ADC1113D125

Dual 11-bit ADC; serial JESD204A interface
Rev. 02 - 23 April 2010
Preliminary data sheet

1. General description

The ADC1113D125 is a dual-channel 11-bit Analog-to-Digital Converter (ADC) optimized for high dynamic performances and low power at sample rates of 125 Msps . Pipelined architecture and output error correction ensure the ADC1113D125 is accurate enough to guarantee zero missing codes over the entire operating range. Supplied from a 3 V source for analog and a 1.8 V source for the output driver, it embeds two serial outputs. Each lane is differential and complies with the JESD204A format. An integrated Serial Peripheral Interface (SPI) allows the user to easily configure the ADC. A set of IC configurations is also available via the binary level control pins taken, which are used at power-up. The device also includes a SPI programmable full-scale to allow flexible input voltage range from 1 V to 2 V (peak-to-peak).

Excellent dynamic performance is maintained from the baseband to input frequencies of 170 MHz or more, making the ADC1113D125 ideal for use in communications, imaging, and medical applications.

2. Features and benefits

■ SNR, 66.5 dBFS ; SFDR, 86 dBc

- Sample rate: 125 Msps
- Clock input divider by 2 for less jitter contribution
- $3 \mathrm{~V}, 1.8 \mathrm{~V}$ single supplies
- Flexible input voltage range:

1 V to 2 V (peak-to-peak)

- Two configurable serial outputs

■ $\mathrm{INL} \pm 1.25 \mathrm{LSB} ; \mathrm{DNL} \pm 0.25 \mathrm{LSB}$

- Pin compatible with the ADC1213D series
- HVQFN56 package
- Input bandwidth, 600 MHz

■ Power dissipation, 1270 mW

- SPI register programming
- Duty cycle stabilizer
- High IF capability
- Offset binary, two's complement, gray code
- Power-down mode and Sleep mode
- Two JESD204A serial outputs

3. Applications

- Wireless and wired broadband communications
- Spectral analysis
- Ultrasound equipment

■ Portable instrumentation

- Imaging systems
- Software defined radio

4. Ordering information

Table 1. Ordering information

Type number	Sampling frequency (Msps)	Package		Version
	Name	Description	SOT684-7	
ADC1113D125HN/C1	125	HVQFN56	plastic thermal enhanced very thin quad flat package; no leads; 56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$	

5. Block diagram

Fig 1. Block diagram

6. Pinning information

6.1 Pinning

Fig 2. Pinning diagram

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type ${ }^{[1]}$	Description
INAP	1	I	channel A analog input
INAM	2	I	channel A complementary analog input
VCMA	3	O	channel A output common voltage
REFAT	4	O	channel A top reference
REFAB	5	O	channel A bottom reference
AGND	6	G	analog ground
CLKP	7	I	clock input
CLKM	8	I	complementary clock input
AGND	9	G	analog ground
REFBB	10	O	channel B bottom reference
REFBT	11	O	channel B top reference
VCMB	12	O	channel B output common voltage
INBM	13	I	channel B complementary analog input

Table 2. Pin description ...continued

Symbol	Pin	Type [1]	Description
INBP	14	1	channel B analog input
VDDA	15	P	analog power supply 3 V
VDDA	16	P	analog power supply 3 V
SCLK/DCS	17	I	SPI clock data format select
SDIO/DCS	18	I/O	SPI data IO duty cycle stabilizer
$\overline{\mathrm{CS}}$	19	1	chip select bar
AGND	20	G	analog ground
RESET	21	1	JEDEC digital IP reset
SCRAMBLER	22	1	scrambler enable and disable
CFG0	23	I/O	see Table 28 (input) or OTRA (output)[2]
CFG1	24	I/O	see Table 28 (input) or OTRB (output)[2]
CFG2	25	I/O	see Table 28 (input)
CFG3	26	I/O	see Table 28 (input)
VDDD	27	P	digital power supply 1.8 V
DGND	28	G	digital ground
DGND	29	G	digital ground
DGND	30	G	digital ground
VDDD	31	P	digital power supply 1.8 V
CMLPB	32	O	channel B output
CMLNB	33	O	channel B complementary output
VDDD	34	P	digital power supply 1.8 V
DGND	35	G	digital ground
DGND	36	G	digital ground
VDDD	37	P	digital power supply 1.8 V
CMLNA	38	O	channel A complementary output
CMLPA	39	O	channel A output
VDDD	40	P	digital power supply 1.8 V
DGND	41	G	digital ground
DGND	42	G	digital ground
SYNCP	43	1	synchronization from FPGA
SYNCN	44	1	synchronization from FPGA
DGND	45	G	digital ground
VDDD	46	P	digital power supply 1.8 V
SWING_0	47	1	JESD204 serial buffer programmable output swing
SWING_1	48	1	JESD204 serial buffer programmable output swing
DNC	49	O	Do not connect
VDDA	50	P	analog power supply 3 V
AGND	51	G	analog ground
AGND	52	G	analog ground
VDDA	53	P	analog power supply 3 V

ADC1113D125_2

Table 2. Pin description ...continued

Symbol	Pin	Type ${ }^{[1]}$	Description
SENSE	54	I	reference programming pin
VREF	55	I/O	voltage reference input/output
VDDA	56	P	analog power supply 3 V

[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.
[2] OTRA stands for "OuT of Range" A. OTRB stands for "OuT of Range" B.

7. Limiting values

Table 3. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\text {DDA }}$	analog supply voltage		[1]	-0.4	+4.6
$\mathrm{~V}_{\mathrm{DDD}}$	digital supply voltage		$\mathrm{V}^{[2]}$	-0.4	+2.5
$\Delta \mathrm{~V}_{\mathrm{CC}}$	supply voltage difference	$\mathrm{V}_{\text {DDA }}-\mathrm{V}_{\text {DDD }}$	<tbd>	$<$ tbd>	V
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-	125	${ }^{\circ} \mathrm{C}$

[1] The supply voltage $\mathrm{V}_{\text {DDA }}$ may have any value between -0.5 V and +7.0 V provided that the supply voltage differences $\Delta V_{C C}$ are respected.
[2] The supply voltage $\mathrm{V}_{\mathrm{DDD}}$ may have any value between -0.5 V and +5.0 V provided that the supply voltage differences $\Delta \mathrm{V}_{\mathrm{CC}}$ are respected.

8. Thermal characteristics

Table 4. Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j})}$	thermal resistance from junction to ambient	[1]	17.8	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th}(\mathrm{j})}$	thermal resistance from junction to case	$\underline{[1]}$	6.8	$\mathrm{~K} / \mathrm{W}$

[1] Value for six layers board in still air with a minimum of 25 thermal vias.

9. Static characteristics

Table 5. Characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supplies			2.85	3.0	3.4	V
$\mathrm{~V}_{\text {DDA }}$	analog supply voltage		1.65	1.8	1.95	V
$\mathrm{~V}_{\text {DDD }}$	digital supply voltage		-	343	-	mA
$\mathrm{I}_{\text {DDA }}$	analog supply current	$\mathrm{f}_{\mathrm{Clk}}=125 \mathrm{Msps} ;$ $\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$				
$\mathrm{I}_{\text {DDD }}$	digital supply current	$\mathrm{f}_{\mathrm{clk}}=125 \mathrm{Msps} ;$ $\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	150	-	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{f}_{\mathrm{clk}}=125 \mathrm{Msps}$	-	1270	-	mW
P	power dissipation	power-down mode	-	30	-	mW
		standby mode	-	200	-	mW

Digital inputs
Clock inputs: pins CLKP and CLKM, AC coupled
LVPECL

$\mathrm{V}_{\mathrm{i}}(\mathrm{clik}) \mathrm{dif}$	differential clock input voltage	peak-to-peak	-	± 0.8	-	V
LVDS						
$\mathrm{V}_{\mathrm{i}}(\mathrm{ClI})$ dif	differential clock input voltage	peak-to-peak	-	± 0.4	-	V
SINE wave						
$\mathrm{V}_{\mathrm{i}(\mathrm{ClI}) \text { dif }}$	differential clock input voltage	peak-to-peak	± 0.4	± 1.5	-	V

LVCMOS mode

$V_{\text {IL }}$	LOW-level input voltage	-	-	$0.3 \mathrm{~V}_{\text {DDA }}$	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage	$0.7 \mathrm{~V}_{\text {DDA }}$	-	-	V
Logic inputs, Power-down: pins CFG0 to CFG3, SCRAMBLER, SWING_0, and SWING_1					
$V_{\text {IL }}$	LOW-level input voltage	-	0	-	V
V_{IH}	HIGH-level input voltage	-	$0.66 V_{\text {DDD }}$	-	V
$I_{\text {IL }}$	LOW-level input current	-6	-	+6	$\mu \mathrm{A}$
I_{H}	HIGH-level input current	-30	-	+30	$\mu \mathrm{A}$
SPI: pins $\overline{C S}$, SDIOIDCS, and SCLKIDCS					
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	0	-	$0.3 V_{\text {DDA }}$	V
V_{IH}	HIGH-level input voltage	$0.7 \mathrm{~V}_{\text {DDA }}$	-	$V_{\text {DDA }}$	V
$\mathrm{I}_{\text {IL }}$	LOW-level input current	-10	-	+10	$\mu \mathrm{A}$
I_{H}	HIGH-level input current	-50	-	+50	$\mu \mathrm{A}$
C_{1}	input capacitance	-	4	-	pF

Table 5. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Analog inputs: pins INAP, INAM, INBP, and INBM						
$1 /$	input current	track mode	-5	-	+5	$\mu \mathrm{A}$
R_{1}	input resistance	track mode	-	15	-	Ω
C_{1}	input capacitance	track mode	-	5	-	pF
$\mathrm{V}_{1(\mathrm{~cm})}$	common-mode input voltage	track mode	0.9	1.5	2	V
B_{i}	input bandwidth		-	600	-	MHz
$V_{1(\text { dif) }}$	differential input voltage	peak-to-peak	1	-	2	V
Voltage controlled regulator output: pins VCMA and VCMB						
$\mathrm{V}_{\mathrm{O}(\mathrm{cm})}$	common-mode output voltage		-	$0.5 \mathrm{~V}_{\text {DDA }}$	-	V
$\mathrm{l}_{\mathrm{O}(\mathrm{cm})}$	common-mode output current		-	<tbd>	-	$\mu \mathrm{A}$
Reference voltage input/output: pin VREF						
$\mathrm{V}_{\text {VREF }}$	voltage on pin VREF	output	0.5	-	1	V
		input	0.5	-	1	V

Data outputs: CMLPA, CMLNA
Output levels, $\mathrm{V}_{\mathrm{DDD}}=1.8 \mathrm{~V}$; SWING_SEL[2:0] $=000$

$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	DC coupled; output	-	1.5	-	V
		AC coupled	-	1.65	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.35		V

Output levels, $\mathrm{V}_{\mathrm{DDD}}=1.8 \mathrm{~V}$; SWING_SEL[2:0] = 001

$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	DC coupled; output	-	1.45	-	V
		AC coupled		1.625		V
V_{OH}	HIGH-level output voltage	DC coupled; output		1.8		V
		AC coupled		1.275		V

Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$; SWING_SEL[2:0] $=010$

$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	DC coupled; output	-	1.4		V
		AC coupled	-	1.6	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled		1.2		V

Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$; SWING_SEL[2:0] = 011

V OL	LOW-level output voltage	DC coupled; output	-	1.35	-	V
		AC coupled	-	1.575	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.125	-	V
Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$; SWING_SEL[2:0] $=100$						
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	DC coupled; output	-	1.3	-	V
		AC coupled	-	1.55	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.05	-	V

Table 5. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Serial configuration: SYNCCP, SYNCCN						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	differential; input	-	0.95	-	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	differential; input	-	1.47	-	V
Accuracy						
INL	integral non-linearity		-5	± 1.25	+5	LSB
DNL	differential non-linearity	no missing codes guaranteed	-0.95	± 0.25	+0.95	LSB
$\mathrm{E}_{\text {offset }}$	offset error		-	± 2	-	mV
E_{G}	gain error	full-scale	-	± 0.5	-	\%
$\mathrm{M}_{\mathrm{G} \text { (CTC) }}$	channel-to-channel gain matching		-	<tbd>	-	\%
Supply						
PSRR	power supply rejection ratio	100 mV (p-p) on VDDA	-	35	-	dBc

[1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Minimum and maximum values are across the full temperature range $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=1.8 \mathrm{~V}$; V_{1} (INAP, INBP) $-\mathrm{V}_{\text {I }}$ (INAM, INBM) $=-1 \mathrm{dBFS}$; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

10. Dynamic characteristics

Table 6. Characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Analog signal processing						
$\alpha_{2 H}$	second harmonic level	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	88	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	87	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	85	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	83	-	dBc
$\alpha_{3 H}$	third harmonic level	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	87	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	86	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	84	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	82	-	dBc
THD	total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	86	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	85	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	83	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	81	-	dBc
ENOB	effective number of bits	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	10.7	-	bits
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	10.7	-	bits
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	10.7	-	bits
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	10.6	-	bits
SNR	signal-to-noise ratio	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	66.2	-	dBFS
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	66.2	-	dBFS
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	66.0	-	dBFS
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	65.8	-	dBFS
SFDR	spurious-free dynamic range	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	87	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	86	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	84	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	82	-	dBc
IMD	intermodulation distortion	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	89	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	88	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	86	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	84	-	dBc
$\alpha_{\text {ct(ch) }}$	channel crosstalk	$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	100	-	dBc

[1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Minimum and maximum values are across the full temperature range $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=1.8 \mathrm{~V}$; $\mathrm{V}_{\text {I }}$ (INAP, INBP) $-\mathrm{V}_{1}($ INAM, INBM $)=-1$ dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

11. Clock and digital output timing

Table 7.	Characteristics					
Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Clock timing input: pins CLKP and CLKM						
$\mathrm{f}_{\mathrm{clk}}$	clock frequency		100	-	125	Msps
$\mathrm{t}_{\text {lat(data })}$	data latency time		-	14	-	clock cycle
δ_{clk}	clock duty cycle	DCS_EN $=1:$ en	30	50	70	$\%$
		DCS_EN $=0:$ dis	45	50	55	$\%$
$\mathrm{t}_{\mathrm{d}(\mathrm{s})}$	sampling delay time		-	0.8	-	ns
$\mathrm{t}_{\text {wake }}$	wake-up time		-	$<$ tbd>	-	ns

[1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Minimum and maximum values are across the full temperature range $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=1.8 \mathrm{~V} ; \mathrm{V}_{1}$ (INAP, INBP) $-\mathrm{V}_{\text {I }}$ (INAM, INBM) $=-1 \mathrm{dBFS}$; internal reference mode; 100 W differential applied to serial outputs; unless otherwise specified.

11.1 Serial output timings

The eye diagram of the serial output is shown in Figure 3 and Figure 4. Test conditions are:

- 3.125 Gbps data rate
- $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
- DC coupling with two different receiver common-mode voltages

Fig 3. Eye diagram at 1 V receiver common-mode

Fig 4. Eye diagram at 2 V receiver common-mode

12. SPI timing

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Serial Peripheral Interface timings						
$\mathrm{t}_{\mathrm{w} \text { (SCLK) }}$	SCLK pulse width		40	-	-	ns
$\mathrm{t}_{\text {W(SCLKH) }}$	SCLK HIGH pulse width		16	-	-	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{SCLKL})}$	SCLK LOW pulse width		16	-	-	ns
$\mathrm{t}_{\text {su }}$	set-up time	data to SCLKH	5	-	-	ns
		$\overline{\mathrm{CS}}$ to SCLKH	5	-	-	ns
$t_{\text {h }}$	hold time	data to SCLKH	2	-	-	ns
		$\overline{\mathrm{CS}}$ to SCLKH	2	-	-	ns
$\mathrm{f}_{\text {clk (max) }}$	maximum clock frequency		-	-	25	MHz

[1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. Minimum and maximum values are across the full temperature range $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\text {DDA }}=3 \mathrm{~V}$, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$; V_{1} (INAP, INBP) $-\mathrm{V}_{1}$ (INAM,INBM) $=-1 \mathrm{dBFS}$; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Fig 5. SPI timings

13. Application information

13.1 Analog inputs

13.1.1 Input stage description

The analog input of the ADC1113D125 supports differential or single-ended input drive. Optimal performance is achieved using differential inputs with the common-mode input voltage ($\mathrm{V}_{\mathrm{I}(\mathrm{cm})}$) on pins INP and INM set to 0.5VDDA.

The full scale analog input voltage range is configurable between $1 \mathrm{~V}(p-p)$ and 2 V (p-p) via a programmable internal reference (see Section 13.2 and Table 21 for further details).

Figure 6 shows the equivalent circuit of the sample and hold input stage, including ElectroStatic Discharge (ESD) protection and circuit and package parasitics.

Fig 6. Input sampling circuit
The sample phase occurs when the internal clock (derived from the clock signal on pin CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the clock signal goes LOW, the stage enters the hold phase and the voltage information is transmitted to the ADC core.

13.1.2 Anti-kickback circuitry

Anti-kickback circuitry (R-C filter in Figure 7) is needed to counteract the effects of a charge injection generated by the sampling capacitance.

The RC filter is also used to filter noise from the signal before it reaches the sampling stage. The value of the capacitor should be chosen to maximize noise attenuation without degrading the settling time excessively.

Fig 7. Anti-kickback circuit
The component values are determined by the input frequency and should be selected so as not to affect the input bandwidth.

Table 9. RC coupling versus input frequency - typical values

Input frequency	\mathbf{R}	\mathbf{C}
3 MHz	25Ω	12 pF
70 MHz	12Ω	8 pF
170 MHz	12Ω	8 pF

13.1.3 Transformer

The configuration of the transformer circuit is determined by the input frequency. The configuration shown in Figure 8 would be suitable for a baseband application.

Fig 8. Single transformer configuration

Fig 9. Dual transformer configuration
The configuration shown in Figure 9 is recommended for high frequency applications. In both cases, the choice of transformer will be a compromise between cost and performance.

13.2 System reference and power management

13.2.1 Internal/external reference

The ADC1113D125 has a stable and accurate built-in internal reference voltage to adjust the ADC full-scale. This reference voltage can be set internally via SPI or with pins VREF an SENSE (see Figure 11, Figure 12, Figure 13 and Figure 14), in 1 dB steps between 0 dB and -6 dB , via SPI control bits INTREF[2:0] (when bit INTREF_EN = 1; see Table 21). The equivalent reference circuit is shown in Figure 10. External reference is also possible by providing a voltage on pin VREF as described in Figure 13.

Fig 10. Reference equivalent schematic
Table 10 shows how to choose between the different internal/external modes:
Table 10. Reference modes

Mode	SPI Bit, "Internal reference"	SENSE pin	VREF pin	Full Scale, V (p-p)
Internal (Figure 11)	0	GND	330 pF capacitor to GND	2
Internal (Figure 12)	0	VREF pin $=$ SENSE pin and 330 pF capacitor to GND		1
External (Figure 13)	0	$V_{\text {DDA }}$	External voltage from 0.5 V to 1 V	1 to 2
Internal, SPI mode (Figure 14)	1	VREF pin = SENSE pin and 330 pF capacitor to GND		1 to 2

Fig 11. Internal reference, 2 V ($p-p$) full scale

Fig 13. External reference, $1 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ to $2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ full-scale

Fig 12. Internal reference, 1 V (p-p) full scale

Fig 14. Internal reference via SPI, 1 V (p-p) to 2 V (p-p) full-scale

Figure 11 to Figure 14 indicate how to connect the SENSE and VREF pins.

13.2.2 Reference gain control

The reference gain is programmable between 0 dB to -6 dB in steps of 1 dB via the SPI (see Table 21). The corresponding full scale input voltage range varies between 2 V ($\mathrm{p}-\mathrm{p}$) and $1 \vee$ (p-p), as shown in Table 11:

Table 11. Reference SPI gain control

INTREF[2:0]	Level	Full Scale, V (p-p)
000	0 dB	2
001	-1 dB	1.78
010	-2 dB	1.59
011	-3 dB	1.42
100	-4 dB	1.26
101	-5 dB	1.12
110	-6 dB	1
111	not used	x

13.2.3 Common-mode output voltage $\left(\mathrm{V}_{\mathrm{I}(\mathrm{cm})}\right)$

An $0.1 \mu \mathrm{~F}$ filter capacitor should be connected between on the one hand the pins VCMA and VCMB and on the other hand ground to ensure a low-noise common-mode output voltage. When AC-coupled, these pins can be used to set the common-mode reference for the analog inputs, for instance via a transformer middle point.

Fig 15. Reference equivalent schematic

13.2.4 Biasing

The common-mode output voltage, $\mathrm{V}_{\mathrm{O}(\mathrm{cm})}$, should be set externally to 1.5 V (typical). The common-mode input voltage, $\mathrm{V}_{\mathrm{I}(\mathrm{cm})}$, at the inputs to the sample and hold stage (pins INAM, INBM, INAP, and INBP) must be between 0.9 V and 2 V for optimal performance.

13.3 Clock input

13.3.1 Drive modes

The ADC1113D125 can be driven differentially (SINE, LVPECL or LVDS) with little or no influence on dynamic performances. It can also be driven by a single-ended LVCMOS signal connected to pin CLKP (CLKM should be connected to ground via a capacitor).

a. Rising edge LVCMOS
b. Falling edge LVCMOS

Fig 16. LVCMOS single-ended clock input

005aaa173
a. Sine clock input

c. LVDS clock input

$005 a a a 054$
b. Sine clock input (with transformer)

d. LVPECL clock input

Fig 17. Differential clock input

13.3.2 Equivalent input circuit

The equivalent circuit of the input clock buffer is shown in Figure 18. The common-mode voltage of the differential input stage is set via internal resistors of $5 \mathrm{k} \Omega$ resistors.

Fig 18. Equivalent input circuit
Single-ended or differential clock inputs can be selected via the SPI (see Table 20). If single-ended is selected, the input pin (CLKM or CLKP) is selected via control bit SE_SEL.

If single-ended is implemented without setting SE_SEL accordingly, the unused pin should be connected to ground via a capacitor.

13.3.3 Clock input divider

The ADC1113D125 contains an input clock divider that divides the incoming clock by a factor of 2 (when bit CLKDIV = 1; see Table 20). This feature allows the user to deliver a higher clock frequency with better jitter performance, leading to a better SNR result once acquisition has been performed.

13.3.4 Duty cycle stabilizer

The duty cycle stabilizer can improve the overall performances of the ADC by compensating the input clock signal duty cycle. When the duty cycle stabilizer is active (bit DCS_EN = 1; see Table 20), the circuit can handle signals with duty cycles of between 30% and 70% (typical). When the duty cycle stabilizer is disabled (DCS_EN = 0), the input clock signal should have a duty cycle of between 45% and 55%.

Table 12. Duty cycle stabilizer

DCS_enable SPI	Description
0	duty cycle stabilizer disable
1	duty cycle stabilizer enable

13.4 Digital outputs

13.4.1 Serial output equivalent circuit

The JESD204A standard specify that in case of connecting the receiver and the transmitter in DC coupling, both of them need to be provided by the same supply.

Fig 19. CML output connection to the receiver in DC coupling
The output should be terminated when 100Ω (typical) has been reached at the receiver side.

Fig 20. CML output connection to the receiver in AC coupling

13.5 JESD204A serializer

13.5.1 Digital JESD204A formatter

The block placed after the ADC cores is used to implement all functionalities of the JESD204A standard. This ensures signal integrity and guarantees the clock and the data recovery at the receiver side.

The block is highly parameterized and can be configured in various ways depending on the sampling frequency and the number of lanes used.

Fig 21. General overview of the JESD204A serializer

Fig 22. Detailed view of the JESD204A serializer with debug functionality

13.5.2 ADC core output codes versus input voltage

Table 13 shows the data output codes for a given analog input voltage.
Table 13. Output codes

$\mathbf{V}_{\text {INP }}-\mathbf{V}_{\text {INM }}$	Offset binary	Two's complement	OTR pin
<-1	00000000000	10000000000	1
-1.0000000	00000000000	10000000000	0
-0.9990234	00000000001	10000000001	0
-0.9980469	00000000010	10000000010	0
-0.9970703	00000000011	10000000011	0
-0.996093	00000000100	10000000100	0
\ldots	$\ldots .$.	\ldots.	0
-0.0019531	01111111110	11111111110	0
-0.0009766	01111111111	11111111111	0
0.0000000	10000000000	00000000000	0
+0.0009766	10000000001	00000000001	0
+0.0019531	10000000010	00000000010	0
\ldots	$\ldots .$.	$\ldots .$.	0
+0.9960938	11111111011	01111111011	0

Table 13. Output codes

$\mathbf{V}_{\text {INP }}-\mathbf{V}_{\text {INM }}$	Offset binary	Two's complement	OTR pin
+0.9970703	11111111100	01111111100	0
+0.9980469	11111111101	01111111101	0
+0.9990234	11111111110	01111111110	0
+1.0000000	11111111111	01111111111	0
$>+1$	11111111111	01111111111	1

13.6 Serial Peripheral Interface (SPI)

13.6.1 Register description

The ADC1113D125 serial interface is a synchronous serial communications port allowing for easy interfacing with many industry microprocessors. It provides access to the registers that control the operation of the chip in both read and write modes.

This interface is configured as a 3-wire type (SDIO as bidirectional pin).
SCLK acts as the serial clock, and $\overline{\mathrm{CS}}$ acts as the serial chip select bar.
Each read/write operation is sequenced by the $\overline{\mathrm{CS}}$ signal and enabled by a LOW level to to drive the chip with 2 bytes to 5 bytes, depending on the content of the instruction byte (see Table 14).

Table 14. Instruction bytes for the SPI

	MSB						LSB	
Bit	7	6	5	4	3	2	1	0
Description	$\mathrm{R} / \mathrm{W}[\underline{[1]}$	W 1	W 0	A12	A11	A10	A9	A8
	A7	A6	A5	A4	A3	A2	A1	A0

[1] R/W indicates whether a read or write transfer occurs after the instruction byte

Table 15. Read or Write mode access description

$\mathbf{R} / \mathbf{W}[1]$	Description
0	Write mode operation
1	Read mode operation

[1] Bits W1 and W0 indicate the number of bytes transferred after the instruction byte.

Table 16. Number of bytes to be transferred

W1	W0	Number of bytes
0	0	1 byte transferred
0	1	2 bytes transferred
1	0	3 bytes transferred
1	1	4 or more bytes transferred

Bits A12 to A0 indicate the address of the register being accessed. In the case of a multiple byte transfer, this address is the first register to be accessed. An address counter is incremented to access subsequent addresses.

The steps involved in a data transfer are as follows:

1. The falling edge on $\overline{\mathrm{CS}}$ in combination with a rising edge on SCLK determine the start of communications.
2. The first phase is the transfer of the 2-byte instruction.
3. The second phase is the transfer of the data which can be vary in length but will always be a multiple of 8 bits. The MSB is always sent first (for instruction and data bytes):

Fig 23. Transfer diagram for two data bytes (3-wire type)

13.6.2 Channel control

The two ADC channels can be configured at the same time or separately. By using the register "Channel index", the user can choose which ADC channel will receive the next SPI-instruction. By default the channel A and B will receive the same instructions in write mode. In read mode only A is active.

Addr Hex	Register name	R/W[1]	Bit definition								$\begin{aligned} & \text { Default[2] } \\ & \text { Bin } \end{aligned}$
			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ADC control registers											
0003	Channel index	R/W	-	-	-	-	-	-	ADCB	ADCA	11111111
0005	Reset and Operating modes	R/W	SW_RST	-	-	-	-	-	PD[1:0]		$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
0006	Clock	R/W	-	-	-	SE_SEL	DIFF_SE	-	CLKDIV2_SEL	DCS_EN	$\begin{aligned} & 0000 \\ & 000 \times \end{aligned}$
0008	Vref	R/W	-	-	-	-	INTREF_EN	INTREF[2:0]			$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
0013	Offset	R/W	-	-	DIG_OFFSET[5:0]						$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
0014	Test pattern 1	R/W	-	-	-	-	-	TESTPAT_1[2:0]			$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
0015	Test pattern 2	R/W	TESTPAT_2[10:3]								$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
0016	Test pattern 3	R/W	TESTPAT_3[2:0]			-	-	-	-	-	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
JESD204A control											
0801	Ser_Status	R	RXSYNC _ERROR	RESERVED[2:0]			0	0	POR_TST	RESERVED	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
0802	Ser_Reset	R/W	SW_RST	0	0	0	$\begin{gathered} \text { FSM_SW_ } \\ \text { RST } \end{gathered}$	0	0	0	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
0803	Ser_Cfg_Setup	R/W	0	0	0	0	CFG_SETUP[3:0]				0000 ****
0805	Ser_Control1	R/W	0	TriState_ CFG_PAD	SYNC_POL	SYNC_SING LEENDED	1	RESERVED[2:0]			$\begin{aligned} & 0100 \\ & 1001 \end{aligned}$
0806	Ser_Control2	R/W	0	0	0	0	0	0	SWAP LANE_1_2	$\begin{aligned} & \text { SWAP_- } \\ & \text { ADC_0_1 } \end{aligned}$	0000 00**
0808	Ser_Analog_Ctrl	R/W	0	0	0	0	0	SWING_SEL[2:0]			0000 00**
0809	Ser_ScramblerA	R/W	0	LSB_INIT[6:0]							$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
080A	Ser_ScramblerB	R/W	MSB_INIT[7:0]								11111111
080B	Ser_PRBS_Ctrl	R/W	0	0	0	0	0	0	PRBS_TYPE[1:0]		$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
0820	Cfg_0_DID	R/W*		DID[7:0]							11101101

Table 17．Register allocation map ．．．continued

Addr Hex	Register name	R／W［1］	Bit definition								Default ${ }^{[2]}$ Bin
			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0821	Cfg＿1＿BID	R／W＊	0	0	0	0	BID［3：0］				$\begin{aligned} & 0000 \\ & 1010 \end{aligned}$
0822	Cfg＿3＿SCR＿L	R／W＊	SCR	0	0	0	0	0	0	L	＊000 000＊
0823	Cfg＿4＿F	R／W＊	0	0	0	0	0	F［2：0］			0000 0＊＊＊
0824	Cfg＿5＿K	R／W＊	0	0	0	K［4：0］					000＊＊＊＊＊
0825	Cfg＿6＿M	R／W＊	0	0	0	0	0	0	0	M	0000 000＊
0826	Cfg＿7＿CS＿N	R／W＊	0	CS［0］	0	0	N［3：0］				$01000^{* * *}$
0827	Cfg＿8＿Np	R	0	0	0	NP［4：0］					00001111
0828	Cfg＿9＿S	R／W＊	0	0	0	0	0	0	0	S	0000
0829	Cfg＿10＿HD＿CF	R／W＊	HD	0	0	0	0	0	CF［1：0］		＊000 0000
082C	Cfg＿01＿2＿LID	R／W＊	0	0	0	LID［4：0］					$\begin{aligned} & 0001 \\ & 1011 \end{aligned}$
082D	Cfg＿02＿2＿LID	R／W＊	0	0	0	LID［4：0］					$\begin{aligned} & 0001 \\ & 1100 \end{aligned}$
084C	Cfg01＿13＿FCHK	R	FCHK［7：0］								＊＊＊＊＊＊＊＊
084D	CfgO2＿13＿FCHK	R	FCHK［7：0］								＊＊＊＊＊＊＊＊
0870	LaneA＿0＿Ctrl	R／W	0	$\begin{aligned} & \text { SCR_IN_- } \\ & \text { MODE } \end{aligned}$	LANE＿MODE［1：0］		0	$\begin{gathered} \text { LANE_- } \\ \text { POL } \end{gathered}$	$\begin{aligned} & \text { LANE_CLK_ } \\ & \text { POS_EDGE } \end{aligned}$	LANE＿PD	0000 000＊
0871	LaneB＿0＿Ctrl	R／W	0	$\begin{aligned} & \text { SCR_IN_ } \\ & \text { MODE } \end{aligned}$	LANE＿MODE［1：0］		0	LANE POL	$\begin{aligned} & \text { LANE_CLK_ } \\ & \text { POS_EDGE } \end{aligned}$	LANE＿PD	0000 000＊
0890	ADCA＿0＿Ctrl	R／W	0	0	ADC＿MODE［1：0］		0	0	0	ADC＿PD	0000 000＊
0891	ADCB＿0＿Ctrl	R／W	0	0	ADC＿MODE［1：0］		0	0	0	ADC＿PD	0000 000＊

［1］an＂＊＂in the Access column means that this register is subject to control access conditions in Write mode．
［2］an＂夫＂in the Default column replaces a bit of which the value depends on the binary level of external pins（e．g．CFG［3：0］，Swing［1：0］，Scrambler）．

13.6.3 Register description

13.6.3.1 ADC control registers

Table 18. Register channel Index (address 0003h)

Bit	Symbol	Access	Value	Description
7 to 2	-	-	111111	not used
1	ADCB	R/W		ADCB will get the next SPI command:
			$\mathbf{0}$	ADCB not selected
0	ADCA	R/W		ADCB selected
			$\mathbf{0}$	ADCA will get the next SPI command:
			$\mathbf{1}$	ADCA not selected

Table 19. Register reset and Power-down mode (address 0005h)

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W		reset digital part:
			0	no reset
			1	performs a reset of the digital part
6 to 2	-	-	00000	not used
1 to 0	PD[1-0]	R/W		power-down mode:
			00	normal (power-up)
			01	full power-down
			10	sleep
			11	normal (power-up)

Table 20. Register clock (address 0006h)

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4	SE_SEL	R/W		select SE clock input pin:
			0	Select CLKM input
			1	Select CLKP input
3	DIFF_SE	R/W		differential/single ended clock input select:
			0	Fully differential
			1	Single-ended
2	-	-	0	not used
1	CLKDIV2_SEL	R/W		select clock input divider by 2 :
			0	disable
			1	active
0	DCS_EN	R/W		duty cycle stabilizer enable:
			0	disable
			1	active

Table 21. Register Vref (address 0008h)

Bit	Symbol	Access	Value	Description
7 to 4	-	-	0000	not used
3	INTREF_EN	R/W		enable internal programmable VREF mode:
			0	disable
			1	active
2 to 0	INTREF[2:0]	R/W		programmable internal reference:
			000	0 dB ($\mathrm{FS}=2 \mathrm{~V}$)
			001	$-1 \mathrm{~dB}(\mathrm{FS}=1.78 \mathrm{~V})$
			010	-2 dB (FS=1.59 V)
			011	-3 dB (FS=1.42 V)
			100	-4 dB (FS=1.26 V)
			101	$-5 \mathrm{~dB}(\mathrm{FS}=1.12 \mathrm{~V})$
			110	-6 dB (FS=1 V)
			111	not used

Table 22. Digital offset adjustment (address 0013h)

Register offset: (address $\mathbf{0 0 1 3} \mathbf{h}$)		
Decimal	DIG_OFFSET[5:0]	+31 LSB
+31	011111	\ldots
\ldots	\ldots	0
0	$\mathbf{0 0 0 0 0 0}$	\ldots
\ldots	\ldots	-32 LSB
-32	100000	

Table 23. Register test pattern 1 (address 0014h)

Bit	Symbol	Access	Value	Description
7 to 3	-	-	00000	not used
2 to 0	TESTPAT_1[2:0]	R/W		digital test pattern:
			000	off
			001	mid-scale
			010	- FS
			011	+ FS
			100	toggle '1111..1111'/'0000..0000'
			101	custom test pattern, to be written in register 0015h and 0016h
			110	'010101...'
			111	'101010...'

Table 24. Register test pattern 2 (address 0015h)

Bit	Symbol	Access	Value	Description
7 to 0	TESTPAT_2[10:3]	R/W	$\mathbf{0 0 0 0 0 0 0 0}$	custom digital test pattern (bit 13 to 6)

Table 25. Register test pattern 3 (address 0016h)

Bit	Symbol	Access	Value	Description
7 to 5	TESTPAT_3[2:0]	R/W	$\mathbf{0 0 0 0 0}$	custom digital test pattern (bit 5 to 0)
4 to 0	-	-	000	not used

13.6.4 JESD204A digital control registers

Table 26. SER status (address 0801h)

Bit	Symbol	Access	Value	Description
7	RXSYNC_ERROR	R/W	0	set to 1 when a synchronization error occurs
6 to 4	RESERVED[2:0]	-	$\mathbf{0 0 1}$	reserved
3 to 2	-	-	0	not used
1	POR_TST	R	$\mathbf{0}$	power-on-reset
0	RESERVED	-	-	reserved

Table 27. SER reset (address 0802h)

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W	$\mathbf{0}$	initiates a software reset of the JEDEC204A unit
6 to 4	-	-	000	not used
3	FSM_SW_RST	R/W	$\mathbf{0}$	initiates a software reset of the internal state machine of JEDEC204A unit
2 to 0	-	-	000	not used

Table 28. SER cfg set-up (address 0803h)[1]

Bit	Symbol	Access	Value	Description
7 to 4	-	R	0000	not used
3 to 0	CFG_SETUP[3:0]	R/W	$\begin{aligned} & 0000 \\ & \text { (reset) } \end{aligned}$	defines quick JESD204A configuration. These settings overrule the CFG_PAD configuration
			0000	ADC0: ON; ADC1: ON; Lane0: ON; Lane1: ON; F = 2; HD = 0; K = 9; $M=2 ; L=2 \underline{[2]}$
			0001	ADC0: ON; ADC1: ON; Lane0: ON; Lane1: OFF; $F=4 ; H D=0 ; K=5$; $M=2 ; L=1[\underline{[2]}$
			0010	ADC0: ON; ADC1: ON; Lane0: OFF; Lane1: ON; $F=4 ; H D=0 ; K=5$; $\mathrm{M}=2 ; \mathrm{L}=1$ SWAP_LANE_1_2 = 1 [2]
			0011	ADC0: ON; ADC1: OFF; Lane0: ON; Lane1: ON; $F=1 ; H D=1 ; K=17 ;$ $M=1 ; L=2 \underline{[2]}$
			0100	ADC0: OFF; ADC1: ON; Lane0: ON; Lane1: ON; F = 1; $\mathrm{HD}=1 ; \mathrm{K}=17$; $M=1 ; L=2 ;$ SWAP_ADC_0_1 = 1 [2]
			0101	ADC0: ON; ADC1: OFF; Lane0: ON; Lane1: OFF; $F=2 ; H D=0 ; K=9 ;$ $M=1 ; L=1[2]$
			0110	ADC0: ON; ADC1: OFF; Lane0: OFF; Lane1: ON; F = 2; HD = 0; K = 9; $M=1 ; L=1 ;$ SWAP_LANE_1_2 = $1[2]$
			0111	ADC0: OFF; ADC1: ON; Lane0: ON; Lane1: OFF; $F=2 ; H D=0 ; K=9$; $\mathrm{M}=1 ; \mathrm{L}=1 ;$ SWAP_ADC_0_1 = 1-2]
			1000	ADC0: OFF; ADC1: ON; Lane0: OFF; Lane1: ON; F = 2; HD = 0; K = 9; $M=1 ; L=1 ;$ SWAP_ADC_0_1[2]
			$\begin{aligned} & 1001 \text { to } \\ & 1101 \end{aligned}$	reserved
			1110	ADC0: OFF; ADC1: OFF; Lane0: ON; Lane1: ON; F = 2; HD = 0; K = 9; $M=2 ; L=2 ;$ loop alignment $=1 \underline{[2]}$
			1111	ADC0: OFF; ADC1: OFF; Lane0: OFF; Lane1: OFF; F = 2; HD = 0; $\mathrm{K}=9 ; \mathrm{M}=2 ; \mathrm{L}=2 \rightarrow \mathrm{PD} \underline{[2]}$

[1] The default value for this register depends on the external pull-up/pull-down on CFG0, CFG1, CFG2 or CFG3. Writing to the register overwrites this value.
[2] F: number of byte per frame; HD: High density; K: number of frames per multi frame; M: number of converters; L: number of lanes
See the information about the JESD204A standard on the JEDEC web site.
Table 29. SER control1 (address 0805h)

Bit	Symbol	Access	Value	Description
7	-	R	0	not used

Table 29. SER control 1 (address 0805h) ...continued

Bit	Symbol	Access	Value	Description
2	REV_SCR	-		enables swapping bits at the scrambler input
			0	
			1	LSB are swapped to MSB at the scrambler input
1	REV_ENCODER	-		enables swapping bits at the 8b/10b encoder input:
			0	
				LSB are swapped to MSB at the 8b/10b encoder input
0	REV_SERIAL	-		enables swapping bits at the lane input (before serializer):
			0	
				LSB are swapped to MSB at the lane input

Table 30. SER control2 (address 0806h)

Bit	Symbol	Access	Value	Description
7 to 2	-	R	000000	not used

Table 31. SER analog ctrl (address 0808h)

Bit	Symbol	Access	Value	Description
7 to 3	-	R	00000	not used
2 to 0	SWING_SEL[2:0]	R/W	$\mathbf{0}^{* *}$	defines the swing output for the lane pads

Table 32. SER scramblerA (address 0809h)
\(\left.\begin{array}{lllll}\hline Bit \& Symbol \& Access \& Value \& Description

\hline 7 \& - \& R \& 0 \& not used\end{array}\right]\)| R/W |
| :--- |
| 6 to 0 | LSB_INIT[6:0] $\quad \mathbf{0 0 0 0 0 0 0}$| defines the initialization vector for the scrambler polynomial |
| :--- |
| (lower) |

Table 33. SER scramblerB (address 080Ah)

Bit	Symbol	Access	Value	Description
7 to 0	MSB_INIT[7:0]	R/W	11111111	defines the initialization vector for the scrambler polynomial (upper)

Table 34. SER PRBS Ctrl (address 080Bh)

Bit	Symbol	Access	Value	Description
7 to 2	-	R	000000	not used
1 to 0	PRBS_TYPE[1:0]	R/W		defines the type of Pseudo-Random Binary Sequence (PRBS) generator to be used:
		00 (reset)	PRBS-7	
		10	PRBS-7	
		11	PRBS-23	
			PRBS-31	

Table 35. Cfg_0_DID (address 0820h)

Bit	Symbol	Access	Value	Description
7 to 0	DID[7:0]	R	11101101	defines the device (= link) identification number

Table 36. Cfg_1_BID (address 0821h)

Bit	Symbol	Access	Value	Description
7 to 4	-	R	0000	not used
3 to 0	BID[3:0]	R/W	$\mathbf{1 0 1 0}$	defines the bank ID - extension to DID

Table 37. Cfg_3_SCR_L (address 0822h)

Bit	Symbol	Access	Value	Description
7	SCR	R/W	$*$	scrambling enabled
6 to 1	-	R	000000	not used
0	L	R/W	$*$	defines the number of lanes per converter device, minus 1

Table 38. Cfg_4_F (address 0823h)

Bit	Symbol	Access	Value	Description
7 to 3	-	R	00000	not used
2 to 0	$\mathrm{~F}[2: 0]$	R/W	$* * *$	defines the number of octets per frame, minus 1

Table 39. Cfg_5_K (address 0824h)

Bit	Symbol	Access	Value	Description
7 to 5	-	R	000	not used
4 to 0	K[4:0]	R/W	$* * * * *$	defines the number of frames per multiframe, minus 1
Table 40. Cfg_6_M (address $0825 h)$				
Bit	Symbol	Access	Value	Description
7 to 1	-	R	0000000	not used
0	M	R/W	$*$	defines the number of converters per device, minus 1

ADC1113D125_2	All information provided in this document is subject to legal disclaimers.	© NXP B.V. 2010. All rights reserved.
Preliminary data sheet	Rev. $02-23$ April 2010	32 of 41

Table 41. Cfg_7_CS_N (address 0826h)

Bit	Symbol	Access	Value	Description
7	-	R	0	not used
6	$\mathrm{CS}[0]$	R / W	$*$	defines the number of control bits per sample, minus 1
5 to 4	-	R	00	not used
3 to 0	$\mathrm{~N}[3: 0]$	R / W	$* * * *$	defines the converter resolution

Table 42. Cfg_8_Np (address 0827h)

Bit	Symbol	Access	Value	Description
7 to 5	-	R	000	not used
4 to 0	NP[4:0]	R/W	$* * * * *$	defines the total number of bits per sample, minus 1

Table 43. Cfg_9_S (address 0828h)

Bit	Symbol	Access	Value	Description
7 to 1	-	R	0000000	not used
0	S	R/W	$\mathbf{1}$	defines number of samples per converter per frame cycle

Table 44. Cfg_10_HD_CF (address 0829h)

Bit	Symbol	Access	Value	Description
7	HD	R/W	$*$	defines high density format
6 to 2	-	R	00000	not used
1 to 0	CF[1:0]	R/W	$* *$	defines number of control words per frame clock cycle per link.

Table 45. Cfg01_2_LID (address 082Ch)

Bit	Symbol	Access	Value	Description
7 to 5	-	R	000	not used
4 to 0	LID[4:0]	R/W	$\mathbf{1 1 0 1 1}$	defines lane1 identification number

Table 46. Cfg02_2_LID (address 082Dh)

Bit	Symbol	Access	Value	Description
7 to 5	-	R	000	not used
4 to 0	LID[4:0]	R/W	$\mathbf{1 1 1 0 0}$	defines lane2 identification number

Table 47. Cfg02_13_fchk (address 084Ch)

Bit	Symbol	Access	Value	Description
7 to 0	FCHK[7:0]	R	$* * * * * * *$	defines the checksum value for lane1 checksum corresponds to the sum of all the link configuration parameters modulo 256 (as defined in JEDEC Standard No.204A)

\qquad

Table 48. Cfg01_13_fchk (address 084Dh)

Bit	Symbol	Access	Value	Description
7 to 0	FCHK[7:0]	R	$* * * * * * * *$	defines the checksum value for lane1
			checksum corresponds to the sum of all the link configuration parameters module 256 (as defined in JEDEC Standard No.204A)	

Table 49. LaneA_0_ctrl (address 0870h)

Bit	Symbol	Access	Value	Description
7	-	R	0	not used
6	SCR_IN_MODE	R/W		defines the input type for scrambler and 8-bit/10-bit units:
			0 (reset)	(normal mode) $=$ Input of the scrambler and 8-bit/10-bit units is the output of the frame assembly unit.
			1	input of the scrambler and 8-bit/10-bit units is the PRSB generator (PRBS type is defined with "PRBS_TYPE" (Ser_PRBS_ctrl register)
5 to 4	LANE_MODE[1:0]	R/W		defines output type of Lane output unit:
			00 (reset)	normal mode: Lane output is the 8-bit/10-bit output unit
			01	constant mode: Lane output is set to a constant (0×0)
			10	toggle mode: Lane output is toggling between 0×0 and 0×1
			11	PRBS mode: Lane output is the PRBS generator (PRBS type is defined with "PRBS_TYPE" (Ser_PRBS_ctrl register)
3	-	R	0	not used
2	LANE_POL	R/W		defines lane polarity:
			0	lane polarity is normal
			1	lane polarity is inverted
1	LANE_CLK_POS_EDGE	R/W		defines lane clock polarity:
			0	lane clock provided to the serializer is active on positive edge
			1	lane clock provided to the serializer is active on negative edge
0	Lane_PD	R/W		lane power-down control:
			0	lane is operational
			1	lane is in Power-down mode

Table 50. LaneB_0_ctrl (address 0871h)

Bit	Symbol	Access	Value	Description
7	-	R	0	not used

Table 50. LaneB_0_ctrl (address 0871h) ...continued

Bit	Symbol	Access	Value	Description
5 to 4	LANE_MODE[1:0]	R/W		defines output type of lane output unit:
			00 (reset)	normal mode: Lane output is the 8b/10b output unit
			01	constant mode: Lane output is set to a constant (0x0)
			10	toggle mode: Lane output is toggling between 0×0 and 0×1
			11	PRBS mode: Lane output is the PRBS generator (PRBS type is defined with "PRBS_TYPE" (Ser_PRBS_ctrl register)
3	-	R	0	not used
2	LANE_POL	R/W		defines lane polarity:
			0	lane polarity is normal
			1	lane polarity is inverted
1	LANE_CLK_POS_EDGE	R/W		defines lane clock polarity:
			0	lane clock provided to the serializer is active on positive edge
			1	lane clock provided to the serializer is active on negative edge
0	Lane_PD	R/W		lane power-down control:
			0	lane is operational
			1	lane is in Power-down mode

Table 51. ADCA_0_ctrl (address 0890h)

Bit	Symbol	Access	Value	Description
7 to 6	-	R	00	not used
5 to 4	ADC_MODE[1:0]	R/W		defines input type of JESD204A unit:
			00 (reset)	ADC output is connected to the JESD204A input
			01	not used
			10	JESD204A input is fed with a dummy constant, set to: OTR $=0$ and ADC[10:0] = "1001101110"
			11	JESD204A is fed with a PRBS generator (PRBS type is defined with "PRBS_TYPE" (Ser_PRBS_ctrl register)
3 to 1	-	R	000	not used
0	ADC_PD	R/W		ADC power-down control:
			0	ADC is operational
			1	ADC is in Power-down mode

Table 52. ADCB_0_ctrl (address 0891h)

Bit	Symbol	Access	Value	Description
7 to 6	-	R	00	not used
5 to 4	ADC_MODE[1:0]	R/W		defines input type of JESD204A unit
			00 (reset)	ADC output is connected to the JESD204A input
			01	not used
			10	JESD204A input is fed with a dummy constant, set to: OTR $=0$ and ADC[10:0] = "1001101110"
			11	JESD204A is fed with a PRBS generator (PRBS type is defined with "PRBS_TYPE" (Ser_PRBS_ctrl register)
3 to 1	-	R	000	not used
0	ADC_PD	R/W		ADC power-down control:
			0	ADC is operational
			1	ADC is in Power-down mode

14. Package outline

HVQFN56: plastic thermal enhanced very thin quad flat package; no leads;
56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$

Fig 24. Package outline SOT684-7 (HVQFN56)

15. Revision history

Table 53. Revision history

| Document ID | Release date | Data sheet status | Change
 notice | Supersedes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ADC1113D125_2 | 20100423 | Preliminary data sheet | - | ADC1113D125_1 |
| Modifications: | Product status changed from Objective to Preliminary | | | |
| ADC1113D125_1 | 20100412 | Objective data sheet | - | - |

16. Legal information

16.1 Data sheet status

Document status $[1][2]$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com

16.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.
In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.
Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products - Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1 General description 1
2 Features and benefits 1
3 Applications 1
4 Ordering information 2
5 Block diagram 2
6 Pinning information 3
6.1 Pinning 3
6.2 Pin description 3
7 Limiting values 5
8 Thermal characteristics 5
9 Static characteristics 6
10 Dynamic characteristics 9
11 Clock and digital output timing 10
11.1 Serial output timings 11
12 SPI timing 12
13 Application information. 13
13.1 Analog inputs 13
13.1.1 Input stage description 13
13.1.2 Anti-kickback circuitry 13
13.1.3 Transformer 14
13.2 System reference and power management 15
13.2.1 Internal/external reference 15
13.2.2 Reference gain control 17
13.2.3 Common-mode output voltage $\left(\mathrm{V}_{\mathrm{l}(\mathrm{cm})}\right)$ 18
13.2.4 Biasing 18
13.3 Clock input 18
13.3.1 Drive modes 18
13.3.2 Equivalent input circuit 19
13.3.3 Clock input divider 20
13.3.4 Duty cycle stabilizer 20
13.4 Digital outputs 20
13.4.1 Serial output equivalent circuit 20
13.5 JESD204A serializer 21
13.5.1 Digital JESD204A formatter 21
13.5.2 ADC core output codes versus input voltage 22
13.6 Serial Peripheral Interface (SPI) 23
13.6.1 Register description 23
13.6.2 Channel control 24
13.6.3 Register description 27
13.6.3.1 ADC control registers 27
13.6.4 JESD204A digital control registers 29
14 Package outline 37
15 Revision history. 38
16 Legal information 39
16.1 Data sheet status 39
16.2 3940
Contact information41

