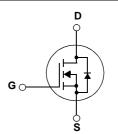
June 2009

FDI030N06 N-Channel PowerTrench[®] MOSFET 60V, 193A, $3.2m\Omega$

Features

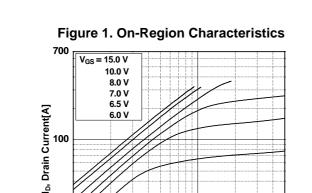
- $R_{DS(on)} = 2.6m\Omega$ (Typ.)@ $V_{GS} = 10V$, $I_D = 75A$
- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low $R_{\text{DS}(\text{on})}$
- High Power and Current Handling Capability
- RoHS Compliant


Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

DC to DC Convertors / Synchronous Rectification


MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol		Ratings	Units			
V _{DSS}	Drain to Source Voltage	60	V			
V _{GSS}	Gate to Source Voltage		±20			
I _D	Drain Current	-Continuous (T _C = 25°C	, Silicon Limited)	193*		
		-Continuous ($T_C = 100^{\circ}$	-Continuous (T _C = 100 ^o C, Silicon Limited)			
		-Continuous (T _C = 25°C	, Package Limited)	120		
I _{DM}	Drain Current	- Pulsed	- Pulsed (Note 1)			
E _{AS}	Single Pulsed Avalanche Energy (Not			1434	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	6	V/ns	
P _D	Dawar Diasis atian	$(T_{\rm C} = 25^{\rm o}{\rm C})$		231	W	
	Power Dissipation	- Derate above 25°C	1.54	W/ºC		
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +175	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

Symbol	Parameter	Ratings	Units	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	0.65	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	62.5	C/W	

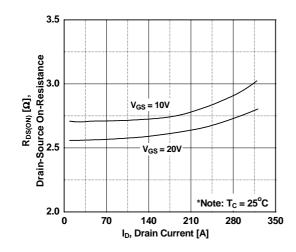
Device Marking		Device Packag		ge Reel Size Tap		e Width		Quantity			
			TO-262		-		-		50		
Electric	al Chara	acteristics T _C =	25°C unless o	otherwise n	oted						
Symbol		Parameter		-	Test Conditions	5	Min.	Тур.	Max.	Unit	
Off Chara	acteristics	S									
BV _{DSS}	Drain to	Source Breakdown V	oltage	I _D = 250μ	A, $V_{GS} = 0V, T_C$	= 25°C	60	-	-	V	
ΔBV _{DSS}		own Voltage Temperati	Iro					0.05		V/°	
ΔT_{J}	Coefficie	ent		$I_D = 1mA$, Referenced to $25^{\circ}C$			-	0.05	-	V/*	
I _{DSS}	Zero Ga	te Voltage Drain Curre		$V_{DS} = 48V, V_{GS} = 0V$			-	-	1	μA	
		-		$V_{DS} = 48V, T_{C} = 150^{\circ}C$			-	-	500		
I _{GSS}	Gate to	Body Leakage Curren	t	$V_{GS} = \pm 20$	V, $V_{DS} = 0V$		-	-	±100	nA	
On Chara	cteristics	5									
V _{GS(th)}	Gate Th	Gate Threshold Voltage			$V_{GS} = V_{DS}, I_D = 250 \mu A$			3.5	4.5	V	
R _{DS(on)}		rain to Source On Res	istance	$V_{GS} = 10V, I_D = 75A$			-	2.6	3.2	m۵	
9FS	Forward	Transconductance		$V_{DS} = 10V, I_D = 75A$ (Note 4)			-	154	-	S	
Dunamia	Characte	rictics	H			¥					
								7000	0045	-	
Ciss		Capacitance		V _{DS} = 25V, V _{GS} = 0V			-	7380	9815	pF	
C _{oss}		Capacitance		f = 1MHz			-	1095	1455	pF	
C _{rss}		e Transfer Capacitance					-	415 116	625 151	pF nC	
Q _{g(tot)} Q _{gs}		Gate Charge at 10V o Source Gate Charge o Drain "Miller" Charge		$V_{DS} = 48V, I_D = 75A$ $V_{GS} = 10V$			-	40	-	nC	
Q _{gd}							_	35	_	nC	
≪ga	Ould to			(Note 4, 5)				00			
Switching	g Charact	teristics									
t _{d(on)}	Turn-On	Delay Time					-	39	87	ns	
t _r	Turn-On	Rise Time		$V_{DD} = 30V, I_D = 75A \\ V_{GS} = 10V, R_{GEN} = 4.7\Omega $ (Note 4, 5)			-	178	366	ns	
t _{d(off)}	Turn-Off	Delay Time					-	54	118	ns	
t _f	Turn-Off	Fall Time					-	33	76	ns	
Drain-So	urce Diod	le Characteristic	e								
		m Continuous Drain to		Forward (urrent		_	-	193	A	
I _S I _{SM}		n Pulsed Drain to Sou					-	-	772	A	
V _{SD}		Source Diode Forward		$V_{GS} = 0V,$			-	-	1.3	V	
t _{rr}		Recovery Time	-	$V_{GS} = 0V,$ $V_{GS} = 0V,$			-	46	-	ns	
Q _{rr}		Recovery Charge		$dI_F/dt = 10$	05	(Note 4)	-	50	-	nC	
Notes:	ting: Dulas with		tomporation				1		1	1	
	-	n limited by maximum junction = 50V, R _G = 25Ω, Starting T _J =									
		$_{DD} \leq BV_{DSS}$, Starting T _J = 25°									
4. Pulse Test: P	ulse width ≤ 300	μs, Duty Cycle ≤ 2%									
5. Essentially In	dependent of Op	perating Temperature Typical	Characteristics								

10

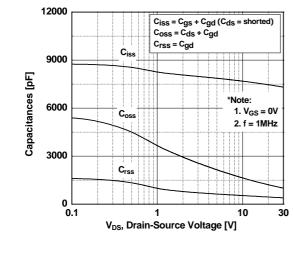
0.1

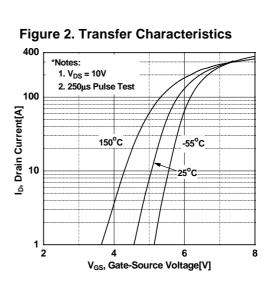
Typical Performance Characteristics

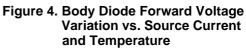
Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

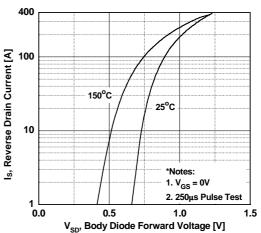

V_{DS}, Drain-Source Voltage[V]

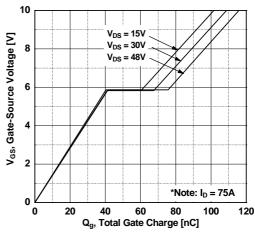
*Notes:

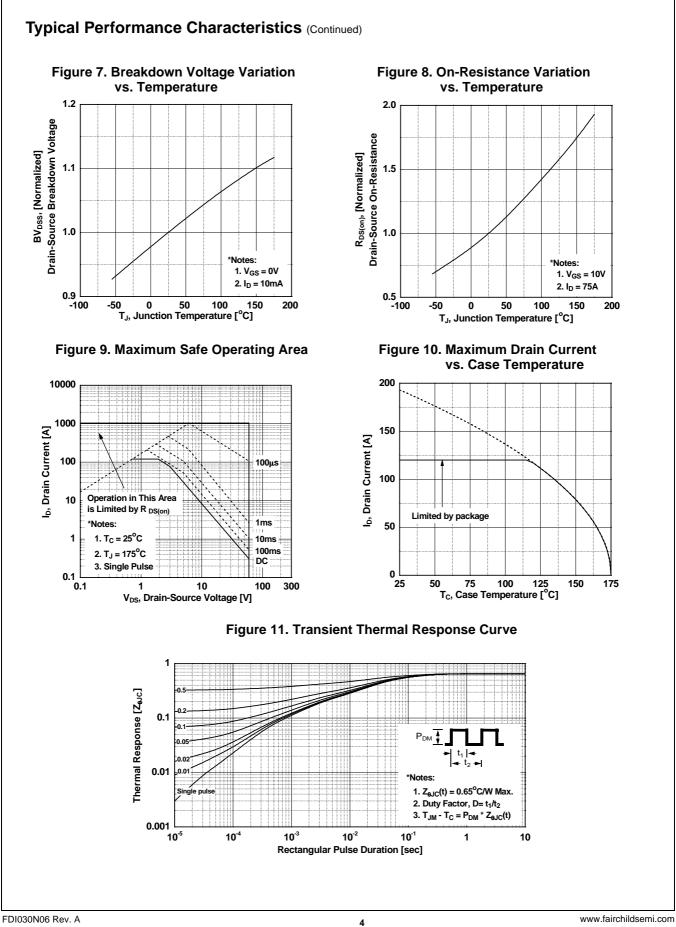

1

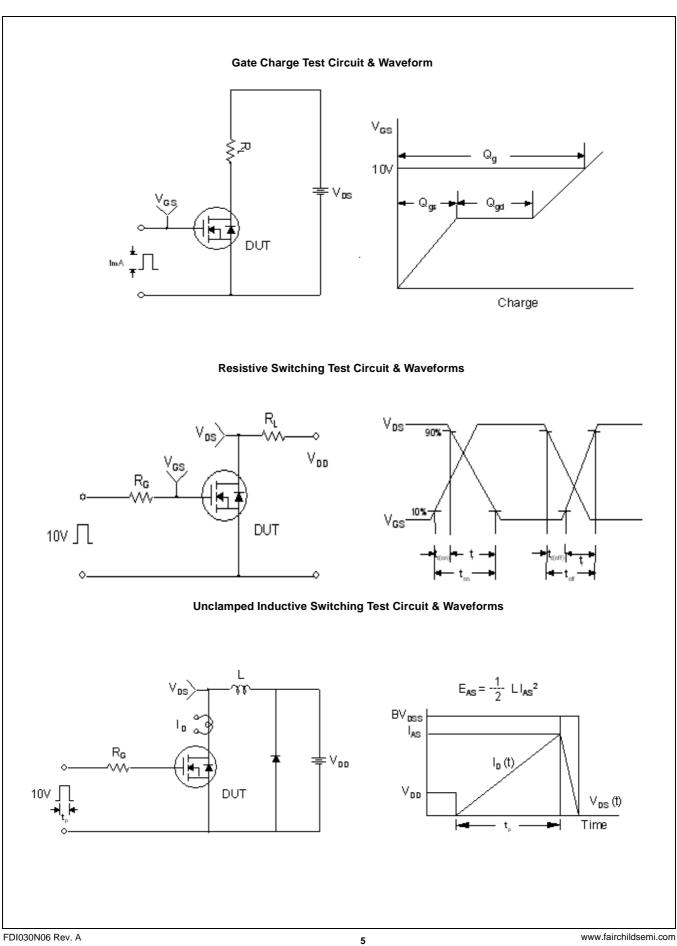

1. 250μs Pulse Test 2. T_C = 25[°]C


5

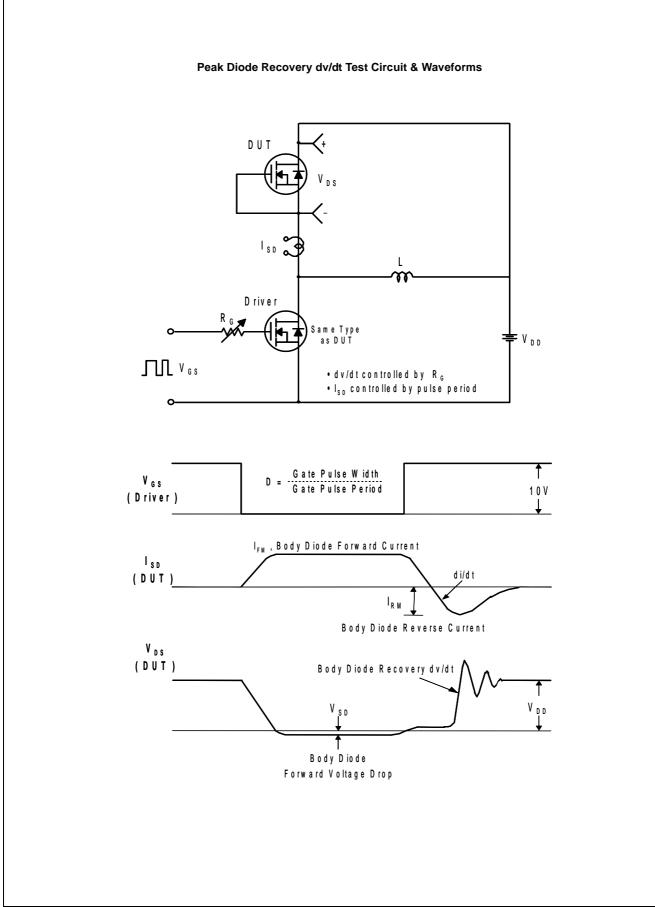




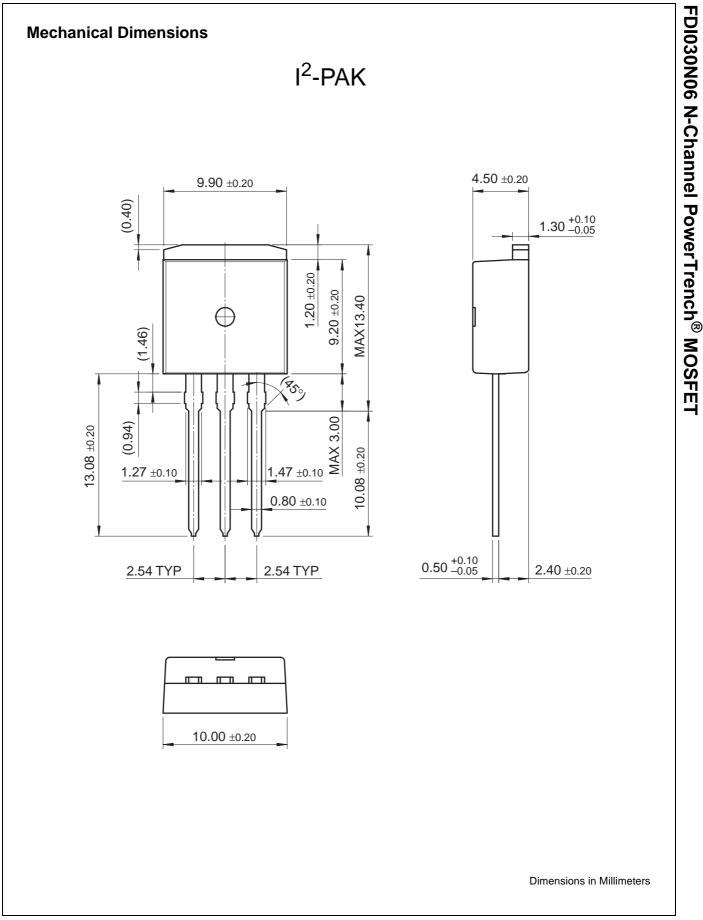




FDI030N06 Rev. A



FDI030N06 N-Channel PowerTrench[®] MOSFET



FDI030N06 N-Channel PowerTrench[®] MOSFET

FDI030N06 N-Channel PowerTrench[®] MOSFET

www.fairchildsemi.com

FAIRCHILD SEMICONDUCTOR TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ **FPST** PowerTrench® The Power Franchise[®] PowerXS™ Auto-SPM™ F-PFS™ p FRFET® Programmable Active Droop™ Build it Now™ franchise CorePLUS™ Global Power ResourceSM QFET TinyBoost™ QS™ CorePOWER™ Green FPS™ TinyBuck™ Quiet Series™ CROSSVOLT™ Green FPS™ e-Series™ TinyCalc™ RapidConfigure™ CTL™ G*m*ax™ TinyLogic® Current Transfer Logic™ GTO™ TINYOPTO™ **EcoSPARK**[®] IntelliMAX™ TinyPower™ EfficentMax™ ISOPLANAR™ Saving our world, 1mW/W/kW at a time™ TinyPWM™ EZSWITCH™* MegaBuck™ SmartMax™ TinyWire™ MICROCOUPLER™ SMART START™ . TriFault Detect™ MicroFET[™] SPM[®] TRUECURRENT™* MicroPak™ STEALTH™ µSerDes™ MillerDrive™ SuperFET™ $\mu_{_{Ser}}$ Fairchild® MotionMax™ SuperSOT™-3 Fairchild Semiconductor® Motion-SPM™ SuperSOT™-6 UHC FACT Quiet Series™ **OPTOLOGIC[®]** SuperSOT™-8 Ultra FRFET™ **FACT[®] OPTOPLANAR[®]** SupreMOS™ FAST®

FlashWriter^{®*} * Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

PDP SPM™

Power-SPM™

DISCLAIMER

FastvCore™

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

Sync-Lock™

GENERAL

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

bwer

UniFET™

VisualMax™

VCX™

XS™

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 141