register has the same bit fields and definitions as **ADCSSFSTAT0** (see page 222) but is for FIFO 3.

Register 27: ADC Test Mode Loopback (ADCTMLB), offset 0x100

This register provides loopback operation within the digital logic of the ADC, which can be useful in debugging software without having to provide actual analog stimulus. This test mode is entered by writing a value of 0x00000001 to this register. When data is read from the FIFO in loopback mode, the read-only portion of this register is returned.

	011000 0.11	100														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I		I	I			rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			resei	ved				CI	NT		CONT	DIFF	TS		MUX	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0

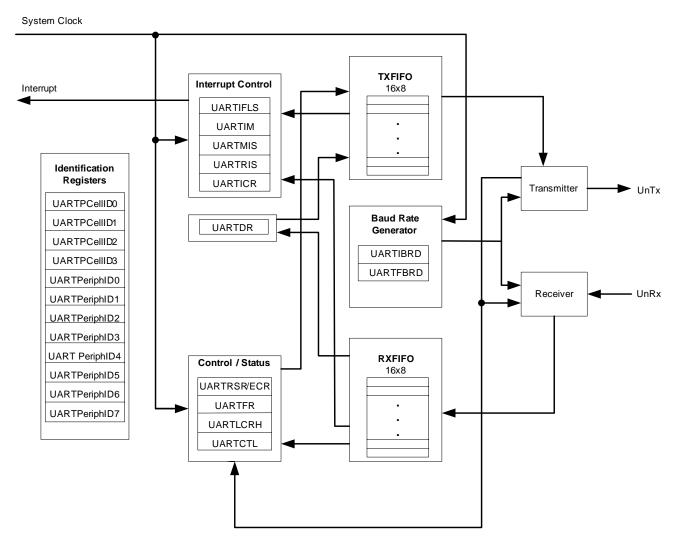
ADC Test Mode Loopback (ADCTMLB): Read Offset 0x100

ADC Test Mode Loopback (ADCTMLB):Write

	Offset 0x10		е поороа	ICK (AL). •• 110	C									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	rese	rved						'	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	· ·							reserved							'	LB
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	wo 0
reser	0	0	0	0	0	0	0	0	0	Ū	0	0	0	0	0	0
Bi	t/Field		Name		Туре	F	Reset	Descr	iption							
Rea	d-Only	Regis	ster													
3	31:10	r	reserved		RO		0		rved bits anged.	s return	an inc	letermin	ate valu	ue, and	should	never
	9:6		CNT		RO		0	each		as it pro	ocesse	r that is d. This l				
	5		CONT		RO		0	exam	ple if tw	o sequ	encers	is is a co were to kept co	run ba	ck-to-b	ack, thi	S
	4		DIFF		RO		0	When	set, ind	dicates	that th	is was te	o be a c	lifferen	tial sam	ple.
	3		ΤS		RO		0	When samp		dicates	that th	is was to	o be a t	empera	ature se	nsor
	2:0		MUX		RO		0	Indica	te whic	h analc	inpu	t was to	be sam	npled.		

Bit/Field	Name	Туре	Reset	Description
Write-Only R	legister			
31:1	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
0	LB	WO	0	When set, forces a loopback within the digital block to provide information on input and unique numbering.
				The 10-bit loopback data is defined as shown in the read for bits 9:0 below.

12 Universal Asynchronous Receivers/Transmitters (UARTs)


The Universal Asynchronous Receivers/Transmitters (UARTs) provide fully programmable, 16C550-type serial interface characteristics. The LM3S316 controller is equipped with two UART modules.

Each UART has the following features:

- Separate transmit and receive FIFOs
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Programmable baud-rate generator allowing rates up to 460.8 Kbps
- Standard asynchronous communication bits for start, stop and parity
- False start bit detection
- Line-break generation and detection
- Fully programmable serial interface characteristics:
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation

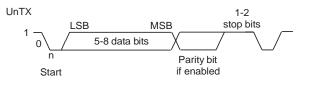
12.1 Block Diagram

Figure 12-1. UART Module Block Diagram

12.2 Functional Description

The Stellaris UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is similar in functionality to a 16C550 UART, but is not register compatible.

The UART is configured for transmit and/or receive via the TXE and RXE bits of the **UART Control** (UARTCTL) register (see page 248). Transmit and receive are both enabled out of reset. Before any control registers are programmed, the UART must be disabled by clearing the UARTEN bit in UARTCTL. If the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.


12.2.1 Transmit/Receive Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. The control logic outputs the serial bit stream beginning with a start bit, and followed by the data

bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control registers. See Figure 12-2 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed, and their status accompanies the data that is written to the receive FIFO.

Figure 12-2. UART Character Frame

12.2.2 Baud-Rate Generation

The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the UART to generate all the standard baud rates.

The 16-bit integer is loaded through the **UART Integer Baud-Rate Divisor (UARTIBRD)** register (see page 244) and the 6-bit fractional part is loaded with the **UART Fractional Baud-Rate Divisor (UARTFBRD)** register (see page 245). The baud-rate divisor (BRD) has the following relationship to the system clock (where *BRDI* is the integer part of the BRD and *BRDF* is the fractional part, separated by a decimal place.):

BRD = BRDI + BRDF = SysClk / (16 * Baud Rate)

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the **UARTFBRD** register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and adding 0.5 to account for rounding errors:

```
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)
```

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error detection during receive operations.

Along with the **UART Line Control, High Byte (UARTLCRH)** register (see page 246), the **UARTIBRD** and **UARTFBRD** registers form an internal 30-bit register. This internal register is only updated when a write operation to **UARTLCRH** is performed, so any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

- UARTIBRD write, UARTFBRD write, and UARTLCRH write
- UARTFBRD write, UARTIBRD write, and UARTLCRH write
- **UARTIBRD** write and **UARTLCRH** write
- UARTFBRD write and UARTLCRH write

12.2.3 Data Transmission

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four bits per character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in the **UARTLCRH** register. Data continues to be transmitted until there is no data left in the transmit FIFO. The BUSY bit in the **UART Flag (UARTFR)** register (see page 242) is asserted as soon as data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register, including the stop bits. The UART can indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the U0Rx or U1Rx is continuously 1) and the data input goes Low (a start bit has been received), the receive counter begins running and data is sampled on the eighth cycle of Baud16 (described in "Transmit/Receive Logic" on page 232).

The start bit is valid if U0Rx or U1Rx is still low on the eighth cycle of Baud16, otherwise a false start bit is detected and it is ignored. Start bit errors can be viewed in the **UART Receive Status (UARTRSR)** register (see page 240). If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the **UARTLCRH** register.

Lastly, a valid stop bit is confirmed if U0Rx or U1Rx is High, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits associated with that word.

12.2.4 FIFO Operation

The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed via the **UART Data (UARTDR)** register (see page 238). Read operations of the **UARTDR** register return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FEN bit in **UARTLCRH** (page 246).

FIFO status can be monitored via the **UART Flag (UARTFR)** register (see page 242) and the **UART Receive Status (UARTRSR)** register. Hardware monitors empty, full and overrun conditions. The **UARTFR** register contains empty and full flags (TXFE, TXFF, RXFE and RXFF bits) and the **UARTRSR** register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the **UART Interrupt FIFO Level Select (UARTIFLS)** register (see page 249). Both FIFOs can be individually configured to trigger interrupts at different levels. Available configurations include 1/8, 1/4, 1/2, 3/4 and 7/8. For example, if the 1/4 option is selected for the receive FIFO, the UART generates a receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the 1/2 mark.

12.2.5 Interrupts

The UART can generate interrupts when the following conditions are observed:

- Overrun Error
- Break Error
- Parity Error
- Framing Error

- Receive Timeout
- Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)
- Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the UART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine by reading the **UART Masked Interrupt Status (UARTMIS)** register (see page 253).

The interrupt events that can trigger a controller-level interrupt are defined in the **UART Interrupt Mask (UARTIM)** register (see page 250) by setting the corresponding IM bit to 1. If interrupts are not used, the raw interrupt status is always visible via the **UART Raw Interrupt Status (UARTRIS)** register (see page 252).

Interrupts are always cleared (for both the **UARTMIS** and **UARTRIS** registers) by setting the corresponding bit in the **UART Interrupt Clear (UARTICR)** register (see page 254).

12.2.6 Loopback Operation

The UART can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LBE bit in the **UARTCTL** register (see page 248). In loopback mode, data transmitted on U0Tx is received on the U0Rx input, and data transmitted on U1Tx is received on the U1Rx input.

12.3 Initialization and Configuration

To use the UARTs, the peripheral clock must be enabled by setting the UART0 or UART1 bits in the **RCGC1** register.

This section discusses the steps that are required for using a UART module. For this example, the system clock is assumed to be 20 MHz and the desired UART configuration is:

- 115200 baud rate
- Data length of 8 bits
- One stop bit
- No parity
- FIFOs disabled
- No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the **UARTIBRD** and **UARTFBRD** registers must be written before the **UARTLCRH** register. Using the equation described in "Baud-Rate Generation" on page 233, the BRD can be calculated:

BRD = 20,000,000 / (16 * 115,200) = 10.8507

which means that the DIVINT field of the **UARTIBRD** register (see page 244) should be set to 10. The value to be loaded into the **UARTFBRD** register (see page 245) is calculated by the equation:

```
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54
```

With the BRD values in hand, the UART configuration is written to the module in the following order:

- 1. Disable the UART by clearing the UARTEN bit in the **UARTCTL** register.
- 2. Write the integer portion of the BRD to the **UARTIBRD** register.

- 3. Write the fractional portion of the BRD to the **UARTFBRD** register.
- 4. Write the desired serial parameters to the **UARTLCRH** register (in this case, a value of 0x0000060).
- 5. Enable the UART by setting the UARTEN bit in the **UARTCTL** register.

12.4 Register Map

Table 12-1 lists the UART registers. The offset listed is a hexadecimal increment to the register's address, relative to that UART's base address:

- UART0: 0x4000C000
- UART1: 0x4000D000
- **Note:** The UART must be disabled (see the UARTEN bit in the **UARTCTL** register on page 248) before any of the control registers are reprogrammed. When the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

 Table 12-1.
 UART Register Map

Offset	Name	Reset	Туре	Description	See page
0x000	UARTDR	0x00000000	R/W	Data	238
0x004	UARTRSR	0x00000000	R/W	Receive Status (read)	240
	UARTECR			Error Clear (write)	
0x018	UARTFR	0x00000090	RO	Flag Register (read only)	242
0x024	UARTIBRD	0x00000000	R/W	Integer Baud-Rate Divisor	244
0x028	UARTFBRD	0x00000000	R/W	Fractional Baud-Rate Divisor	245
0x02C	UARTLCRH	0x00000000	R/W	Line Control Register, High byte	246
0x030	UARTCTL	0x00000300	R/W	Control Register	248
0x034	UARTIFLS	0x00000012	R/W	Interrupt FIFO Level Select	249
0x038	UARTIM	0x00000000	R/W	Interrupt Mask	250
0x03C	UARTRIS	0x0000000F	RO	Raw Interrupt Status	252
0x040	UARTMIS	0x00000000	RO	Masked Interrupt Status	253
0x044	UARTICR	0x00000000	W1C	Interrupt Clear	254
0xFD0	UARTPeriphID4	0x00000000	RO	Peripheral identification 4	255
0xFD4	UARTPeriphID5	0x00000000	RO	Peripheral identification 5	256
0xFD8	UARTPeriphID6	0x00000000	RO	Peripheral identification 6	257
0xFDC	UARTPeriphID7	0x00000000	RO	Peripheral identification 7	258
0xFE0	UARTPeriphID0	0x00000011	RO	Peripheral identification 0	259
0xFE4	UARTPeriphID1	0x00000000	RO	Peripheral identification 1	260
0xFE8	UARTPeriphID2	0x00000018	RO	Peripheral identification 2	261

Table 12-1. UART Register Map (Continued)

Offset	Name	Reset	Туре	Description	See page
0xFEC	UARTPeriphID3	0x00000001	RO	Peripheral identification 3	262
0xFF0	UARTPCellID0	0x000000D	RO	PrimeCell identification 0	263
0xFF4	UARTPCellID1	0x000000F0	RO	PrimeCell identification 1	264
0xFF8	UARTPCellID2	0x00000005	RO	PrimeCell identification 2	265
0xFFC	UARTPCellID3	0x000000B1	RO	PrimeCell identification 3	266

12.5 Register Descriptions

The remainder of this section lists and describes the UART registers, in numerical order by address offset.

UART Data (UARTDR)

Register 1: UART Data (UARTDR), offset 0x000

This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO). A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received data can be retrieved by reading this register.

(Offset 0x0	000																	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
								rese	rved	·			•		•				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
		rese	rved		OE	BE	PE	FE		1	I	DA	TA	I	I	'			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0			
Bit	t/Field		Name		Туре	Re	eset	Descri	ption										
3	1:12	r	eserved		RO		0	Reserv be cha		s return	an inde	termina	ate valu	e, and s	should	never			
	11		OE		RO		0 UART Overrun Error												
							1=New data was received when the FIFO was full, resulting data loss.												
								0=The	re has	been no	o data le	oss due	e to a FI	FO ove	rrun.				
	10		BE		RO		0	UART	Break	Error									
								that the	e recei	to 1 wh ve data ssion tin	input w	as held	I Low fo	r longe	r than a	ı full-			
								top of t loaded the rec	the FIF into th eived o	e, this en O. Whe he FIFO data inp is receiv	n a bre The ne ut goes	ak occu ext chai	urs, only racter is	y one 0 s only e	charac nabled	ter is after			
	9		PE		RO		0	UART	Parity	Error									
								does n	ot mat	to 1 wh ch the p register.	arity de	-				aracter			
								In FIFC		e, this ei O.	rror is a	ssociat	ed with	the cha	aracter	at the			

Bit/Field	Name	Туре	Reset	Description
8	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
7:0	DATA	R/W	0	When written, the data that is to be transmitted via the UART. When read, the data that was received by the UART.

Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

The UARTRSR/UARTECR register is the receive status register/error clear register.

In addition to the **UARTDR** register, receive status can also be read from the **UARTRSR** register. If the status is read from this register, then the status information corresponds to the entry read from **UARTDR** prior to reading **UARTRSR**. The status information for overrun is set immediately when an overrun condition occurs.

A write of any value to the **UARTECR** register clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

UART Receive Status (UARTRSR): Read Offset 0x004

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		i i				rese	rved						OE	BE	PE	FE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0

UART Error Clear (UARTECR): Write

Offset 0x004

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Туре	WO															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	ľ	I					DA	ГА			
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0

Bit/Field Name Type Reset Description

Read-Only Receive Status (UARTRSR) Register

31:4	reserved	RO	0
3	OE	RO	0

Reserved bits return an indeterminate value, and should never

be changed. The **UARTRSR** register cannot be written.

UART Overrun Error

When this bit is set to 1, data is received and the FIFO is already full. This bit is cleared to 0 by a write to **UARTECR**.

The FIFO contents remain valid since no further data is written when the FIFO is full, only the contents of the shift register are overwritten. The CPU must now read the data in order to empty the FIFO.

Bit/Field	Name	Туре	Reset	Description
2	BE	RO	0	UART Break Error
				This bit is set to 1 when a break condition is detected, indicating that the received data input was held Low for longer than a full-word transmission time (defined as start, data, parity, and stop bits).
				This bit is cleared to 0 by a write to UARTECR .
				In FIFO mode, this error is associated with the character at the top of the FIFO. When a break occurs, only one 0 character is loaded into the FIFO. The next character is only enabled after the receive data input goes to a 1 (marking state) and the next valid start bit is received.
1	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				This bit is cleared to 0 by a write to UARTECR .
0	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
				This bit is cleared to 0 by a write to UARTECR .
				In FIFO mode, this error is associated with the character at the top of the FIFO.
Write-Only Er	rror Clear (UAF	RTECR) Reg	jister	
31:8	reserved	WO	0	Reserved bits return an indeterminate value, and should never be changed.
7:0	DATA	WO	0	A write to this register of any data clears the framing, parity, break and overrun flags.

241

Register 3: UART Flag (UARTFR), offset 0x018

The **UARTFR** register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and TXFE and RXFE bits are 1.

	UART F Offset 0x02	-	ARTFR)															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	'						l	rese	rved	l	•	•	•	•				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	· · · ·			reserved				'	TXFE	RXFF	TXFF	RXFE	BUSY		reserved			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0		
Bit	t/Field		Name		Туре	Re	set	Descri	iption									
3	31:8	re	eservec	ł	RO		0	Reser be cha		return	an inde	etermina	ate valu	e, and	should n	ever		
	7		TXFE		RO		1	UART	Transm	nit FIFC	Empty	,						
						The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.												
									FIFO is o g registe			is 0), thi	is bit is :	set wh	en the tra	Insmit		
									FIFO is sempty		d (fen i	s 1), thi	s bit is :	set wh	en the tra	Insmit		
	6		RXFF		RO		0	UART	Receiv	e FIFO	Full							
									eaning LCRH r			nds on	the stat	e of th	e FEN bit	in the		
									FIFO is er is full.		d, this l	oit is se	t when	the rea	ceive hold	ling		
								If the I full.	FIFO is	enable	d, this b	oit is set	when t	he rec	eive FIF) is		
	5		TXFF		RO		0	UART	Transm	nit FIFC) Full							
							The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.											
									FIFO is er is full.		d, this l	oit is se	t when	the tra	nsmit hol	ding		
								If the I full.	FIFO is	enable	d, this b	it is set	when t	he tra	nsmit FIF	O is		

Bit/Field	Name	Туре	Reset	Description
4	RXFE	RO	1	UART Receive FIFO Empty
				The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.
				If the FIFO is disabled, this bit is set when the receive holding register is empty.
				If the FIFO is enabled, this bit is set when the receive FIFO is empty.
3	BUSY	RO	0	UART Busy
				When this bit is 1, the UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register.
				This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled).
2:0	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.

Register 4: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

The **UARTIBRD** register is the integer part of the baud-rate divisor value. All the bits are cleared on reset. The minimum possible divide ratio is 1 (when **UARTIBRD**=0), in which case the **UARTFBRD** register is ignored. When changing the **UARTIBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 233 for configuration details.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	l				1			rese	rved				l			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I				1			DIV	INT				I		1	1
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре	Re	set	Descri	ption							
З	31:16 reserved RO 0			0	Reserv be cha		return	an inde	termina	ate valu	e, and s	should ı	never			
15:0 DIVINT R/W 0x0000		000	Integer Baud-Rate Divisor													

UART Integer Baud-Rate Divisor Offset 0x024

Register 5: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

The **UARTFBRD** register is the fractional part of the baud-rate divisor value. All the bits are cleared on reset. When changing the **UARTFBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 233 for configuration details.

	Offset 0x0	28														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1 1		1 1		1	1	1		1	1	1	1	1	1
								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		· ·		resei	rved	<u> </u>	DIVFRAC						FRAC	1	'
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field	ld Name			Туре	ype Reset		Descr	iption							
:	31:6	r	eserved		RO		0	Reser be cha		return	an inde	etermina	ate valu	e, and	should	never
	5:0	DIVFRAC		;	R/W	R/W 0x00		Fractional Baud-Rate Divisor								

UART Fractional Baud-Rate Divisor (UARTFBRD) Offset 0x028

Register 6: UART Line Control (UARTLCRH), offset 0x02C

The **UARTLCRH** register is the line control register. Serial parameters such as data length, parity and stop bit selection are implemented in this register.

When updating the baud-rate divisor (**UARTIBRD** and/or **UARTIFRD**), the **UARTLCRH** register must also be written. The write strobe for the baud-rate divisor registers is tied to the **UARTLCRH** register.

UART Line Control (UARTLCRH)

Offset 0x02C

(Offset 0x02	C.C.														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I				1			rese	rved			I	I		1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	15	14	15	12	11	10	9	1								
Turr				RO	erved		20	RO	SPS	R/W		FEN	STP2	EPS	PEN	BRK
Type Reset	RO 0	RO 0	RO 0	0	RO 0	RO 0	RO 0	0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit	/Field		Name		Туре	Re	eset	Descri	ption							
3	31:8	re	eserved		RO		0	Reserv	ved bits	return	an inde	termina	ate valu	e, and s	should i	never
								be cha								
	7		SPS		R/W		0	UART	Stick P	arity Se	lect					
	-						-			•			l ara sa	at tha r	parity bi	tic
														-	are se	
															d as a 1	
								When	this bit	is clear	ed, stic	k parity	is disal	oled.		
	6:5		WLEN		R/W		0	UART	Word L	.ength						
								The bi	ts indica	ate the i	numbei	r of data	a bits tra	ansmitte	ed or re	ceived
								in a fra	ame as	follows:						
								0x3: 8	bits							
								0x2: 7	bits							
								0x1:6	bits							
								0x0: 5	bits (de	efault)						
	4		FEN		R/W		0	UART	Enable	FIFOs						
												and re	ceive F	IFO buf	fers are	9
								enable	d (FIFC) mode).					
															r mode)	. The
									Decom	e i-byte	-ueeh	holding	registe	15.		
	3		STP2		R/W		0	UART	Two St	op Bits	Select					
								frame.	The re						at the er op bits	
								receive	ed.							

Bit/Field	Name	Туре	Reset	Description
2	EPS	R/W	0	UART Even Parity Select
				If this bit is set to 1, even parity generation and checking is performed during transmission and reception, which checks for an even number of 1s in data and parity bits.
				When cleared to 0, then odd parity is performed, which checks for an odd number of 1s.
				This bit has no effect when parity is disabled by the ${\tt PEN}$ bit.
1	PEN	R/W	0	UART Parity Enable
				If this bit is set to 1, parity checking and generation is enabled; otherwise, parity is disabled and no parity bit is added to the data frame.
0	BRK	R/W	0	UART Send Break
				If this bit is set to 1, a Low level is continually output on the UnTX output, after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at least two frames (character periods). For normal use, this bit must be cleared to 0.

UART Control (UARTCR)

Register 7: UART Control (UARTCTL), offset 0x030

The **UARTCTL** register is the control register. All the bits are cleared on reset except for the Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration change in the module, the UARTEN bit must be cleared before the configuration changes are written. If the UART is disabled during a transmit or receive operation, the current transaction is completed prior to the UART stopping.

	Offset 0x0		(United)																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			1		1 1		1	rese	rved		1	1 1			1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			rese				RXE	TXE	LBE				served			UARTEN			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 1	R/W 1	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0			
Bi	t/Field		Name		Туре	Re	eset	Descri	ption										
3	31:10 reserved RO						0 Reserved bits return an indeterminate value, and s be changed.								should	never			
	9 RXE F			R/W		1	UART	Receiv	e Enab	le									
	y rae							When	the UA	RT is di	sabled	ive sect in the n cter bef	niddle o	f a rece		nabled.			
	8		TXE		R/W		1	UART Transmit Enable											
								When	the UA	RT is di	sabled	smit sec in the n cter bef	niddle o	f a tran					
	7		LBE		R/W		0	UART	Loop B	ack En	able								
								If this I	oit is se	t to 1, tl	he UnT	x path is	s fed th	rough t	he UnF	x path.			
	6:1 reserved			l	RO		0	Reserv be cha		return	an inde	etermina	ate value	e, and s	should	never			
	0	ι	JARTEN	I	R/W		0	UART	Enable										
								disable	ed in the	e middle	e of trai	RT is ena nsmissio stoppin	on or re						

October 8, 2006

Register 8: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

The **UARTIFLS** register is the interrupt FIFO level select register. You can use this register to define the FIFO level at which the TXRIS and RXRIS bits in the **UARTRIS** register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the interrupts are generated when the fill level progresses through the trigger level. For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt at the half-way mark.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'				•	•	•	rese	rved					•	•	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'				rese	rved		1	•			RXIFLSI	EL		TXIFLSE	EL
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 1	R/W 0
Bit	/Field		Name		Туре	Re	eset	Descri	ption							
3	31:6	re	eserved		RO		0	Reserv be cha		return	an inde	etermina	ate valu	e, and s	should	never
	5:3	R	XIFLSE	L	R/W	0	X2	UART	Receiv	e Interr	upt FIF	O Leve	I Select			
								The tri	gger po	ints for	the rec	ceive in	terrupt a	are as f	ollows:	
								000: R	X FIFO	≥ 1/8 f	ull					
								001: R	X FIFO	≥ 1/4 f	ull					
								010: R	X FIFO	≥ 1/2 f	ull (defa	ault)				
								011: R	X FIFO	≥ 3/4 fu	III					
								100: R	X FIFO	≥ 7/8 f	ull					
								101-11	1: Rese	erved						
	2:0	T	XIFLSE	L	R/W	0	X2	UART	Transm	nit Interr	upt FIF	O Leve	el Selec	t		
								The tri	gger po	ints for	the tra	nsmit ir	nterrupt	are as	follows:	1
								000: T	X FIFO	≤ 1/8 fu	III					
								001: T	X FIFO	≤ 1/4 fι	III					
								010: T	X FIFO	≤ 1/2 fι	ull (defa	ault)				
								011: T	X FIFO	≤ 3/4 fu	ıll					
								100: T	X FIFO	≤ 7/8 fu	III					
								101-11	1: Rese	erved						

UART Interrupt FIFO Level Select (UARTIFLS)

Offset 0x034

Register 9: UART Interrupt Mask (UARTIM), offset 0x038

The **UARTIM** register is the interrupt mask set/clear register.

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a 0 prevents the raw interrupt signal from being sent to the interrupt controller.

(Offset 0x0	38																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
						•		rese	rved									
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
ſ	1		reserved		1	OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM		reserv	ved			
Type Reset	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	RO	RO		
Keset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit	/Field		Name		Туре	Re	eset	Descri	Description									
3	1:11	reserved			RO		0	Reserved bits return an indeterminate value, and s be changed.							should i	never		
	10		OEIM		R/W		0	UART Overrun Error Interrupt Mask										
								On a r	ead, the	e currer	nt mask	for the	OEIM İ	M interrupt is returned.				
									g this bi			s the OE		-				
	9		BEIM		R/W		0	UART	Break I	Error In	terrupt	Mask						
								On a r	ead, the	e currer	nt mask	for the	BEIM İ	nterrupt	is retu	rned.		
								Setting contro	-	t to 1 pr	romotes	s the BE	IM inte	rrupt to	the inte	errupt		
	8		PEIM		R/W		0	UART	Parity I	Error Int	terrupt	Mask						
								On a r	ead, the	e currer	nt mask	for the	PEIM İ	nterrupt	is retu	rned.		
								Setting contro	-	t to 1 pr	romotes	s the PE	IM inte	rrupt to	the inte	errupt		
	7		FEIM		R/W		0	UART	Framin	g Error	Interru	pt Mask						
								On a r	ead, the	e currer	nt mask	for the	FEIM İ	nterrupt	is retu	rned.		
								Setting contro		t to 1 pr	romotes	s the FE	IM inte	rrupt to	the inte	errupt		
	6		RTIM		R/W		0	UART	Receiv	e Time-	Out Int	errupt N	lask					
								On a r	ead, the	e currer	nt mask	for the	RTIM İ	nterrupt	is retu	rned.		
								Setting contro		t to 1 pr	romotes	s the RT	IM inte	rrupt to	the inte	errupt		

UART Interrupt Mask (UARTIM)

Bit/Field	Name	Туре	Reset	Description
5	TXIM	R/W	0	UART Transmit Interrupt Mask
				On a read, the current mask for the $\ensuremath{\mathtt{TXIM}}$ interrupt is returned.
				Setting this bit to 1 promotes the TXIM interrupt to the interrupt controller.
4	RXIM	R/W	0	UART Receive Interrupt Mask
				On a read, the current mask for the RXIM interrupt is returned.
				Setting this bit to 1 promotes the RXIM interrupt to the interrupt controller.
3:0	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.

Register 10: UART Raw Interrupt Status (UARTRIS), offset 0x03C

The **UARTRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt. A write has no effect.

C	Offset 0x0	3C																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
								rese	rved									
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			reserved			OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS		rese	erved	•		
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1		
Bit/	/Field		Name		Туре	Reset		Description										
3	1:11	reserved		RO		0	Reserved bits return an indeterminate value, and should never be changed.											
	10		OERIS		RO		0	UART	Overru	n Error	Raw In	terrupt S	Status					
								Gives	the raw	interru	pt state	(prior to	o mask	ing) of t	this inte	errupt.		
9			BERIS		RO		0	UART	Break I	Error Ra	aw Inte	rrupt Sta	itus					
								Gives	the raw	interru	pt state	(prior to	o mask	ing) of t	this inte	errupt.		
	8		PERIS		RO	RO O			Parity I	Error Ra	aw Inte	rrupt Sta	itus					
								Gives the raw interrupt state (prior to masking) of this interrupt.										
	7		FERIS		RO	0		UART Framing Error Raw Interrupt Status										
								Gives the raw interrupt state (prior to masking) of this interrupt.										
	6		RTRIS		RO		0	UART Receive Time-Out Raw Interrupt Status										
								Gives	the raw	interru	pt state	(prior to	o maski	ing) of t	this inte	errupt.		
	5		TXRIS		RO		0	UART	Transm	nit Raw	Interru	ot Status	6					
								Gives	the raw	interru	pt state	(prior to	o mask	ing) of t	this inte	errupt.		
	4	RXRIS			RO		0	UART Receive Raw Interrupt Status										
								Gives	the raw	interru	pt state	(prior to	o mask	ing) of t	this inte	errupt.		
	3:0	r	eserved		RO	0	xF	This re	eserved	bit is re	ead-onl	y and ha	as a res	set valu	e of 0x	F.		

UART Raw Interrupt Status (UARTRIS)

Register 11: UART Masked Interrupt Status (UARTMIS), offset 0x040

The **UARTMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

(Offset 0x04	0			(
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved				'			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[reserved		1	OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS	1		eserved	ſ
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	t/Field		Name		Туре	Re	set	Descri	ption							
3	31:11	r	eserved		RO		0	Reserv be cha		return	an inde	termina	te value	e, and	should i	never
	10		OEMIS		RO	(0	UART	Overru	n Error	Maske	d Interru	pt Statu	JS		
								Gives	the ma	sked int	errupts	state of t	his inte	errupt.		
	9		BEMIS		RO		0		Brook	Error M	askod I	nterrupt	Status			
	5				NO		0					state of t		rrunt		
											-			mupt.		
	8		PEMIS		RO		0		•			nterrupt				
								Gives	the mas	sked int	errupts	state of t	his inte	errupt.		
	7		FEMIS		RO		0	UART	Framin	g Error	Maske	d Interru	ipt Stati	us		
								Gives	the ma	sked int	errupt	state of t	his inte	errupt.		
	6		RTMIS		RO		0	UART	Receiv	e Time-	Out Ma	asked In	terrupt	Status		
								Gives	the ma	sked int	errupts	state of t	his inte	errupt.		
	5		TXMIS		RO		0	UART	Transm	nit Mask	ked Inte	errupt Sta	atus			
												state of t		errupt.		
	4		RXMIS		RO		0				-	rrupt Sta		·		
	4				ΛU		0					state of t		rrunt		
											-			-		
	3:0	r	eserved		RO		0	Reserved be characterized be characterized by the second s		return	an inde	termina	te value	e, and	should I	never

UART Masked Interrupt Status (UARTMIS)

Register 12: UART Interrupt Clear (UARTICR), offset 0x044

The **UARTICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

	Offset 0x04	44 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	1	50	1 1	20	1	20	1	i	rved	22	1	20		1	1	1
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	<u> </u>		reserved		•	OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC		res	erved	<u>'</u>
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0
Bit	/Field		Name		Туре	Re	eset	Descri	ption							
3	1:11	r	reserved		RO		0	Reserv be cha	ved bits inged.	return	an inde	etermina	ate valu	e, and	should	never
	10		OEIC		W1C		0	Overru	ın Error	Interru	pt Clea	r				
									effect or ars inter		terrupt.					
	9		BEIC		W1C		0	Break	Error Ir	terrupt	Clear					
									effect or ars inter		terrupt.					
	8		PEIC		W1C		0	Parity	Error In	terrupt	Clear					
									effect or ars inter		terrupt.					
	7		FEIC		W1C		0	Framir	ng Error	Interru	ıpt Clea	r				
									effect or ars inter		terrupt.					
	6		RTIC		W1C		0	Receiv	/e Time	-Out In	terrupt	Clear				
									effect or ars inter		terrupt.					
	5		TXIC		W1C		0	Transr	nit Inter	rupt Cl	ear					
										n the in rupt.	terrupt.					
	4		RXIC		W1C		0	Receiv	/e Interi	upt Cle	ear					
4 RXIC W1C 0 Receive Interrupt Clear 0: No effect on the interrupt. 1: Clears interrupt.																

Register 13: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

		i empiiene	ar roem	meanor		ci i enp	1112 1)									
(Offset 0x	FD0														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		1 1		1	1	1	1		1		1			1	1	
								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		т т		T T	1	1	1				· · · ·	1	-	1	ı —	
			rese	erved								PI	D4			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Di+/	Field	N	lame		Туре		Reset		Descrip	tion						
DII/	Field		ame		туре		Reset		Descrip	non						
2	1:8	roc	served		RO		0		Decen	ad hita	roturn	an indet	ormino	to volue	anda	bould
3	1.0	Tes	serveu		кU		0					an indet	emina	le value	e, anu s	siloulu
									never b	e chan	ged.					
_					50		0 00			- · ·			17 01			
7	7 :0	ŀ	PID4		RO		0x00		UARTI	eriphe	ral ID F	Register	[7:0]			

UART Peripheral Identification 4 (UARTPeriphID4)

Register 14: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

	UART I Offset 0xF	Periphera ^{FD4}	al Identii	fication	5 (UAR	TPerip	hID5)									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	1		I		· · ·		1	1				1	i	
l								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	reser	ved	I		1 1			I		PI	D5	I	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/	Field	Ν	lame		Туре		Reset		Descrip	otion						
3	1:8	res	served		RO		0			ed bits be chan		an indet	ermina	te value	e, and s	hould
7	7:0	F	PID5		RO		0x00		UART	Periphe	ral ID R	legister	[15:8]			

October 8, 2006

Register 15: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

(Offset 0x	kFD8														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
l l		1		1	1	1	1	1	1	1	1	1	i i	1	1	1
l								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
l		1		1	1	1	1	1		1	1	1	1	1	1	
			rese	erved								PI	D6			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D:4/	Field		1		T		Deeet		Decer							
DII/	Field	ľ	lame		Туре		Reset		Descri	puon						
					50		•		-							
3	1:8	re	served		RO		0					an inde	termina	te value	e, and s	should
									never l	be chan	ged.					
7	7:0		PID6		RO		0x00		UART	Periphe	ral ID	Register	[23:16]			
										-		-	-			

UART Peripheral Identification 6 (UARTPeriphID6) Offset 0xFD8

Register 16: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 7 (UARTPeriphID7) Offset 0xFDC 31 30 28 27 25 24 23 22 19 18 16 26 21 20 17 reserved Type Reset RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PID7 reserved RO RO RO Туре RO RO RO RO RO RO RO RO RO RO RO RO RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Туре Reset 31:8 RO 0 Reserved bits return an indeterminate value, and should reserved never be changed. 7:0 PID7 RO 0x00 UART Peripheral ID Register[31:24]

October 8, 2006

Register 17: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

	Offset 0xF	E0														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	i		i		1	1 1				1	i i	1	i i	i i	1	1
I								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1		1	1 1				1	I	I	I	1	1	
[resei	ved								PI	D0			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
Bit	t/Field		Name		Туре	Re	set	Descri	ntion							
0.			lamo		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		001	Dooon	ption							
	31:8	re	eserved		RO	(C	Reserv	ued hite	s return	an inde	termina	ate valu	e and	should	never
	51.0		001100		NO.		0	be cha		5 TOTAIN				o, ana	onoulu	110 001
									ingeu.							
	7.0		PID0		RO	0	.11		Dorinh		Dogiata	r[7.0]				
	7:0		FIDU		ĸΟ	ÛX	:11	UARI	renpn	eral ID	Registe	[0.1]				
								Can be periph		by softw	vare to	identify	the pre	sence	of this	

UART Peripheral Identification 0 (UARTPeriphID0) Offset 0xFE0

Register 18: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

	JART I Offset 0xF	-	eral Identi	ficatio	n 1 (UAF	TPeriph	ID1)									
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1		1	1		rese	rved	1	1	1	1	1	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г	15	14	1	12	1	10	9	•	,	1	1	1	1	2	1	<u> </u>
L			resei	ved								PI	D1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit	/Field		Name		Туре	Re	eset	Descri	ption							
3	81:8		reserved		RO		0	Reserv be cha		s return	an inde	etermina	ate valu	e, and s	should	never
	7:0		PID1		RO	0>	(00	UART	Periph	eral ID	Registe	er[15:8]				
								Can be periph		by soft	ware to	identify	the pre	esence	of this	

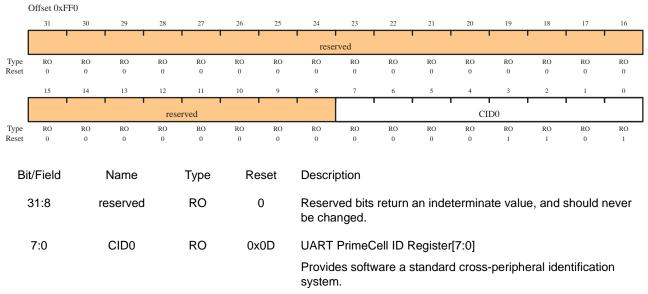
Register 19: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

	Offset 0xF	E8			(-	Ĩ	,									
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I				1	1 1		rese	rved					I	1	I
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			resei	ved	1			1			I	PL	D2	I	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0
Bit	t/Field		Name		Туре	Re	set	Descri	ption							
:	31:8 reserved RO 0				C	Reserv be cha		return	an inde	termina	ate valu	e, and	should	never		
	7:0		PID2		RO	0x	18	UART	Periphe	eral ID I	Registe	r[23:16]]			
							Can be periph	e used l eral.	by softv	vare to	identify	the pre	esence	of this		

UART Peripheral Identification 2 (UARTPeriphID2)

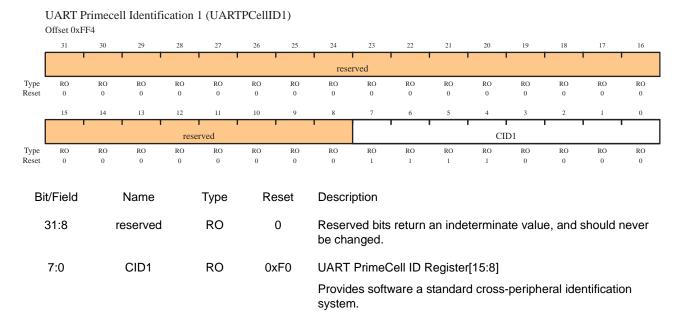
Register 20: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC


The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

	0/11(1)	emplient	ai iuciiti	incation	011	ixi i ciipii	$(1D_3)$									
(Offset 0xF	FEC														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1	1		1	i	1		1	1	1	1	1
l								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1				1	1		1		1	1	1	1	1	1	1
[reser	rved								PI	D3			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bit	t/Field		Name		Туре	Re	eset	Descri	ntion							
			Numb		Type			Dooon	puon							
	31:8	re	eserved	I	RO		0	Recor	und hite	s return	an inde	tormine	ato valu	hac a	should	novor
•	51.0		5361760		NO		0	be cha		sietuini				e, and	Should	nevei
									ingeu.							
	7.0		כחום			0.	<i>.</i> 01		Dariah		Dogiato		1			
	7:0		PID3		RO	0)	(01	UARI	Periph	eral ID	Registe	#[31:24	.]			
								Can be	e used	by softw	vare to	identifv	the pre	sence	of this	
									eral.	.,		, ,	[
								r subu	0.011							

UART Peripheral Identification 3 (UARTPeriphID3) Offset 0xFEC

Register 21: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0


The **UARTPCeIIIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Primecell Identification 0 (UARTPCellID0)

Register 22: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4

The **UARTPCeIIIDn** registers are hard-coded and the fields within the registers determine the reset values.

Register 23: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

(Offset 0xFF	8														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
l l			l l		1					1		1	1	i	1	1
l								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	1		I		1			1		1		1	I	I	1	
l				rese	erved							CI	D2			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
Rit	/Field		Name		Туре	Re	set	Descri	ntion							
			Nume		Type		.501	Desen	puon							
	31:8	re	eserved		RO		0	Roson	ad hits	return	an inde	tormina	ato valu	hac a	should	novor
	51.0		Serveu		NO		0	be cha		return				e, and	Should	nevei
								De cha	ingeu.							
	7.0				RO	0.	OF.		Drime) o giata	-100.461				
	7:0		CID2		κU	UX	:05	UARI	Finnet	Cell ID F	registe	1[23.16]				
								Provid	es soft	ware a s	standar	d cross	-periph	eral ide	entificati	on
								system					1 - 1			
								5,0.011								

UART Primecell Identification 2 (UARTPCellID2)

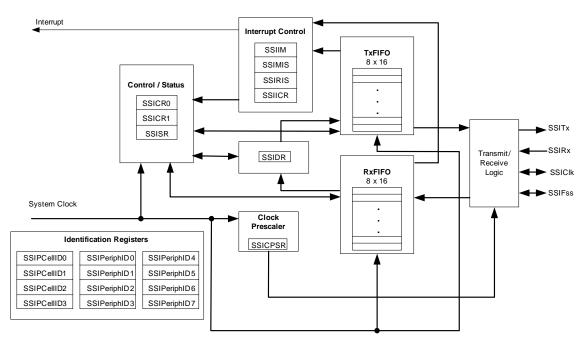
Register 24: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

The **UARTPCeIIIDn** registers are hard-coded and the fields within the registers determine the reset values.

	UART P Offset 0xFl		ell Identific	cation	3 (UAR	TPCellI	D3)									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•		· ·		'	'	<u>'</u>	reser	rved		'	!	.	•	'	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			гт	rese	rved	1	1	1		[1	CI	D3	I	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1
Bi	t/Field		Name		Туре	R	eset	Descri	ption							
:	31:8		reserved		RO		0	Reserv be cha		return	an inde	etermina	ate valu	e, and	should	never
	7:0		CID3		RO	0	xB1	UART	PrimeC	ell ID I	Registe	r[31:24]				
						Provide system		vare a	standaı	d cross	-periph	eral ide	entificati	ion		

October 8, 2006

13 Synchronous Serial Interface (SSI)


The Stellaris Synchronous Serial Interface (SSI) is a master or slave interface for synchronous serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

The Stellaris SSI has the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing

13.1 Block Diagram

Figure 13-1. SSI Module Block Diagram

13.2 Functional Description

The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control, and status information. The transmit and receive paths are buffered with internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes.

13.2.1 Bit Rate Generation

The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output clock. Bit rates are supported to 2 MHz and higher, although maximum bit rate is determined by peripheral devices.

The serial bit rate is derived by dividing down the 25-MHz input clock. The clock is first divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in the **SSI Clock Prescale (SSICPSR)** register (see page 285). The clock is further divided by a value from 1 to 256, which is 1 + *SCR*, where *SCR* is the value programmed in the **SSI Control0 (SSICR0)** register (see page 279).

The frequency of the output clock SSIClk is defined by:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
```

Note that although the SSIClk transmit clock can theoretically be 12.5 MHz, the module may not be able to operate at that speed. For transmit operations, the system clock must be at least two times faster than the SSIClk. For receive operations, the system clock must be at least 12 times faster than the SSIClk.

See "Electrical Characteristics" on page 389 to view SSI timing parameters.

13.2.2 FIFO Operation

13.2.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The CPU writes data to the FIFO by writing the **SSI Data (SSIDR)** register (see page 283), and data is stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

13.2.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU, which accesses the read FIFO by reading the **SSIDR** register.

When configured as a master or slave, serial data received through the SSIRx pin is registered prior to parallel loading into the attached slave or master receive FIFO, respectively.

13.2.3 Interrupts

The SSI can generate interrupts when the following conditions are observed:

- Transmit FIFO service
- Receive FIFO service
- Receive FIFO time-out
- Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI can only generate a single interrupt request to the controller at any given time. You can mask each of the four individual maskable interrupts by setting the appropriate bits in the **SSI Interrupt Mask (SSIIM)** register (see page 286). Setting the appropriate mask bit to 1 enables the interrupt.

Provision of the individual outputs, as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts. The transmit and receive dynamic dataflow interrupts have been separated from the status interrupts so that data can be read or written in response to the FIFO trigger levels. The status of the individual interrupt sources can be read from the **SSI Raw Interrupt Status (SSIRIS)** and **SSI Masked Interrupt Status (SSIMIS)** registers (see page 287 and page 288, respectively).

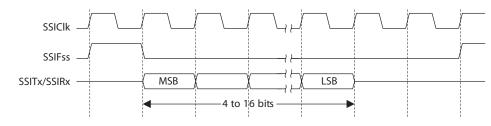
13.2.4 Frame Formats

Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Freescale SPI
- MICROWIRE

For all three formats, the serial clock (SSIC1k) is held inactive while the SSI is idle, and SSIC1k transitions at the programmed frequency only during active transmission or reception of data. The idle state of SSIC1k is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low, and is asserted (pulled down) during the entire transmission of the frame.

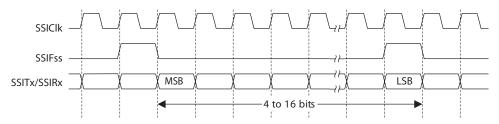

For Texas Instruments synchronous serial frame format, the SSIFss pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

13.2.4.1 Texas Instruments Synchronous Serial Frame Format

Figure 13-2 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.

Figure 13-2. TI Synchronous Serial Frame Format (Single Transfer)



In this mode, SSIClk and SSIFss are forced Low, and the transmit data line SSITx is tristated whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFss is pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SSIClk. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSIClk after the LSB has been latched.

Figure 13-3 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

13.2.4.2 Freescale SPI Frame Format

The Freescale SPI interface is a four-wire interface where the SSIFss signal behaves as a slave select. The main feature of the Freescale SPI format is that the inactive state and phase of the SSIClk signal are programmable through the SPO and SPH bits within the **SSISCR0** control register.

SPO Clock Polarity Bit

When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not being transferred.

SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is Low, data is captured on the first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.

13.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and SPH=0 are shown in Figure 13-4 and Figure 13-5.

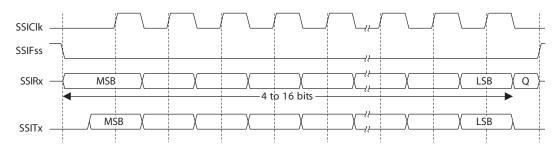
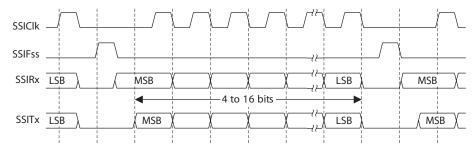



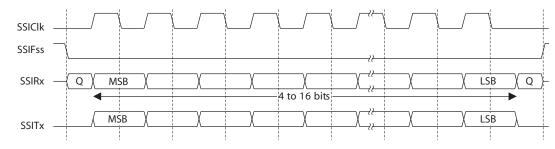
Figure 13-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0

In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto the SSIRx input line of the master. The master SSITx output pad is enabled.

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the master and slave data have been set, the SSIClk master clock pin goes High after one further half SSIClk period.


The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSIClk period after the last bit has been captured.

13.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure 13-6, which covers both single and continuous transfers.

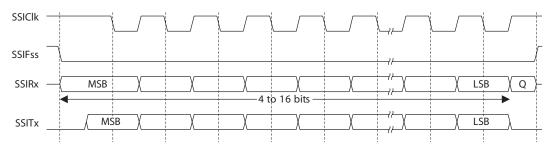
Figure 13-6. Freescale SPI Frame Format with SPO=0 and SPH=1

In this configuration, during idle periods:

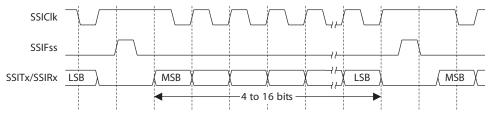
- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIC1k pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After a further one half SSIClk period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.


In the case of a single word transfer, after all bits have been transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.


13.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0

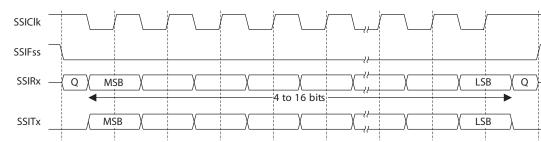
Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and SPH=0 are shown in Figure 13-7 and Figure 13-8.

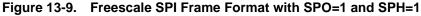
Figure 13-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFSS master signal being driven Low, which causes slave data to be immediately transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.


One half period later, valid master data is transferred to the SSITx line. Now that both the master and slave data have been set, the SSIC1k master clock pin becomes Low after one further half SSIC1k period. This means that data is captured on the falling edges and propagated on the rising edges of the SSIC1k signal.


In the case of a single word transmission, after all bits of the data word are transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSIC1k period after the last bit has been captured.

13.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1

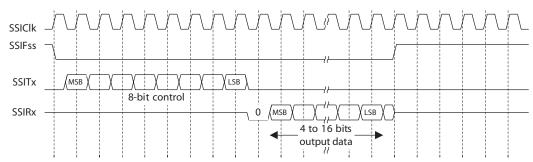
The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure 13-9, which covers both single and continuous transfers.

Note: Q is undefined in Figure 13-9.

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled. After a further one-half SSIClk period, both master and slave data are enabled onto their respective transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SSIClk signal.


After all bits have been transferred, in the case of a single word transmission, the SSIFss line is returned to its idle high state one SSIClk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFSS pin remains in its active Low state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

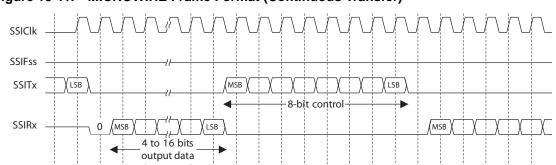
13.2.4.7 MICROWIRE Frame Format

Figure 13-10 shows the MICROWIRE frame format, again for a single frame. Figure 13-11 shows the same format when back-to-back frames are transmitted.

Figure 13-10. MICROWIRE Frame Format (Single Frame)

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

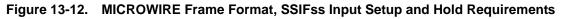
In this configuration, during idle periods:

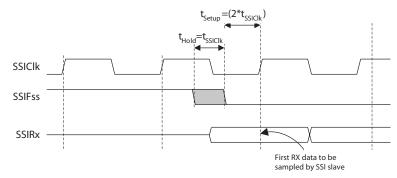

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFss causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SSITx pin. SSIFss remains Low for the duration of the frame transmission. The SSIRx pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one clock period after the last bit has been latched in the receive serial shifter, which causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.


For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SSIFss line is continuously asserted (held Low) and transmission of data occurs back-to-back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SSIClk, after the LSB of the frame has been latched into the SSI.



In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 13-12 illustrates these setup and hold time requirements. With respect to the SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss must have a setup of at least two times the period of SSIClk on which the SSI operates. With respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one SSIClk period.

13.3 Initialization and Configuration

To use the SSI, its peripheral clock must be enabled by setting the ${\tt SSI}$ bit in the RCGC1 register.

For each of the frame formats, the SSI is configured using the following steps:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled before making any configuration changes.
- 2. Select whether the SSI is a master or slave:
 - a. For master operations, set the **SSICR1** register to 0x00000000.
 - b. For slave mode (output enabled), set the **SSICR1** register to 0x00000004.
 - c. For slave mode (output disabled), set the **SSICR1** register to 0x0000000C.
- 3. Configure the clock prescale divisor by writing the **SSICPSR** register.
- 4. Write the **SSICR0** register with the following configuration:
 - Serial clock rate (SCR)
 - Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
 - The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
 - The data size (DSS)
- 5. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

- Master operation
- Freescale SPI mode (SPO=1, SPH=1)
- 1 Mbps bit rate
- 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR)) ' 1x106 = 20x106 / (CPSDVSR * (1 +
SCR))
```

In this case, if CPSDVSR=2, SCR must be 9.

The configuration sequence would be as follows:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled.
- 2. Write the SSICR1 register with a value of 0x00000000.

- 3. Write the **SSICPSR** register with a value of 0x00000002.
- 4. Write the **SSICR0** register with a value of 0x000009C7.
- 5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

13.4 Register Map

Table 13-1 lists the SSI registers. The offset listed is a hexadecimal increment to the register's address, relative to the SSI base address of 0x40008000.

Note: The SSI must be disabled (see the SSE bit in the **SSICR1** register) before any of the control registers are reprogrammed.

 Table 13-1.
 SSI Register Map

Offset	Name	Reset	Туре	Description	See page
0x000	SSICR0	0x00000000	RW	Control 0	279
0x004	SSICR1	0x00000000	RW	Control 1	281
0x008	SSIDR	0x00000000	RW	Data	283
0x00C	SSISR	0x0000003	RO	Status	284
0x010	SSICPSR	0x00000000	RW	Clock prescale	285
0x014	SSIIM	0x00000000	RW	Interrupt mask	286
0x018	SSIRIS	0x0000008	RO	Raw interrupt status	287
0x01C	SSIMIS	0x00000000	RO	Masked interrupt status	288
0x020	SSIICR	0x00000000	W1C	Interrupt clear	289
0xFD0	SSIPeriphID4	0x00000000	RO	Peripheral identification 4	290
0xFD4	SSIPeriphID5	0x00000000	RO	Peripheral identification 5	291
0xFD8	SSIPeriphID6	0x00000000	RO	Peripheral identification 6	292
0xFDC	SSIPeriphID7	0x00000000	RO	Peripheral identification 7	293
0xFE0	SSIPeriphID0	0x00000022	RO	Peripheral identification 0	294
0xFE4	SSIPeriphID1	0x00000000	RO	Peripheral identification 1	295
0xFE8	SSIPeriphID2	0x00000018	RO	Peripheral identification 2	296
0xFEC	SSIPeriphID3	0x00000001	RO	Peripheral identification 3	297
0xFF0	SSIPCellID0	0x000000D	RO	PrimeCell identification 0	298
0xFF4	SSIPCellID1	0x000000F0	RO	PrimeCell identification 1	299
0xFF8	SSIPCellID2	0x00000005	RO	PrimeCell identification 2	300
0xFFC	SSIPCellID3	0x000000B1	RO	PrimeCell identification 3	301

13.5 Register Descriptions

The remainder of this section lists and describes the SSI registers, in numerical order by address offset.

Register 1: SSI Control 0 (SSICR0), offset 0x000

SSICR0 is control register 0 and contains bit fields that control various functions within the SSI module. Functionality such as protocol mode, clock rate and data size are configured in this register.

	SSI Con Offset 0x0		SSICR0)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					·	•		rese	rved		•		•			
Гуре Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				S	CR	•	1	1	SPH	SPO	F	RF		D	SS	1
ype eset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit	/Field		Name		Туре	Re	eset	Descri	ption							
3	1:16	r	eserved		RO		0	Reser be cha		return	an inde	etermina	ate valu	e, and s	should	never
15:8 SCR R/W 0 SSI Serial Clock Rate																
										R is use	-	enerate is:	the tran	smit an	id recei	ve bit
								BR= F	SSICLK	(CPSD)	VSR *	(1 + SC	R))			
												value fro is a val				d in th
	7		SPH		R/W		0	SSI Se	erial Clo	ock Pha	se					
								This b	it is only	/ applic	able to	the Fre	escale	SPI For	rmat.	
								and al bit trar	lows it t nsmitteo	o chang d by eith	ge state ner allo	the cloc e. It has wing or ta captu	the mo not allo	st impa wing a	ict on th	
									ion. If s			is captu s captur				
	6		SPO		R/W		0	SSI Se	erial Clo	ock Pola	arity					
								This b	it is only	/ applic	able to	the Fre	escale	SPI Foi	rmat.	
								the ss	IClk p	in. If se	PO is 1,	duces a a steac ta is no	ly state	High va	alue is p	

Bit/Field	Name	Туре	Reset	Description	
5:4	FRF	R/W	0	SSI Frame Forr	nat Select.
				The FRF values	are defined as follows:
				FRF Value	Frame Format
				00	Freescale SPI Frame Format
				01	Texas Instruments Synchronous Serial Frame Format
				10	MICROWIRE Frame Format
				11	Reserved
3:0	DSS	R/W	0	DSS Value 0000-0010 0011 0100 0101 0110 0111 1000 1001 1010 1011	s are defined as follows: Data Size Reserved 4-bit data 5-bit data 6-bit data 7-bit data 8-bit data 9-bit data 10-bit data 11-bit data 12-bit data
				1100	13-bit data
				1101	14-bit data
				1110	15-bit data
				1111	16-bit data

Register 2: SSI Control 1 (SSICR1), offset 0x004

SSICR1 is control register 1 and contains bit fields that control various functions within the SSI module. Master and slave mode functionality is controlled by this register.

	SSI Cont	rol 1 (S	SSCR1)													
	Offset 0x00)4														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					<u> </u>		<u> </u>	rese	rved			•				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						res	erved						SOD	MS	SSE	LBM
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
reser	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Name		Туре		Reset	De	scriptior	ו						
	31:4	I	reserve	d	RO		0		served I /er be c			ndetern	ninate v	alue, ar	nd shou	ıld
	3		SOD		R/W		0	SS	I Slave	Mode C	Output [Disable				
								mu bro ens line cou bit	s bit is r ltiple-sla adcast suring th a. In suc ild be tie can be o ITx pin	ave sys a mess hat only th syste ed toge configu	tems, it age to one sla ms, the ther. To	t is poss all slave ave driv e TXD li o operat	sible for es in the es data nes fror e in suc	the SS syster onto th m multip ch a sys	I maste n while le seria ble slav stem, th	l output es e SOD
								0: 5	SSI can	drive S	SITx C	output ir	n Slave	Output	mode.	
								1: \$	SSI mus	st not dr	ive the	SSITx	output	in Slave	e mode	
	2		MS		R/W		0	SS	I Maste	r/Slave	Select					
									s bit sel y when					nd can	be moo	lified
								0: [Device o	configur	ed as a	a maste	r.			
								1:[Device o	configur	ed as a	a slave.				

Bit/Field	Name	Туре	Reset	Description
1	SSE	R/W	0	SSI Synchronous Serial Port Enable
				Setting this bit enables SSI operation.
				0: SSI operation disabled.
				1: SSI operation enabled.
				Note: This bit must be set to 0 before any control registers are reprogrammed.
0	LBM	R/W	0	SSI Loopback Mode
				Setting this bit enables Loopback Test mode.
				0: Normal serial port operation enabled.
				1: Output of the transmit serial shift register is connected

1: Output of the transmit serial shift register is connected internally to the input of the receive serial shift register.

Register 3: SSI Data (SSIDR), offset 0x008

SSIDR is the data register and is 16-bits wide. When **SSIDR** is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When **SSIDR** is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the SSITX pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the **SSICR1** register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

	Offset 0x008															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		1		1 1	rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DATA															
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	Bit/Field Name Type Reset							De	scriptior	า						
:	31:16		reserve	d	RO		0		served /er be c			ndeterm	ninate v	alue, ar	nd shou	lld
15:0 DATA R/W 0						0	SS	I Receiv	/e/Tran	smit Da	ita					
								ead ope tes the t			ne recei	ve FIF0	D. A wri	te oper	ation	

Software must right-justify data when the SSI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the transmit logic. The receive logic automatically right-justifies the data.

SSI Data (SSIDR)

Register 4: SSI Status (SSISR), offset 0x00C

SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

	SSI Stati Offset 0x00		SR)															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
								rese	rved			' 	•					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
					'	reserved	т т Г		I		l	BSY	RFF	RNE	TNF	TFE		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1		
В	it/Field		Name		Туре		Reset	De	scriptio	า								
	31:5		reserve	d	RO		0			bits retu hanged		ndetern	ninate v	alue, a	nd shou	ıld		
	4		BSY		RO		0	SS	I Busy I	Bit								
	0: SSI is idle.																	
								1: SSI is currently transmitting and/or receiving a frame, or the transmit FIFO is not empty.										
	3		RFF		RO		0	SS	I Receiv	/e FIFC	Full							
								0: F	Receive	FIFO is	s not fu	ıll.						
								1: F	Receive	FIFO is	s full.							
	2		RNE		RO		0	SS	l Receiv	/e FIFC	Not E	mpty						
										FIFO i								
										FIFO is								
	1		TNF		RO		1			nit FIFC								
	I				RU		I			t FIFO i		uii						
										t FIFO i		ш						
	0		TFE		R0		1			nit FIFC	-	-						
										t FIFO i								
								1:1	Fransmi	t FIFO i	is empt	iy.						

Register 5: SSI Clock Prescale (SSICPSR), offset 0x010

SSICPSR is the clock prescale register and specifies the division factor by which the system clock must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The least-significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least-significant bit as zero.

	Offset 0x0	10														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1 1	1			1 1			1						
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1 1	1			1 1			1				I		
				reserv	ved							CPSE	VSR			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Name		Туре		Reset	De	scriptior	n						
2			Hamo		1990		110001	200	sonption	•						
	31:8		reserved	4	RO		0	Re	served b	nits retu	rn an ii	ndeterm	inate v	alue ai	nd shou	ıld
	01.0			4	i i i i i i i i i i i i i i i i i i i		0		er be c			lucioni	intate v	alue, al		iu
										nangeu	•					
	7:0 CPSDVSR R/W 0							66		Dragool		~ "				
	7:0 CPSDVSR R/W 0						22	I Clock	Fiescal	e Divis	01					
								Thi	s value	must be	e an ev	en num	ber froi	n 2 to 2	54. dec	pending
									the freq						-	-
								011	and noq	acricy c	, DDTC	·		annay5 i	otanio	0.011

reads.

SSI Clock Prescale (SSICPSR)

Register 6: SSI Interrupt Mask (SSIIM), offset 0x014

The **SSIIM** register is the interrupt mask set or clear register. It is a read/write register and all bits are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

	Offset 0x0	14														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							·	rese	rved		•	•	·			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				·		res	erved						TXIM	RXIM	RTIM	RORIM
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Name		Туре		Reset	De	scriptior	ı						
Type R0 <													nd shou	ld		
3 TXIM R/W 0 SSI Transmit FIFO Interrupt Mask											sk					
Ŭ												s maske	ed.			
														•		
														mapric		usiteu.
	2		RXIM		R/W		0	SS	I Receiv	/e FIFC) Interru	ipt Mas	sk			
								0: F	RX FIFO) half-fu	ull or mo	ore con	dition in	terrupt	is mas	ked.
								1: F	RX FIFO) half-fu	ull or mo	ore con	dition in	terrupt	is not r	nasked.
	1		RTIM		R/W		0	SS	I Receiv	/e Time	-Out In	terrupt	Mask			
								0: F	RX FIFC) time-o	out inter	rupt is	masked	ł.		
								1: F		D time-o	out inter	rupt is	not mas	sked.		
	0		RORIM		R/W		0	SS	I Receiv	/e Ovei	run Inte	errupt N	/lask			
								0: F	RX FIFO) overru	un inter	rupt is i	masked			
												-	not mas			

SSI Interrupt Mask (SSIIM)

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018

The **SSIRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

	SSI Raw Offset 0x0		rupt Stat	us (SSI	RIS)												
_	31	30	29	28	2	27	26	25	24	23	22	21	20	19	18	17	16
ſ	1		1	1	1	1			res	erved		1	1	1	1		1
Type Reset	RO 0	RO 0	RO 0	RO 0		2O 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	1	1	10	9	8	7	6	5	4	3	2	1	0
	'		1	•			res	served				'	'	TXRIS	RXRIS	RTRIS	RORRIS
Type Reset	RO 0	RO 0	RO 0	RO 0		8 O 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0
Bi	t/Field		Name	9	Г	уре		Reset	De	scriptior	ı						
									served l ver be c			ndeteri	minate v	alue, ar	nd shoi	uld	
	3		TXRI	S		RO		1						pt Status is half f		ss, whe	en set.
	2		RXRI	S		RO		0						ot Status is half fu		ore, wh	en set.
	1		RTRI	S		RO		0	SSI Receive Time-Out Raw Interrupt Status Indicates that the receive time-out has occurred, when set.							n set.	
	0		RORR	IS		RO		0						rupt Sta has ove		, when	set.

Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C

The **SSIMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

	SSI Mas	ked Int	errupt St	atus (SS	SIMIS)											
	Offset 0x01	IC														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	· ·		1 1				1 1	rese	rved		i	i	i			i i
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ	· ·				1 1	res	erved		1		I	1	TXMIS	RXMIS	RTMIS	RORMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
В	lit/Field		Name		Туре		Reset	De	scriptior	١						
	31:4		reserve	ł	RO		0		served l /er be c			indeterr	ninate v	alue, ar	nd shou	uld
	3		TXMIS		RO		0						rrupt Sta is half f		ss, whe	en set.
	2		RXMIS		RO		0						rupt Sta is half fu		ore, wh	en set.
	1		RTMIS		RO		0						Interrup out has c			n set.
	0		RORMIS	6	RO		0						nterrupt has ove		, when	set.

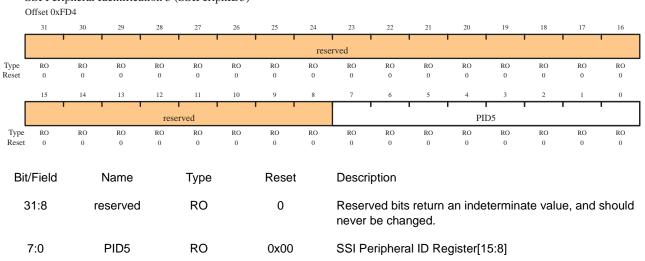
SSI Masked Interrupt Status (SSIMIS)

Register 9: SSI Interrupt Clear (SSIICR), offset 0x020

The **SSIICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

	SSI Inter Offset 0x02	-	lear (SSI	(CR)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[т т 		I	1	· ·	rese	erved		1	1	1	1	I	I
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1 1		I	1	reserv	ved	1 1		I	I	I	1	RTIC	RORIC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	WIC
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Name		Тур	е	Reset	De	escriptior	۱						
	31:2		reserved	ł	RO)	0		served l ver be c			ndetern	ninate v	/alue, a	nd shou	uld
	1		RTIC		W10	2	0	SS	I Receiv	e Time	e-Out In	terrupt	Clear			
	•		e				Ũ					lionapt	Cicai			
									No effec		-					
								1:	Clears ir	nterrup	t.					
	0		RORIC		W10	C	0	SS	I Receiv	ve Ove	rrun Int	errupt C	Clear			
								0: No effect on interrupt.								
								1:	Clears ir	nterrup	t.					
										P	-					

Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0


The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

(Offset 0xI	FD0		,		. ,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1 1				Ì	1 1	res	erved		Ì	1		1	Ì	i
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1 1		rese	rved	I	1 1				I	PII	D4	I	I	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/	Field	Ν	lame		Туре		Reset		Descrip	otion						
3	1:8	res	served		RO		0		Reserv never b			an indet	ermina	te value	e, and s	hould
7	7 :0	F	PID4		RO		0x00		SSI Pe	ripheral	I ID Reg	gister[7:	0]			

SSI Peripheral Identification 4 (SSIPeriphID4)

Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4

The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 5 (SSIPeriphID5)

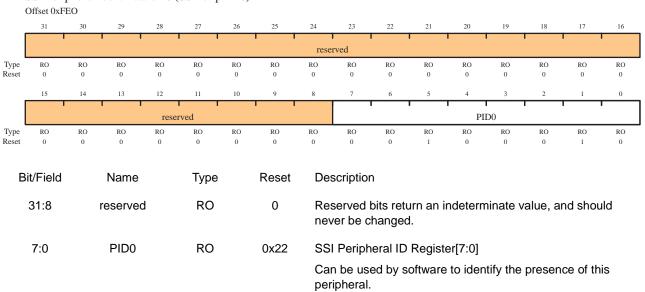
Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8

The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

(Offset 0x	FD8														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	i i			1	1 1	res	erved	1	1	1 1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1 1	1	reser	rved	1	1 1			I	I	PII	D6	I	I	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/	Field	Ν	lame		Туре		Reset		Descrip	otion						
3	1:8	res	served		RO		0		Reserv never b			an indet	ermina	te value	e, and s	hould
7	' :0	F	PID6		RO		0x00		SSI Pe	riphera	I ID Re	gister[23	3:16]			

SSI Peripheral Identification 6 (SSIPeriphID6)

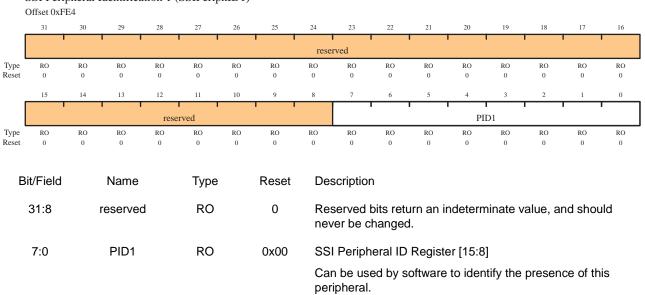
Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC


The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

(Offset 0xF	FDC		,												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[l l	i	Î			· ·	res	erved		Ì	1 1		1	İ	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				resei	rved		1 1				1	PII	07	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/	Field	Ν	lame		Туре		Reset		Descrip	otion						
3	1:8	res	served		RO		0		Reserv never b			an indet	ermina	te value	e, and s	hould
7	' :0	F	PID7		RO		0x00		SSI Pe	ripheral	I ID Re	gister[31	:24]			

SSI Peripheral Identification 7 (SSIPeriphID7)

Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0


The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

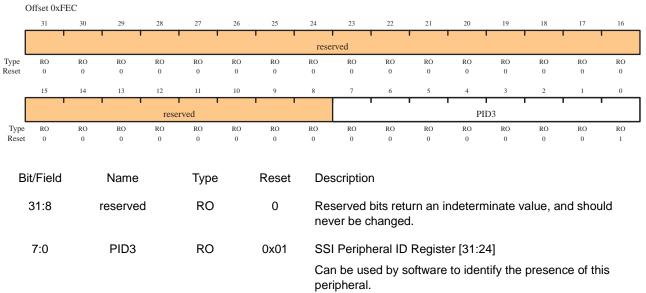
SSI Peripheral Identification 0 (SSIPeriphID0)

Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4

The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 1 (SSIPeriphID1)

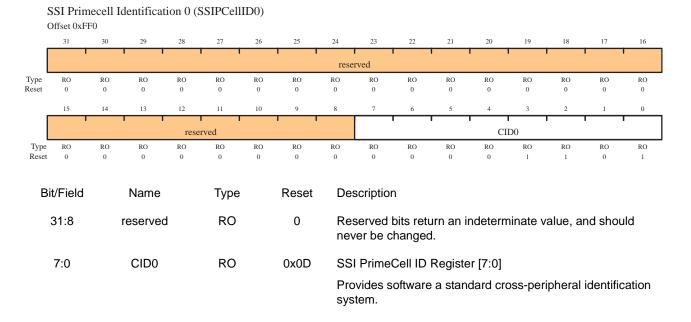
Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8


The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

	5511611	pherai	Identifica	10012	an ent	mD_2										
	Offset 0xF	E8														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1		1 1		1 1					1	1		1	1
								rese	rved							
Type Reset	RO 0	RO	RO 0	RO	RO 0	RO 0	RO	RO 0	RO 0	RO 0	RO 0	RO	RO 0	RO	RO 0	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1		1 1		1 1			1 1			1	1	1	
I				rese	rved							P	ID2			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
В	it/Field		Name		Туре		Reset	De	scriptio	n						
					51				•							
	31:8		reserved	ł	RO		0	Re	served	bits retu	ırn an i	ndeterr	ninate v	alue. a	nd sho	uld
					-		-			hanged				, .		
	7:0		PID2		RO		0x18	SS	l Perioh	neral ID	Regist	er [23·1	61			
			02		110		0,110				•	-	-			
									n be us ipheral.	ed by so	oftware	to ider	ntify the	preser	nce of th	nis
									•							

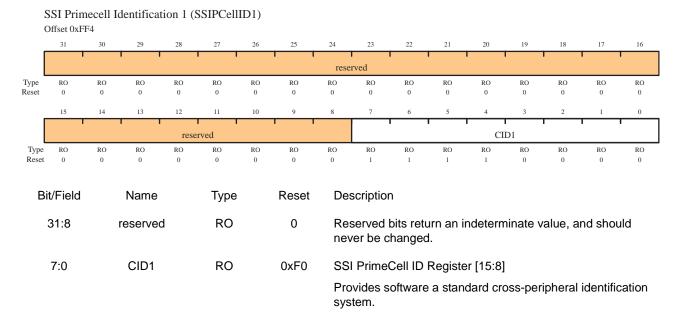
SSI Peripheral Identification 2 (SSIPeriphID2)

Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC

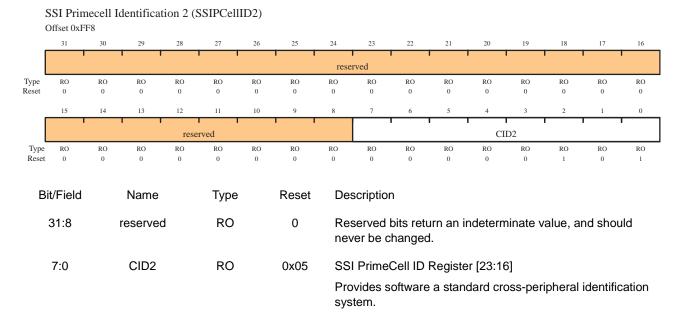

The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 3 (SSIPeriphID3)

Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0

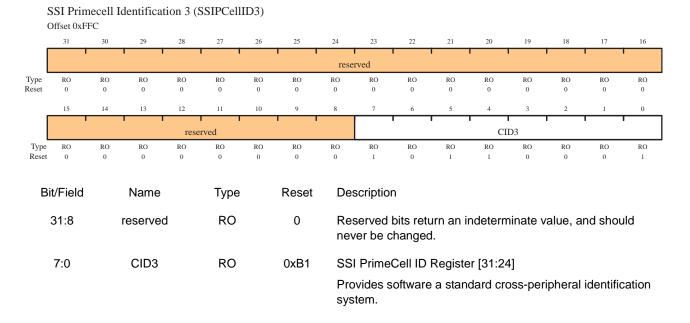

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

October 8, 2006


Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8


The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

October 8, 2006

Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

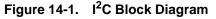
The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

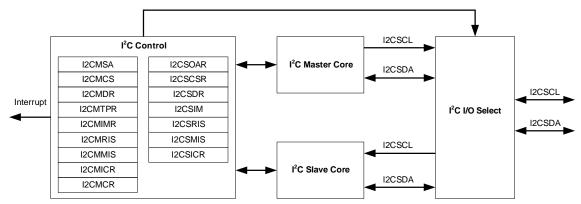
October 8, 2006

14 Inter-Integrated Circuit (I²C) Interface

The Inter-Integrated Circuit (I²C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDL and a serial clock line SCL).

The I²C bus interfaces to external I²C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I²C bus may also be used for system testing and diagnostic purposes in product development and manufacture.

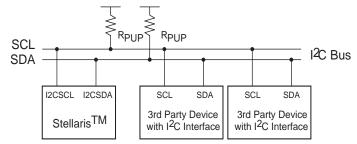

The Stellaris I^2C module provides the ability to communicate to other IC devices over an I^2C bus. The I^2C bus supports devices that can both transmit and receive (write and read) data.


Devices on the I²C bus can be designated as either a master or a slave. The I²C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. The four I²C modes are: Master Transmit, Master Receive, Slave Transmit, and Slave Receive.

The Stellaris I²C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I^2C master and slave can generate interrupts. The I^2C master generates interrupts when a transmit or receive operation completes (or aborts due to an error). The I^2C slave generates interrupts when data has been sent or requested by a master.

14.1 Block Diagram



14.2 Functional Description

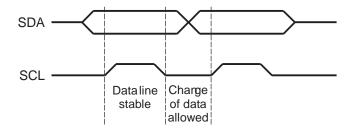
The I^2C module is comprised of both a master and slave function. The master and slave functions are implemented as separate peripherals. The I^2C module must be connected to bi-directional Open-Drain pads. A typical I^2C bus configuration is shown in Figure 14-2.

See "I2C Timing" on page 395 for I^2C timing diagrams.

Figure 14-2. I²C Bus Configuration

14.2.1 I²C Bus Functional Overview

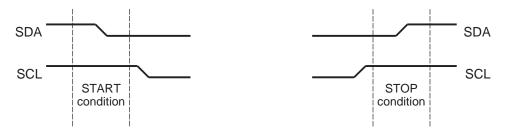
The I²C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock line.


14.2.1.1 Data Transfers

Both the SDA and SCL lines are bi-directional, connected to the positive supply via pull-up resistors. The bus is idle or free, when both lines are High. The output devices (pad drivers) must have an open-drain configuration. Data on the I²C bus can be transferred at rates up to 100 Kbps in Standard mode and up to 400 Kbps in Fast mode.

14.2.1.2 Data Validity

The data on the SDA line must be stable during the High period of the clock. The data line can only change when the clock SCL is in its Low state (see Figure 14-3).


Figure 14-3. Data Validity During Bit Transfer on the I²C Bus

14.2.1.3 START and STOP Conditions

The protocol of the I²C bus defines two states: START and STOP. A High-to-Low transition on the SDA line while the SCL is High is a START condition. A Low-to-High transition on the SDA line while SCL is High is defined as a STOP condition. The bus is considered busy after a START condition. The bus is considered free after a STOP condition. See Figure 14-4.

Figure 14-4. START and STOP Conditions

14.2.1.4 Byte Format

Every byte put out on the SDA line must be 8-bits long. The number of bytes per transfer is unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the MSB first. When a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.

14.2.1.5 Acknowledge

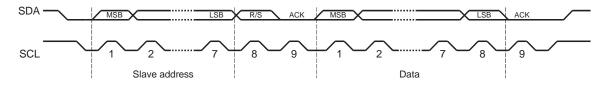
Data transfer with an acknowledge is obligatory. The acknowledge-related clock pulse is generated by the master. The transmitter releases the SDA line during the acknowledge clock pulse.

The receiver must pull down SDA during the acknowledge clock pulse such that it remains stable (Low) during the High period of the acknowledge clock pulse.

When a slave receiver does not acknowledge the slave address, the data line must be left in a High state by the slave. The master can then generate a STOP condition to abort the current transfer.

If the master receiver is involved in the transfer, it must signal the end of data to the slave-transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave-transmitter must release the SDA line to allow the master to generate the STOP or a repeated START condition.

14.2.1.6 Arbitration


A master may start a transfer only if the bus is idle. Two or more masters may generate a START condition within minimum hold time of the START condition. Arbitration takes place on the SDA line, while SCL is in the High state, in such a manner that the master transmitting a High level (while another master is transmitting a Low level) will switch off its data output stage.

Arbitration can be over several bits. Its first stage is a comparison of address bits. If both masters are trying to address the same device, arbitration continues with comparison of data bits.

14.2.1.7 Data Format with 7-Bit Address

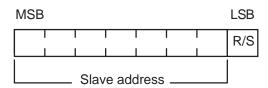
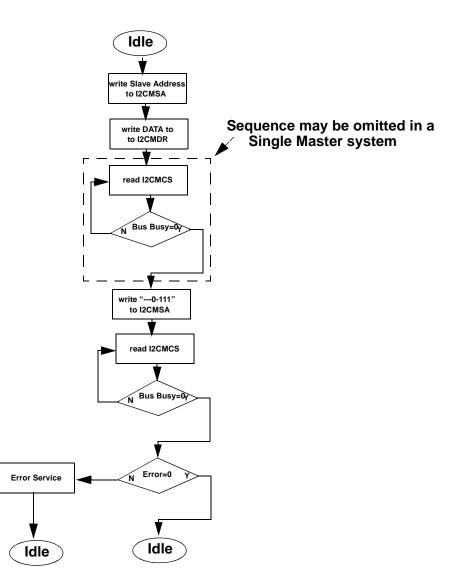

Data transfers follow the format shown in Figure 14-5. After the START condition, a slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction bit (R/S bit in the **I2CMSA** register). A zero indicates a transmission (Send); a one indicates a request for data (Receive). A data transfer is always terminated by a STOP condition generated by the master. However, a master can still communicate on the bus by generating a repeated START condition and addressing another slave without first generating a STOP condition. Various combinations of receive/send formats are then possible within such a transfer.

Figure 14-5. Complete Data Transfer with a 7-Bit Address

The first seven bits of the first byte make up the slave address (see Figure 14-6). The eighth bit determines the direction of the message. A zero in the R/S position of the first byte means that the master will write (send) information to a selected slave. A one in this position means that the master will receive information from the slave.


Figure 14-6. R/S Bit in First Byte

14.2.1.8 I²C Master Command Sequences

Figure 14-7 through Figure 14-12 present the command sequences available for the I²C master.

Figure 14-7. Master Single SEND

Figure 14-8. Master Single RECEIVE

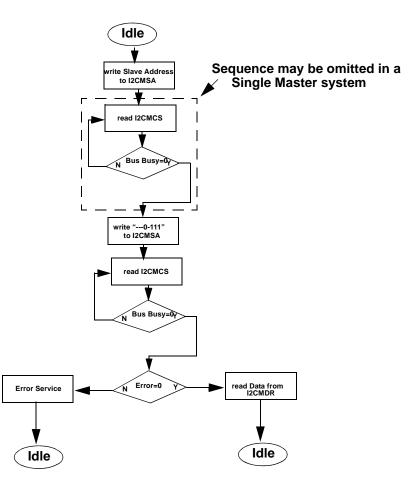
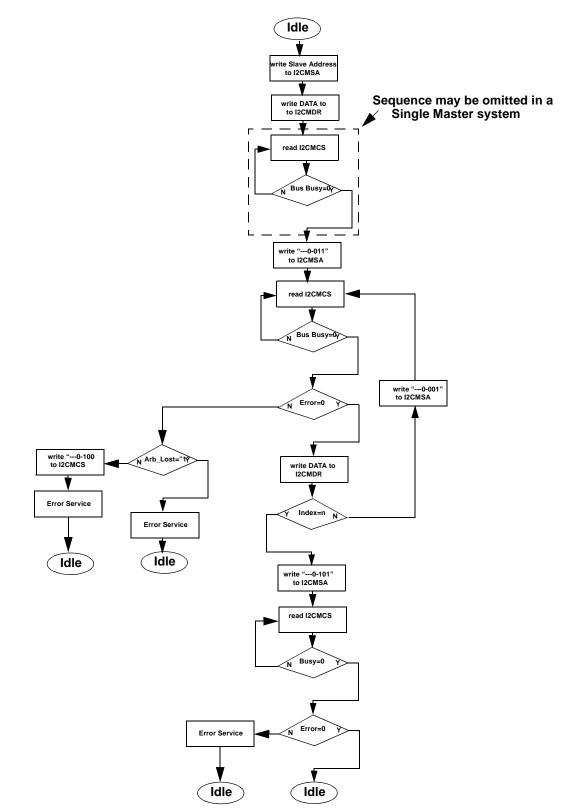



Figure 14-9. Master Burst SEND

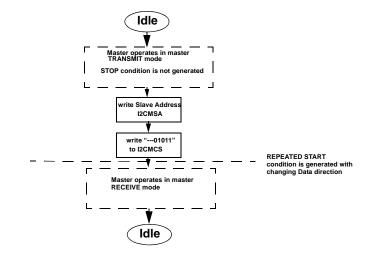
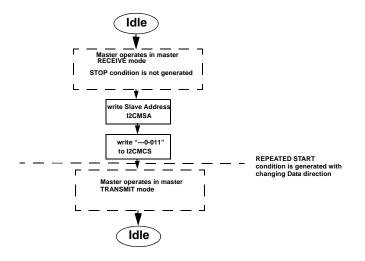
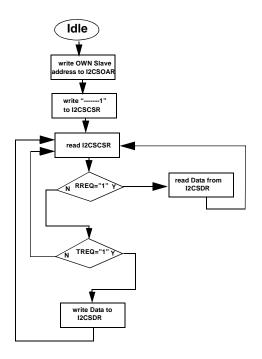



Figure 14-11. Master Burst RECEIVE after Burst SEND



14.2.1.9 I²C Slave Command Sequences

Figure 14-13 presents the command sequence available for the I²C slave.

Figure 14-13. Slave Command Sequence

14.2.2 Available Speed Modes

The SCL clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.

where:

 ${\tt CLK_PRD}$ is the system clock period

SCL_LP is the Low phase of the SCL clock (fixed at 6)

SCL HP is the High phase of the SCL clock (fixed at 4)

TIMER_PRD is the programmed value in the **I2C Master Timer Period (I2CMTPR)** register (see page 320).

The SCL clock period is calculated as follows:

SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD

For example:

```
CLK_PRD = 50 ns
TIMER_PRD = 2
SCL_LP=6
SCL_HP=4
yields a SCL frequency of:
1/T = 333 Khz
```

Table 14-1 gives examples of Timer period, system clock, and speed mode (Standard or Fast).

System Clock	Timer Period	Standard Mode	Timer Period	Fast Mode
4 Mhz	0x01	100 Kbps	-	-
6 Mhz	0x02	100 Kbps	-	-
12.5 Mhz	0x06	89 Kbps	0x01	312 Kbps
16.7 Mhz	0x08	93 Kbps	0x02	278 Kbps
20 Mhz	0x09	100 Kbps	0x02	333 Kbps
25 Mhz	0x0C	96.2 Kbps	0x03	312 Kbps

Table 14-1. Examples of I²C Master Timer Period versus Speed Mode

14.3 Initialization and Configuration

The following example shows how to configure the I^2C module to send a single byte as a master. This assumes the system clock is 20 MHz.

- 1. Enable the I²C clock by writing a value of 0x00001000 to the **RCGC1** register in the System Control module.
- 2. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register. Also, be sure to enable the same pins for Open Drain operation.
- 3. Initialize the I²C Master by writing the **I2CMCR** register with a value of 0x00000020.
- 4. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct value. The value written to the I2CMTPR register represents the number of system clock periods in one SCL clock period. The TPR value is determined by the following equation:

```
TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1;
TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1;
TPR = 9
```

Write the **I2CMTPR** register with the value of 0x0000009.

- 5. Specify the slave address of the master and that the next operation will be a Send by writing the **I2CMSA** register with a value of 0x00000076. This sets the slave address to 0x3B.
- 6. Place data (byte) to be sent in the data register by writing the **I2CMDR** register with the desired data.
- 7. Initiate a single byte send of the data from Master to Slave by writing the **I2CMCS** register with a value of 0x00000007 (STOP, START, RUN).
- 8. Wait until the transmission completes by polling the **I2CMCS** register's BUSBSY bit until it has been cleared.

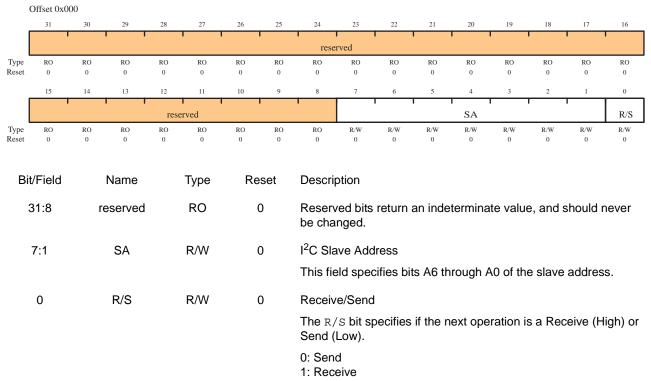
14.4 Register Map

Table 14-2 lists the I^2C registers. All addresses given are relative to the I^2C base addresses for the master and slave:

I²C Master: 0x40020000

I²C Slave: 0x40020800

Table 14-2. I²C Register Map


Offset	Name	Reset	Туре	Description	See page
0x000	I2CMSA	0x00000000	R/W	Master slave address	313
0x004	I2CMCS	0x00000000	R/W	Master control/status	314
0x008	I2CMDR	0x00000000	R/W	Master data	319
0x00C	I2CMTPR	0x00000001	R/W	Master timer period	320
0x010	I2CMIMR	0x00000000	R/W	Master interrupt mask	321
0x014	I2CMRIS	0x00000000	RO	Master raw interrupt status	322
0x018	I2CMMIS	0x00000000	RO	Master masked interrupt status	322
0x01C	I2CMICR	0x00000000	WO	Master interrupt clear	323
0x020	I2CMCR	0x00000000	R/W	Master configuration	324
0x000	I2CSOAR	0x00000000	R/W	Slave address	326
0x004	I2CSCSR	0x00000000	RO	Slave control/status	327
0x008	I2CSDR	0x00000000	R/W	Slave data	329
0x00C	I2CSIMR	0x00000000	R/W	Slave interrupt mask	330
0x010	I2CSRIS	0x00000000	RO	Slave raw interrupt status	331
0x014	I2CSMIS	0x00000000	RO	Slave masked interrupt status	332
0x018	I2CSICR	0x00000000	WO	Slave interrupt clear	333

14.5 Register Descriptions (I²C Master)

The remainder of this section lists and describes the I²C master registers, in numerical order by address offset. See also "Register Descriptions (I2C Slave)" on page 326.

Register 1: I²C Master Slave Address (I2CMSA), offset 0x000

This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which determines if the next operation is a Receive (High), or Send (Low).

I2C Master Slave Address (I2CMSA)

Register 2: I²C Master Control/Status (I2CMCS), offset 0x004

This register accesses four control bits when written, and accesses seven status bits when read.

The status register consists of seven bits, which when read determine the state of the I²C bus controller.

The control register consists of four bits: the RUN, START, STOP, and ACK bits.

The START bit causes the generation of the START, or REPEATED START condition.

The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst. To generate a single send cycle, the **I2C Master Slave Address (I2CMSA)** register is written with the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1), STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed (or aborted due an error), the interrupt pin becomes active and the data may be read from the **I2CMDR** register. When the I²C module operates in Master receiver mode, the ACK bit must be set normally to logic 1. This causes the I²C bus controller to send an acknowledge automatically after each byte. This bit must be reset when the I²C bus controller requires no further data to be sent from the slave transmitter.

I2C Master Status (I2CMCS): Read

	Offset 0x0	04														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1 1			rese	rved	1 1		1	1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
resor	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1				1 1	rese		1		BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERROR	BUSY
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	I2C Mas Offset 0x0		trol (I20	CMCS):	Write											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'		•	l			l	rese	rved		l	•	•		l	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						rese	rved		•			•	ACK	STOP	START	RUN
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	WO 0	WO 0	WO 0	WO 0
Bi	t/Field		Name		Туре	Re	eset	Descri	ption							
Rea	d-Only	Status	s Regis	ter												
;	31:7	re	eserved		RO		0	Reserv be cha		s return a	an inde	etermina	ate valu	e, and s	should	never
	6	В	USBSY	,	R		0	otherw	vise, the	fies the e bus is nditions	idle. Tł					
	5		IDLE		R		0			fies the e the co				set, the	contro	ller is

Bit/Field	Name	Туре	Reset	Description
4	ARBLST	R	0	This bit specifies the result of bus arbitration. If set, the controller lost arbitration; otherwise, the controller won arbitration.
3	DATACK	R	0	This bit specifies the result of the last data operation. If set, the transmitted data was not acknowledged; otherwise, the data was acknowledged.
2	ADRACK	R	0	This bit specifies the result of the last address operation. If set, the transmitted address was not acknowledged; otherwise, the address was acknowledged.
1	ERROR	R	0	This bit specifies the result of the last bus operation. If set, an error occurred on the last operation; otherwise, no error was detected. The error can be from the slave address not being acknowledged, the transmit data not being acknowledged, or because the controller lost arbitration.
0	BUSY	R	0	This bit specifies the state of the controller. If set, the controller is busy; otherwise, the controller is idle. When the BUSY bit is set, the other status bits are not valid.
Write-Only C	Control Register			
31:7	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
6-4	reserved	W	0	Write reserved.
3	ACK	W	0	When set, causes received data byte to be acknowledged automatically by the master. See field decoding in Table 14-3 on page 316.
2	STOP	W	0	When set, causes the generation of the STOP condition. See

When set, causes the generation of the STOP condition. So	ee
field decoding in Table 14-3.	

When set, causes the generation of a START or repeated START condition. See field decoding in Table 14-3.

When set, allows the master to send or receive data. See field decoding in Table 14-3.

1

0

START

RUN

W

W

0

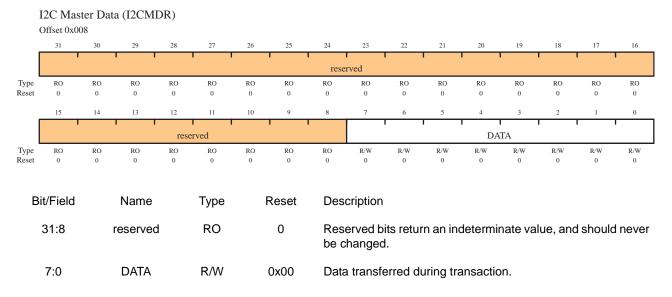
0

Current	I2CMSA[0]		I2CMC	S[3:0]		Description
State	R/S	ACK	STOP	START	RUN	Description
ldle	0	X ^a	0	1	1	START condition followed by SEND (master goes to the Master Transmit state).
	0	х	1	1	1	START condition followed by a SEND and STOP condition (master remains in Idle state).
	1	0	0	1	1	START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state).
	1	0	1	1	1	START condition followed by RECEIVE and STOP condition (master remains in Idle state).
	1	1	0	1	1	START condition followed by RECEIVE (master goes to the Master Receive state).
	1	1	1	1	1	Illegal.
	All other combi	nations not	listed are r	non-operatio	ons.	NOP.

Table 14-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)

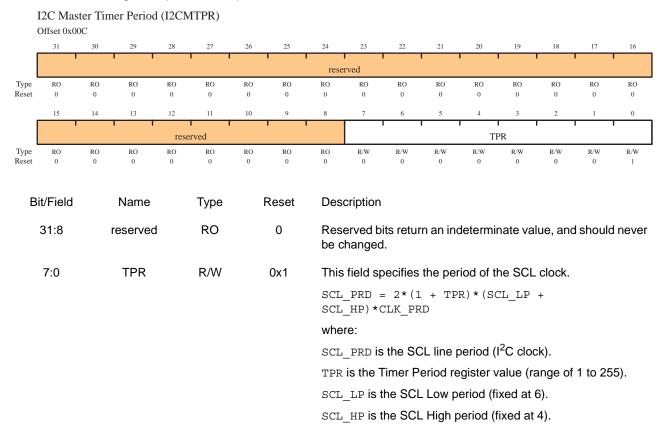
Current	I2CMSA[0]		I2CMC	CS[3:0]		
State	R/S	ACK	STOP	START	RUN	Description
Master Transmit	Х	Х	0	0	1	SEND operation (master remains in Master Transmit state).
	x	х	1	0	0	STOP condition (master goes to Idle state).
	x	Х	1	0	1	SEND followed by STOP condition (master goes to Idle state).
	0	Х	0	1	1	Repeated START condition followed by a SEND (master remains in Master Transmit state).
	0	Х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).
	1	0	0	1	1	Repeated START condition followed by a RECEIVE operation with a negative ACK (master goes to Master Receive state).
	1	0	1	1	1	Repeated START condition followed by a SEND and STOP condition (master goes to Idle state).
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master goes to Master Receive state).
	1	1	1	1	1	Illegal.
	All other combi	nations not	listed are r	non-operatio	ons.	NOP.

Table 14-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 2 of 3)

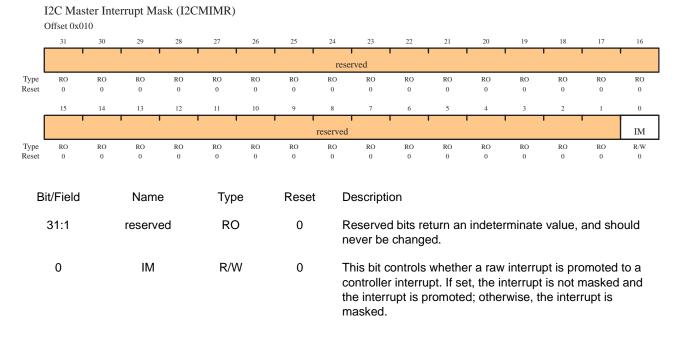

Current State	I2CMSA[0]	I2CMCS[3:0]				Description
	R/S	ACK	STOP	START	RUN	- Description
Master Receive	X	0	0	0	1	RECEIVE operation with negative ACK (master remains in Master Receive state).
	x	Х	1	0	0	STOP condition (master goes to Idle state). ^b
	x	0	1	0	1	RECEIVE followed by STOP condition (master goes to Idle state).
	x	1	0	0	1	RECEIVE operation (master remains in Master Receive state).
	Х	1	1	0	1	lllegal.
	1	0	0	1	1	Repeated START condition followed by RECEIVE operation with a negative ACK (master remains in Master Receive state).
	1	0	1	1	1	Repeated START condition followed by RECEIVE and STOP condition (master goes to Idle state).
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master remains in Master Receive state).
	0	Х	0	1	1	Repeated START condition followed by SEND (master goes to Master Transmit state).
	0	х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).
	All other combinations not listed are non-operations.					NOP.

a. An X in a table cell indicates that applies to a bit set to 0 or 1.

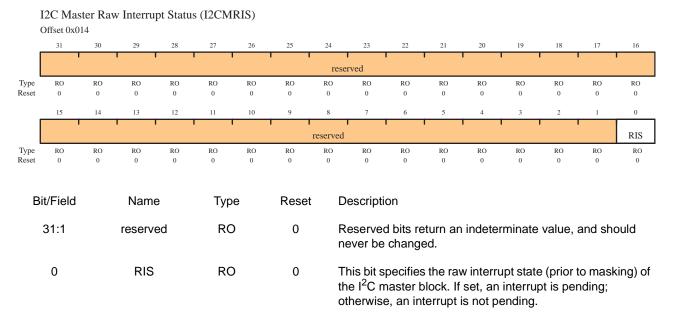
b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by the master or an Address Negative Acknowledge executed by the slave.


Register 3: I²C Master Data (I2CMDR), offset 0x008

This register contains the data to be transmitted when in the Master Transmit state, and the data received when in the Master Receive state.

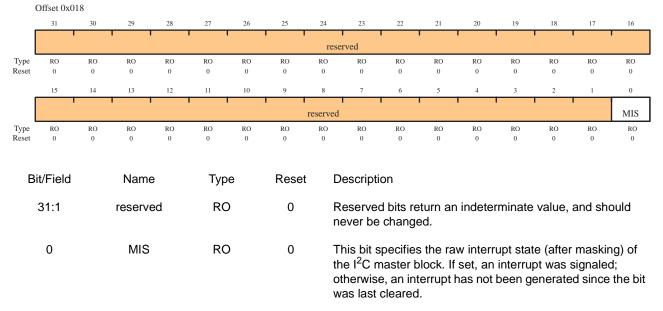

Register 4: I²C Master Timer Period (I2CMTPR), offset 0x00C

This register specifies the period of the SCL clock

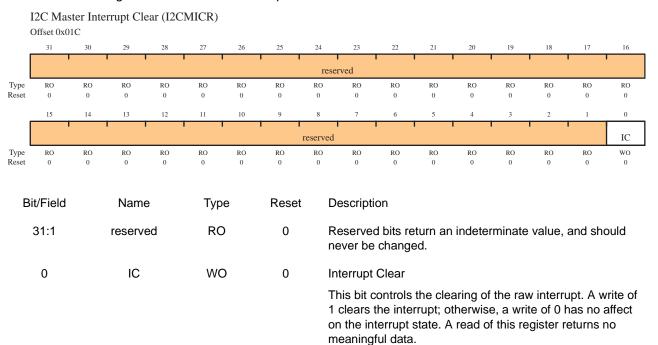

Register 5: I²C Master Interrupt Mask (I2CMIMR), offset 0x010

This register controls whether a raw interrupt is promoted to a controller interrupt.

Register 6: I²C Master Raw Interrupt Status (I2CMRIS), offset 0x014


This register specifies whether an interrupt is pending.

Register 7: I²C Master Masked Interrupt Status (I2CMMIS), offset 0x018


This register specifies whether an interrupt was signaled.

I2C Master Masked Interrupt Status (I2CMMIS)

Register 8: I²C Master Interrupt Clear (I2CMICR), offset 0x01C

This register clears the raw interrupt.

Register 9: I²C Master Configuration (I2CMCR), offset 0x020

This register configures the mode (Master or Slave) and sets the interface for test mode loopback.

			nfiguratio	on (I2C)	MCR)		,			,						•
	Offset 0x02 31	20 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	51	50	- 23	20		20	1 1		1	1	1	1	19	1	17	10
									erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	· ·			l	reser	ved			1	1	SFE	MFE		reserved		LPBK
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	R/W 0
	it/Field 31:6		Name		Type RO		Reset 0	F	Descripti Reserve never be	d bits re		n indetei	rminate	e value, a	and sh	ould
	5		SFE		R/W	/	0	ŀ	² C Slave	e Funct	ion Ena		_			
								5		de. If s	set, Slav	ve mode		e may op abled; oth		
	4		MFE		R/W	/	0	ľ	² C Mast	er Fund	ction Er	able				
								Ν	Master n	node. If	set, Ma	aster mo	ode is (e may op enabled; rface cloo	otherv	vise,
	3:1		reserve	ed	RO		0		Reserve never be			indetei	rminate	e value, a	and sh	ould
	0		LPBł	<	R/W	1	0	ľ	² C Loop	back						
								r t	normally	or in Lo e loopb	oopbac back cor	k mode.	. If set,	e is oper the devid nerwise, t	ce is p	

14.6 Register Descriptions (I²C Slave)

The remainder of this section lists and describes the I^2C slave registers, in numerical order by address offset. See also "Register Descriptions (I2C Master)" on page 312.

Register 10: I²C Slave Own Address (I2CSOAR), offset 0x000

This register consists of seven address bits that identify the Stellaris I²C device on the I²C bus.

I2C Slave Own Address Register (I2CSOAR) Offset 0x000

OAR

R/W

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	•		1	1	1	1	1	·	•	1	1	•
								res	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								_	_				_			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	•	•		•	•	•			•	•	1	1	'
					reserved								OAR			I
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D	it/Field	4	Nan	~~	т	/no	Re	cot	Descrip	otion						
Б		J	Indi	lie	1)	/pe	Ne:	Sel	Descrip	JUON						
	31:7		reser	ved	F	0	C)	Reserv	ed bits	return a	an inde	termina	te valu	e, and s	hould
									never b	be chan	aed.					
											0					

0 I²C Slave Own Address

This field specifies bits A6 through A0 of the slave address.

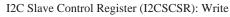
6:0

16

RO

0

Register 11: I²C Slave Control/Status (I2CSCSR), offset 0x004


This register accesses one control bit when written, and two status bits when read.

The read-only Status register consists of two bits: the RREQ bit and the TREQ bit. The Receive Request (RREQ) bit indicates that the Stellaris I²C device has received a data byte from an I²C master. Read one data byte from the I2C Slave Data (I2CSDR) register. The Transmit Request (TREQ) bit indicates that the Stellaris I²C device is addressed as a Slave Transmitter. Write one data byte into theI2C Slave Data (I2CSDR) register.

The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the Stellaris I²C slave operation.

	Offset 0x0	004														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1 1		l I		1	i i	rese	rved						i	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							resei	ved							TREQ	RREQ
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0

I2C Slave Status Register (I2CSCSR): Read Offeet 0x004

Offset 0x004 31 30 29 28 27 26 25 24 23 22 21 reserved Туре RO RO RO RO RO RO RO RO RO RO RO Reset 0 0 0 0 0 0 0 0 0 0 0

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[rese	rved						1		DA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	WO 0

Bit/Field	Name	Туре	Reset	Description
Read-Only Sta	atus Register			
31:2	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
1	TREQ	RO	0	This bit specifies the state of the I ² C slave with regards to outstanding transmit requests. If set, the I ² C unit has been addressed as a slave transmitter and uses clock stretching to delay the master until data has been written

k en written to the I2CSDR register. Otherwise, there is no outstanding transmit request.

20

RO

0

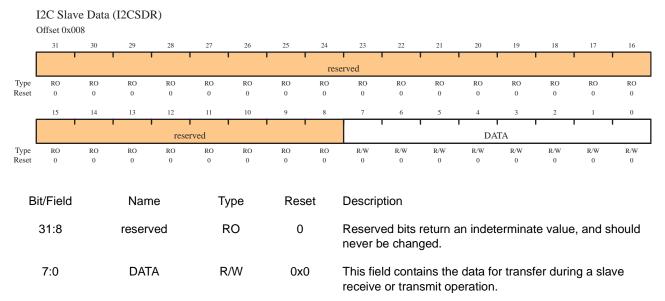
19

RO

0

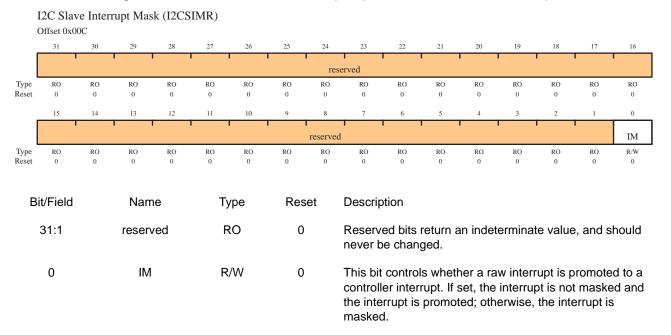
RO

0


RO

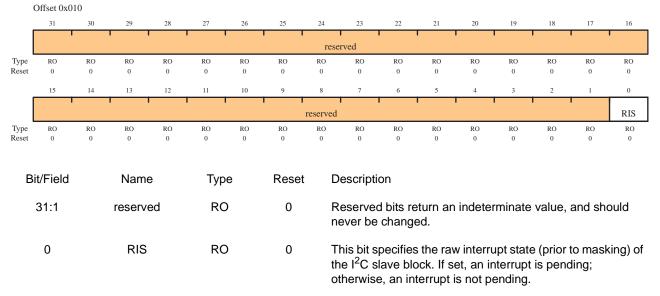
0

Bit/Field	Name	Туре	Reset	Description
0	RREQ	RO	0	Receive Request
				This bit specifies the status of the I^2C slave with regards to outstanding receive requests. If set, the I^2C unit has outstanding receive data from the I^2C master and uses clock stretching to delay the master until the data has been read from the I2CSDR register. Otherwise, no receive data is outstanding.
Write-Only Co	ntrol Register			
31:1	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.
0	DA	WO	0	Device Active 1=Enables the I ² C slave operation. 0=Disables the I ² C slave operation.

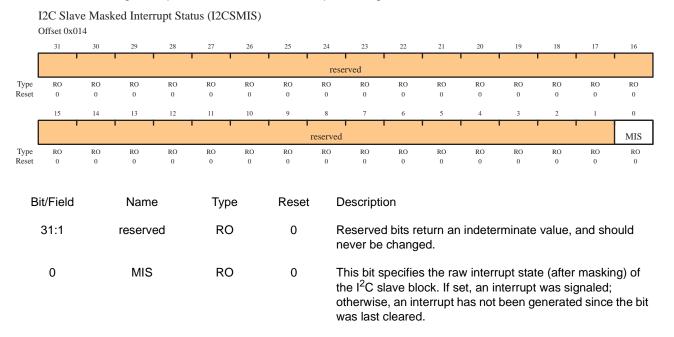

Register 12: I²C Slave Data (I2CSDR), offset 0x008

This register contains the data to be transmitted when in the Slave Transmit state, and the data received when in the Slave Receive state.

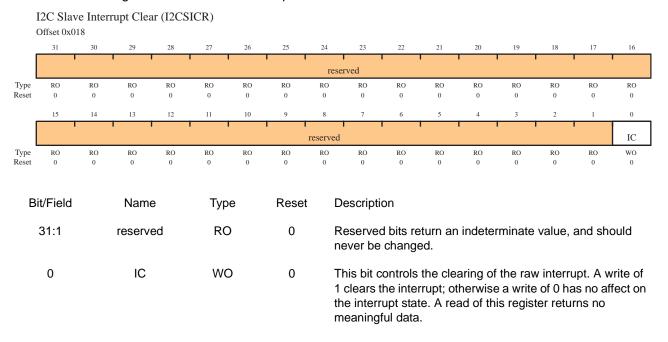
Register 13: I²C Slave Interrupt Mask (I2CSIMR), offset 0x00C


This register controls whether a raw interrupt is promoted to a controller interrupt.

Register 14: I²C Slave Raw Interrupt Status (I2CSRIS), offset 0x010


This register specifies whether an interrupt is pending.

I2C Slave Raw Interrupt Status (I2CSRIS)


Register 15: I²C Slave Masked Interrupt Status (I2CSMIS), offset 0x014

This register specifies whether an interrupt was signaled.

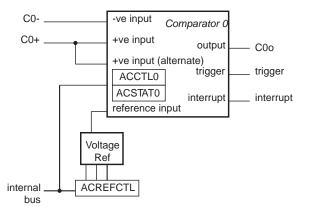
Register 16: I²C Slave Interrupt Clear (I2CSICR), offset 0x018

This register clears the raw interrupt.

15 Analog Comparator

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S316 controller provides one analog comparator that can be configured to drive an output or generate an interrupt or ADC event.

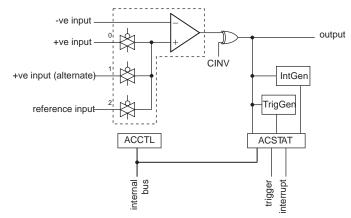

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge.

15.1 Block Diagram

Figure 15-1. Analog Comparator Module Block Diagram


15.2 Functional Description

Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module) for the analog input pin be disabled to prevent excessive current draw from the I/O pads.

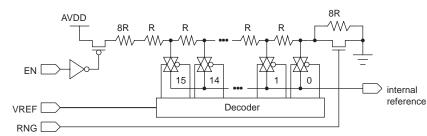
The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

As shown in Figure 15-2, the input source for VIN- is an external input. In addition to an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.

Figure 15-2. Structure of Comparator Unit

A comparator is configured through two status/control registers (ACCTL and ACSTAT). The internal reference is configured through one control register (ACREFCTL). Interrupt status and control is configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the comparators are shown in Table 15-1.

Typically, the comparator output is used internally to generate controller interrupts. It may also be used to drive an external pin or generate an analog-to-digital converter (ADC) trigger.


Important: Certain register bit values must be set before using the analog comparators. The proper pad configuration for the comparator input and output pins are described in Table 8-1 on page 113.

ACCNTL0			Comparator 0		
ASRCP	VIN-	VIN+	Output	Interrupt	ADC Trigger
00	C0-	C0+	C0o	yes	yes
01	C0-	C0+	C0o	yes	yes
10	C0-	Vref	C0o	yes	yes
11	C0-	reserved	C0o	yes	yes

Table 15-1. Comparator 0 Operating Modes

15.2.1 Internal Reference Programming

The structure of the internal reference is shown in Figure 15-3. This is controlled by a single configuration register (**ACREFCTL**). Table 15-2 shows the programming options to develop specific internal reference values, to compare an external voltage against a particular voltage generated internally.

Figure 15-3. Comparator Internal Reference Structure

Table 15-2.	Internal Reference Voltage and ACREFCTL Field Values
-------------	--

ACREFCT	L Register	Output Deference Veltere Record on VREE Field Velue
EN Bit Value	RNG Bit Value	Output Reference Voltage Based on VREF Field Value
EN=0	RNG=X	0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0 for the least noisy ground reference.
EN=1	RNG=0	Total resistance in ladder is 32 R. $V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_T}$ $V_{REF} = AV_{DD} \times \frac{(VREF + 8)}{32}$ $V_{REF} = 0.825 + 0.103 \cdot VREF$ The range of internal reference in this mode is 0.825–2.37 V.
	RNG=1	Total resistance in ladder is 24 R. $V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_T}$ $V_{REF} = AV_{DD} \times \frac{(VREF)}{24}$ $V_{REF} = 0.1375 \cdot VREF$ The range of internal reference for this mode is 0.0–2.0625 V.

15.3 Initialization and Configuration

The following example shows how to configure analog comparator to read back its output value from an internal register.

- 1. Enable the analog comparator 0 clock by writing a value of 0x00100000 to the **RCGC1** register in the System Control module.
- 2. In the GPIO module, enable the GPIO port/pin associated with C0- as a GPIO input.
- **3.** Configure the internal voltage reference to 1.65 V by writing the **ACREFCTL** register with the value 0x0000030C.
- 4. Configure comparator 0 to use the internal voltage reference and to *not* output a value on the C00 pin by writing the **ACCTL0** register with the value of 0x0000040C.

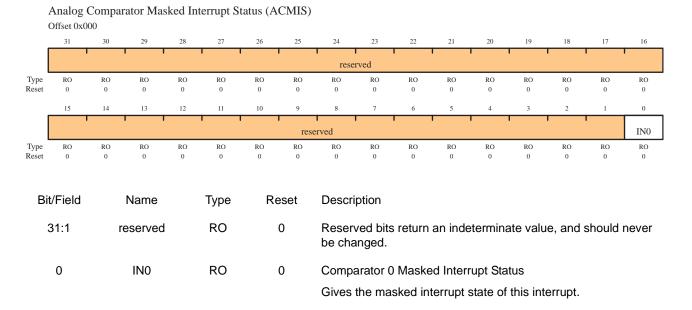
- 5. Delay for some time.
- 6. Read the comparator output value by reading the **ACSTAT0** register's OVAL value.

Change the level of the signal input on CO- to see the OVAL value change.

15.4 Register Map

Table 15-3 lists the comparator registers. The offset listed is a hexadecimal increment to the register's address, relative to the Analog Comparator base address of 0x4003C000.

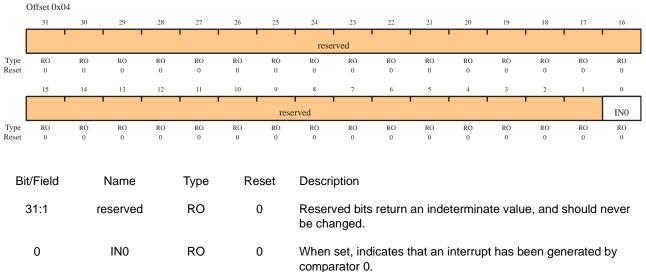
Offset	Name	Reset	Туре	Description	See page
0x00	ACMIS	0x00000000	RO	Interrupt status	338
0X04	ACRIS	0x00000000	RO	Raw interrupt status	339
0X08	ACINTEN	0x00000000	R/W	Interrupt enable	340
0x10	ACREFCTL	0x00000000	R/W	Reference voltage control	341
0x20	ACSTAT0	0x00000000	RO	Comparator 0 status	342
0x24	ACCTL0	0x00000000	RW	Comparator 0 control	343


Table 15-3. Analog Comparator Register Map

15.5 Register Descriptions

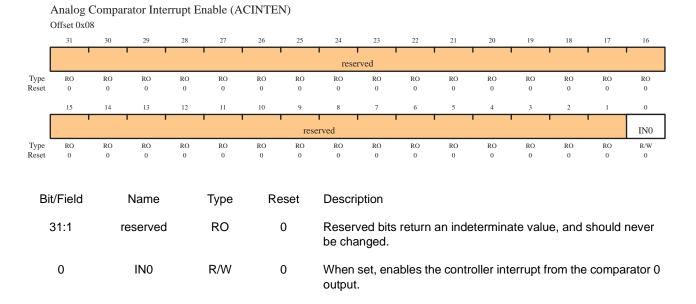
The remainder of this section lists and describes the Analog Comparator registers, in numerical order by address offset.

Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00


This register provides a summary of the interrupt status (masked) of the comparator.

October 8, 2006

Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04

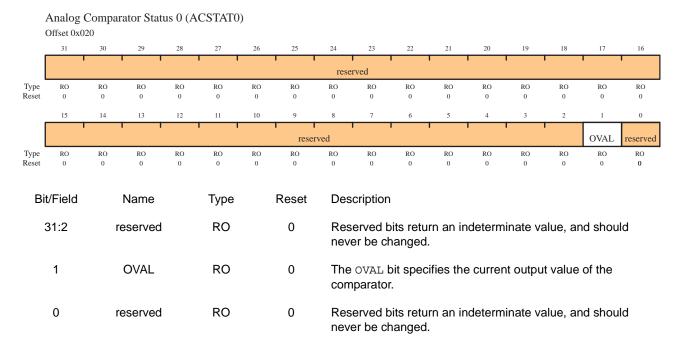

This register provides a summary of the interrupt status (raw) of the comparator.

Analog Comparator Raw Interrupt Status (ACRIS)

Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08

This register provides the interrupt enable for the comparator.

Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10


This register specifies whether the resistor ladder is powered on as well as the range and tap.

	Offset 0x01	0					()								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	· ·							rese	rved			•				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EN	RNG				•		VR	EF	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Bi	t/Field		Name		Туре		Reset	Des	cription							
3	31:10	r	eserved		RO		0		erved b er be ch			determ	inate va	ilue, an	d shou	ld
	9		EN		R/W		0	on.		resisto	r ladde	r is unp	resistor owered I V _{DD} .		•	
													ternal ro ised and			
	8		RNG		R/W		0	resis		der has	a total	resistar	f the rea nce of 3 4 R.			
	7:4	r	eserved		RO		0		erved b er be ch			determ	inate va	ilue, an	d shou	ld
	3:0		VREF		R/W		0	pas: corr volta	sed thro espond age ava	ough an ing to th ilable fo	analog ne tap p or comp	g multipl position parison.	esistor la lexer. Tl is the ir See Tal e examp	he volta nternal ple 15-2	age referer	nce

Analog Comparator Reference Voltage Control (ACREFCTL) Offset 0x010

Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x20

This register specifies the current output value of that comparator.

Register 6: Analog Comparator Control 0 (ACCTL0), offset 0x24

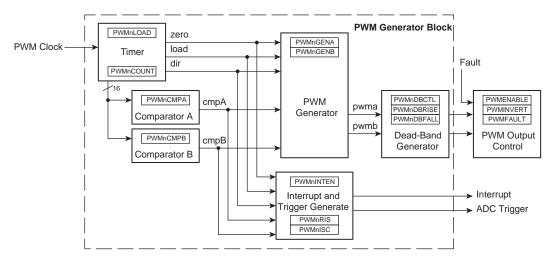
This register configures that comparator's input and output.

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved		'			•		
pe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		rese	rved		TOEN	AS	SRCP	reserved	TSLVAL	TS	i Sen	ISLVAL	IS	EN	CINV	reserv
pe et	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0
Rit	/Field		Name		Туре		Reset	Des	cription							
			Name		туре											
3	1:12	r	eserved		RO		0		erved b er be ch			indetermi	nate va	alue, ar	nd shoul	d
	11		TOEN		R/W		0	ADO	C. If 0, th	ie eve	nt is su	e ADC ev oppressed ed to the <i>i</i>	d and n			
1	0:9	,	ASRCP		R/W		0	VIN		al of th		s the soun parator.				
								AS	SRCP	Fund	ction					
									00	Pin ۷	value					
									01	Pin ۷	value c	of C0+				
									10	Inter	nal vo	ltage refe	erence			
									11	Res	erved					
	8	r	eserved		RO		0		erved b er be ch			indetermi	nate va	alue, ar	nd shoul	d
	7	Ţ	ſSLVAL		R/W		0	gen eve	erates a nt is gen	n ADC eratec	c event d if the	s the sen t if in Leve compara ted if the	el Sens tor outp	e mode out is Lo	e. If 0, a ow. Othe	n AD erwis
(6:5		TSEN		R/W		0		generat			the sens				
									TSEN	Fu	unction	l				
									00	Le	evel se	nse, see	TSLVA	L		
									01	Fa	alling e	dge				
									10		sing e					
									-		3.5	5				

Bit/Field	Name	Туре	Reset	et Description								
4	ISLVAL	R/W	0	The ISLVAL bit specifies the sense value of the input that generates an interrupt if in Level Sense mode. If 0, an interrupt is generated if the comparator output is Low. Otherwise, an interrupt is generated if the comparator outp is High.								
3:2	ISEN	R/W	0	The ISEN field specifies the sense of the comparator output that generates an interrupt. The sense conditioning is as follows:	ut							
				ISEN Function								
				00 Level sense, see ISLVAL								
				01 Falling edge								
				10 Rising edge								
				11 Either edge								
1	CINV	R/W	0	The CINV bit conditionally inverts the output of the comparator. If 0, the output of the comparator is unchanged. If 1, the output of the comparator is inverted prior to being processed by hardware.								
0	reserved	RO	0	Reserved bits return an indeterminate value, and should never be changed.								

16 Pulse Width Modulator (PWM)

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control.


The LM3S316 PWM module consists of two PWM generator blocks and a control block. Each PWM generator block contains one timer (16-bit down or up/down counter), two comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. The control block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals (other than being based on the same timer and therefore having the same frequency) or a single pair of complementary signals with dead-band delays inserted. The output of the PWM generation blocks are managed by the output control block before being passed to the device pins.

The LM3S316 PWM module provides a great deal of flexibility. It can generate simple PWM signals, such as those required by a simple charge pump. It can also generate paired PWM signals with dead-band delays, such as those required by a half-H bridge driver.

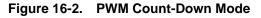
16.1 Block Diagram

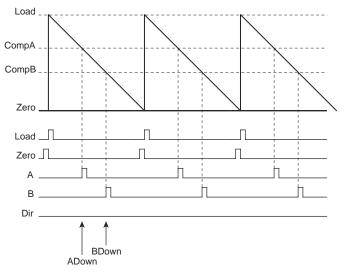
Figure 16-1 provides a block diagram of a Stellaris PWM module. The LM3S316 controller contains two generator blocks (PWM0 and PWM1) and generates four independent PWM signals or two paired PWM signals with dead-band delays inserted.

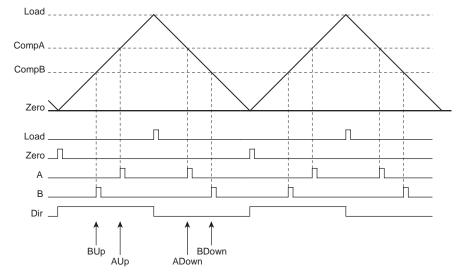
Figure 16-1. PWM Module Block Diagram

16.2 Functional Description

16.2.1 PWM Timer

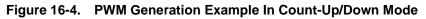

The timer in each PWM generator runs in one of two modes: Count-Down mode or Count-Up/ Down mode. In Count-Down mode, the timer counts from the load value to zero, goes back to the load value, and continues counting down. In Count-Up/Down mode, the timer counts from zero up to the load value, back down to zero, back up to the load value, and so on. Generally, Count-Down mode is used for generating left- or right-aligned PWM signals, while the Count-Up/Down mode is used for generating center-aligned PWM signals.

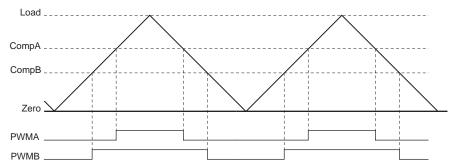

The timers output three signals that are used in the PWM generation process: the direction signal (this is always Low in Count-Down mode, but alternates between Low and High in Count-Up/Down mode), a single-clock-cycle-width High pulse when the counter is zero, and a single-clock-cycle-width High pulse when the counter is equal to the load value. Note that in Count-Down mode, the zero pulse is immediately followed by the load pulse.


16.2.2 **PWM Comparators**

There are two comparators in each PWM generator that monitor the value of the counter; when either match the counter, they output a single-clock-cycle-width High pulse. When in Count-Up/ Down mode, these comparators match both when counting up and when counting down; they are therefore qualified by the counter direction signal. These qualified pulses are used in the PWM generation process. If either comparator match value is greater than the counter load value, then that comparator never outputs a High pulse.

Figure 16-2 shows the behavior of the counter and the relationship of these pulses when the counter is in Count-Down mode. Figure 16-3 shows the behavior of the counter and the relationship of these pulses when the counter is in Count-Up/Down mode.

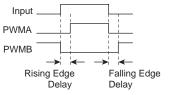



Figure 16-3. PWM Count-Up/Down Mode

16.2.3 PWM Signal Generator

The PWM generator takes these pulses (qualified by the direction signal), and generates two PWM signals. In Count-Down mode, there are four events that can affect the PWM signal: zero, load, match A down, and match B down. In Count-Up/Down mode, there are six events that can affect the PWM signal: zero, load, match A down, match A up, match B down, and match B up. The match A or match B events are ignored when they coincide with the zero or load events. If the match A and match B events coincide, the first signal, PWMA, is generated based only on the match A event, and the second signal, PWMB, is generated based only on the match B event.

For each event, the effect on each output PWM signal is programmable: it can be left alone (ignoring the event), it can be toggled, it can be driven Low, or it can be driven High. These actions can be used to generate a pair of PWM signals of various positions and duty cycles, which do or do not overlap. Figure 16-4 shows the use of Count-Up/Down mode to generate a pair of center-aligned, overlapped PWM signals that have different duty cycles.


In this example, the first generator is set to drive High on match A up, drive Low on match A down, and ignore the other four events. The second generator is set to drive High on match B up, drive Low on match B down, and ignore the other four events. Changing the value of comparator A changes the duty cycle of the PWMA signal, and changing the value of comparator B changes the duty cycle of the PWMB signal.

16.2.4 Dead-Band Generator

The two PWM signals produced by the PWM generator are passed to the dead-band generator. If disabled, the PWM signals simply pass through unmodified. If enabled, the second PWM signal is lost and two PWM signals are generated based on the first PWM signal. The first output PWM signal is the input signal with the rising edge delayed by a programmable amount. The second output PWM signal is the inversion of the input signal with a programmable delay added between the falling edge of the input signal and the rising edge of this new signal.

This is therefore a pair of active High signals where one is always High, except for a programmable amount of time at transitions where both are Low. These signals are therefore suitable for driving a half-H bridge, with the dead-band delays preventing shoot-through current from damaging the power electronics. Figure 16-5 shows the effect of the dead-band generator on an input PWM signal.

Figure 16-5. PWM Dead-Band Generator

16.2.5 Interrupt/ADC-Trigger Selector

The PWM generator also takes the same four (or six) counter events and uses them to generate an interrupt or an ADC trigger. Any of these events or a set of these events can be selected as a source for an interrupt; when any of the selected events occur, an interrupt is generated. Additionally, the same event, a different event, the same set of events, or a different set of events can be selected as a source for an ADC trigger; when any of these selected events occur, an ADC trigger pulse is generated. The selection of events allows the interrupt or ADC trigger to occur at a specific position within the PWM signal. Note that interrupts and ADC triggers are based on the raw events; delays in the PWM signal edges caused by the dead-band generator are not taken into account.

16.2.6 Synchronization Methods

There is a global reset capability that can synchronously reset any or all of the counters in the PWM generator. If multiple PWM generators are configured with the same counter load value, this can be used to guarantee that they also have the same count value (this does imply that the PWM generators must be configured before they are synchronized). With this, more than two PWM signals can be produced with a known relationship between the edges of those signals since the counters always have the same values.

The counter load values and comparator match values of the PWM generator can be updated in two ways. The first is immediate update mode, where a new value is used as soon as the counter reaches zero. By waiting for the counter to reach zero, a guaranteed behavior is defined, and overly short or overly long output PWM pulses are prevented.

The other update method is synchronous, where the new value is not used until a global synchronized update signal is asserted, at which point the new value is used as soon as the counter reaches zero. This second mode allows multiple items in multiple PWM generators to be updated simultaneously without odd effects during the update; everything runs from the old values until a point at which they all run from the new values. The Update mode of the load and comparator match values can be individually configured in each PWM generator block. It only makes sense to use the synchronous update mechanism across PWM generator blocks when the

timers in those blocks are synchronized, though this is not required in order for this mechanism to function properly.

16.2.7 Fault Conditions

There are two external conditions that affect the PWM block; the signal input on the Fault pin and the stalling of the controller by a debugger. There are two mechanisms available to handle such conditions: the output signals can be forced into an inactive state and/or the PWM timers can be stopped.

Each output signal has a fault bit. If set, a fault input signal causes the corresponding output signal to go into the inactive state. If the inactive state is a safe condition for the signal to be in for an extended period of time, this keeps the output signal from driving the outside world in a dangerous manner during the fault condition. A fault condition can also generate a controller interrupt.

Each PWM generator can also be configured to stop counting during a stall condition. The user can select for the counters to run until they reach zero then stop, or to continue counting and reloading. A stall condition does not generate a controller interrupt.

16.2.8 Output Control Block

With each PWM generator block producing two raw PWM signals, the output control block takes care of the final conditioning of the PWM signals before they go to the pins. Via a single register, the set of PWM signals that are actually enabled to the pins can be modified; this can be used, for example, to perform commutation of a brushless DC motor with a single register write (and without modifying the individual PWM generators, which are modified by the feedback control loop). Similarly, fault control can disable any of the PWM signals as well. A final inversion can be applied to any of the PWM signals, making them active Low instead of the default active High.

16.3 Initialization and Configuration

The following example shows how to initialize the PWM Generator 0 with a 25-KHz frequency, and with a 25% duty cycle on the PWM0 pin and a 75% duty cycle on the PWM1 pin. This example assumes the system clock is 20 MHz.

- 1. Enable the PWM clock by writing a value of 0x00100000 to the **RCGC0** register in the System Control module.
- 2. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register.
- 3. Configure the **Run-Mode Clock Configuration (RCC)** register in the System Control module to use the PWM divide (USEPWMDIV) and set the divider (PWMDIV) to divide by 2 (000).
- Configure the PWM generator for countdown mode with immediate updates to the parameters.
 - Write the **PWM0CTL** register with a value of 0x00000000.
 - Write the **PWM0GENA** register with a value of 0x000008C.
 - Write the **PWM0GENB** register with a value of 0x0000080C.
- 5. Set the period. For a 25-KHz frequency, the period = 1/25,000, or 40 microseconds. The PWM clock source is 10 MHz; the system clock divided by 2. This translates to 400 clock ticks per period. Use this value to set the PWM0LOAD register. In Count-Down mode, set the LOAD field in the PWM0LOAD register to the requested period minus one.
 - Write the PWM0LOAD register with a value of 0x0000018F.
- 6. Set the pulse width of the PWM0 pin for a 25% duty cycle.

- Write the **PWM0CMPA** register with a value of 0x0000012B.
- 7. Set the pulse width of the PWM1 pin for a 75% duty cycle.
 - Write the **PWM0CMPB** register with a value of 0x0000063.
- 8. Start the timers in PWM generator 0.
 - Write the **PWM0CTL** register with a value of 0x00000001.
- 9. Enable PWM outputs.
 - Write the **PWMENABLE** register with a value of 0x00000003.

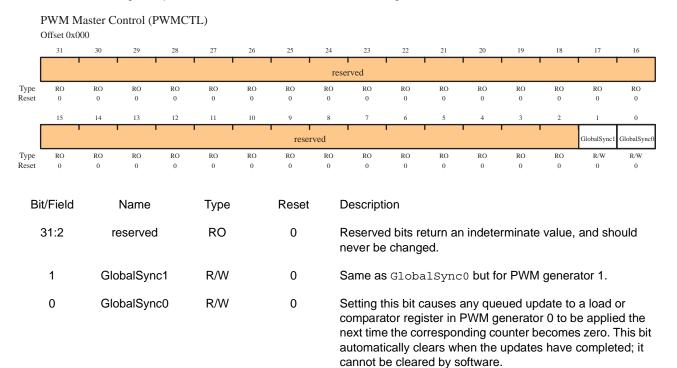
16.4 Register Map

Table 16-2 lists the PWM registers. The offset listed is a hexadecimal increment to the register's address, relative to the PWM base address of 0x40028000.

Table 16-1. PWM Register Map (Sheet 1 of 2)

Offset	Name	Reset	Туре	Description	See page
PWM Mod	dule Control				
0x000	PWMCTL	0x00000000	R/W	Master control of the PWM module	352
0x004	PWMSYNC	0x00000000	R/W	Counter synchronization for the PWM generators	353
0x008	PWMENABLE	0x00000000	R/W	Master enable for the PWM output pins	354
0x00C	PWMINVERT	0x00000000	R/W	Inversion control for the PWM output pins	355
0x010	PWMFAULT	0x00000000	R/W	Fault handling for the PWM output pins	356
0x014	PWMINTEN	0x00000000	R/W	Interrupt enable	357
0x018	PWMRIS	0x00000000	RO	Raw interrupt status	358
0x01C	PWMISC	0x00000000	R/W1C	Interrupt status and clear	359
0x020	PWMSTATUS	0x00000000	RO	Value of the Fault input signal	360
PWM Ger	nerator 0		1		
0x040	PWM0CTL	0x00000000	R/W	Master control of the PWM0 generator block	361
0x044	PWM0INTEN	0x00000000	R/W	Interrupt and trigger enable	363
0x048	PWMORIS	0x00000000	RO	Raw interrupt status	365
0x04C	PWM0ISC	0x00000000	R/W1C	Interrupt status and clear	366
0x050	PWM0LOAD	0x00000000	R/W	Load value for the counter	367
0x054	PWM0COUNT	0x00000000	RO	Current counter value	367
0x058	PWM0CMPA	0x00000000	R/W	Comparator A value	369
0x05C	PWM0CMPB	0x00000000	R/W	Comparator B value	370
0x060	PWM0GENA	0x00000000	R/W	Controls PWM generator A	371

Offset	Name	Reset	Туре	Description	See page
0x064	PWM0GENB	0x00000000	R/W	Controls PWM generator B	373
0x068	PWM0DBCTL	0x00000000	R/W	Control the dead-band generator	374
0x06C	PWM0DBRISE	0x00000000	R/W	Dead-band rising-edge delay count	375
0x070	PWM0DBFALL	0x00000000	R/W	Dead-band falling-edge delay count	376
PWM Ger	nerator 1				
0x080	PWM1CTL	0x00000000	R/W	Master control of the PWM1 generator block	361
0x084	PWM1INTEN	0x00000000	R/W	Interrupt and trigger enable	363
0x088	PWM1RIS	0x00000000	RO	Raw interrupt status	365
0x08C	PWM1ISC	0x00000000	R/W1C	Interrupt status and clear	366
0x090	PWM1LOAD	0x00000000	R/W	Load value for the counter	367
0x094	PWM1COUNT	0x00000000	RO	Current counter value	368
0x098	PWM1CMPA	0x00000000	R/W	Comparator A value	369
0x09C	PWM1CMPB	0x00000000	R/W	Comparator B value	370
0x0A0	PWM1GENA	0x00000000	R/W	Controls PWM generator A	371
0x0A4	PWM1GENB	0x00000000	R/W	Controls PWM generator B	373
0x0A8	PWM1DBCTL	0x00000000	R/W	Control the dead-band generator	374
0x0AC	PWM1DBRISE	0x00000000	R/W	Dead-band rising-edge delay count	375
0x0B0	PWM1DBFALL	0x00000000	R/W	Dead-band falling-edge delay count	376


Table 16-1. PWM Register Map (Sheet 2 of 2)

16.5 Register Descriptions

The remainder of this section lists and describes the PWM registers, in numerical order by address offset.

Register 1: PWM Master Control (PWMCTL), offset 0x000

This register provides master control over the PWM generation blocks.

Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004

This register provides a method to perform synchronization of the counters in the PWM generation blocks. Writing a bit in this register to 1 causes the specified counter to reset back to 0; writing multiple bits resets multiple counters simultaneously. The bits auto-clear after the reset has occurred; reading them back as zero indicates that the synchronization has completed.

	011000 011	001																	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		1	1 1		1 1		т т		1	1			1	1	1				
								re	served										
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
							_	_	_				-			_			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
		1	1 1		1 1		1 1		1	1	1	1	1	1					
							reserved								Sync1	Sync0			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Bi	t/Field									Description									
:	31:2	2 reserved RO 0 Reserved bits return an i never be changed.								n indete	rminate	e value,	and she	ould					
	1	Sync1 R/W 0 Perfo							Performs a reset of the PWM generator 1 counter.										
	0 Sync0 R/W					0		Performs a reset of the PWM generator 0 counter.											

PWM Time Base Sync (PWMSYNC) Offset 0x004

Register 3: PWM Output Enable (PWMENABLE), offset 0x008

This register provides a master control of which generated PWM signals are output to device pins. By disabling a PWM output, the generation process can continue (for example when the time bases are synchronized) without driving PWM signals to the pins. When bits in this register are set, the corresponding PWM signal is passed through to the output stage, which is controlled by the **PWMINVERT** register. When bits are not set, the PWM signal is replaced by a zero value which is also passed to the output stage.

	Offset 0x008																		
	31	3	50	29	2	8	27	26	25	24	23	22	21	20	19	18	17	16	
		1	i		1	1	- i		1	1	1	1	1	1	1	1	1	1	
										re	eserved								
Туре	RO		0	RO	R		RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0		0	0	()	0	0	0	0	0	0	0	0	0	0	0	0	
	15	1	4	13	1	2	11	10	9	8	7	6	5	4	3	2	1	0	
1	-	1	1		1	Т	1		1	1	1	1	1	1			1		
								res	erved						PWM3En	PWM2En	PWM1En	PWM0En	
Туре	RO	R	0.	RO	R	0	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	
Reset	0		0	0	()	0	0	0	0	0	0	0	0	0	0	0	0	
	Bit/Field Name 31:4 reserved						Type RO		Rese 0	et	Descrip		roturn	n indo	terminate	a valua	and sh	ould	
								-		never k				lenninau		, anu si	iouiu		
	3	PWM3En					R/W		0		When s to the c			generat	ed PWN	13 signa	al to be p	bassed	
	2	PWM2En					R/W		0			When set, allows the generated PWM2 signal to be passed to the device pin.							
	1 PWM1En					R/W 0			When set, allows the generated PWM1 signal to be passed to the device pin.										
0 PWM0En								When set, allows the generated PWM0 signal to be passed to the device pin.											

PWM Output Enable (PWMENABLE) Offset 0x008

Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C

This register provides a master control of the polarity of the PWM signals on the device pins. The PWM signals generated by the dead-band block are active High; they can optionally be made active Low via this register. Disabled PWM channels are also passed through the output inverter (if so configured) so that inactive channels maintain the correct polarity.

	Offset 0x	·	inversion.	(/										
	31	30	29	2	8	27	26	25	24	23	22	21	20	19	18	17	16
		1		1	1			1	re	served	1	1	1	1	I	1	•
Type Reset	RO 0	RO 0	RO 0	R	0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	1	2	11	10	9	8	7	6	5	4	3	2	1	0
			I	1	1	1	rese	erved	1	1	T	1	1	PWM3Inv	PWM2Inv	PWM1Inv	PWM0Inv
Type Reset	RO 0	RO 0	RO 0		0)	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/Field Name Type Reset Description																	
;	31:4		reserv	ed		RO		0		Reserve never be			n indete	erminate	value,	and she	ould
	3		PWM3	M3Inv R/W 0 When set, the generated PWM3 signal is inverted.													
	2		PWM2	Inv		R/W		0	0 When set, the generated PWM2 signal is inverted.								
	1		PWM1	Inv		R/W		0	,	When s	et, the g	generat	ed PWI	M1 signa	al is inve	erted.	
	0		PWM0Inv R/W 0 When set, the generated PWM0 signal is inverted.														

PWM Output Inversion (PWMINVERT)

Register 5: PWM Output Fault (PWMFAULT), offset 0x010

This register controls the behavior of the PWM outputs in the presence of fault conditions. Both the fault input and debug events are considered fault conditions. On a fault condition, each PWM signal can either be passed through unmodified or driven Low. For outputs that are configured for pass-through, the debug event handling on the corresponding PWM generator also determines if the PWM signal continues to be generated.

Fault condition control happens before the output inverter, so PWM signals driven Low on fault are inverted if the channel is configured for inversion (therefore, the pin is driven High on a fault condition).

PWM Output Fault (PWMFAULT) Offset 0x010

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I						1	1 n	eserved	1	1	1	1		I	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	l		1 1			rese	erved	1	1	1	1	1	Fault3	Fault2	Fault1	Fault0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре		Rese	t	Descript	ion						
;	31:4 reserved				RO		0		Reserve never be			n indete	rminate	value,	and sho	bluc
	3		Fault3		R/W		0		When se		WM3 o	output s	ignal is	driven l	_ow on	a fault
	2	Fault2 R/W 0						When set, the PWM2 output signal is driven Low on a fault condition.								
	1		Fault1 R/W 0					When se		WM1 o	output s	ignal is	driven l	_ow on	a fault	
	0 Fault0 R/W 0				0		When set, the PWM0 output signal is driven Low on condition.					a fault				

Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014

This register controls the global interrupt generation capabilities of the PWM module. The events that can cause an interrupt are the fault input and the individual interrupts from the PWM generators.

	Offset 0x014															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1 1		1 1	reserve	d	I	I	I	I	1	1	IntFault
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	l		1 1		1 1		reserved		1	I	I	I	I	I	IntPWM1	IntPWM0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0
Bi	t/Field		Name		Туре		Reset		Descript	ion						
							Reserved bits return an indeterminate value, and should never be changed.									
	16		IntFault		R/W		0		When 1, asserted		rrupt oc	curs wl	hen the	fault ir	nput is	
								rved bits return an indeterminate value, and should be changed.								
	1 IntPWM1 R/W 0						When 1, an interrupt occurs when the PWM generator 1 block asserts an interrupt.									
	0 IntPWM0 R/W 0				0		When 1, an interrupt occurs when the PWM generator 0 block asserts an interrupt.						or 0			

PWM Interrupt Enable (PWMINTEN)

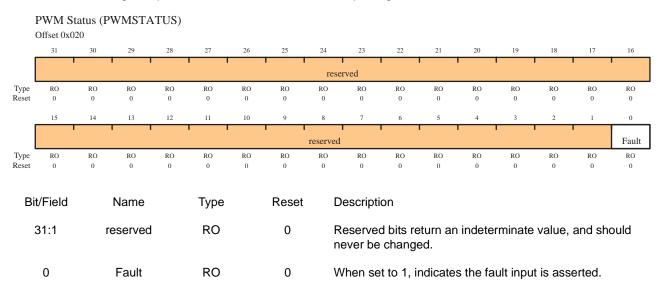
Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018

This register provides the current set of interrupt sources that are asserted, regardless of whether they cause an interrupt to be asserted to the controller. The fault interrupt is latched on detection; it must be cleared through the **PWM Interrupt Status and Clear (PWMISC)** register (see page 359). The PWM generator interrupts simply reflect the status of the PWM generators; they are cleared via the interrupt status register in the PWM generator blocks. Bits set to 1 indicate the events that are active; a zero bit indicates that the event in guestion is not active.

	Offset 0X	010															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1	1	1 1		1		1		1	1	1		1	LEL	
								reserved								IntFault	
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1	I	1	1 1		reser	rved	1		T	1	1	T	IntPWM1	IntPWM0	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Bit/Field Name 31:17 reserved 16 IntFault			d	Type RO		Reset 0	F	Descripti Reserve lever be	d bits re		n indete	rminate	e value,	and sh	ould	
	16		IntFault	t	RO		0	lı	Indicates that the fault input has been asserted.								
	15:2 reserved			d	RO	0		Reserved bits return an indeterminate value, and should never be changed.						ould			
1 IntPWM1		1	RO		0		ndicates nterrupt.		e PWN	I genera	ator 1 b	lock is	assertin	ig its			
0 IntPWM0		0					Indicates that the PWM generator 0 block is asserting its interrupt.										

PWM Raw Interrupt Status (PWMRIS) Offset 0x018

Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C


This register provides a summary of the interrupt status of the PWM generator blocks. A bit set to 1 indicates that the corresponding generator block is asserting an interrupt. The individual interrupt status registers in each block must be consulted to determine the reason for the interrupt, and used to clear the interrupt. For the fault interrupt, a write of 1 to that bit position clears the latched interrupt status.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	-	i i	1		1 1		1 1		1	i I		1	i	i	1	
								reserve	1							IntFault
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1				reser	rved	1	1		1	l	1	IntPWM	l IntPWM0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре		Reset		Descript	ion						
3	31:17 reserved RO						0		Reserve	d hits re	turn ai	n indetei	rminate	value	and sh	ould
	1:17 reserved				NO		Ū			e change		i indetei	minate	value,		ould
	16		IntFoult				0		ndiaata	, if the f			oortina	on into	rrunt	
	16		IntFault		R/W1C	,	0		nuicates	s ii the ia	aun inp	out is as	sening	an me	nupi.	
	15:2		reserved		RO		0		Reserve	d bits re	eturn ai	n indetei	rminate	value.	and sh	ould
							-		Reserved bits return an indeterminate value, and should never be changed.							
	1 IntPWM1 RO				0		Indicates if the PWM generator 1 block is asserting an									
								I	interrupt.							
	0		IntPWM)	RO		0		Indicates if the PWM generator 0 block is asserting an							an
	Ŭ								nterrupt			enerator		10 00	soning	

PWM Interrupt Status and Clear (PWMISC) Offset 0x01C

Register 9: PWM Status (PWMSTATUS), offset 0x020

This register provides the status of the Fault input signal.

Register 10: PWM0 Control (PWM0CTL), offset 0x040

Register 11: PWM1 Control (PWM1CTL), offset 0x080

These registers configure the PWM signal generation blocks (**PWM0CTL** controls the PWM generator 0 block, and so on). The Register Update mode, Debug mode, Counting mode, and Block Enable mode are all controlled via these registers. The block produce the PWM signals, which can be either two independent PWM signals (from the same counter), or a paired set of PWM signals with dead-band delays added.

The PWM0 block produces the PWM0 and PWM1 outputs, and the PWM1 block produces the PWM2 and PWM3 outputs.

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ſ				1 1		т т	res	erved	I	1	1 1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					reser	ved	<u> </u>		<u> </u>		CmpBUp	lCmpAUpd	LoadUpd	Debug	Mode	Enable
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	/Field		Name		Туре		Reset	[Descripti	on						
3	31:6	re	eserved		n indeter	rminate	value,	and she	buld							
	5	C	mpBUp	d	R/W		0	Same as	CmpAl	Jpd but	for the	compar	ator B ı	egister		
	4	Cı	mpAUpo	d	R/W		The Upd updates next time delayed synchror Master (to the r the co until the ous up	egister ounter is e next ti odate ha	are refle 0. If 1, me the as been	ected to updates counter request	the co s to the is 0 aff ed thro	mparate registe ter a ugh the	or the er are e PWM		
	3	L	oadUpd	I	R/W		0	r c t ł	The Upd egister a counter i he next nas beer PWMC T	are refle s 0. If 1 time the n reque	ected to I, updat e count sted thi	the cou es to the er is 0 a	unter the e registe	e next t er are c ynchror	ime the lelayed nous up	until odate
	2		Debug		R/W		0	(The beha counter s continue I, the co	stops ru s runnii	unning v ng agai	vhen it r n when	next rea	ches 0	, and	

PWMn Control (PWMnCTL)

Bit/Field	Name	Туре	Reset	Description
1	Mode	R/W	0	The mode for the counter. If 0, the counter counts down from the load value to 0 and then wraps back to the load value (Count-Down mode). If 1, the counter counts up from 0 to the load value, back down to 0, and then repeats (Count-Up/Down mode).
0	Enable	R/W	0	Master enable for the PWM generation block. If 0, the entire block is disabled and not clocked. If 1, the block is enabled and produces PWM signals.

Register 12: PWM0 Interrupt/Trigger Enable (PWM0INTEN), offset 0x044

Register 13: PWM1 Interrupt/Trigger Enable (PWM1INTEN), offset 0x084

These registers control the interrupt and ADC trigger generation capabilities of the PWM generators (PWM0INTEN controls the PWM generator 0 block, and so on). The events that can cause an interrupt or an ADC trigger are:

- The counter being equal to the load register
- The counter being equal to zero
- The counter being equal to the comparator A register while counting up
- The counter being equal to the comparator A register while counting down
- The counter being equal to the comparator B register while counting up
- The counter being equal to the comparator B register while counting down

Any combination of these events can generate either an interrupt or an ADC trigger, though no determination can be made as to the actual event that caused an ADC trigger.

PWMn Interrupt/Trigger Enable (PWMnINTEN)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1 1		1		1	res	erved	1	1	1	1	I	I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[rese	rved	TrCmpBD 7	ГrCmpBU	TrCmpAD	TrCmpAU	TrCntLoad	TrCntZero	res	i served	IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
Type Reset	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit	/Field		Name		Reset		Туре	0	Descrip	tion						
3	31:14 reserved RO 0 Reserved bits return an inconstruction of the changed. 13 TrCmpBD R/W 0 When 1, a trigger pulse is construction.													value,	and sh	ould
	5															
	12	٦	「rCmpBU		R/W		0				er pulse B value	•				
	11	٦	「rCmpAD	I	R/W		0				er pulse A value					
	10	٦	「rCmpAU		R/W		0				er pulse A value					
	9	Т	rCntLoad	ł	R/W		0				er pulse D regist		ut when	the co	unter m	atches
	8	Т	rCntZerc)	R/W		0	V	Vhen 1	, a trigg	er pulse	is outp	out whe	n the co	ounter is	s 0.
	7:6		reserved		RO		0			ed bits r e chang	eturn an jed.	indete	rminate	value,	and sh	ould

Bit/Field	Name	Reset	Туре	Description
5	IntCmpBD	R/W	0	When 1, an interrupt occurs when the counter matches the comparator B value and the counter is counting down.
4	IntCmpBU	R/W	0	When 1, an interrupt occurs when the counter matches the comparator B value and the counter is counting up.
3	IntCmpAD	R/W	0	When 1, an interrupt occurs when the counter matches the comparator A value and the counter is counting down.
2	IntCmpAU	R/W	0	When 1, an interrupt occurs when the counter matches the comparator A value and the counter is counting up.
1	IntCntLoad	R/W	0	When 1, an interrupt occurs when the counter matches the PWMnLOAD register.
0	IntCntZero	R/W	0	When 1, an interrupt occurs when the counter is 0.

Register 14: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048

Register 15: PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088

These registers provide the current set of interrupt sources that are asserted, regardless of whether they cause an interrupt to be asserted to the controller (**PWMORIS** controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events that have occurred; a 0 bit indicates that the event in question has not occurred.

_	31		30	29		28	27	26	25	24	23	22	21	20	19	18	17	16
				1	1		1		1	1	eserved	1	1	1	1	1	1	
Trees	RO		DO	PO		DO	PO	DO	PO			PO	PO	PO	PO	PO	PO	D.O.
Type Reset	0 KO		RO 0	RO 0		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
								10			-		-					
ſ	15	-	14	13	-	12	11	10	9	8	7	6	5	4	3	2	1	0
							rese	rved					IntCmpBE	IntCmpB	U IntCmpAI	DIntCmpAU	J IntCntLoa	ad IntCntZero
Туре	RO		RO	RO		RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0		0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	/Field			Name	Э		Туре		Rese	et	Descrip	otion						
3	31:6			reserve	ed		RO		0		Reserv	ed bits r	eturn ar	n indete	erminate	e value.	and sl	hould
												e chang				,		
	~								0		la dia a tu			4				atar D
	5		I	ntCmp	BD		RO		0			es that th /hile cou			matche	ed the c	ompar	ator B
											raide ii		inting at					
	4		l	ntCmp	ΒU		RO		0			es that th			matche	ed the c	ompar	ator B
											value w	hile cou	nting up	э.				
	3		h	ntCmp	AD		RO		0		Indicate	es that th	ne coun	ter has	matche	ed the c	ompar	ator A
	Ū		•						Ũ			/hile cou					•p.a.	
									_									
	2		I	ntCmp	AU		RO		0			es that th			matche	ed the c	ompar	ator A
											value w	hile cou	nting up	J.				
	1		Ir	ntCntLo	bad		RO		0		Indicate	es that th	ne coun	ter has	matche	ed the F	WMnL	OAD
											register	:						
	0			· ~ · -			50		<i>c</i>							1.0		
	0		li	ntCntZ	ero		RO		0		Indicate	es that th	ne coun	ter has	matche	ed 0.		

PWMn Raw Interrupt Status (PWMnRIS)

Register 16: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C

Register 17: PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C

These registers provide the current set of interrupt sources that are asserted to the controller (**PWM0ISC** controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events that have occurred; a 0 bit indicates that the event in question has not occurred. These are R/W1C registers; writing a 1 to a bit position clears the corresponding interrupt reason.

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1			т т		1 1	re	served	1	1				1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[15			12	т т		1 1		1	T	-					
Туре	RO	RO	RO	RO	RO	RO RO	RO	RO	RO	RO	IntCmpBD R/W1C	IntCmpBU R/W1C	IntCmpAD R/W1C	IntCmpAU R/W1C	IntCntLoad R/W1C	IntCntZero R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	t/Field		Name		Туре		Reset		Descript	ion						
3	31:6	re	eserved		RO		0		Reserve	d bits re	eturn an	indete	rminate	value,	and she	ould
									never be							
	5	In	tCmpBl	C	R/W1C		0		Indicates	s that th	e count	er has i	matche	d the co	ompara	tor B
									value wh							
	4	In	tCmpBl	J	R/W1C		0		Indicates	s that th	e count	er has i	matche	d the co	ompara	tor B
	•			-			Ū		value wł						on para	
	3	In	tCmpAl	ר	R/W1C		0		Indicates	s that th	e count	er has i	matche	d the co	ompara	tor A
	Ũ		comp/ a		1		Ũ		value wł						ompara	
	2	In	tCmpAl	J	R/W1C		0		Indicates	s that th	e count	er has i	matche	d the co	omnara	tor A
	2		comp/ (101110		0		value wh				matorio		ompuru	
	1	Int	CntLoa	Ч	R/W1C		0		Indicates	e that th	e count	orbasi	matcho	d tha D	WMnL (
	ı			u	10,0010		U		register.	5 (1)(2) (1)		0 1103 1	matche		•••••••••	
	0	Int	tCntZer	0	R/W1C		0		Indicates	that th		or boo	matcha	40		
	0	ini	Unizer	0	R/WIC		U		mulcates	s inai in	e count	ei nas i	matche	u U.		

PWMn Interrupt Status (PWMnISC)

Register 18: PWM0 Load (PWM0LOAD), offset 0x050

Register 19: PWM1 Load (PWM1LOAD), offset 0x090

These registers contain the load value for the PWM counter (**PWM0LOAD** controls the PWM generator 0 block, and so on). Based on the counter mode, either this value is loaded into the counter after it reaches zero, or it is the limit of up-counting after which the counter decrements back to zero. If the Load Value Update mode is immediate, this value is used the next time the counter reaches zero; if the mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 352). If this register is re-written before the actual update occurs, the previous value is never used and is lost.

31 30 29 28 18 17 16 27 26 24 23 22 21 20 19 25 reserved Туре RO RO RO RO RO RO RO RO RO RO RC RO RO RO RO RO Rese 0 0 0 0 0 0 0 0 0 0 0 0 13 12 11 9 7 15 14 10 8 6 4 3 2 0 Load R/W R/W R/W Туре R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Reset Description Name Туре 31:16 reserved RO 0 Reserved bits return an indeterminate value, and should never be changed. 15:0 R/W 0 The counter load value. Load

PWMn Load (PWMnLOAD)

Register 20: PWM0 Counter (PWM0COUNT), offset 0x054

Register 21: PWM1 Counter (PWM1COUNT), offset 0x094

These registers contain the current value of the PWM counter (**PWM0COUNT** controls the PWM generator 0 block, and so on). When this value matches the load register, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers, see page 371 and 373) or drive an interrupt or ADC trigger (via the **PWMnINTEN** register, see page 363). A pulse with the same capabilities is generated when this value is zero.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1 1		1	I			1		1	
								res	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	15	14	1.5	12		10	,	8	, T	, U	5		,		1	<u> </u>
								C	ount							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi	t/Field		Name		Туре		Reset	Ľ	Descripti	on						
					71 -											
3	1:16	r	eserved		RO		0	6	Reserve	d hite re	turn ar	indata	rminato	مبادير	and ch	ould
	31.10 leserveu KO											macto	minute	value,		oulu
								1	lever be	change	su.					
	4 5 0		<u> </u>		50		•	-								
	15:0		Count		RO		0		he curr	ent valu	e of the	e count	er.			

PWMn Counter (PWMnCOUNT)

Register 22: PWM0 Compare A (PWM0CMPA), offset 0x058

Register 23: PWM1 Compare A (PWM1CMPA), offset 0x098

These registers contain a value to be compared against the counter (**PWM0CMPA** controls the PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers) or drive an interrupt or ADC trigger (via the **PWMnINTEN** register). If the value of this register is greater than the **PWMnLOAD** register (see page 367), then no pulse is ever output.

For comparator A, if the update mode is immediate (based on the CmpAUpd bit in the **PWMnCTL** register), then this 16-bit CompA value is used the next time the counter reaches zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 352). If this register is rewritten before the actual update occurs, the previous value is never used and is lost.

PWMn Compare A (PWMnCMPA)

Register 24: PWM0 Compare B (PWM0CMPB), offset 0x05C

Register 25: PWM1 Compare B (PWM1CMPB), offset 0x09C

These registers contain a value to be compared against the counter (**PWM0CMPB** controls the PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers) or drive an interrupt or ADC trigger (via the **PWMnINTEN** register). If the value of this register is greater than the **PWMnLOAD** register, then no pulse is ever output.

For comparator B, if the update mode is immediate (based on the CmpBUpd bit in the **PWMnCTL** register), then this 16-bit CompB value is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 352). If this register is rewritten before the actual update occurs, the previous value is never used and is lost.

PWMn Compare B (PWMnCMPB)

Register 26: PWM0 Generator A Control (PWM0GENA), offset 0x060

Register 27: PWM1 Generator A Control (PWM1GENA), offset 0x0A0

These registers control the generation of the PWMnA signal based on the load and zero output pulses from the counter, as well as the compare A and compare B pulses from the comparators (**PWM0GENA** controls the PWM generator 0 block, and so on). When the counter is running in Count-Down mode, only four of these events occur; when running in Count-Up/Down mode, all six occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.

The **PWM0GENA** register controls generation of the PWM0A signal; **PWM1GENA**, the PWM1A signal.

Each field in these registers can take on one of the values defined in Table 16-2, which defines the effect of the event on the output signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is taken and the compare A or compare B action is ignored. If a compare A event coincides with a compare B event, the compare A action is taken and the compare B action is ignored.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		i	I		1 1		1	i re	served			•	i		1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		rese	rved		ActCr	npBD	ActC	mpBU	ActCi	npAD	Act	CmpAU	Actl	Load	Act	Zero
Туре	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	/Field		Name		Туре		Reset	t	Descripti	on						
3	1:12	r	eserved	I	RO		0		Reserve never be			n indete	rminate	value,	and sh	ould
1	1:10	Ac	ctCmpB	D	R/W		0		The actio compara					ter mat	ches	
	9:8	Ac	ctCmpB	U	R/W		0	1	The actic compara Mode bit to 1.	tor B wl	hile co	unting u	p. Occu	irs only	when t	
	7:6	Ac	ctCmpA	D	R/W		0		The actio compara					ter mat	ches	
	5:4	Ac	ctCmpA	U	R/W		0		The actio compara Mode bit	tor A wl	hile co	unting u	p.Occu	rs only	when th	ne
	3:2	A	ActLoad		R/W		0		The actio value.	on to be	taken	when th	ne coun	ter mat	ches th	e load
	1:0	ļ	ActZero		R/W		0		The action	on to be	taken	when th	ne coun	ter is ze	ero.	

PWMn Generator A Control (PWMnGENA)

Value	Description
00	Do nothing.
01	Invert the output signal.
10	Set the output signal to 0.
11	Set the output signal to 1.

Table 16-2. PWM Generator Action Encodings

Register 28: PWM0 Generator B Control (PWM0GENB), offset 0x064

Register 29: PWM1 Generator B Control (PWM1GENB), offset 0x0A4

These registers control the generation of the PWMnB signal based on the load and zero output pulses from the counter, as well as the compare A and compare B pulses from the comparators (**PWM0GENB** controls the PWM generator 0 block, and so on). When the counter is running in Down mode, only four of these events occur; when running in Up/Down mode, all six occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.

The **PWM0GENB** register controls generation of the PWM0B signal; **PWM1GENB**, the PWM1B signal.

Each field in these registers can take on one of the values defined in Table 16-2 on page 372, which defines the effect of the event on the output signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is taken and the compare A or compare B action is ignored. If a compare A event coincides with a compare B event, the compare B action is taken and the compare A action is ignored.

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ſ		1		1		1 1	re	served		I	1	1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		rese	erved		ActCr	npBD	ActCn	npBU	ActCi	npAD	ActC	n mpAU	Actl	Load	Acť	Zero
Type Reset	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit	t/Field		Name		Туре		Reset		Descripti	on						
3	1:12	r	reserved		RO		0		Reserve never be			indete	rminate	value,	and she	bluc
1	1:10	Ad	ctCmpB	D	R/W		0		The actio compara					ter mate	ches	
	9:8	Ad	ctCmpB	U	R/W		0	1	The actio compara Mode bit to 1.	tor B w	hile cou	inting u	p. Occu	irs only	when t	
	7:6	Ad	ctCmpA	D	R/W		0		The actio compara					ter mate	ches	
	5:4	Ad	ctCmpA	U	R/W		0		The actio compara Mode bit	tor A w	hile cou	inting u	p. Occu	irs only	when t	he
	3:2	/	ActLoad		R/W		0		The actio value.	on to be	taken	when th	ne coun	ter mate	ches th	e load
	1:0	,	ActZero		R/W		0		The action	on to be	taken	when th	ne coun	ter is 0.		

PWMn Generator B Control (PWMnGENB)

Register 30: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068

Register 31: PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8

The **PWM0DBCTL** register controls the dead-band generator, which produces the PWM0 and PWM1 signals based on the PWM0A and PWM0B signals. When disabled, the PWM0A signal passes through to the PWM0 signal and the PWM0B signal passes through to the PWM1 signal. When enabled, the PWM0B signal is ignored; the PWM0B signal is generated by delaying the rising edge(s) of the PWM0A signal by the value in the **PWM0DBRISE** register (see page 375), and the PWM1 signal is generated by delaying the falling edge(s) of the PWM0A signal by the value in the **PWM0DBRISE** register (see page 375), and the PWM1B signal is generated by delaying the falling edge(s) of the PWM0A signal by the value in the **PWM0DBFALL** register (see page 376). In a similar manner, PWM2 and PWM3 are produced from the PWM1A and PWM1B signals.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'						'	rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1 1		1 1		1	reserved	I	1		1 1		I	I	Enable
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0
Bi					Туре		Reset	۵	escripti	on						
;	31:1	r	eserved		RO		0		leserve ever be			indeter	minate	value,	and sh	ould
	0		Enable		R/W		0	ti	Vhen se ne outpu ignals th	ut signa		•				

PWMn Dead-Band Control (PWMnDBCTL)

Register 32: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C

Register 33: PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC

The **PWM0DBRISE** register contains the number of clock ticks to delay the rising edge of the PWM0A signal when generating the PWM0 signal. If the dead-band generator is disabled through the **PWMnDBCTL** register, the **PWM0DBRISE** register is ignored. If the value of this register is larger than the width of a High pulse on the input PWM signal, the rising-edge delay consumes the entire High time of the signal, resulting in no High time on the output. Care must be taken to ensure that the input High time always exceeds the rising-edge delay. In a similar manner, PWM2 is generated from PWM1A with its rising edge delayed.

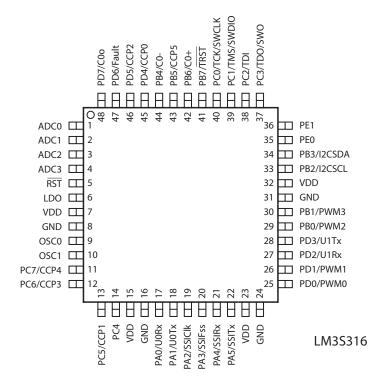
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1 1	res	erved			I	1	1	1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		rese	rved				i i	I	Risel	l Delay	1	I	I	1	'	
Туре	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	t/Field		Name		Туре		Reset	Γ	Descripti	on						
3	1:12	r	eserved		RO		0		Reserve never be			indete	rminate	e value,	and sh	ould
	11:0	R	iseDelay	4	R/W		0	٦	The num	ber of c	clock tic	ks to de	elay the	e rising	edge.	

PWMn Dead-Band Rising-Edge Delay (PWMnDBRISE)

Register 34: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070

Register 35: PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0

The **PWM0DBFALL** register contains the number of clock ticks to delay the falling edge of the PWM0A signal when generating the PWM1 signal. If the dead-band generator is disabled, this register is ignored. If the value of this register is larger than the width of a Low pulse on the input PWM signal, the falling-edge delay consumes the entire Low time of the signal, resulting in no Low time on the output. Care must be taken to ensure that the input Low time always exceeds the falling-edge delay. In a similar manner, PWM3 is generated from PWM1A with its falling edge delayed.


	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'				•		•	res	erved	1	I	'	1	'	'	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	rese	rved				1	I	I	I FallI	T Delay	1	I	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	Bit/Field		d Name		Туре		Reset		Description							
31:12		re	eserved		RO		0		Reserved bits return an indeterminate value, and should never be changed.							
11:0		F	allDelay	,	R/W		0	-	The num	ber of o	clock tio	cks to c	delay the	e falling	edge.	

PWMn Dead-Band Falling-Edge-Delay Register (PWMnDBFALL)

17 Pin Diagram

Figure 17-1 shows the pin diagram and pin-to-signal-name mapping.

Figure 17-1. Pin Connection Diagram

18 Signal Tables

The following tables list the signals available for each pin. Functionality is enabled by software with the **GPIOAFSEL** register (see page 125).

Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7 and PC[3:0]) which default to the JTAG functionality.

Table 18-1 shows the pin-to-signal-name mapping, including functional characteristics of the signals. Table 18-2 lists the signals in alphabetical order by signal name. Table 18-3 groups the signals by functionality, except for GPIOs. Table 18-4 lists the GPIO pins and their alternate functionality.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
1	ADC0	I	Analog	Analog-to-digital converter input 0.
2	ADC1	I	Analog	Analog-to-digital converter input 1.
3	ADC2	I	Analog	Analog-to-digital converter input 2.
4	ADC3	I	Analog	Analog-to-digital converter input 3.
5	RST	I	TTL	System reset input.
6	LDO	-	Power	The low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μF or greater.
7	VDD	-	Power	Positive supply for logic and I/O pins.
8	GND	-	Power	Ground reference for logic and I/O pins.
9	OSC0	I	Analog	Oscillator crystal input or an external clock reference input.
10	OSC1	0	Analog	Oscillator crystal output.
11	PC7	I/O	TTL	GPIO port C bit 7.
	CCP4	I/O	TTL	Timer 2 capture input, compare output, or PWM output channel 4.
12	PC6	I/O	TTL	GPIO port C bit 6.
	CCP3	I/O	TTL	Timer 1 capture input, compare output, or PWM output channel 3.
13	PC5	I/O	TTL	GPIO port C bit 5.
	CCP1	I/O	TTL	Timer 0 capture input, compare output, or PWM output channel 1.
14	PC4	I/O	TTL	GPIO port C bit 4.
15	VDD	-	Power	Positive supply for logic and I/O pins.
16	GND	-	Power	Ground reference for logic and I/O pins.
17	PA0	I/O	TTL	GPIO port A bit 0.
	U0Rx	I	TTL	UART0 receive data input.

Table 18-1. Signals by Pin Number (Sheet 1 of 4)

Table 18-1.	Signals by Pin Number (Sheet 2 of 4)
-------------	--------------------------------------

Pin Number	Pin Name	Pin Type	Buffer Type	Description		
18 PA1 I/O TTL GPIO port A bit 1.		GPIO port A bit 1.				
	U0Tx	0	TTL	UART0 transmit data output.		
19	PA2	I/O	TTL	GPIO port A bit 2.		
	SSICIk	I/O	TTL	SSI clock reference (input when in slave mode and output in master mode).		
20	PA3	I/O	TTL	GPIO port A bit 3.		
	SSIFss	I/O	TTL	SSI frame enable (input for an SSI slave device and output for an SSI master device).		
21	PA4	I/O	TTL	GPIO port A bit 4.		
	SSIRx	I	TTL	SSI receive data input.		
22	PA5	I/O	TTL	GPIO port A bit 5.		
	SSITx	0	TTL	SSI transmit data output.		
23	VDD	-	Power	Positive supply for logic and I/O pins.		
24	GND	-	Power	Ground reference for logic and I/O pins.		
25	PD0	I/O TTL GPIO port D bit 0.		GPIO port D bit 0.		
	PWM0	0	TTL	Pulse width modulator channel 0 output.		
26	PD1	I/O	TTL	GPIO port D bit 1.		
	PWM1	0	TTL	Pulse width modulator channel 1 output.		
27	PD2	I/O	TTL	GPIO port D bit 2.		
	U1Rx	I	TTL	UART1 receive data input.		
28	PD3	I/O	TTL	GPIO port D bit 3.		
	U1Tx	0	TTL	UART1 transmit data output.		
29	PB0	I/O	TTL	GPIO port B bit 0.		
	PWM2	0	TTL	Pulse width modulator channel 2 output.		
30	PB1	I/O	TTL	GPIO port B bit 1.		
	PWM3	0	TTL	Pulse width modulator channel 3 output.		
31	GND	-	Power	Ground reference for logic and I/O pins.		
32	VDD	-	Power	Positive supply for logic and I/O pins.		
33	PB2	I/O	TTL	GPIO port B bit 2.		
	I2CSCL	I/O	OD	I ² C serial clock.		

Pin Number	Pin Name	Pin Type	Buffer Type	Description		
34	PB3	I/O	TTL	GPIO port B bit 3.		
	I2CSDA	I/O	OD	I ² C serial data.		
35	PE0	I/O	TTL	GPIO port E bit 0.		
36	PE1	I/O	TTL	GPIO port E bit 1.		
37	PC3	I/O	TTL	GPIO port C bit 3.		
	TDO	0	TTL	JTAG scan test data output.		
	SWO	0	TTL	Serial-wire output.		
38	PC2	I/O	TTL	GPIO port C bit 2.		
	TDI	I	TTL	JTAG scan test data input.		
39	PC1	I/O	TTL	GPIO port C bit 1.		
	TMS	I	TTL	JTAG scan test mode select input.		
	SWDIO	I/O	TTL	Serial-wire debug input/output.		
40	PC0	I/O	TTL	GPIO port C bit 0.		
	тск	I	TTL	JTAG scan test clock reference input.		
	SWCLK I		TTL	Serial wire clock reference input.		
41	PB7	I/O	TTL	GPIO port B bit 7.		
	TRST	I	TTL	JTAG scan test reset input.		
42	PB6	I/O	TTL	GPIO port B bit 6.		
	C0+	I	Analog	Analog comparator 0 positive-reference input.		
43	PB5	I/O	TTL	GPIO port B bit 5.		
	CCP5	I/O	TTL	Timer 2 capture input, compare output, or PWM output channel 5.		
44	PB4	I/O	TTL	GPIO port B bit 4.		
	C0-	I	Analog	Analog comparator 0 negative-reference input.		
45	PD4	I/O	TTL	GPIO port D bit 4.		
	CCP0	I/O	TTL	Timer 0 capture input, compare output, or PWM output channel 0.		
46	PD5	I/O	TTL	GPIO port D bit 5.		
	CCP2	I/O	TTL	Timer 1 capture input, compare output, or PWM output channel 2.		
47	PD6	I/O	TTL	GPIO port D bit 6.		
	Fault	I	TTL	PWM fault detect input.		

Table 18-1. Signals by Pin Number (Sheet 3 of 4)

Table 18-1.	. Signals by Pin Number (Sheet 4 of	4)
-------------	-------------------------------------	----

Pin Number	Pin Name Pin Buffer Type Type			Description	
48	PD7	I/O TTL GPIO port D bit 7.		GPIO port D bit 7.	
	C0o	0	TTL	Analog comparator 0 output.	

Table 18-2. Signals by Signal Name (Sheet 1 of 3)

Pin Name	Pin Number	Pin Type	Buffer Type	Description
ADC0	1	I	Analog	Analog-to-digital converter input 0.
ADC1	2	I	Analog	Analog-to-digital converter input 1.
ADC2	3	I	Analog	Analog-to-digital converter input 2.
ADC3	4	I	Analog	Analog-to-digital converter input 3.
C0+	42	I	Analog	Analog comparator 0 positive-reference input.
C0-	44	I	Analog	Analog comparator 0 negative-reference input.
C0o	48	0	TTL	Analog comparator 0 output.
CCP0	45	I/O	TTL	Timer 0 capture input, compare output, or PWM output channel 0.
CCP1	13	I/O	TTL	Timer 0 capture input, compare output, or PWM output channel 1.
CCP2	46	I/O	TTL	Timer 1 capture input, compare output, or PWM output channel 2.
ССРЗ	12	I/O	TTL	Timer 1 capture input, compare output, or PWM output channel 3.
CCP4	11	I/O	TTL	Timer 2 capture input, compare output, or PWM output channel 4.
CCP5	43	I/O	TTL	Timer 2 capture input, compare output, or PWM output channel 5.
Fault	47	I	TTL	PWM fault detect input.
GND	8	-	Power	Ground reference for logic and I/O pins.
GND	16	-	Power	Ground reference for logic and I/O pins.
GND	24	-	Power	Ground reference for logic and I/O pins.
GND	31	-	Power	Ground reference for logic and I/O pins.
I2CSCL	33	I/O	OD	I ² C serial clock.
I2CSDA	34	I/O	OD	I ² C serial data.
LDO	6	-	Power	The low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater.
OSC0	9	I	Analog	Oscillator crystal input or an external clock reference input.
OSC1	10	0	Analog	Oscillator crystal output.
PA0	17	I/O	TTL	GPIO port A bit 0.

Dia Mara a	Pin	Pin	Buffer	Description
Pin Name	Number	Туре	Туре	Description
PA1	18	I/O	TTL	GPIO port A bit 1.
PA2	19	I/O	TTL	GPIO port A bit 2.
PA3	20	I/O	TTL	GPIO port A bit 3.
PA4	21	I/O	TTL	GPIO port A bit 4.
PA5	22	I/O	TTL	GPIO port A bit 5.
PB0	29	I/O	TTL	GPIO port B bit 0.
PB1	30	I/O	TTL	GPIO port B bit 1.
PB2	33	I/O	TTL	GPIO port B bit 2.
PB3	34	I/O	TTL	GPIO port B bit 3.
PB4	44	I/O	TTL	GPIO port B bit 4.
PB5	43	I/O	TTL	GPIO port B bit 5.
PB6	42	I/O	TTL	GPIO port B bit 6.
PB7	41	I/O	TTL	GPIO port B bit 7.
PC0	40	I/O	TTL	GPIO port C bit 0.
PC1	39	I/O	TTL	GPIO port C bit 1.
PC2	38	I/O	TTL	GPIO port C bit 2.
PC3	37	I/O	TTL	GPIO port C bit 3.
PC4	14	I/O	TTL	GPIO port C bit 4.
PC5	13	I/O	TTL	GPIO port C bit 5.
PC6	12	I/O	TTL	GPIO port C bit 6.
PC7	11	I/O	TTL	GPIO port C bit 7.
PD0	25	I/O	TTL	GPIO port D bit 0.
PD1	26	I/O	TTL	GPIO port D bit 1.
PD2	27	I/O	TTL	GPIO port D bit 2.
PD3	28	I/O	TTL	GPIO port D bit 3.
PD4	45	I/O	TTL	GPIO port D bit 4.
PD5	46	I/O	TTL	GPIO port D bit 5.
PD6	47	I/O	TTL	GPIO port D bit 6.
PD7	48	I/O	TTL	GPIO port D bit 7.
PE0	35	I/O	TTL	GPIO port E bit 0.

 Table 18-2.
 Signals by Signal Name (Sheet 2 of 3)

Table 18-2.	Signals by Signal Name (Sheet 3 of 3)
-------------	---------------------------------------

Pin Name	Pin Number	Pin Type	Buffer Type	Description
PE1	36	I/O	TTL	GPIO port E bit 1.
PWM0	25	0	TTL	Pulse width modulator channel 0 output.
PWM1	26	0	TTL	Pulse width modulator channel 1 output.
PWM2	29	0	TTL	Pulse width modulator channel 2 output.
PWM3	30	0	TTL	Pulse width modulator channel 3 output.
RST	5	I	TTL	System reset input.
SSICIk	19	I/O	TTL	SSI clock reference (input when in slave mode and output in master mode).
SSIFss	20	I/O	TTL	SSI frame enable (input for an SSI slave device and output for an SSI master device).
SSIRx	21	I	TTL	SSI receive data input.
SSITx	22	0	TTL	SSI transmit data output.
SWCLK	40	I	TTL	Serial wire clock reference input.
SWDIO	39	I/O	TTL	Serial-wire debug input/output.
SWO	37	0	TTL	Serial-wire output.
тск	40	I	TTL	JTAG scan test clock reference input.
TDI	38	I	TTL	JTAG scan test data input.
TDO	37	0	TTL	JTAG scan test data output.
TMS	39	I	TTL	JTAG scan test mode select input.
TRST	41	I	TTL	JTAG scan test reset input.
U0Rx	17	I	TTL	UART0 receive data input.
U0Tx	18	0	TTL	UART0 transmit data output.
U1Rx	27	I	TTL	UART1 receive data input.
U1Tx	28	0	TTL	UART1 transmit data output.
VDD	7	-	Power	Positive supply for logic and I/O pins.
VDD	15	-	Power	Positive supply for logic and I/O pins.
VDD	23	-	Power	Positive supply for logic and I/O pins.
VDD	32	-	Power	Positive supply for logic and I/O pins.

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
ADC	ADC0	1	I	Analog	Analog-to-digital converter input 0.
	ADC1	2	I	Analog	Analog-to-digital converter input 1.
	ADC2	3	I	Analog	Analog-to-digital converter input 2.
	ADC3	4	I	Analog	Analog-to-digital converter input 3.
Analog Comparators	C0+	42	I	Analog	Analog comparator 0 positive-reference input.
	C0-	44	I	Analog	Analog comparator 0 negative-reference input.
	C0o	48	0	TTL	Analog comparator 0 output.
General-Purpose Timers	CCP0	45	I/O	TTL	Timer 0 capture input, compare output, or PWM output channel 0.
	CCP1	13	I/O	TTL	Timer 0 capture input, compare output, or PWM output channel 1.
	CCP2	46	I/O	TTL	Timer 1 capture input, compare output, or PWM output channel 2.
	CCP3	12	I/O	TTL	Timer 1 capture input, compare output, or PWM output channel 3.
	CCP4	11	I/O	TTL	Timer 2 capture input, compare output, or PWM output channel 4.
	CCP5	43	I/O	TTL	Timer 2 capture input, compare output, or PWM output channel 5.
12C	I2CSCL	33	I/O	OD	I ² C serial clock.
	I2CSDA	34	I/O	OD	I ² C serial data.
JTAG/SWD/SWO	SWCLK	40	I	TTL	Serial-wire clock reference input.
	SWDIO	39	I/O	TTL	Serial-wire debug input/output.
	SWO	37	0	TTL	Serial-wire output.
	ТСК	40	I	TTL	JTAG scan test clock reference input.
	TDI	38	I	TTL	JTAG scan test data input.
	TDO	37	0	TTL	JTAG scan test data output.
	TMS	39	I	TTL	JTAG scan test mode select input.
	TRST	41	I	TTL	JTAG scan test reset input.

Table 18-3. Signals by Function, Except for GPIO (Sheet 1 of 2)

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
Power	GND	8	-	Power	Ground reference for logic and I/O pins.
	GND	16	-	Power	Ground reference for logic and I/O pins.
	GND	24	-	Power	Ground reference for logic and I/O pins.
	GND	31	-	Power	Ground reference for logic and I/O pins.
	LDO	6	-	Power	The low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater.
	VDD	7	-	Power	Positive supply for logic and I/O pins.
	VDD	15	-	Power	Positive supply for logic and I/O pins.
	VDD	23	-	Power	Positive supply for logic and I/O pins.
	VDD	32	-	Power	Positive supply for logic and I/O pins.
PWM	Fault	47	I	TTL	PWM fault detect input.
	PWM0	25	0	TTL	Pulse width modulator channel 0 output.
	PWM1	26	0	TTL	Pulse width modulator channel 1 output.
	PWM2	29	0	TTL	Pulse width modulator channel 2 output.
	PWM3	30	0	TTL	Pulse width modulator channel 3 output.
SSI	SSICIk	19	I/O	TTL	SSI clock reference (input when in slave mode and output in master mode).
	SSIFss	20	I/O	TTL	SSI frame enable (input for an SSI slave device and output for an SSI master device).
	SSIRx	21	I	TTL	SSI receive data input.
	SSITx	22	0	TTL	SSI transmit data output.
System Control & Clocks	OSC0	9	Ι	Analog	Oscillator crystal input or an external clock reference input.
	OSC1	10	0	Analog	Oscillator crystal output.
	RST	5	I	TTL	System reset input.
UART	U0Rx	17	I	TTL	UART0 receive data input.
	U0Tx	18	0	TTL	UART0 transmit data output.
	U1Rx	27	I	TTL	UART1 receive data input.
	U1Tx	28	0	TTL	UART1 transmit data output.

 Table 18-3.
 Signals by Function, Except for GPIO (Sheet 2 of 2)

Table 18-4.	GPIO Pins and Alternate Functions (Sheet 1 of 2)

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PA0	17	U0Rx	
PA1	18	U0Tx	
PA2	19	SSICIk	
PA3	20	SSIFss	
PA4	21	SSIRx	
PA5	22	SSITx	
PB0	29	PWM2	
PB1	30	PWM3	
PB2	33	I2CSCL	
PB3	34	I2CSDA	
PB4	44	C0-	
PB5	43	CCP5	
PB6	42	C0+	
PB7	41	TRST	
PC0	40	тск	SWCLK
PC1	39	TMS	SWDIO
PC2	38	TDI	
PC3	37	TDO	SWO
PC4	14		
PC5	13	CCP1	
PC6	12	CCP3	
PC7	11	CCP4	
PD0	25	PWM0	
PD1	26	PWM1	
PD2	27	U1Rx	
PD3	28	U1Tx	
PD4	45	CCP0	
PD5	46	CCP2	
PD6	47	Fault	
PD7	48	C0o	

Table 18-4. GPIO Pins and Alternate Functions (Sheet 2 of 2)

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PE0	35		
PE1	36		

Operating Characteristics 19

Table 19-1.	Temperature	Characteristics
-------------	-------------	-----------------

Characteristic	Symbol	Value	Unit
Operating temperature range ^a	T _A	-40 to +85 for industrial	°C

a. Maximum storage temperature is 150°C.

Table 19-2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance (junction to ambient) ^a	θ _{JA}	76	°C/W
Average junction temperature ^b	TJ	$T_A + (P_{AVG} \bullet \theta_{JA})$	°C
Maximum junction temperature	T _{JMAX}	pending ^c	°C

a. Junction to ambient thermal resistance θ_{JA} numbers are determined by a package simulator. b. Power dissipation is a function of temperature.

c. Pending characterization completion.

20 Electrical Characteristics

20.1 DC Characteristics

20.1.1 Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

Table 20-1.Maximum Ratings

Characteristic ^a	Symbol	Value	Unit
Supply voltage range (V _{DD})	V _{DD}	0.0 to +3.6	V
Input voltage	V _{IN}	-0.3 to 5.5	V
Maximum current for pins, excluding pins operating as GPIOs	I	100	mA
Maximum current for GPIO pins	I	100	mA

a. Voltages are measured with respect to GND.

Important: This device contains circuitry to protect the inputs against damage due to high-static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either GND or V_{DD}).

20.1.2 Recommended DC Operating Conditions

Table 20-2. Recommended DC Operating Conditions

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{DD}	Supply voltage	3.0	3.3	3.6	V
V _{IH}	High-level input voltage	2.0	-	5.0	V
V _{IL}	Low-level input voltage	-0.3	-	1.3	V
V _{SIH}	High-level input voltage for Schottky inputs	0.8 * V _{DD}	-	V _{DD}	V
V _{SIL}	Low-level input voltage for Schottky inputs	0	-	0.2 * V _{DD}	V
V _{OH}	High-level output voltage	2.4	-	-	V
V _{OL}	Low-level output voltage	-	-	0.4	V

Parameter	Parameter Name	Min	Nom	Мах	Unit		
I _{OH}	High-level source current, V _{OH} =2.4 V						
	2-mA Drive	2.0	-	-	mA		
	4-mA Drive	4.0	-	-	mA		
	8-mA Drive	8.0	-	-	mA		
I _{OL}	Low-level sink current, V _{OL} =0.4 V						
	2-mA Drive	2.0	-	-	mA		
	4-mA Drive	4.0	-	-	mA		
	8-mA Drive	8.0	-	-	mA		

Table 20-2. Recommended DC Operating Conditions (Continued)

20.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{LDOOUT}	Programmable internal (logic) power supply output value	2.25	-	2.75	V
	Output voltage accuracy	-	2%	-	%
t _{PON}	Power-on time	-	-	100	μs
t _{ON}	Time on	-	-	200	μs
t _{OFF}	Time off	-	-	100	μs
V _{STEP}	Step programming incremental voltage	-	50	-	mV
C _{LDO}	External filter capacitor size for internal power supply	-	1	-	μF

Table 20-3. LDO Regulator Characteristics

20.1.4 **Power Specifications**

The power measurements specified in Table 20-4 are run on the core processor using SRAM with the following specifications:

- V_{DD}=3.3 V
- LDO=2.5
- Temperature=25°C
- System Clock=25 MHz (with PLL)
- Code while (1) { } executed from SRAM with no active peripherals

Table 20-4. Power Specifications

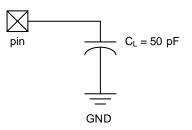
Parameter	Parameter Name	Min	Nom	Max	Unit
I _{DD_RUN}	Run mode	-	40 ^a	pending ^a	mA
I _{DD_SLEEP}	Sleep mode	-	pending ^a	pending ^a	μΑ
I _{DD_DEEPSLEEP}	Deep-Sleep mode	-	pending ^a	pending ^a	μA

a. Pending characterization completion.

20.1.5 Flash Memory Characteristics

Table 20-5. Flash Memory Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
PE _{CYC}	Number of guaranteed program/erase cycles ^a before failure	10,000	-	-	cycles
T _{RET}	Data retention at average operating temperature of 85°C		-	-	years
T _{PROG}	Word program time	20	-	-	μs
T _{ERASE}	Page erase time	20	-	-	ms
T _{ME}	T _{ME} Mass erase time		-	-	ms


a. A program/erase cycle is defined as switching the bits from $1 \rightarrow 0 \rightarrow 1$.

20.2 AC Characteristics

20.2.1 Load Conditions

Unless otherwise specified, the following conditions are true for all timing measurements. Timing measurements are for 4-mA drive strength.

Figure 20-1. Load Conditions

20.2.2 Clocks

Table 20-6. Phase Locked Loop (PLL) Characteristics

Parameter	Parameter Name	Min	Nom	Мах	Unit
f _{REF_CRYSTAL}	Crystal reference ^a	3.579545	-	8.192	MHz
f _{REF_EXT}	External clock reference ^a	3.579545	-	8.192	MHz
f _{PLL}	PLL frequency ^b	-	200	-	MHz
T _{READY}	PLL lock time	-	-	0.5	ms

a. The exact value is determined by the crystal value programmed into the XTAL field of the **Run-Mode Clock Configuration (RCC)** register (see page 80).

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

Table 20-7. Clock Characteristics

Parameter	Parameter Name	Min	Nom	Мах	Unit
fiosc	Internal oscillator frequency	7	15	22	MHz
f _{MOSC}	Main oscillator frequency	1	-	8	MHz
t _{MOSC_PER}	Main oscillator period	125	-	1000	ns
f _{REF_CRYSTAL_BYPASS}	Crystal reference using the main oscillator (PLL in BYPASS mode) ^a	1	-	8	MHz
f _{REF_EXT_BYPASS}	External clock reference (PLL in BYPASS mode) ^a	0	-	25	MHz
fsystem_clock	System clock	0	-	25	MHz

a. The ADC module cannot be used when the PLL is in Bypass mode (BYPASS set to 1 in the RCC register).

20.2.3 Temperature Sensor

Parameter	Parameter Name	Min	Nom	Мах	Unit
V _{TSO}	Output voltage	0.3	-	2.7	V
t _{TSERR}	Output voltage temperature accuracy	-	-	± 3.5	°C
t _{TSNL}	Output temperature nonlinearity	-	-	± 1	°C

Table 20-8. Temperature Sensor Characteristics

20.2.4 Analog-to-Digital Converter

Table 20-9. ADC Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{ADCIN}	Maximum single-ended, full-scale analog input voltage	-	-	3.0	V
	Minimum single-ended, full-scale analog input voltage	-	-	0	V
	Maximum differential, full-scale analog input voltage	-	-	1.5	V
	Minimum differential, full-scale analog input voltage	-	-	-1.5	V
C _{ADCIN}	Equivalent input capacitance	-	1	-	pF
N	Resolution	-	10	-	bits
f _{ADC}	ADC internal clock frequency	3.5	4	4.5	MHz
t _{ADCCONV}	Conversion time	-	-	16	t _{ADC} cycles ^a
f _{ADCCONV}	Conversion rate	219	250	281	k samples/s
INL	Integral nonlinearity	-	-	±1	LSB
DNL	Differential nonlinearity	-	-	±1	LSB
OFF	Offset		-	+2	LSB
GAIN	Gain	-	-	±2	LSB

a. $t_{ADC} = 1/f_{ADC \ clock}$

20.2.5 Analog Comparator

 Table 20-10.
 Analog Comparator Characteristics

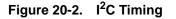
Parameter	Parameter Name	Min	Nom	Max	Unit
V _{OS}	Input offset voltage	-	± 10	± 25	mV
V _{CM}	Input common mode voltage range	0	-	V _{DD} -1.5	V
C _{MRR}	Common mode rejection ratio	50	-	-	dB
T _{RT}	Response time	-	-	1	μs
T _{MC}	Comparator mode change to Output Valid	-	-	10	μs

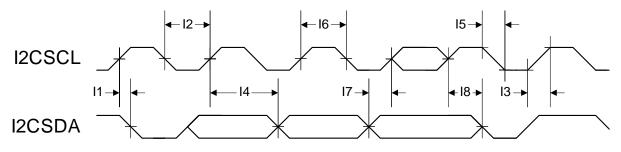
Table 20-11. Analog Comparator Voltage Reference Characteristics

Parameter	Parameter Name	Min	Nom	Мах	Unit
R _{HR}	Resolution high range	-	V _{DD} /32	-	LSB
R _{LR}	Resolution low range	-	V _{DD} /24	-	LSB
A _{HR}	Absolute accuracy high range	-	-	± 1/2	LSB
A _{LR}	Absolute accuracy low range	-	-	± 1/4	LSB

20.2.6 I²C

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
l1 ^a	t _{SCH}	Start condition hold time	36	-	-	system clocks
l2 ^a	t _{LP}	Clock Low period	36	-	-	system clocks
I3 ^b	t _{SRT}	I2CSCL/I2CSDA rise time (V_{IL} =0.5 V to V_{IH} =2.4 V)	-	-	(see note b)	ns
l4 ^a	t _{DH}	Data hold time	2	-	-	system clocks
I5 ^c	t _{SFT}	<code>I2CSCL/I2CSDA</code> fall time (V _{IH} =2.4 V to V _{IL} =0.5 V)	-	9	10	ns
l6 ^a	t _{HT}	Clock High time	24	-	-	system clocks
I7 ^a	t _{DS}	Data setup time	18	-	-	system clocks

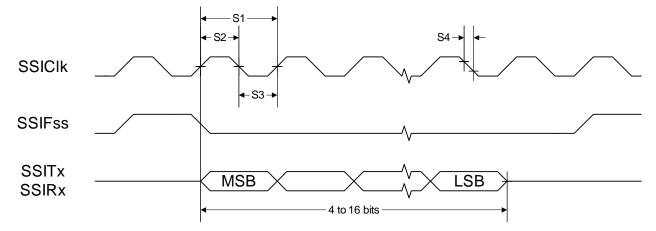

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
l8 ^a	t _{SCSR}	Start condition setup time (for repeated start condition only)	36	-	-	system clocks
l9 ^a	t _{SCS}	Stop condition setup time	24	-	-	system clocks


 Table 20-12.
 I²C Characteristics (Continued)

a. Values depend on the value programmed into the TPR bit in the I²C Master Timer Period (I2CMTPR) register (see page 320); a TPR programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table above. The I²C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above values are minimum values.

b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.

c. Specified at a nominal 50 pF load.



20.2.7 Synchronous Serial Interface (SSI)

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
S1	^t CLK_PER	SSIClk cycle time	2	-	65024	system clocks
S2	t _{CLK_HIGH}	SSIClk high time	-	1/2	-	t _{CLK_PER}
S3	t _{CLK_LOW}	SSIClk low time	-	1/2	-	t _{CLK_PER}
S4	t _{CLKRF}	SSIClk rise/fall time	-	7.4	26	ns
S5	t _{DMD}	Data from master valid delay time	0	-	20	ns
S6	t _{DMS}	Data from master setup time	20	-	-	ns
S7	t _{DMH}	Data from master hold time	40	-	-	ns
S8	t _{DSS}	Data from slave setup time	20	-	-	ns
S9	t _{DSH}	Data from slave hold time	40	-	-	ns

Figure 20-3. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement

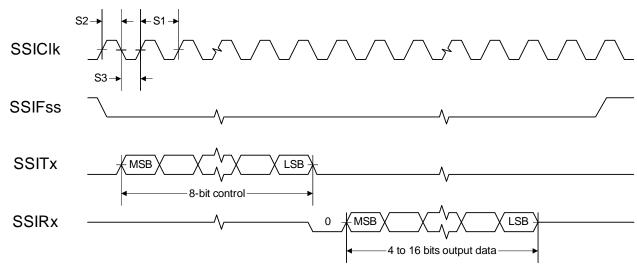
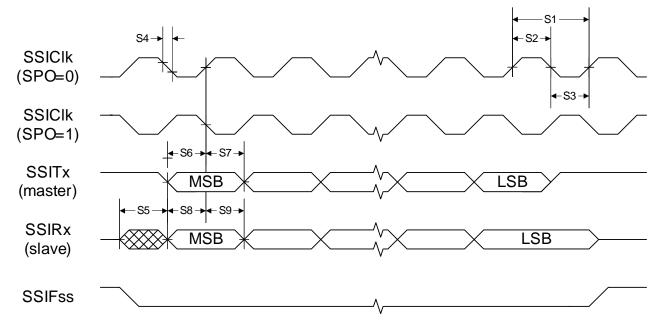
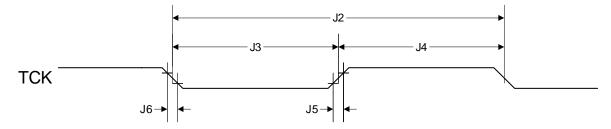
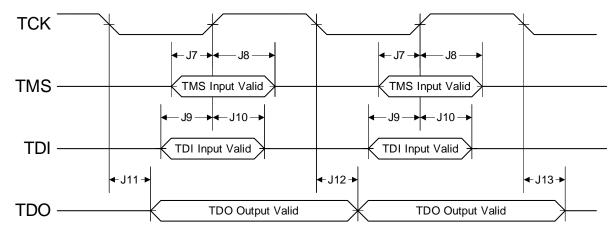



Figure 20-4. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer



20.2.8 JTAG and Boundary Scan


Table 20-14.	JTAG Characteristics
--------------	----------------------

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
J1	f _{тск}	TCK operational clock frequency	0	-	10	MHz
J2	^t тск	TCK operational clock period	100	-	-	ns
J3	t _{TCK_LOW}	TCK clock Low time	-	½ t _{TCK}	-	ns
J4	^t тск_ніgн	TCK clock High time	-	½ t _{TCK}	-	ns
J5	t _{TCK_R}	TCK rise time	0	-	10	ns
J6	t _{TCK_F}	TCK fall time	0	-	10	ns
J7	t _{TMS_SU}	TMS setup time to TCK rise	20	-	-	ns
J8	t _{TMS_HLD}	TMS hold time from TCK rise	20	-	-	ns
J9	t _{TDI_SU}	TDI setup time to TCK rise	25	-	-	ns
J10	t _{TDI_HLD}	TDI hold time from TCK rise	25	-	-	ns
J11	тск fall to Data Valid	2-mA drive	-	23	35	ns
t _{TDO_ZDV}	from High-Z	4-mA drive		15	26	ns
		8-mA drive		14	25	ns
		8-mA drive with slew rate control		18	29	ns
J12	TCK fall to	2-mA drive	-	21	35	ns
t _{TDO_DV}	Data Valid from Data	4-mA drive		14	25	ns
	Valid	8-mA drive		13	24	ns
		8-mA drive with slew rate control		18	28	ns
J13	TCK fall to	2-mA drive	-	9	11	ns
t _{TDO_DVZ}	High-Z from Data Valid	4-mA drive		7	9	ns
		8-mA drive		6	8	ns
		8-mA drive with slew rate control		7	9	ns
J14	t _{TRST}	TRST assertion time	100	-	-	ns
J15	t _{TRST_SU}	TRST setup time to TCK rise	10	-	-	ns

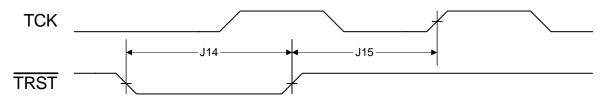

Figure 20-6. JTAG Test Clock Input Timing

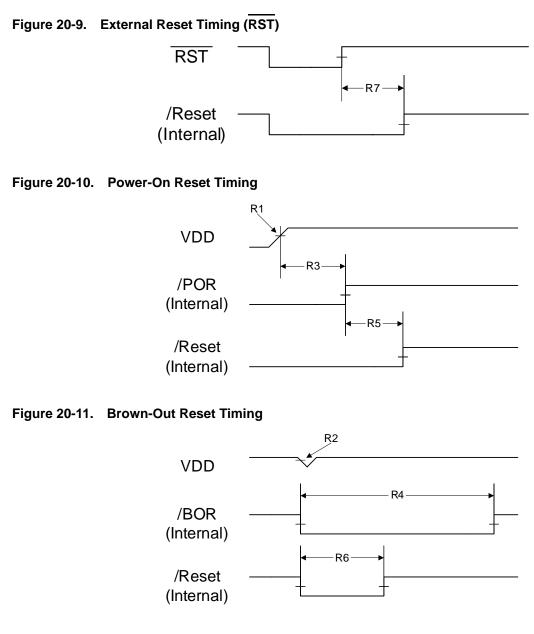
Figure 20-7. JTAG Test Access Port (TAP) Timing

Figure 20-8. JTAG TRST Timing

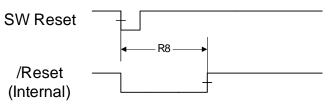
20.2.9 General-Purpose I/O

Table 20-15. GPIO Characteristics^a

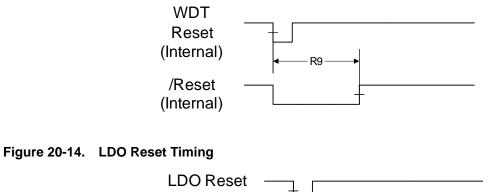
Parameter	Parameter Name	Condition	Min	Nom	Мах	Unit
t _{GPIOR}	t _{GPIOR} GPO Rise Time (from 20% to 80% of V _{DD})	2-mA drive	-	17	26	ns
		4-mA drive		9	13	ns
		8-mA drive		6	9	ns
		8-mA drive with slew rate control		10	12	ns
t _{GPIOF}	t _{GPIOF} GPO Fall Time (from 80% to 20% of V _{DD})	2-mA drive	-	17	25	ns
		4-mA drive		8	12	ns
	8-mA drive		6	10	ns	
	8-mA drive with slew rate control		11	13	ns	


a. All GPIOs are 5 V-tolerant.

20.2.10 Reset


Table 20-16. Reset Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
R1	V _{TH}	Reset threshold	-	2.0	-	V
R2	V _{BTH}	Brown-Out threshold	2.85	2.9	2.95	V
R3	T _{POR}	Power-On Reset timeout	-	10	-	ms
R4	T _{BOR}	Brown-Out timeout	-	500	-	μs
R5	T _{IRPOR}	Internal reset timeout after POR	15	-	30	ms
R6	T _{IRBOR}	Internal reset timeout after BOR ^a	2.5	-	20	μs
R7	T _{IRHWR}	Internal reset timeout after hardware reset (RST pin)	15	-	30	ms
R8	T _{IRSWR}	Internal reset timeout after software-initiated system reset ^a	2.5	-	20	μs
R9	T _{IRWDR}	Internal reset timeout after watchdog reset ^a	2.5	-	20	μs
R10	T _{IRLDOR}	Internal reset timeout after LDO reseta	2.5	-	20	μs
R11	T _{VDDRISE}	Supply voltage (V _{DD}) rise time (0V-3.3V)			100	ms


a. 20 * t_{MOSC_PER}

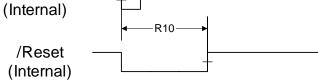
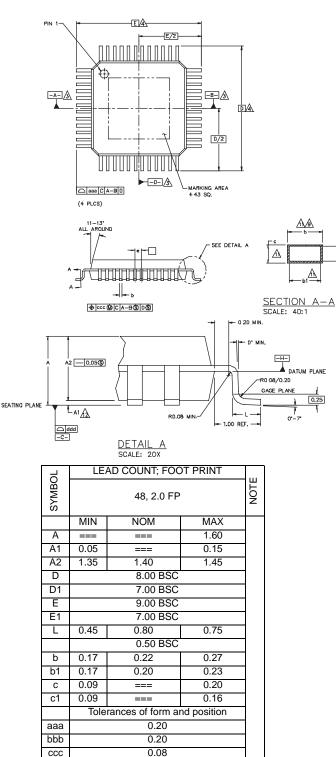
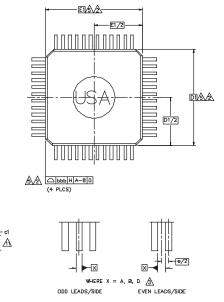


Figure 20-13. Watchdog Reset Timing



Package Information 21


Figure 21-1. 48-Pin LQFP Package

0.08

BOTTOM VIEW

NOTES:

1.

A

- All dimensions are in mm. All dimensioning and tolerancing conform to ANSI Y14.5M-1982.
- 2The top package body size may be smaller than the bottom package body size by as much as 0.20.
- <u>3</u> Datums A-B and -D- to be determined at datum plane -H-.
- A To be determined at seating plane -C-.
- ß. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch
- 6. Surface finish of the package is #24-27 Charmille $(1.6-2.3\mu mR_0)$ Pin 1 and ejector pin may be less than 0.1µmR₀.
- Dambar removal protrusion does not exceed 0.08. Intrusion 7. does not exceed 0.03.
- 8 Burr does not exceed 0.08 in any direction.
- ∕9∖ Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and adjacent lead is 0.07 for 0.40 and 0.50 pitch package.
- Corner radius of plastic body does not exceed 0.20. 1,0.
- <u>A1</u> These dimensions apply to the flat section of the lead between 0.10 and 0.25 from the lead tip.
- $\frac{1}{12}$ A1 is defined as the distance from the seating plane to the lowest point of the package body.
- Finish of leads is tin plated. 13.
- All specifications and dimensions are subjected to IPAC'S 14. manufacturing process flow and materials.
- The packages described in the drawing conform to JEDEC 15. M5-026A. Where discrepancies between the JEDEC and IPAC documents exist, this drawing will take the precedence.

ddd

Appendix A. Serial Flash Loader

The Stellaris serial flash loader is used to download code to the flash memory of a device without the use of a debug interface. The serial flash loader uses a simple packet interface to provide synchronous communication with the device. The flash loader runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can be used are the UART0 and SSI interfaces. For simplicity, both the data format and communication protocol are identical for both serial interfaces.

A.1 Interfaces

Once communication with the flash loader is established via one of the serial interfaces, that interface is used until the flash loader is reset or new code takes over. For example, once you start communicating using the SSI port, communications with the flash loader via the UART are disabled until the device is reset.

A.1.1 UART

The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is automatically detected by the flash loader and can be any valid baud rate supported by the host and the device. The auto detection sequence requires that the baud rate should be no more than 1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the same as the hardware limitation for the maximum baud rate for any UART on a Stellaris device.

In order to determine the baud rate, the serial flash loader needs to determine the relationship between its own crystal frequency and the baud rate. This is enough information for the flash loader to configure its UART to the same baud rate as the host. This automatic baud rate detection allows the host to use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the flash loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can use to calculate the ratios needed to program the UART to match the host's baud rate. After the host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received after at least twice the time required to transfer the two bytes, the host can resend another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has received a synchronization pattern correctly. For example, the time to wait for data back from the flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate of 115200, this time is 2*(20/115200) or 0.35ms.

A.1.2 SSI

The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications, with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See the section on SSI formats for more details on this transfer protocol. Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running the flash loader. Since the host device is the master, the SSI on the flash loader device does not need to determine the clock as it is provided directly by the host.

A.2 Packet Handling

All communications, with the exception of the UART auto-baud, are done via defined packets that are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same

format for receiving and sending packets, including the method used to acknowledge successful or unsuccessful reception of a packet.

A.2.1 Packet Format

All packets sent and received from the device use the following byte-packed format.

```
struct
{
    unsigned char ucSize;
    unsigned char ucCheckSum;
    unsigned char Data[];
};
```

ucSize – The first byte received holds the total size of the transfer including the size and checksum bytes.

ucChecksum – This holds a simple checksum of the bytes in the data buffer only. The algorithm is Data[0]+Data[1]+...+ Data[ucSize-3].

Data – This is the raw data intended for the device, which is formatted in some form of command interface. There should be ucSize - 2 bytes of data provided in this buffer to or from the device.

A.2.2 Sending Packets

The actual bytes of the packet can be sent individually or all at once, the only limitation is that commands that cause flash memory access should limit the download sizes to prevent losing bytes during flash programming. This limitation is discussed further in the commands that interact with the flash.

Once the packet has been formatted correctly by the host, it should be sent out over the UART or SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This does not indicate that the actual contents of the command issued in the data portion of the packet were valid, just that the packet was received correctly.

A.2.3 Receiving Packets

The flash loader sends a packet of data in the same format that it receives a packet. The flash loader may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the data itself. There is no break in the data after the first non-zero byte is sent from the flash loader. Once the device communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to indicate that the transmission was successful. The appropriate response after sending a NAK to the flash loader is to resend the command that failed and request the data again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the flash loader only accepts the first non-zero data as a valid response. This zero padding is needed by the SSI interface in order to receive data to or from the flash loader.

A.3 Commands

The next section defines the list of commands that can be sent to the flash loader. The first byte of the data should always be one of the defined commands, followed by data or parameters as determined by the command that is sent.

A.3.1 COMMAND_PING (0x20)

This command simply accepts the command and sets the global status to success. The format of the packet is as follows:

Byte[0] = 0x03; Byte[1] = checksum(Byte[2]); Byte[2] = COMMAND_PING;

The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.

A.3.2 COMMAND_GET_STATUS (0x23)

This command returns the status of the last command that was issued. Typically, this command should be sent after every command to ensure that the previous command was successful or to properly respond to a failure. The command requires one byte in the data of the packet and should be followed by reading a packet with one byte of data that contains a status code. The last step is to ACK or NAK the received data so the flash loader knows that the data has been read.

Byte[0] = 0x03 Byte[1] = checksum(Byte[2]) Byte[2] = COMMAND_GET_STATUS

A.3.3 COMMAND_DOWNLOAD (0x21)

This command is sent to the flash loader to indicate where to store data and how many bytes will be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full area to be programmed so this command takes longer than other commands. This results in a longer time to receive the ACK/NAK back from the board. This command should be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size are valid for the device running the flash loader.

The format of the packet to send this command is a follows:

```
Byte[0] = 11

Byte[1] = checksum(Bytes[2:10])

Byte[2] = COMMAND_DOWNLOAD

Byte[3] = Program Address [31:24]

Byte[4] = Program Address [23:16]

Byte[5] = Program Address [7:0]

Byte[6] = Program Address [7:0]

Byte[7] = Program Size [31:24]

Byte[8] = Program Size [23:16]

Byte[9] = Program Size [15:8]

Byte[10] = Program Size [7:0]
```

A.3.4 COMMAND_SEND_DATA (0x24)

This command should only follow a COMMAND_DOWNLOAD command or another COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands

automatically increment address and continue programming from the previous location. The caller should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program successfully and not overflow input buffers of the serial interfaces. The command terminates programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been received. Each time this function is called it should be followed by a

COMMAND_GET_STATUS to ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK to this command, the flash loader does not increment the current address to allow retransmission of the previous data.

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
```

A.3.5 COMMAND_RUN (0x22)

This command is used to tell the flash loader to execute from the address passed as the parameter in this command. This command consists of a single 32-bit value that is interpreted as the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK signal back to the host device before actually executing the code at the given address. This allows the host to know that the command was received successfully and the code is now running.

```
Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]
```

A.3.6 COMMAND_RESET (0x25)

This command is used to tell the flash loader device to reset. This is useful when downloading a new image that overwrote the flash loader and wants to start from a full reset. Unlike the COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set up for the new code. It can also be used to reset the flash loader if a critical error occurs and the host device wants to restart communication with the flash loader.

```
Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET
```

The flash loader responds with an ACK signal back to the host device before actually executing the software reset to the device running the flash loader. This allows the host to know that the command was received successfully and the part will be reset.

Ordering and Contact Information

Ordering Information

	Features															
					ADC	;					PWM ^c					
Order Number	Flash (KB)	SRAM (KB)	GPIOS ^a	Timers ^b	Samples Per Second	# of 10-Bit Channels	UART(s)	SSI	I ² C	Analog Comparator(s)	PWM Pins	CCP Pins	QEI	Operating Temperature ^d	Package ^e	Speed (Clock Frequency in MHz)
LM3S316-IQN25 LM3S316-IQN25(T) ^f	16	4	3 to 32	3	250K	4	2	V	V	1	4	6	-	I	QN	25

Minimum is number of pins dedicated to GPIO; additional pins are available if certain peripherals are not used. See data sheet for a. details

One timer available as RTC. b.

PWM motion control functionality can be achieved through dedicated motion control hardware (using the PWM pins) or through c. the motion control features of the general-purpose timers (using the CCP pins). See data sheet for details.

d. I=Industrial (-40 to 85°C).

QN=48-pin RoHS-compliant PQFP. e.

f. T=Tape and Reel.

Development Kit

The Luminary Micro Stellaris™ Family Development Kit provides the hardware and software tools that engineers need to begin development quickly. Ask your Luminary Micro distributor for part number DK-LM3S811. See the Luminary Micro website for the latest tools available.

Tools to development

Company Information

Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3 based microcontrollers for use in embedded applications within the industrial, commercial, and consumer markets. Luminary Micro is ARM's lead partner in the implementation of the Cortex-M3 core. Please contact us if you are interested in obtaining further information about our company or our products.

Luminary Micro, Inc. 2499 South Capital of Texas Hwy, Suite A-100 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com sales@luminarymicro.com

Support Information

For support on Luminary Micro products, contact:

support@luminarymicro.com +1-512-279-8800, ext. 3