Effective January 1, 2008
 The LV11xxBY and the LV11xxBW devices are discontinued.

These were discontinued because the components needed to make these parts are no longer available.

For the LV11xxBY

Use the LV99xxDV oscillator and a 3.3V LDO. The board space required will be similar.

For the LV11xxBW

Use the LV77xxDW oscillator, this is a smaller footprint and superior performance

LV1145B LVDS Series

\author{

- Low Voltage Differential Signal Output with Enable/Disable
}

Standard Specifications

Overall Frequency Stability	± 50 PPM, ± 25 PPM and ± 20 PPM over Operating Temp. Range
Operating Temperature Range	0 to $+80^{\circ} \mathrm{C}$ is standard, can be extended to -40 to $+85^{\circ} \mathrm{C}$
Operable Supply Voltage (Vcc)	$3.3 \mathrm{~V} \pm 5 \%$ standard, $5.0 \mathrm{~V} \pm 10 \%$ also available
High Level Output Voltage	1.43 V typical and 1.60 V maximum with output enabled (100 ohm load) See Test circuit \#6
Low Level Output Voltage	0.90 V minimum and 1.10 V typical with output enabled (100 ohm load) See TC \#6
Differential Output Voltage	247 V minimum, 330 V typical and 454 V maximum with output enabled (100 ohm load) See TC \#6
Offset Voltage	1.125 V minimum, 1.25 V typical and 1.375 V maximum with output enabled (100 ohm load) See TC \#6
Output Leakage Current	10 uA maximum with output disabled
Supply Current (Icc) Enabled	$50 \mathrm{~mA} \max <200 \mathrm{MHz}, 60 \mathrm{~mA} \max <500 \mathrm{MHz}, 70 \mathrm{~mA} \max 500 \mathrm{MHz}$ and above
Supply Current (Icc) Disabled	$20 \mathrm{~mA} \max <200 \mathrm{MHz}, 30 \mathrm{~mA} \max <500 \mathrm{MHz}, 40 \mathrm{~mA} \max 500 \mathrm{MHz}$ and above
Symmetry (DC)	$45 / 55 \%$ measured at $0^{\circ} \mathrm{C}<=\mathrm{Ta}<=70^{\circ} \mathrm{C}, 40 / 60 \%$ measured at $\mathrm{Ta}<0^{\circ} \mathrm{C}$ and $\mathrm{Ta}>70^{\circ} \mathrm{C}$
Rise and Fall Time (Tr \& Tf)	1.0 nS max at 20\% to 80\% output swing (100 ohm load) See Test circuit \#6 and Waveform \#2
RMS Jitter	1.0 pS max at 12 kHz to 20 MHz from the output

Enable / Disable Pin:

The Enable / Disable pin has an internal pull up and if the pin is not connected the oscilaltor is enabled. Pletronics strongly recommends connecting the Enable / Disable pin to Vcc, if the oscillator is to be enabled at all times. In the disable condition, the output becomes a high impedance.

High Level Input Voltage	0.7 Vcc minimum at Enable / Disable Pin
Low Level Input Voltage	0.3 Vcc maximum at Enable / Disable Pin
High Level Input Current	-20 uA maximum at Enable / Disable Pin $=0.7$ Vcc
Low Level Input Current	-200 uA maximum at Enable / Disable Pin $=0 \mathrm{~V}$
Output Enable Time	200 nS maximum
Output Disable Time	200 nS maximum

Part Numbering Guide

Portions of the part number that appear after the frequency may not be marked on part (C of C provided)

Packaging

 Tube or 24 mm tape 16 mm pitch

Consult factory for available frequencies and specs. Not all options available for all frequencies. A special part number may be assigned. Frequency Stability is inclusive of frequency shifts due to calibration, temperature, supply voltage, shock, vibration and load

Pletronics, Inc.
19013 36th Ave. W, Suite H • Lynnwood, WA 98036 USA
Manufacturer of High Quality Frequency Control Products

LV1145B LVDS Series

Mechanical: inches (mm)

not to scale

Solder Pads
Due to part size and factory abilities, part marking may vary from lot to lot and may contain our part number or an internal code.

LV1145B

PIN	SIGNAL
1	N.C.
2	E/D
3	GND
4	VoD+
5	VoD-
6	Vcc

$1.50-650.0 \mathrm{MHz}$
LV3345B

PIN	SIGNAL
1	E/D
2	E/D
3	GND
4	VoD
5	VoD-
6	Vcc

LV3745B

PIN	SIGNAL
1	E/D
2	N.C.
3	GND
4	VoD+
5	VoD-
6	Vcc

120.0-650.0 MHz (5.0 Vcc - May not be available) 180.0 - 650.0 MHz (3.3 Vcc)

See page 6 for Layout Guidelines

SUGGESTED PCB LAYOUTS

Solder Pad Layout which accommodates all PECL surface mount devices

'B Pkg'
5×7

TOP SIDE BYPASS

The output line should be designed with proper characteristic impedance. Pletronics recommends laying out for the larger 'B package' with pads long enough to accept the smaller $5 \times 7 \mathrm{~mm}$ device. This permits the best option for alternate sources of device. Pletronics also recommends connecting

Pin 1 and Pin 2 together on the models with
Q \& QN OUT on pins 4 \& 5. This allows having E/D on either pin 1 or pin 2.

For Optimum Jitter Performance, Pletronics recommends:

- A ground plane under the device with any other signals below the ground plane
- Minimize other RF signals near device
- No large transient signals (both current and voltage) should be routed under the device
- Do not layout near a large magnetic field such as a high frequency switching power supply
- Do not place near piezoelectric buzzers or mechancial fans

T Rise = 4 Degree/second max

Pletronics, Inc.
19013 36th Ave. W, Suite H • Lynnwood, WA 98036 USA
Manufacturer of High Quality Frequency Control Products

PECL and LVDS Layout Guidelines Continued

PECL Terminations:

Suggested Terminations for 50 ohm impedance matched termination

Thevenin Equivalent Termination

Vcc	R1	R2
5.0 V	82 ohm	130 ohm
3.3 V	130 ohm	82 ohm
2.5 V	249 ohm	61.9 ohm

Simple termination for NON impedance matched termination

Vcc	R load
5.0 V	274 ohm
3.3 V	147 ohm
2.5 V	86.6 ohm

LVDS Terminations:

Mixed System Power Supply:

PECL To use multiple supply voltages requires level translation. Direct circuit connection is not valid.
ECL Mixed supply voltages are allowed. No translation is necessary. (ECL is returned to the most positive supply and this is common to all circuits)

LVDS Mixed supply voltages are allowed. LVDS signal levels are power supply independent. 3.3 V LVDS oscillators properly interface 2.5 V Logic Arrays for example.

