

Technical Note

MSDL (Mobile Shrink Data Link) Transceivers for Mobile Phones Data rate 1350Mbps RGB Interface

No.10058EAT04

BU7964GUW

Description

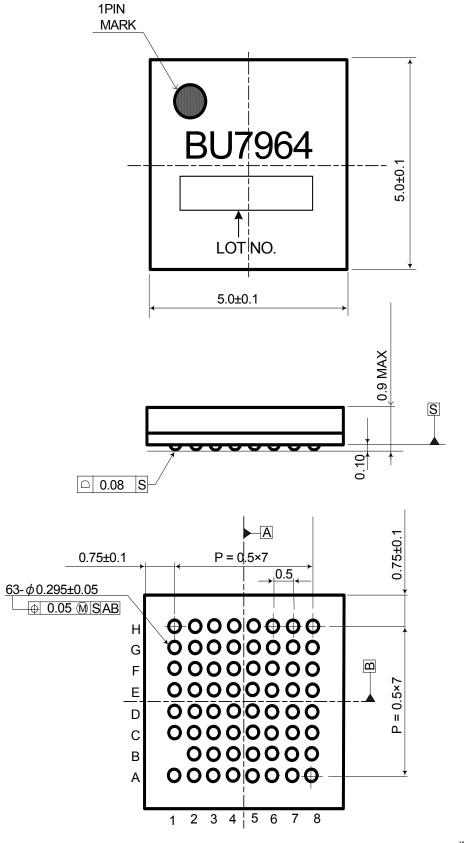
BU7964GUW is a differential serial interface connecting mobile phone LCD modules to the host CPU. Unique technology is utilized for lower power consumption and EMI. MSDL minimizes the number of wires required - an important consideration in hinge phones - resulting in greater reliability and design flexibility.

Features

- 1) MSDL3 high-speed differential interface with a maximum transfer rate of 1350 Mbps.
- 2) Compatible with 24-bit RGB video mode for LCD controller-to-LCD interface.
- 3) Pixel clock frequency range from 4 to 45MHz.
- 4) Depending on the data transfer rate, either, two or three differential data channels can be selected.

Applications

Serial Interface for LCD Display Interface of Mobile Devices Application.


•Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Remarks
Dower Supply Veltage	DVDD	-0.3 ~ +2.5	V	-
Power Supply Voltage	MSVDD	-0.3 ~ +2.5	V	-
	VIN	-0.3 ~ MSVDD+0.3	V	I/O terminals of MSVDD line
Input Voltage	VIIN	-0.3 ~ DVDD+0.3	V	I/O terminals of DVDD line
	VOUT	-0.3 ~ MSVDD+0.3	V	I/O terminals of MSVDD line
Output Voltage	0001	-0.3 ~ DVDD+0.3	V	I/O terminals of DVDD line
Input Current	lin	-10 ~ +10	mA	-
Output Current	IOUT	-70 ~ +70	mA	-
Preservation Temperature	Tstg	-55 ~ +125	°C	-

Operating Conditions

Parameter	Symbol		Ratings		Unit	Conditions	
Falameter	Symbol	Min	Тур	Max	Unit	Conditions	
Supply Voltage for DVDD	V _{DVDD}	1.65	1.80	1.95	V		
Supply Voltage for MSVDD	V _{MSVDD}	1.65	1.80	1.95	V	V _{DVDD} = V _{MSVDD}	
Data Transmission Rate	DR	120	-	450	Mbps/ch	-	
Operating Temperature Range	T _{opr}	-30	25	85	°C	-	

Package View

(UNIT:mm)

Block Diagram

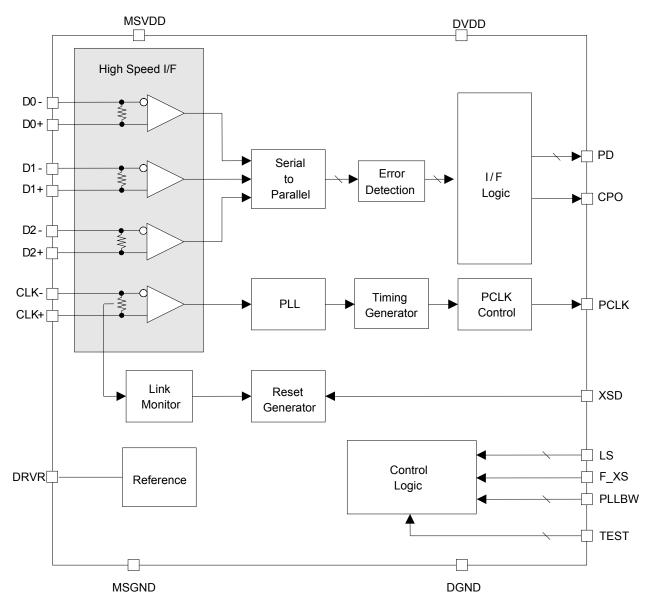


Fig.2. Block Diagram

Pin Layout

	1	2	3	4	5	6	7	8
A	TEST0	PD19	PD17	PD16	PD14	PD13	PD10	CPO
В		PCLK	PD18	PD15	PD12	PD11	PD9	PD8
С	PD22	PD20	PLL_BW0	DVDD	N.C.	F_XS	PD7	PD6
D	PD23	PD21	N.C.	DGND	DGND	DVDD	PD4	PD5
Е	PD25	PD24	DVDD	DGND	MSGND	N.C.	PD1	PD3
F	PD26	LS0	MSVDD	MSGND	MSVDD	N.C.	XSD	PD2
G	LS1	PLL_BW1	D2-	D1-	CLK-	D0-	N.C.	PD0
Н	N.C.	N.C.	D2+	D1+	CLK+	D0+	DRVR	TEST1

Fig.3. Pin Layout (Top View)

Pin Functions

|--|

Power Supp	ly / Grou	nd: 10-pin
Name	Width	Functions
DVDD	3	Logic core, CMOS I/O power supply.
MSVDD	2	Analog core power supply.
DGND	3	CMOS I/O and logic core ground.
MSGND	2	Analog core ground.

High-Speed	Serial Int	erface: 8-pi	in			
Name	Width	Level	I/O	Functions	Shutdown	Equivalent Schematic
CLK+	1	Analog	I	CLK+pin.	Pull Down	D
CLK-	1	Analog	I	CLK-pin.	Pull Down	D
D0+	1	Analog	I	D0+pin.	Pull Down	D
D0-	1	Analog	I	D0-pin.	Pull Down	D
D1+	1	Analog	I	D1+pin.	Pull Down	D
D1-	1	Analog	I	D1-pin.	Pull Down	D
D2+	1	Analog	I	D2+pin.	Pull Down	D
D2-	1	Analog	I	D2-pin.	Pull Down	D

Table 2. MSDL	3

				Table 3. Analog		
Analog: 1-pir	า					
Name	Width	Level	I/O	Functions	Shutdown	Equivalent Schematic
DRVR	1	Analog	-	$10k\Omega$ \pm 5% register should be connected between DRVR and MSGND.	-	D

				Table 4. Parallel Data Interface		
Parallel Data	a Interface	e: 29-pin				
Name	Width	Level	I/O	Functions	Shutdown	Equivalent Schematic
PCLK	1	CMOS	0	PCLK interface.	'Ľ'	С
PD[26:0]	27	CMOS	0	Parallel data interface.	'Ľ'	С
СРО	1	CMOS	0	Parity error toggled output, normally 'L,' output is toggled during one PCLK period when a parity error is detected	'L'	С

				Table 5. Control		
	1			Control: 8-pin		Faulticologi
Name	Width	Level	I/O	Functions	Shutdown	Equivalent Schematic
XSD	1	CMOS	I	Shutdown pin. 'L': shutdown. 'H': normal operation.	Input	А
LS0	1	CMOS		Selection of the number of data channel and the data format. Refer to section 0.	Input	А
LS1	1	GMOO		* Set the same number of data channel bet wean the TX device and the RX device.	input	
F_XS	1	CMOS	I	Selection of CMOS output rising and falling slope 'L': slow 'H': fast	Input	А
PLL_BW0	1	CMOS	1	Selection of PLL bandwidth.	Input	•
PLL_BW1	1	CINOS				A
TEST0	1	Pull		Test mode pins. 'L': normal mode.	Input	В
TEST1	1	down	1	'H': test mode. Must be open or 'L.'	Input	В

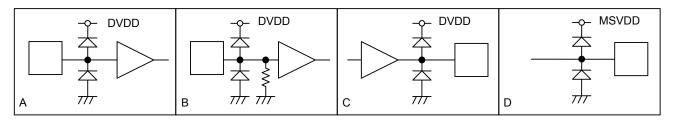


Fig.4. Equivalent Schematics

Operation Control

MSDL3 Channel Count Selection

Pins LS0 and LS1 are used to control the high-speed data channel count and data format. High-speed data channel count, data format should be the same between the transmitting and receiving devices (the BU7963GUW and BU7964GUW, respectively). Table 6 shows and Receipt Data rate ranges for the LS pin settings.

			Tange of the Receipt Data fate	
LS1	LS0	The Number of Data Channel	The Range of PCLK Input Frequency [MHz]	The Range of The Data Receipt Rate [Mbits/sec]
'L'	ʻĽ'	1-channel (27-bit format).	4.0-15.0	120-450
'L'	'H'	2-channel (27-bit format).	8.0-30.0	240-900
'H'	'L'	3-channel (27-bit format).	12.0-45.0	360-1350

Table 6. The Range of The Receipt Data rate

CMOS Output Drivability Selection

F_XS determines output drivability of the parallel data interface. Table 7 shows output drivability.

Table 7. Output Drivability						
F_XS	Output Drivability					
'L'	1mA Type					
'H'	3mA Type					

.

PLL Bandwidth Selection

BU7964GUW controls the range of the CLK+ / CLK- input frequency (= PCLK output frequency) by the setting of the data format (LS1, and LS0) of the high-speed data channel and the bandwidth setting of PLL_BW0 and PLL_BW1.

LS1	LS0	PLL_BW1			ency Range [MHz] Frequency)
		·		Min	Max
۲Ľ	'Ľ'	'Ľ'	'Ľ'	4	7
ʻL'	'Ľ'	'Ľ'	'H'	6	11
۲Ľ	'L'	'H'	'L'	10	15
ʻL'	'H'	'L'	'L'	8	14
۲Ľ	'H'	'L'	'H'	12	22
۲Ľ	'H'	'H'	'L'	20	30
'H'	'L'	'L'	'L'	12	21
'H'	'L'	'L'	'H'	18	33
'H'	'L'	'H'	'L'	30	45

Table 8. PLL Bandwidth Selection

Power Modes

BU7964UW has three power modes.

1) Shutdown Mode

BU7964GUW goes to Shutdown Mode when XSD = 'L.' All logic circuits are initialized in the Shutdown Mode. All high-speed signaling are pulled down to MSGND. All parallel data interface output 'L'.

2) Standby Mode

BU7964GUW goes to a Standby Mode when XSD = 'H' and CLK+ / CLK- is Hi-Z. All high-speed signaling inputs sink DC current in order to pull the pins down to MSGND. BU7964GUW is monitoring V_{CM} of ČLK+ / CLK-. When TX device starts driving high-speed signaling outputs, BU7964GUW detects its V_{CM} and switches to Active Mode. In Standby Mode, All parallel data interface output 'L'.

3) Active Mode

BU7964UW goes to Active Mode when XSD = 'H' and VCM is running.

		Input	Operation					
Power Mode	XSD	Vcm of CLK+/CLK-	Functions	MSDL3 Terminals	Parallel output			
Shutdown	'L'	MSGND	Initialized	Disabled(Pull-down)	Initial value			
Standby	'H'	MSGND	MSDL3 Vcm detection	MSDL3 Vcm detection (Pull-down)	Initial value			
Active	'H'	Clock input is active	MSDL3 V _{CM} monitor. Normal operation. (S2P conv)	MSDL3 V _{CM} monitor. Enabled.	Normal operation			

Table 0 D Mod

4) Power Modes Transition

Fig.5.shows the Transition of power modes.

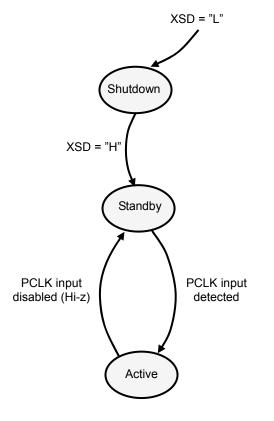
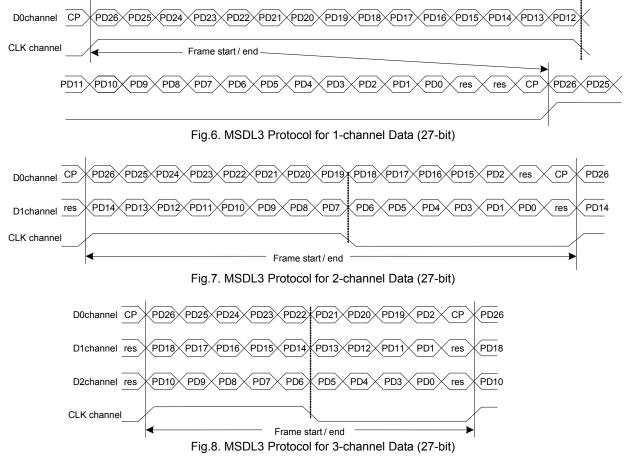


Fig.5. Power Modes Transition

Link Error Detection

Detection of Parity Error


BU7964GUW counts the number of 'H' bits in PD[26:0] and CP in every pixel information received and detects parity error as follows:

- There is no parity error occurred if the number of 'H' bits in PD[26:0] and CP is odd.
- There is parity error occurred if the number of 'H' bits in PD[26:0] and CP is even.

If parity error is detected, BU7964GUW outputs the previous error-free pixel information and discards the invalid pixel information. At the same time, BU7964GUW toggles CPO during one PCLK period. BU7964GUW outputs initial value, if the parity error is detected when there is no previous pixel information. Otherwise, BU7964GUW outputs the received pixel information from the high-speed data channel(s) and CPO keeps 'L.' Error correction is not supported in BU7964GUW.

•High-Speed Data Channel Protocols

Fig.6 Fig.7 and Fig.8 show high-speed data channel protocols.

"res" is reserved bit for the future use, the default state of those is '0.'

CP is the parity bit of data payload.

BU7964GUW adds an odd parity on CP of the high-speed channel data.

- When the number of 'H' bits in parallel data is even, CP bit is 'H.'
- When the number of 'H' bits in parallel data is odd, CP bit is 'L.'

•Electrical Characteristics

1) DC Characteristics

 Table 10. Digital Input / Output DC Characteristics

 Ta=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

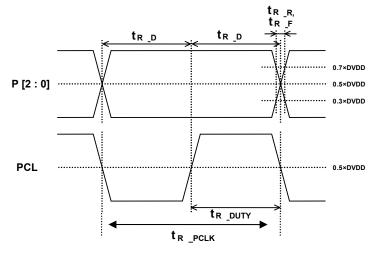
Parameter	Symbol	Limits			Unit	Conditions
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
'L' Input Voltage 1	VIL1	DGND	-	0.3 x DVDD	V	XSD, F_XS PLL_BW[1:0], LS[1:0]Pin
'H' Input Voltage 1	VIH1	0.7 x DVDD	-	DVDD	V	XSD, F_XS PLL_BW[1:0], LS[1:0]Pin
Output 'L' Voltage1	VOL1	DGND	-	0.3 x DVDD	V	F_XS='L', IO = 1mA, PCLK, CPO, PD[26:0]Pin
Output 'H' Voltage1	VOH1	0.7 x DVDD	-	DVDD	V	F_XS='L', IO = -1mA, PCLK, CPO, PD[26:0]Pin
Output 'L' Voltage2	VOL2	DGND	-	0.3 x DVDD	V	F_XS='H', IO = 3mA, PCLK, CPO, PD[26:0]Pin
Output 'H' Voltage2	VOH2	0.7 x DVDD	-	DVDD	V	F_XS='H', IO = -3mA, PCLK, CPO, PD[26:0]Pin
Output 'L' Voltage3	VOL3	DGND	-	0.15 x DVDD	V	IO = 100µA, PCLK, CPO, PD[26:0]Pin
Output 'H' Voltage3	VOH3	0.85 x DVDD	-	DVDD	V	IO = -100μΑ, PCLK, CPO, PD[26:0]Pin

Table 11. Current Consumption

a=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.									
Parameter	Symbol	Limits			Unit	Conditions			
i didificici	Cymbol	Min	Тур	Max	Orm	Conditions			
Shutdown Current	I _{op_sht_rx}	-	0.2	10	μA	XSD = 'L', IDVDD + IMSVDD			
Standby Current	I _{op_stb_rx}	-	41.8	90	μA	XSD = 'H', IDVDD + IMSVDD			
Active Current 1-channel / 27-bit Format	I _{op_act_rx1}	-	17.6	24.0	mA	LS[1:0] = "LL", PLL_BW[1:0] = "HL", DVDD = MSVDD, PCLK = 15MHz, XSD = 'H', CL = 10pF, Total operating current (IDVDD + IMSVDD) with PD[26:0] outputs toggling 0x2AAAAAA and 0x5555555			
Active Current 2-channel / 27-bit Format	l _{op_act_rx2}	-	28.0	36.8	mA	LS[1:0] = "LH", PLL_BW[1:0] = "HL", DVDD = MSVDD, PCLK = 30MHz, XSD = 'H', CL = 10pF, Total operating current (IDVDD + IMSVDD) with PD[26:0] outputs toggling 0x2AAAAAA and 0x5555555			
Active Current 3-channel / 27- bit Format	I _{op_act_rx3}	-	36.0	48.6	mA	LS[1:0] = "HL", PLL_BW[1:0] = "HL", DVDD = MSVDD, PCLK = 45MHz, XSD = 'H', CL = 10pF, Total operating current (IDVDD + IMSVDD) with PD[26:0] outputs toggling 0x2AAAAAA and 0x5555555			

2) AC Characteristics

Parallel Data Output Timing



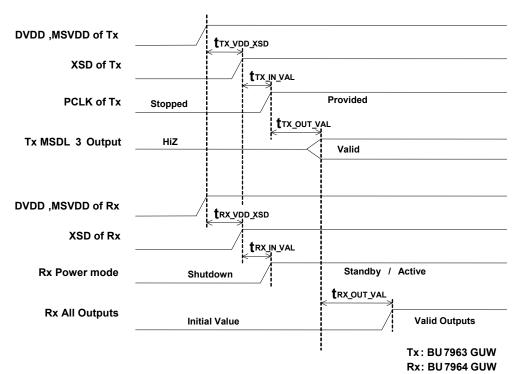

Fig.9. Parallel Data Output Timing

Table 12. Parallel Data Output AC Timing
Ta=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

Parameter	Symbol		Limits		Unit	Conditions
i didiletei	Symbol	Min	Тур	Max	Onit	Conditions
PCLK Output Duty Cycle	t _{RX_DUTY}	45	50	55	%	CL=10pF
Output Data Setup Time	t _{RX_DS}	0.41X t _{Rx_PCLK}	-	-	ns	CL=10pF
Output Data Hold Time	t _{RX_DH}	0.41X t _{Rx_PCLK}	-	-	ns	CL=10pF
Output Data Rise Time/Fall time	t _{RX_R}	-	9	-	ns	F_XS=0, CL=10pF
	t _{RX_F}	-	3	-	ns	F_XS=1, CL=10pF

3) Power-On / Off Sequence Power-On Sequence

Fig.10 shows power-on sequence of BU7964GUW.

Fig.10. Power-On Sequence

Ta=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

Deremeter	Or work of		Limits		Unit	O a sa diki a sa a
Parameter	Symbol	Min	Тур	Max		Conditions
Reset Valid After Power Supplied	t _{RX_VDD_XSD}	10	-	-	μs	
PCLK Valid After XSD Released	t _{RX_IN_VAL}	-	-	10	μs	
Parallel Data Valid After TX High- Speed Signals Valid	t _{RX_OUT_VAL}	-	-	2	ms	

Power-Off Sequence

Fig.11 shows the power-off sequence of BU7964GUW.

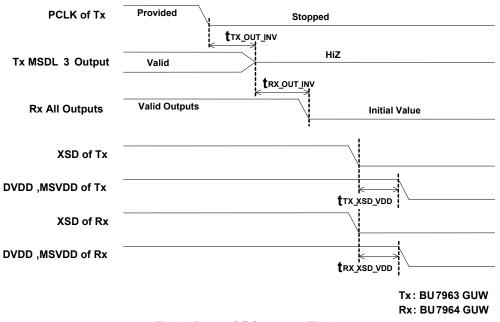


Fig.11. Power-Off Sequence Timing

Table 14. Power-Off Sequence Timing	Table 14.	Power-Off Sequence	Timing
-------------------------------------	-----------	--------------------	--------

Parameter	Symbol		Limits		Unit	Conditions
Parameter	Symbol	Min	Тур	Max	Unit	
Parallel output delay time	t _{RX_OUT_INV}	-	-	100	μs	
XSD hold time	t _{RX_XSD_VDD}	10	-	-	μs	

Frequency Change Sequence

Fig.12 shows the frequency change sequence of BU7964GUW.

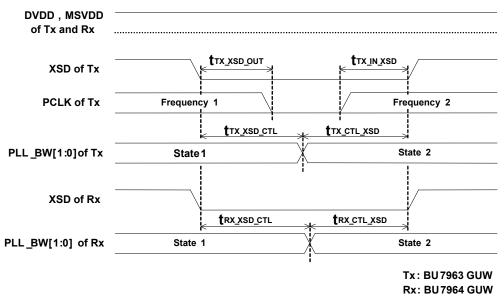


Fig.12. Frequency Change Sequence

Ta=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

Parameter	Svmbol		Limits		Unit	Conditions
Farameter	Symbol	Min	Тур	Max	Unit	Conditions
Control Signal Hold Time	t _{RX_XSD_CTL}	2.0	-	-	μs	
Control Signal Setup Time	t _{RX_CTL_XSD}	2.0	-	-	μs	

High-Speed Channel Characteristic

Table 16. High-speed channel characteristic
Ta=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

Parameter	Symbol	Limits			Unit	Conditions
Falameter		Min	Тур	Max	Unit	Conditions
Differential Voltage Range	V _{diff_rx}	70	100	200	mVpp	
LOW-level threshold voltage	V _{thl}	-40	-	-	mV	
HIGH-level threshold voltage	V _{thh}	-	-	40	mV	
Common Mode Voltage Range	V _{cm_rx}	0.6	0.9	1.2	V	
Internal termination resistance	R_rx	75	100	125	Ω	
Operating Frequency	f _{opr_rx}	-	-	225	MHz	
RX sink current	I _{PULL_RX}	12	30	90	μA	
Link detection threshold voltage	V_{LINK_RX}	0.2	0.3	0.4	V	

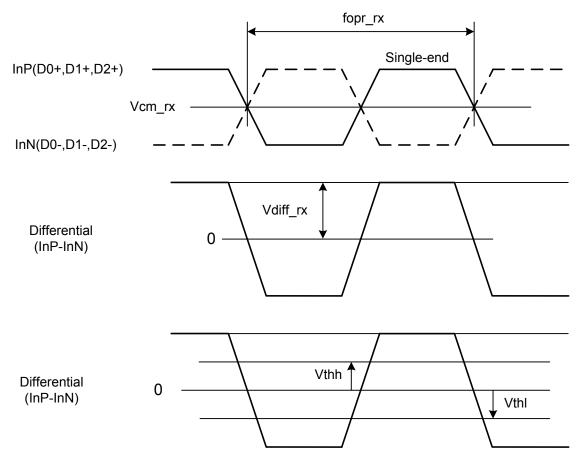


Fig.14 shows high-speed channel equivalent schematic.

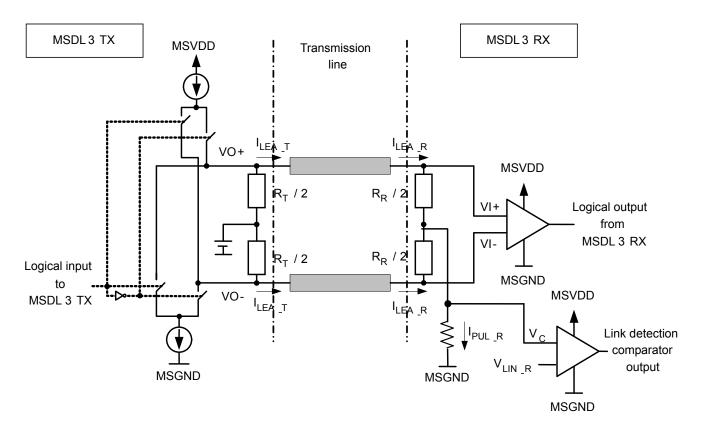


Fig.14. High-Speed Channel Equivalent Schematic.

•Application Circuit Example

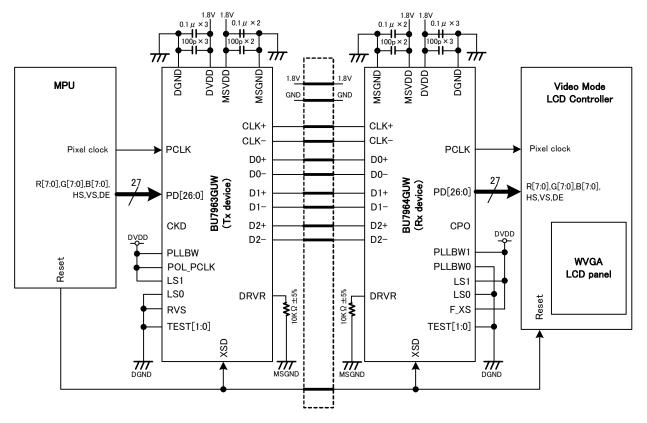
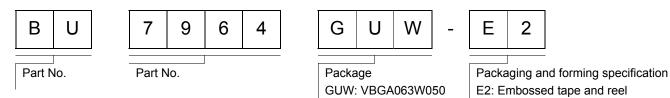
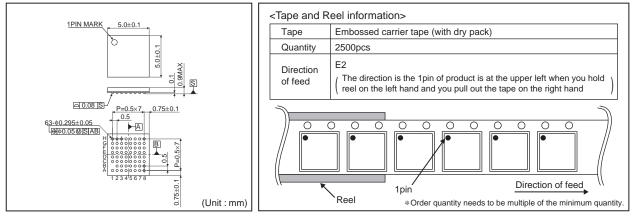




Fig.15. Application Circuit

Ordering Part Number

VBGA063W050

N 1 -	
	copying or reproduction of this document, in part or in whole, is permitted without the asent of ROHM Co.,Ltd.
The	e content specified herein is subject to change for improvement without notice.
"Pr	e content specified herein is for the purpose of introducing ROHM's products (hereinafte oducts"). If you wish to use any such Product, please be sure to refer to the specifications ich can be obtained from ROHM upon request.
illu	amples of application circuits, circuit constants and any other information contained herein strate the standard usage and operations of the Products. The peripheral conditions mus taken into account when designing circuits for mass production.
Ho	eat care was taken in ensuring the accuracy of the information specified in this document wever, should you incur any damage arising from any inaccuracy or misprint of sucl ormation, ROHM shall bear no responsibility for such damage.
exa imp oth	e technical information specified herein is intended only to show the typical functions of and imples of application circuits for the Products. ROHM does not grant you, explicitly o plicitly, any license to use or exercise intellectual property or other rights held by ROHM and er parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the e of such technical information.
equ	e Products specified in this document are intended to be used with general-use electronic uipment or devices (such as audio visual equipment, office-automation equipment, commu ation devices, electronic appliances and amusement devices).
The	Products specified in this document are not designed to be radiation tolerant.
	ile ROHM always makes efforts to enhance the quality and reliability of its Products, a oduct may fail or malfunction for a variety of reasons.
aga fail sha	ase be sure to implement in your equipment using the Products safety measures to guard ainst the possibility of physical injury, fire or any other damage caused in the event of the ure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM all bear no responsibility whatsoever for your use of any Product outside of the prescribed ope or not in accordance with the instruction manual.
sys ma ins cor of t	e Products are not designed or manufactured to be used with any equipment, device o tem which requires an extremely high level of reliability the failure or malfunction of which y result in a direct threat to human life or create a risk of human injury (such as a medica trument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- ntroller or other safety device). ROHM shall bear no responsibility in any way for use of any the Products for the above special purposes. If a Product is intended to be used for any ch special purpose, please contact a ROHM sales representative before purchasing.
be	ou intend to export or ship overseas any Product or technology specified herein that may controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to ain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/