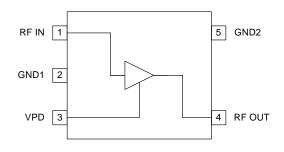


RF2361 3V LOW NOISE AMPLIFIER/ 3V PA DRIVER AMPLIFIER


Package Style: SOT 5-Lead

Features

- Low Noise and High Intercept Point
- Adjustable Bias Current
- Power Down Control
- Single 2.5V to 6.0V Power Supply
- 150 MHz to 2500 MHz Operation
- Extremely Small SOT 5-Lead Package

Applications

- TDMA/CDMA/FM Cellular PCS LNA
- Low Noise Transmit Driver Amplifier
- General Purpose Amplification
- Commercial and Consumer Systems

Functional Block Diagram

Product Description

The RF2361 is a low noise amplifier with a very high dynamic range designed for digital cellular applications. The device functions as an outstanding front end low noise amplifier or power amplifier driver amplifier in the transmit chain of digital subscriber units where low transmit noise power is a concern. When used as an LNA, the bias current can be set externally. When used as a PA driver, the IC can operate directly from a single cell Li-ion battery and includes a power down feature that can be used to completely turn off the device. The IC is featured in a standard SOT 5-lead plastic package.

NOTE: The RF2361 is a non-Pb-free product. If a Pb-free product with the same functionality and package is desired, please see the RF2878.

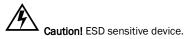
Ordering Information

RF2361	3V Low Noise Amplifier/ 3V PA Driver Amplifier
RF2361 PCBA-D	Fully Assembled Evaluation Board (Driver)
RF2361 PCBA-L	Fully Assembled Evaluation Board (LNA)

Optimum Technology Matching® Applied

🗹 GaAs HBT	□ SiGe BiCMOS	GaAs pHEMT	GaN HEMT
GaAs MESFET	Si BiCMOS	Si CMOS	
InGaP HBT	SiGe HBT	🗌 Si BJT	

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^M, PowerStar®, POLARIS^M TOTAL RADIO^M and UltimateBlue^M are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. @2006. RF Micro Devices. Inc.


7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.

RF2361

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage, V _{CC}	-0.5 to +8.0	V _{DC}
Power Down Voltage, V _{PD}	<u>≤</u> V _{CC}	V _{DC}
Input RF Level	+10	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

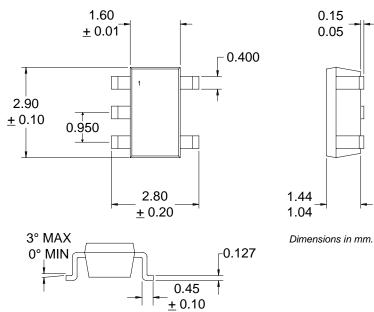
Dowowsstaw		Specification		11	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Overall						
RF Frequency Range		150 to 2500		MHz		
Low Noise Amplifier 881MHz Performance					Schematic per LNA Application; T=25°C, RF=881MHz, V_{PD} =2.8V, R1=1k Ω	
Gain	19.5	20		dB	V _{CC} =3.0V, I _{CC} =7.6mA	
	19.5	20		dB	V _{CC} =2.7V, I _{CC} =7.5mA	
Noise Figure		1.4	1.6	dB	V _{CC} =3.0V, I _{CC} =7.6mA	
		1.4	1.6	dB	V _{CC} =2.7V, I _{CC} =7.5mA	
Input IP3		+6.0		dBm	V _{CC} =3.0V, I _{CC} =7.6mA	
		+5.5		dBm	V _{CC} =2.7V, I _{CC} =7.5mA	
Low Noise Amplifier 1950MHz Performance					Schematic per LNA Application; T=25°C, RF=1950MHz, V _{PD} =2.8V, R1=1k Ω	
Gain	12.5	13		dB	V _{CC} =3.0V, I _{CC} =6.4mA	
	12.5	13		dB	V _{CC} =2.7V, I _{CC} =6.3mA	
Noise Figure		1.3	1.5	dB	V _{CC} =3.0V, I _{CC} =6.4 mA	
		1.3	1.5	dB	V _{CC} =2.7V, I _{CC} =6.3mA	
Input IP3		+16.5		dBm	V _{CC} =3.0V, I _{CC} =6.4mA	
		+16.0		dBm	V _{CC} =2.7V, I _{CC} =6.3mA	
Driver Amplifier 836MHz Performance					Schematic per Driver Amplifier Application; T=25°C, RF=836MHz, V _{PD} =2.8V	
Gain	19.5	20.5	21.5	dB	V _{CC} =3.5V	
	19.5	20.5	21.5	dB	V _{CC} =3.0V	
	19.5	20.5	21.5	dB	V _{CC} =2.7V	
Output IP3	25	+32.0	35	dBm	V _{CC} =3.5V	
		+29.0		dBm	V _{CC} =3.0V	
		+27.8		dBm	V _{CC} =2.7V	
Noise Figure		1.9	2.0	dB	V _{CC} =3.5V	
		1.85	2.0	dB	V _{CC} =3.0V	
		1.8	2.0	dB	V _{CC} =2.7V	
Reverse Isolation		25		dB	V _{CC} =3.5V	
		25		dB	V _{CC} =3.0V	
		25		dB	V _{CC} =2.7V	
Input VSWR		1.8:1	2.0:1			

Parameter	Specification			Unit	Condition	
Farameter	Min.	Тур.	Max.	Unit	Condition	
Driver Amplifier						
836 MHz Performance, cont.						
Output VSWR		1.25:1	2.0:1		Using External LC network used on evaluation board.	
P _{1dB}	13	14.4		dBm	V _{CC} =3.5V	
	12	12.5		dBm	V _{CC} =3.0V	
	10.5	11.5		dBm	V _{CC} =2.7V	
Power Supply					T=25 °C	
Voltage (V _{CC})		2.5 to 6.0		V		
Voltage (V _{PD})	2.7	2.8	2.9	V		
Current Consumption - Driver Amplifier	12.5	21.5	27	mA	$V_{CC}=3.5V; V_{PD}=2.8V; V_{PD}+V_{CC} - Current$ Consumption from V _{PD} is 2.0mA Typ. @ V _{PD} =2.8V and 3.0mA Max @ V _{PD} =2.9V	
	18	20	22	mA	V_{CC} =3.5V; V_{PD} =2.7V; V_{PD} + V_{CC}	
	19	23	29	mA	V _{CC} =3.5V; V _{PD} =2.9V; V _{PD} + V _{CC}	
Power Down			10	μΑ	V_{CC} = 3.5 V; $V_{PD} \le 0.9$ V	
Driver Amplifier 1880 MHz Performance					Schematic per Driver Amplifier Application; T=25°C, RF=1880MHz, V _{PD} =2.8V	
Gain	13.0	14.0	14.5	dB	V _{CC} =3.5V	
	13.0	14.0	14.5	dB	V _{CC} =3.0V	
	13.0	14.0	14.5	dB	V _{CC} =2.7V	
Output IP3	27	+35.0	38	dBm	V _{CC} =3.5V	
		+31.0		dBm	V _{CC} =3.0V	
		+28.8		dBm	V _{CC} =2.7V	
Noise Figure		1.85	2.0	dB	V _{CC} =3.5V	
		1.8	2.0	dB	V _{CC} =3.0V	
		1.75	2.0	dB	V _{CC} =2.7V	
Reverse Isolation		19		dB	V _{CC} =3.5V	
		19		dB	V _{CC} =3.0V	
		19		dB	V _{CC} =2.7V	
Input VSWR		1.6:1	2.0:1			
Output VSWR		1.6:1	2.0:1		Using External LC network used on evaluation board.	
P _{1dB}	14	15.6		dBm	V _{CC} =3.5V	
	13	14.1		dBm	V _{CC} =3.0V	
	12	13.1		dBm	V _{CC} =2.7V	

RF2361

RFMD	•))))
rfmd.com	

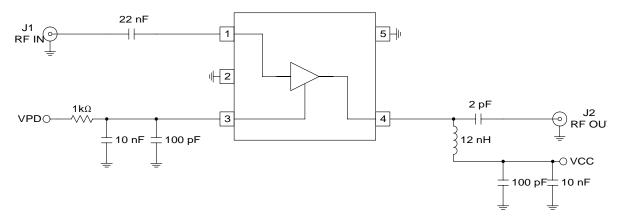
Parameter		Specification			Condition	
Farameter	Min.	Тур.	Max.	Unit	Condition	
Power Supply					T=25 °C	
Voltage (V _{CC})		2.5 to 6.0		V		
Voltage (V _{PD})	2.7	2.8	2.9	V		
Current Consumption - Driver Amplifier	11.5	19.5	25.5	mA	V_{CC} =3.5V; V_{PD} =2.8V; V_{PD} + V_{CC} - Current Consumption from V_{PD} is 2.0mA Typ.@ V_{PD} =2.8V and 3.0mA Max @ V_{PD} =2.9 V	
	16	18	20	mA	V_{CC} =3.5V; V_{PD} =2.7V; V_{PD} + V_{CC}	
	18	20.5	27	mA	V _{CC} =3.5V; V _{PD} =2.9V; V _{PD} + V _{CC}	
Power Down			10	μΑ	$V_{CC} = 3.5 \text{ V}; \text{ V}_{PD} \leq 0.9 \text{ V}$	

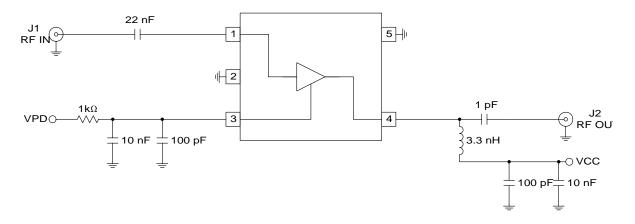

RFMD	ייייייי)))
------	------------

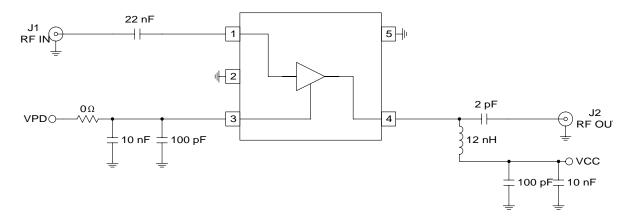
rfmd.com

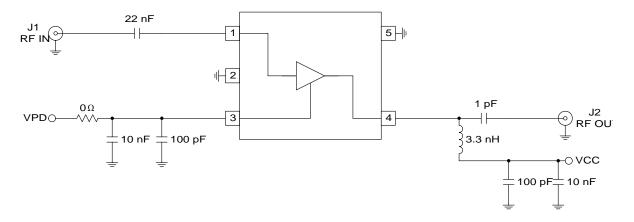
RF2361

Pin	Function	Description	Interface Schematic
1	RF IN	RF input pin. This pin is DC coupled and matched to 50Ω at 836 MHz.	
2	GND1	Ground connection. Keep traces physically short and connect immediately to ground plane for best performance.	
3	VPD	For low noise amplifier applications, this pin is used to control the bias current. See plots for bias current settings. An external resistor (R1) can be used to set the bias current for any V_{PD} voltage. For driver amplifier applications, this is the Power Down pin for the IC. $V_{PD}=2.8V$ +/- 0.1V is required for proper operation. $V_{PD}<0.9V$ turns off the Part. External RF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. Nominal current required for $V_{PD}=2.8V$ is 2.0mA typical and 3.0mA Max (@ $V_{PD}=2.9V$).	
4	RF OUT	Amplifier Output pin. This pin is an open-collector output. It must be biased to either V _{CC} or pin 4 through a choke or matching inductor. This pin is typically matched to 50Ω with a shunt bias/matching inductor and series blocking/matching capacitor. Refer to application schematics.	
5	GND2	Ground connection. Keep traces physically short and connect immediately to ground plane for best performance.	

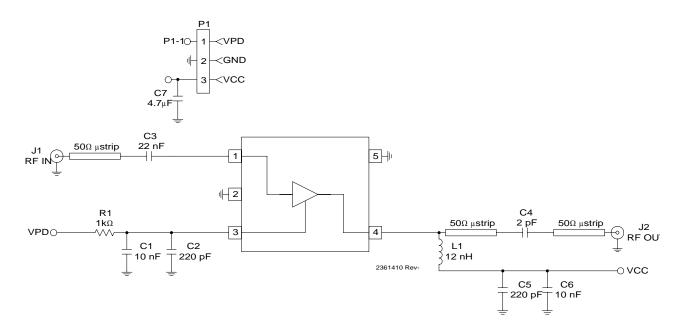

Package Drawing

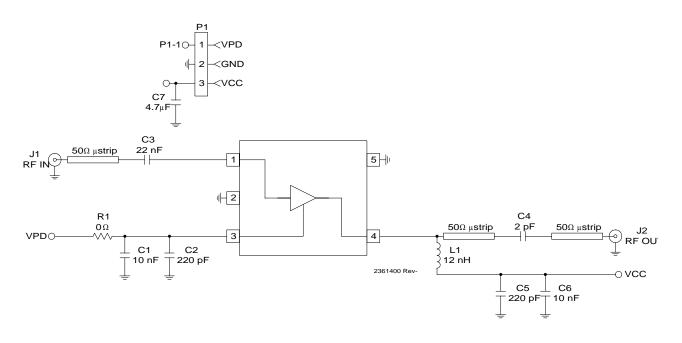



Application Schematic: Low Noise Amplifier ~1950MHz Operation

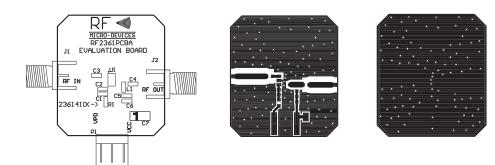


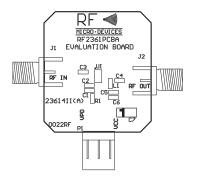
Application Schematic: Driver Amplifier ~836 MHz Operation


Application Schematic: Driver Amplifier ~1880MHz Operation



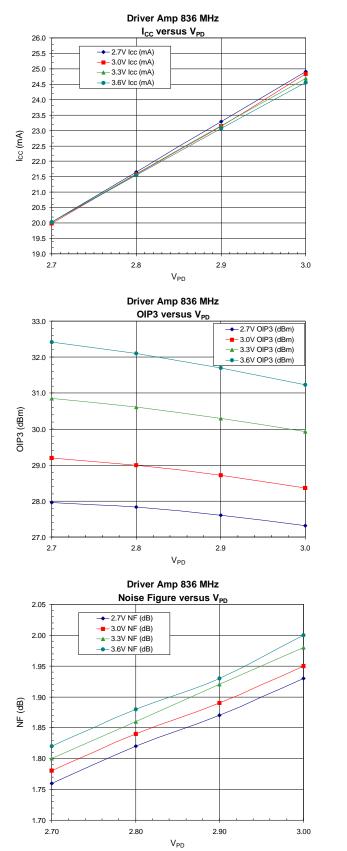
Evaluation Board Schematic: Low Noise Amplifier ~881MHz Operation

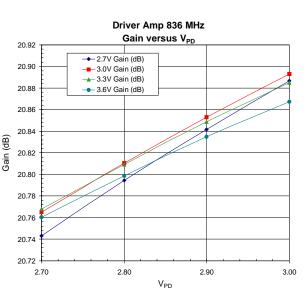

Evaluation Board Schematic: Driver Amplifier ~836MHz Operation

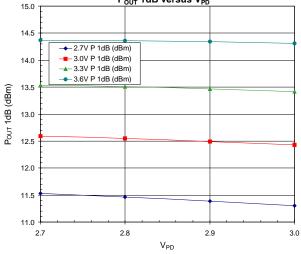


Evaluation Board Layout - 900 MHz Driver Board Size 0.948" x 1.063" Board Thickness 0.031"; Board Material FR-4

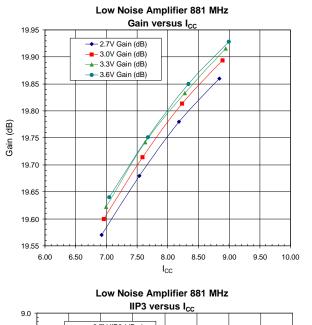
Evaluation Board Layout - 900 MHz LNA

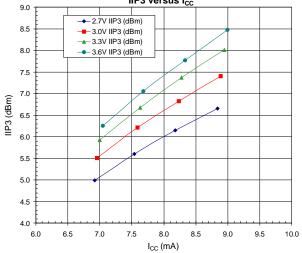


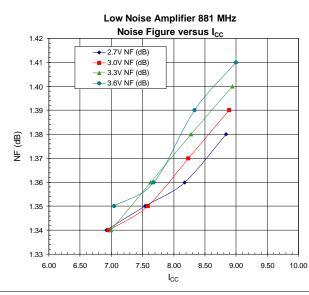


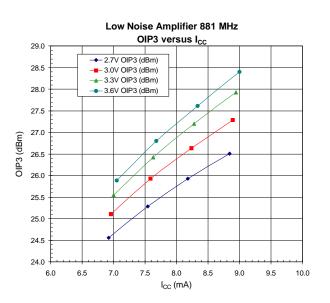


RFMD

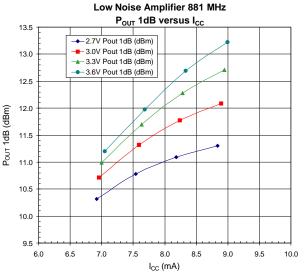



Driver Amp 836 MHz P_{OUT} 1dB versus V_{PD}





rfmd.com



RF2361

PCB Design Requirements

PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3 µinch to 8 µinch gold over 180 µinch nickel.

PCB Land Pattern Recommendation

PCB land patterns are based on IPC-SM-782 standards when possible. The pad pattern shown has been developed and tested for optimized assembly at RFMD; however, it may require some modifications to address company specific assembly processes. The PCB land pattern has been developed to accommodate lead and package tolerances.

PCB Metal Land Pattern

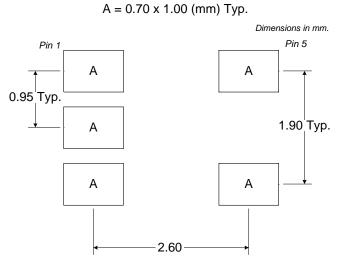


Figure 1. PCB Metal Land Pattern (Top View)

PCB Solder Mask Pattern

Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB metal land pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be provided in the master data or requested from the PCB fabrication supplier.

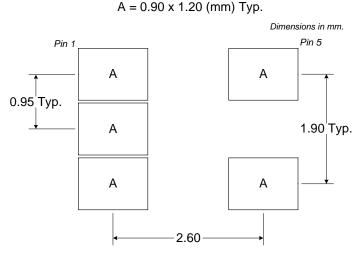


Figure 2. PCB Solder Mask (Top View)

RoHS* Banned Material Content

RoHS Compliant:	No
Package total weight in gram	0.015
Compliance Date Code:	N/A
Bill of Materials Revision:	Rev-
Pb Free Category:	Contains Pb

Bill of Materials	Parts Per Million (PPM)						
DIII OI MIDLEIIDIS	Pb	Cd	Hg	Cr VI	PBB	PBDE	
Die	0	0	0	0	0	0	
Molding Compound	0	0	0	0	0	0	
Lead Frame	0	0	0	0	0	0	
Die Attach Epoxy	0	0	0	0	0	0	
Wire	0	0	0	0	0	0	
Solder Plating	4753	0	0	0	0	0	

This RoHS banned material content declaration was prepared solely on information, including analytical data, provided to RFMD by its suppliers, and applies to the Bill of Materials (BOM) revision noted

* DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

RF2361

