HD66523

(240-Channel Common Driver with Internal LCD Timing Circuit) HITACHI

Preliminary

Description

The HD66523 is a common driver for liquid crystal dot-matrix graphic display system. This device incorporates a 240 liquid crystal driver and an oscillator, and generates timing signals (line scanning signals and frame synchronizing signals) required for the liquid crystal display. It features a new LCD driving technique for better quality of display and low power dissipation. Combined with the HD66522, a 160-channel column driver with an internal RAM, the HD66523 is optimal for use in displays for portable information tools.

Features

- LCD timing generator: $1 / 200,1 / 240$ duty cycle timing are generated internally.
- Number of LCD drivers: 240
- Power supply voltage: 2.4 V to 3.6 V
- High voltage LCD drive circuit: $\pm 20 \mathrm{~V}$
- LCD driving technique: Multi-line addressing for low power consumption.
- Programmable vertical retrace period: zero to 192 lines
- Low power consumption
- Internal display off function
- On-chip oscillator combined with external resistor and capacitor.
- Package: TCP

HD66523

Pin Description

Classification	Symbol	Pin Name	1/0	Number of pins	Functions
Power supply	V_{cc}	V_{cc}	Power supply	2	$\mathrm{V}_{\text {cc }}$-GND: logic power supply
	GND	GND	Power supply	2	
	VLCD1, VLCD2	VLCD	Power supply	2	Power supply for LCD driving circuit
	$\mathrm{V}_{\text {EE1 }}, \mathrm{V}_{\text {EE } 2}$	$\mathrm{V}_{\text {EE }}$	Power supply	2	
	VRH1, VRH2	VRH	-	2	LCD drive level power supply
	VM1, VM2	VM	-	2	
	VRL1, VRL2	VRL	-	2	
Control signals	M/ \bar{S}	Master/ Slave	I	1	Select master or slave mode.
	DUTY	Duty	I	1	Selects the display duty cycle. Low level: $1 / 200$ display duty ratio High level: $\quad 1 / 240$ display duty ratio
	BP4 to BP0	Blanking period	I	5	Set vertical retrace period
	$\overline{\text { DOC }}$	Display off control	I/O	1	Control the display-off function.
	$\overline{\text { DISPOFF }}$	Display off	I	1	Turn off the LCD. During display off, all LCD driver output VM level
	SHL	Shift left	I	1	Pin SHL switches the shift direction of the scanning direction.
	$\overline{\overline{R E S E T}}$	Reset	I	1	Reset the LSI internally.
	CR, C, R	Oscillator	-	3	Oscillator with external resistor and capacitor
	TEST1, TEST0	Test	I	2	Test pins, must be connected to GND.
LCD timing	CL1	Clock 1	I/O	1	The bidirectional shift register shifts data at the falling edge of CL1. During master mode, this pin outputs a data transfer clock with a two times larger cycle than the internal oscillator (or the cycle of the external clock) with a duty of 50%. During slave mode, this pin inputs the external data transfer clock.
	FLM	First line marker	I/O	1	During master mode, pin FLM outputs the first line marker signal. During slave mode, this pin inputs the external data first line marker signal.
	FX1, FX0	Scanning function	I/O	2	Output scanning function signals during master mode. Input scanning function signals during slave mode.
	BLANK	Blank	O	1	This pin shows vertical retrace period.
LCD drive output	X1 to X240	X1 to X240	O	240	Select one from among three levels, VRH, VM and VRL.

Table 1 M/ $\overline{\mathrm{S}}$ Signal Status

\mathbf{M} / \bar{S}	Mode	LCD Timing Generator	Status of CL1, FLM and $\overline{\text { DOC }}$
H	Master	$1 / 200$ or $1 / 240$ duty cycle	Output
L	Slave	Stops	Input

Table 2 Retrace period

BP4	BP3	BP2	BP1	BPO	Horizontal Retrace Period Number of lines
0	0	0	0	0	0
0	0	0	0	1	6
0	0	0	1	0	12
0	0	0	1	1	18
0	0	1	0	0	24
0	0	1	0	1	30
0	0	1	1	0	36
0	0	1	1	1	42
0	1	0	0	0	48
0	1	0	0	1	54
0	1	0	1	0	60
0	1	0	1	1	66
0	1	1	0	0	72
0	1	1	0	1	78
0	1	1	1	0	84
0	1	1	1	1	90
1	0	0	0	0	96
1	0	0	0	1	102
1	0	0	1	0	108
1	0	0	1	1	114
1	0	1	0	0	120
1	0	1	0	1	126
1	0	1	1	0	132
1	0	1	1	1	138
1	1	0	0	0	145
1	1	0	0	1	150
1	1	0	1	0	156
1	1	0	1	1	162
1	1	1	0	0	168
1	1	1	0	1	174
1	1	1	1	0	180
1	1	1	1	1	186

Table 3 Shift Direction

SHL	DUTY	Shift Direction
H	H	X240 \rightarrow X1
	L	X200 \rightarrow X1
L	H	X1 \rightarrow X240

HD66523

Internal Block Diagram

1. CR Oscillator: The CR oscillator generates the HD66523 operation clock. During master mode, since the operation clock is needed, connect oscillation resistor R_{f} with oscillation capacitor C_{f}. When the external clock is used. Input external clock to pin CR and open pins C and R (Figure 1).
When using the HD66523 during slave mode, the operation clock will not be needed; therefore, connect pin CR to V_{CC} and open pins C and R (Figure 2).
2. Liquid Crystal Timing Generator: The liquid crystal timing generator creates various signals for the LCD. During master mode ($\mathrm{M} / \overline{\mathrm{S}}=\mathrm{V}_{\mathrm{cc}}$), the generator operates the HD66523's internal circuitry as a common internal driver using the generated LCD signals. In addition, signals CL1, FLM and $\overline{\mathrm{DOC}}$ created by this generator can synchronously display data on a liquid crystal display by inputting them into the RAM-provided segment driver HD66522 used together with HD66523. During slave mode $(\mathrm{M} / \overline{\mathrm{S}}=\mathrm{GND})$, this generator stops; the slave HD66523 operates based on signals CL1, $\overline{\mathrm{DOC}}$ and FLM generated by the master HD66523.

Figure 1 Oscillator Connection in Master Mode

Figure 2 Oscillator Connection in Slave Mode
3. Scanning Function Generator: During master mode, this circuit generates the scanning function signals. During slave mode, this circuit stops working and FX1 and FX0 must be supplied from master HD66523.
4. Selector: The selector generates signals which select two lines of LCD driver.
5. Decoder: Outputs data according to scanning function signals and data.
6. LCD driver: Outputs one of three levels according to outputs from decoder.

HD66523

Internal Function Description

1. Generation of Signals CL1 and FLM: Signal CL1 shifts the scanning signal of the common driver. It is a 50% duty-ratio clock that changes level synchronously with the rising edge of oscillator clock CR.
FLM is a clock signal that goes high once every frame. One frame consists of display lines, 240 lines if DUTY is high and 200 lines if DUTY is low, and vertical retrace period which is set with BP4 to BP0.
2. Auto Display-off Control: This functions prevents incorrect display after reset release. The display is turned off four frames following after reset release. In addition, the display off control signal shown in Figure 4 is output by pin $\overline{\text { DOC. }}$. This pin is connected to pin $\overline{\text { DISPOFF }}$ of the HD66522.

Figure 3 Generation of Signals CL1 and FLM

Figure 4 Automatic Display-off Control Function

Application Examples

Outline of HD66523 System Configuration

The HD66523 system configuration is outlined in Figure 5 and 6. Refer to the connection list (Table 4) for connection details.

- When a signal HD66523 is used to configure a small display (Figure 5)
- When two HD66523s are used to configure a large display (Figure 6)

Note: One HD66523 drives common signals and supplies timing signal to the HD66522.
Figure 5 System Configuration When Using a Single HD66523

Note: Upper and lower displays are driven by separate HD66523s to ensure display quality. No. 1 operates in master mode, and No. 2 operates in slave mode.

Figure 6 System Configuration When Using a Two HD66523

HD66523

Table 4 HD66523 Connection List

Example of System Configuration (1)

Figure 7 shows system configuration for a $240 * 160$ dots LCD panel using segment driver HD66522 with internal bit-mapped RAM. All required functions can be prepared for liquid crystal display with just two LSIs except for liquid crystal display power supply circuit functions.

Figure 7 System Configuration (1)

HD66523

Example of System Configuration (2)

Figure 8 shows a system configuration for a $240 * 320$ dots LCD panel using segment driver HD66522 with internal bit-mapped RAM.

Figure 8 System Configuration (2)

Example of System Configuration (3)

Figure 9 shows a system configuration for a $320 * 480$ dots LCD panel using segment driver HD66522 with internal bit-mapped RAM.

Figure 9 System Configuration (3)

HD66523

LCD Drive Output

HD66523 outputs one of three levels, VRH, VM and VRL. VM is unselected level, VRH is high select level and VRL is low select level. Either VRH or VRL level is selected depending on the number of flames and lines. Output timings are showed in Figure 10 to 12.

Figure 10 LCD Drive Output Timing at $3 n+1$'s frame $(n=1,2,3$,

Figure 11 LCD Drive Output Timing at 3n + 2's frame ($n=1,2,3$,)

Figure 12 LCD Drive Output Timing at $3 n+3$'s frame $(n=1,2,3$,

HD66523

Power Supply Circuit

The example of power circuit is shown in Figure 13. When you want to change contrast, both levels, VRH and VRL must be changed.

Figure 13 Example of Power Supply Circuit

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Note
Power voltage	Logic circuit	V_{CC}	-0.3 to +7.0	V
	LCD drive circuit	VRH	-0.3 to +25.0	V
	VRL	-20.0 to +0.3	V	
Input voltage (1)	VT 1	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Input voltage (2)	VT 2	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{VLCD}+0.3$	V	1,3
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. The reference point is GND (OV)
2. Applies to pins M/ \bar{S}, DUTY, BP4 to BP0, $\overline{\mathrm{DOC}}, \overline{\mathrm{DISPOFF}}, \mathrm{SHL}, \overline{\mathrm{RESET}}, \mathrm{CR}, \mathrm{CL} 1, F L M, F X 0$ to FX1, and TEST1 to TEST0.
3. Applies to pins VM1 and VM2.

Supply the same voltage to pairs VRH1 and VRH2, VM1 and VM2, VRL1 and VRL2.
4. If the LSI is used beyond its absolute maximum rating, it may be permanently damaged. It should always be used within the limits of its electrical characteristics in order to prevent malfunction or unreliability.

HD66523

Electrical Characteristics

DC Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 4}\right.$ to $\mathbf{3 . 6 V}, \mathbf{G N D}=\mathbf{0 V}, \mathrm{VLCD}=18$ to 23V, $\mathrm{V}_{\mathrm{EE}}=\mathbf{- 1 2}$ to $\mathbf{- 1 7 V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	Applicable Pins	min.	typ.	max.	Unit	Measurement Condition	Note s
Input high level voltage	$\mathrm{V}_{\text {t+1 }}$		$0.8 \times \mathrm{V}_{\text {cc }}$	-	V_{cc}	V		1
Input low level voltage	V_{tL}		0	-	$0.2 \times \mathrm{V}_{\text {cc }}$	V		1
Output high level voltage	$\mathrm{V}_{\text {о }}$		$0.9 \times \mathrm{V}_{\text {c }}$	-	-	V	$\mathrm{I}_{\text {OH }}=-50 \mu \mathrm{~A}$	2
Output low level voltage	$\mathrm{V}_{\text {o }}$		-	-	$0.1 \times \mathrm{V}_{\text {c }}$	V	$\mathrm{I}_{\mathrm{oL}}=50 \mu \mathrm{~A}$	2
Input leakage current (1)	$I_{\text {L1 }}$		-2.5	-	2.5	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{V}_{\mathrm{cc}}$ to GND	1
Input leakage current (2)	I_{LL}	VRH1, VRH2, VM1, VM2 VRL1, VRL2	-25	-	25	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VLCD}$ to $\mathrm{V}_{\text {EE }}$	1
Vi-Vj ON resistance	$\mathrm{R}_{\text {ox }}$	X1 to X240	-	1.0	2.0	k Ω	$\mathrm{I}_{\text {ow }}=100 \mu \mathrm{~A}$	3
Current consumption (1)	$I_{\text {ms }}$		-	-	T.B.D.	$\mu \mathrm{A}$	Master mode 1/240 duty cycle, $\mathrm{C}_{\mathrm{f}}=100 \mathrm{pF}$ $\begin{aligned} & \mathrm{R}_{\mathrm{f}}^{\mathrm{f}}=180 \mathrm{k} \Omega \\ & \mathrm{v}^{2} \mathrm{k} \Omega \end{aligned}$ $\mathrm{V}_{\mathrm{cc}}^{\mathrm{f}}=3.0 \mathrm{~V}$	4
Current consumption (2)	$\mathrm{I}_{\text {st }}$		-	-	T.B.D.	$\mu \mathrm{A}$	$\begin{aligned} & \text { Slave mode } \\ & 1 / 240 \text { duty cycle, } \\ & \mathrm{f}_{\mathrm{cL}}=16.8 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} \\ & \hline \end{aligned}$	4
Current consumption (3)	$\mathrm{I}_{\text {cod }}$		-	-	T.B.D.	$\mu \mathrm{A}$	Master mode 1/240 duty cycle, $\mathrm{C}_{\mathrm{t}}=100 \mathrm{pF}$ $R_{f}=180 \mathrm{k} \Omega$ $\mathrm{V}_{\mathrm{cc}}^{\mathrm{t}}=3.0 \mathrm{~V}$ $\mathrm{VLCD}=23 \mathrm{~V}$ $\mathrm{V}_{\text {EE }}=-17 \mathrm{~V}$	4

Notes: 1. Applied to input pins M/̄̄, DUTY, BP4 to BP0, $\overline{\text { DISPOFF, SHL, }} \overline{\text { RESET }}$, TEST1, TEST0 and CR, and I/O pins, $\overline{D O C}, C L 1$ and FLM during input state.
2. Applied to output pins, FX1 and FX0, and I/O pins, $\overline{\mathrm{DOC}}, \mathrm{CL} 1$ and FLM, during output stagte.

3 Indicates the resistance between on pin from X1 to X240 and another pin from the V pins, VRH1/VRH2, VM1/VM2 and VRL1/VRL2, when load current is applied to the X pin; defined under the following conditions:

$$
\begin{aligned}
& \mathrm{VRH}=+23 \mathrm{~V}, \mathrm{VRL}=-17 \mathrm{~V} \\
& \mathrm{VM}=1 / 2 *(\mathrm{VRH}-\mathrm{VRL})
\end{aligned}
$$

4. Input and Output currents are excluded. When a CMOS input is floating, excess current flows from the power supply to the input circuit. To avoid this, ViH and ViL must be held to V_{cc} and GND levels, respectively.

Item	Symbol	min.	typ.	max.	Unit.	Measurement Condition	Notes
Operating frequency (1)	$\mathrm{f}_{\text {opr1 }}$	10	-	200	kHz	Master mode (External clock operation)	1
Operating frequency (2)	$\mathrm{f}_{\text {opr2 }}$	5	-	100	kHz	Slave mode frequency of CL1	2
Oscillation frequency	$\mathrm{f}_{\text {osc }}$	30	36	42	kHz	$\mathrm{C}_{\mathrm{f}}=100 \mathrm{pF}$ $\mathrm{R}_{\mathrm{f}}=180 \mathrm{k} \Omega$	
External clock duty	Duty	45	50	55	$\%$	Master mode	3
External clock rising time	t_{r}	-	-	100	ns	Master mode	3
External clock falling time	t_{f}	-	-	100	ns	Master mode	3
Nos. 1 External clock is supplied to							

Notes: 1. External clock is supplied to CR pin during master mode, and C and R pins must be left open.
2. Applies to the clock which is supplied to CL1 during slave mode. CR must be connected to GND, and C and R pins must be left open.
3. Applies to the external clock which is supplied to CR during a master mode.

Figure 14 External Clock

HD66523

AC Characteristic ($\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 4}$ to $\mathbf{3 . 6 V}, \mathbf{G N D}=\mathbf{0 V}, \mathbf{T a}=\mathbf{- 2 0}$ to $\mathbf{7 5}{ }^{\circ} \mathrm{C}$)

No.	Item	Symbol	Applicable Pins	min.	max.	Units	Notes
(1)	CL1 high-level width	$\mathrm{t}_{\mathrm{cWH}}$	CL1	1.0	-	$\mu \mathrm{s}$	1
(2)	CL1 low-level width	$\mathrm{t}_{\mathrm{CWL}}$	CL1	1.0	-	$\mu \mathrm{s}$	1
(3)	CL1 rise time	t_{r}	CL1	-	100	ns	1
(4)	CL1 fall time	t_{f}	CL1	-	100	ns	1
(5)	FLM setup time	t_{FS}	FLM, CL1	2.0	-	$\mu \mathrm{s}$	1
(6)	FLM hold time	t_{FH}	FLM, CL1	1.0	-	$\mu \mathrm{s}$	1
(7)	CL1 delay time	$\mathrm{t}_{\mathrm{CL1}}$	CL1	1.0	-	$\mu \mathrm{s}$	2
(8)	FLM delay time	$\mathrm{t}_{\mathrm{DFLM}}$	FLM	1.0	-	$\mu \mathrm{s}$	2

Notes: 1. Applies during slave mode
2. Applies during master mode

Figure 15 Slave Mode Timing

Figure 16 Master Mode Timing

