

BCM Array[™] BC384R120T060VM-00

Features

- 384 V to 12 V VI BRICK[™] BCM Array
- 600 Watt (900 Watt for 1 ms)
- Vertical mount package reduces footprint
- Integrated heat sink simplifies thermal management
- High density up to 268 W/in³
- Small footprint 303 W/in²
- Low weight 3.2 oz (92 g)
- ZVS / ZCS isolated sine amplitude converter
- Typical efficiency 95%
- <1 µs transient response
- >1.8 million hours MTBF
- Internal fuse and filter
- No output filtering required

Vin = 360 - 400 VVout = 11.3 - 12.5 Vlout = 50 AK = 1/32Rout = $10.0 m\Omega$ max

Size: 3.54 x 0.56 x 1.13 in 89,9 x 14,2 x 28,7 mm

Product Description

The BC384R120T060VM-00 contains two high efficiency, narrow input range Sine Amplitude Converter (SAC) converters operating from a 360 to 400 Vdc primary bus to deliver an isolated low voltage secondary. The module provides an isolated 11.3 -12.5 V distribution bus and is packaged in a thermally efficient VI BRICK BCM Array package. Due to the fast response time and low noise, the need for limited life aluminum electrolytic or tantalum capacitors at the input of POL converters is reduced—or eliminated—resulting in savings of board area, materials and total system cost.

The BC384R120T060VM-00 achieves a power density of 268 W/in³ in a VI BRICK BCM Array package utilizing an integrated heat sink. Owing to its high conversion efficiency and safe operating temperature range, the VI BRICK BCM Array does not require additional heat sinking or high airflow velocities. Low junction-to-heat sink thermal impedance assures low junction temperatures and long life in the harshest environments.

Absolute Maximum Rating	S			
Parameter	Values	Unit	Notes	
+In to -In	-1.0 to 440	Vdc		
+In to -In	500	Vdc	For 100 ms	
PC to -In	-0.3 to 7.0	Vdc		
+Out to -Out	-0.5 to 16.0	Vdc		
Isolation voltage	4242	Vdc	Input to Output	
Output current	55.4	А	Continuous	
Peak output current	75.0	А	For 1 ms	
Output power	600	W	Continuous	
Peak output power	900	W	For 1 ms	
Operating junction temperature ⁽¹⁾	-40 to 125	°C	T-Grade	
Storage temperature	-40 to 125	°C	T-Grade	

Note:

(1) The referenced junction is defined as the semiconductor having the highest temperature.

This temperature is monitored by a shutdown comparator.

Input Specifications (Conditions are at 384 Vin, full load, and 25°C ambient unless otherwise specified)

Parameter	Min	Тур	Max	Unit	Note	
Input voltage range	360	384	400	Vdc		
Input dV/dt			1	V/µs		
Input undervoltage turn-on			320	Vdc		
Input undervoltage turn-off	280			Vdc		
Input overvoltage turn-on	400			Vdc		
Input overvoltage turn-off			440	Vdc		
Input quiescent current		2.2		mA	PC low	
Input current			1.7	Adc		
No load power dissipation		11.6	16.6	W		
Internal input capacitance		0.4		μF		
Internal input inductance		2.5		μΗ		

Parameter	Min	Тур	Max	Unit	Note
	11.3	קני	12.5	Vdc	No load; 360 – 400 V _{IN}
Output voltage	10.8		12.0	Vdc	Full load; 360 – 400 V _{IN}
Output power	0		600	W	360 - 400 V _{IN} ; 100°C heat sink max. temp.
Rated DC current	0		55.4	Adc	$P_{OUT} \le 600 \text{ W}$
				Max pulse width 1ms, max duty cycle 10%	
Peak repetitive power			900	W	baseline power 50%
Current share accuracy		5	10	%	buschille power 5070
Efficiency				,,,	
Half load	94.1	95.2		%	
Full load	94.2	95.3		%	
nternal output inductance		0.6		nH	
Internal output capacitance		62.0		μF	Effective value
Load capacitance			2,000	μF	
Output overvoltage setpoint	12.5			Vdc	
Output ripple voltage					
No external bypass		222	450	mV p-p	
Short circuit protection set point	56.4			Adc	Module will shut down
Average short circuit current		0.46		А	
Effective switching frequency	3.3	3.4	3.5	MHz	Fixed, 1.7 MHz per phase per each BCM
ine regulation					
К	0.0309	1/32	0.0316		$VOUT = K \bullet V_{IN}$ at no load
_oad regulation					
R _{OUT}		7.5	10.0	mΩ	
Output overshoot					
Input turn-on		50		mV	No output filter
PC enable		50		mV	No output filter
Output turn-on delay					
From application of power		1180		ms	No output filter
From release of PC pin		240		ms	No output filter

General					
Parameter	Min	Тур	Max	Unit	Note
MTBF					
MIL-HDBK-217F		1.8		Mhrs	25°C, GB
Isolation specifications					
Voltage	4242			Vdc	Input to Output
Capacitance		1000		рF	Input to Output
Resistance	5			MΩ	Input to Output
		cTÜVus			Safty agency approvals pending
Agency approvals		CE Mark			Low Voltage Directive
Mechanical					See Mechanical Drawings
Weight		3.2/92		oz/g	
Dimensions					
Length		3.54/89,9	3.55/90,1	in/mm	
Width		0.56/14,2	0.57/14,6	in/mm	
Height		1.13/28,7	1.18/30,0	in/mm	
Thermal					
Over temperature shutdown	125	130	135	°C	Junction temperature
Operating temperature - heatsink			100	°C	See thermal curve, Figure 1
Junction-to-heatsink thermal impedance $(R_{\theta JC})$		0.50	0.65	°C/W	Heatsink temperature measured in location shown in Figure 2
Heatsink to ambient thermal impedance $(\mathrm{R}_{\mathrm{\theta}\mathrm{HA}})$		5.95	6.10	°C/W	http://www.vicorpower.com/ technical_library/calculators/calc_t~1.xls

Parameter	Min	Тур	Max	Unit	Note	
Enable / Disable (CNTRL)						
DC voltage	4.8	5.0	5.2	Vdc		
Module disable voltage	2.4	2.5		Vdc		
Module enable voltage		2.5	2.6	Vdc		
Current limit	4.8	5.0	5.8	mA	Source only	
Enable delay time		240		ms		
Disable delay time		40		μs	Time from PC low to output low	

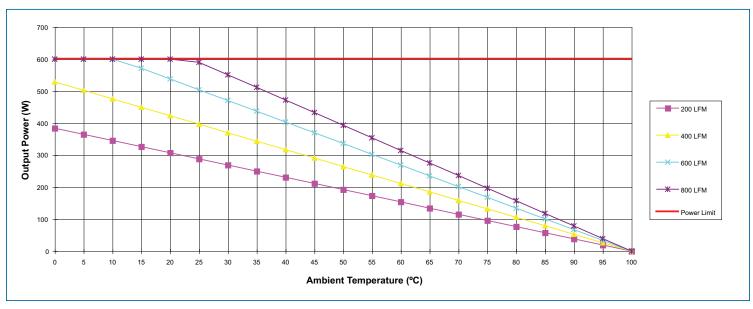


Figure 1 – Typical thermal curve – verify all thermal management systems experimentally.

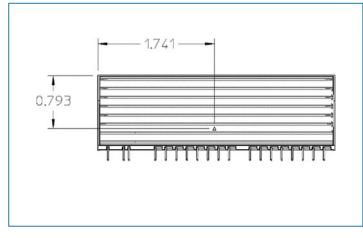


Figure 2 — Temp measurement location

+In / -In – DC Voltage Input Ports

The BCM Array input voltage range should not be exceeded. An internal under / over voltage lockout-function prevents operation outside of the normal operating input range. The module turns on within an input voltage window bounded by the "Input under-voltage turn-on" and "Input over-voltage turn-off" levels, as specified. The module may be protected against accidental application of a reverse input voltage by the addition of a rectifier in series with the positive input, or a reverse rectifier in shunt with the positive input located on the load side of the input fuse.

CNTRL – Enable / Disable

The Enable / Disable signal is a multifunction node that provides the following functions:

<u>Enable / Disable</u> – If CNTRL is left floating, the module output is enabled. Once this port is pulled lower than 2.4 Vdc with respect to –In, the output is disabled. This action can be realized by employing a relay, opto-coupler, or open collector transistor. This signal should not be toggled at a rate higher than 1 Hz. CNTRL should also not be driven by or pulled up to an external voltage source.

<u>Primary Auxiliary Supply</u> – CNTRL can source up to 2.4 mA at 5.0 Vdc. CNTRL should never be used to sink current.

<u>Alarm</u> – The module contains circuitry that monitors output overload, input over voltage or under voltage, and internal junction temperatures. In response to an abnormal condition in any of the monitored parameters, CNTRL will toggle.

+Out / -Out – DC Voltage Output Ports

Multiple pins are provided for the +Out and –Out connections. They must be connected in parallel with low interconnect resistance.

reduces or eliminates the need for limited life aluminum electrolytic or tantalum capacitors at the input of POL converters.

Total load capacitance at the output of the device should not exceed the specified maximum. Owing to the wide bandwidth and low output impedance of the BCM Array, low frequency bypass capacitance and significant energy storage may be more densely and efficiently provided by adding capacitance at the input.

MECHANICAL DRAWINGS

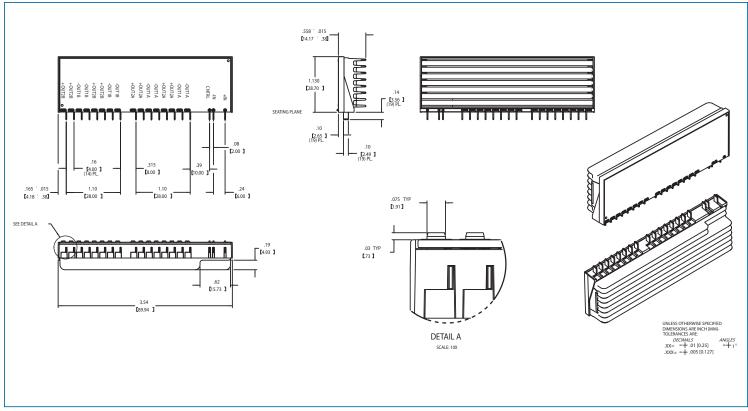


Figure 3 – BC384R120T060VM-00 mechanical outline

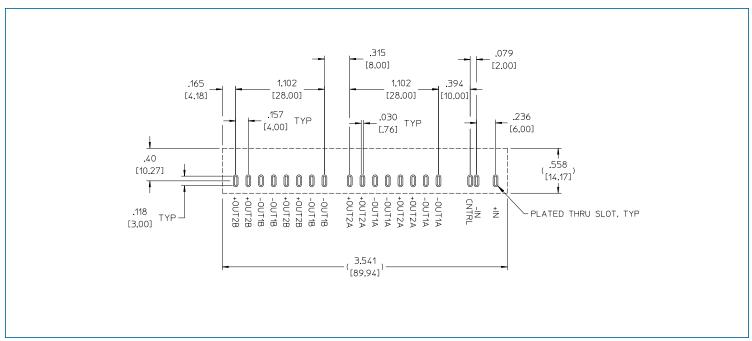


Figure 4 – BC384R120T060VM-00 footprint

Warranty

Vicor products are guaranteed for two years from date of shipment against defects in material or workmanship when in normal use and service. This warranty does not extend to products subjected to misuse, accident, or improper application or maintenance. Vicor shall not be liable for collateral or consequential damage. This warranty is extended to the original purchaser only.

EXCEPT FOR THE FOREGOING EXPRESS WARRANTY, VICOR MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Vicor will repair or replace defective products in accordance with its own best judgement. For service under this warranty, the buyer must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without prior authorization will be returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor will pay all reshipment charges if the product was defective within the terms of this warranty.

Information published by Vicor has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Vicor reserves the right to make changes to any products without further notice to improve reliability, function, or design. Vicor does not assume any liability arising out of the application or use of any product or circuit; neither does it convey any license under its patent rights nor the rights of others. Vicor general policy does not recommend the use of its components in life support applications wherein a failure or malfunction may directly threaten life or injury. Per Vicor Terms and Conditions of Sale, the user of Vicor components in life support applications assumes all risks of such use and indemnifies Vicor against all damages.

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor components are not designed to be used in applications, such as life support systems, wherein a failure or malfunction could result in injury or death. All sales are subject to Vicor's Terms and Conditions of Sale, which are available upon request.

Specifications are subject to change without notice.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the products described in this data sheet. Interested parties should contact Vicor's Intellectual Property Department.

The products described on this data sheet are protected by the following U.S. Patents Numbers: 5,945,130; 6,403,009; 6,710,257; 6,788,033; 6,940,013; 6,969,909; 7,038,917; 7,154,250; 7,166,898; 7,187,263; 7,202,646; 7,361,844; 7,368,957; RE40,072; D496,906; D506,438; D509,472; and for use under U.S. Pat. Nos. 6,975,098 and 6,984,965

Vicor Corporation 25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715

email Customer Service: custserv@vicorpower.com Technical Support: apps@vicorpower.com