Features

－ 3000 counts LCD display
－3V DC power supply
－Conversion rate： 4 times／s（voltage mode）
－Full automatic measurement：
＊Voltage／Current：AC／DC auto scanning
$\&$ auto range： $3.000 \mathrm{~V} \sim 1000 \mathrm{~V}$
＊Resistance／Diode／Capacitance（RDC scan）
Auto scanning \＆auto range：
Resistance： $300.0 \Omega \sim 3.000 \mathrm{M} \Omega$
Capacitance： $3.000 \mathrm{nF} \sim 300.0 \mathrm{uF}$
－Push functions
Function selection by single key
Range change function
Hold function
MAX／MIN function
VAHZ function
Back light function
－Support non－contact voltage detection
－High voltage（ $>30 \mathrm{~V}$ ）indication of LCD display for voltage measurement
－Built－in HCF（high crest factor detection） function in AC mode
－OL level selection $(600 \mathrm{~V} / 1000 \mathrm{~V} / 1500 \mathrm{~V})$
－Band－gap reference voltage output
－Auto power off（ 3 min ．or 10 min ．）\＆re－ power on
－Sleep output indication
－On－chip buzzer driver
－Low battery detection

General description

ES51926 is an integrated ADC with 3000 counts LCD display driver．It could support fully automatic DMM function measurement．In voltage or current mode，the AC or DC signals auto scanning．In R／D／C（passive component） mode，resistance（including continuity）， capacitance or diode measurements are allowed by fully automatic detection．A single key and simple switch could select all measurements． Expensive and bulky mechanical range switches are not required．A non－contact electric field detector（EF mode）is built－in for ac voltage measurement also．Other features including range control，data hold，max／min hold，VAHz and back light function are available．For power saving，an auto power off \＆re－power on scheme are built－in．A sleep output is the indication of entering auto power off mode．

Application

－Smart digital multi－meter
－Smart clamp meter

Pin Assignment

Pin Description

Pin No	Symbol	Type	Description
1	AGND	P	Analog ground．
2	LBAT	I	Low battery configuration．If 3V battery is used，connect it to DGND． The default low－battery threshold voltage is－2．3V．If 9V battery is used，the low battery enunciator is displayed when the voltage of this pin is less than VRH（－1．2V）
3	CREF＋	I／O	Positive connection for reference capacitor．
4	CREF－	I／O	Negative connection for reference capacitor．
5	CINT	O	Integrator output．Connect to integral capacitor
6	CAZ	I	Auto－zero capacitor connection．
7	BUFF	O	Buffer output pin．Connect to integral resistor
8	RAZ	O	Buffer output pin in high－speed mode．Connect to high－speed integral resistor．
9	IVSH	I	High current measurement input．

10	IVSL	I	Low current measurement input
11	OVX	I	Input high voltage for resistance／capacitor measurement
12	OVH	I	Output connection for resistance／capacitor measurement
13	OVSG	I	Sense low voltage for resistance measurement
14	OR1	O	Reference resistor connection for 300.0Ω range
15	VR5	O	Voltage measurement $\div 10000$ attenuated（ 1000 V ）
16	VR4	O	Voltage measurement $\div 1000$ attenuated（ 300.0 V ）
17	VR3	O	Voltage measurement $\div 100$ attenuated（ 30.00 V ）
18	VR2	O	Voltage measurement $\div 10$ attenuated（ 3.000 V ）
19	TEST5	I／O	Test pin
20	ACVL	I	DC signal low input in ACV／ACA mode．Connect to negative output of external AC to DC converter．
21	ACVH	I	DC signal high input in ACV／ACA mode．Connect to positive output of external AC to DC converter．
22	ADI	I	Negative input of internal AC to DC OP Amp．
23	ADO	O	Output of internal AC to DC OP Amp．
24	OHMC4	O	Filter capacitor connection for resistance mode
25	OHMC3	O	Filter capacitor connection for resistance mode
26	OHMC2	O	Filter capacitor connection for resistance mode
27	OHMC1	O	Filter capacitor connection for resistance mode
28	NC	－	
29	VRH	O	Output of band－gap voltage reference．Typically -1.2 V
30	VR	I	Reference input voltage connection．Typically -400 mV
31	SGND	I	Signal Ground．
32	ADP	I	Measurement input in ADP mode
33	VA＋	I	For ADP mode．De－integrating voltage positive input．The input should be higher than VA－．
34	VA－	I	For ADP mode．De－integrating voltage negative input．The input should be lower than VA＋．
35	VR1	I	Measurement input．
36	NC	－	
37	CA－	I／O	Negative auto－zero capacitor connection for capacitor measurement
38	CA＋	I／O	Positive auto－zero capacitor connection for capacitor measurement
39	R9K	O	Connect to a precise $9 \mathrm{~K} \Omega$ resister for capacitor measurement．
40	R1K	O	Connect to a precise $1 \mathrm{~K} \Omega$ resister for capacitor measurement．
41	SLEEP	O	Sleep mode indicator，asserts low in SLEEP mode．Normal V＋output．
42	BUZIN	I	Pull to V－to enable the BUZOUT．
43	APOSEL	I	Auto power off idle time selection．
44	BUZOUT	O	Outputs a 2 KHz audio frequency signal for driving piezoelectric buzzer
45	ACEN	O	Output to V－when AC mode inactive and output to V＋in AC mode．
$46-50$	NC	－	
51	BKOUT	O	If BKLIT function is enabled，this pin will change from -3 V to +3 V for 60 sec ，once press BKLIT pin again within 60 sec ，this pin will chang back to -3 V ．
52	ANNUNC	O	Square wave output at the backplane frequency，synchronized to BP1． ANNUNC can be used to control display annunciator．Connect a LCD segment to ANNUNC to turn it on；connect an LCD segment to its back plane to turn it off．
53	BP4	O	LCD backplane 4
54	BP3	O	LCD backplane 3
55	BP2	O	LCD backplane 2
56	BP1	O	LCD backplane 1
57	EFEN	I	Pull－low to enable non－contact AC voltage detection
58	BKLIT	I	Back light function．Pulse low to set BKOUT pin output．
59	MAX／MIN	I	Pulse to V－to enable MAX／MIN function．
60	RANGE	I	Pulse to V－to enable manual mode and manual range selection．

61	VAHz	I	Pulse to V－to enable VAHz mode．
62	SEL	I	Pulse to V－to select target measurement
63	HOLD	I	Pulse to V－to enable HOLD function．
64	FC1	I	Switch 1 for function selection．
65	FC2	I	Switch 2 for function selection．
66	FC3	I	Switch 3 for function selection．
67	FUA	I	Switch 1 for current measurement selection．
68	FA	I	Switch 2 for current measurement selection．
69	AON	I	Pull to high to sense current measurement priority in auto scan mode
70	VON	I	Pull to high to sense voltage measurement priority in auto scan mode
71	CLAMP	I	Switch for clamp meter application function
$72-77$	SEG15 -10	O	LCD segment line 10－15
$78-79$	NC	-	
$80-88$	SEG09－01	O	LCD segment line 01－09
89	OSC2	I	Crystal oscillator input connection
90	OSC1	O	Crystal oscillator output connection
			When pulled to V－，an auto back light configuration is allowed． Configure a low level applied to BKLIT larger than 1 second，the BKOUT will be active． If BKLIT is back to high level，the BKOUT would be inactive．
91	BKSEL	I	
92	CESEL	I	OL selection feature control pin．
93	C +	O	Positive capacitor connection for on－chip DC－DC converter．
94	C－	O	Negative capacitor connection for on－chip DC－DC converter．
95	V－	P	Negative supply voltage．Connecting to battery negative terminal．
96	V－	P	Negative supply voltage．Connecting to battery negative terminal．
97	V＋	P／O	Output of on－chip DC－DC converter．
98	V＋	P／O	Output of on－chip DC－DC converter．
99	DGND	G	Digital ground．
100	AGND	G	Analog ground．

Absolute Maximum Ratings

Characteristic	Rating
Supply Voltage（V－to AGND）	-4 V
Analog Input Voltage	$\mathrm{V}--0.6$ to V＋+0.6
$\mathrm{~V}+$	$\mathrm{V}+\geq(\mathrm{AGND} / \mathrm{DGND}+0.5 \mathrm{~V})$
AGND／DGND	AGND／DGND $\geq(\mathrm{V}--0.5 \mathrm{~V})$
Digital Input	$\mathrm{V}--0.6$ to DGND +0.6
Power Dissipation．Flat Package	500 mW
Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{V}-=-3 \mathrm{~V}$

Parameter	Symbol	Test Condition	Min．	Typ．	Max	Units
Power supply	V－		－3．5	－3．0	－2．5	V
Operating supply current In Scan AC／DC mode	I_{DD}	Normal operation	－	2.5	－	mA
	$\mathrm{I}_{\text {SS }}$	In sleep mode	－	0.6	2.5	$\mu \mathrm{A}$
Voltage roll－over error	REV	$10 \mathrm{M} \Omega$ input resistor	－	－	± 0.1	\％F．S ${ }^{1}$
Voltage nonlinearity	NLV	Best case straight line	－	－	± 0.1	\％F．S
Input Leakage			－10	1	10	PA
Low battery flag voltage		V－to AGND	－2．4	－2．3	－2．2	V
Zero input reading		$10 \mathrm{M} \Omega$ input resistor	－000	000	＋000	counts
Peak to peak backplane drive voltage		$-3.5 \mathrm{~V} \leq \mathrm{V} \leq-2.2 \mathrm{~V}$	3.0	3.15	3.3	V
Counter time base period		$\mathrm{f}_{\text {OSC }}=4 \mathrm{MHZ}$	－	1	－	sec
Reference voltage and open circuit voltage for 300Ω measurement	$\mathrm{V}_{\text {ReF }}$	$100 \mathrm{~K} \Omega$ resistor between VRH and AGND	－1．33	－1．23	－1．13	V
Open circuit voltage for Ω measurement（except 300Ω ）		Ω and Continuity Mode	－0．86	－0．78	－0．70	V
Internal pull－high to 0 V current		Between V－pin and HOLD，RANGE， SEL，FC1－3，FUA， FA，VON，AON， CLAMP，BKLIT， MAXMIN	－	1.2	－	$\mu \mathrm{A}$
AC frequency response at 6.000 V Range		$\pm 1 \%$	－	40－400	－	HZ
		$\pm 5 \%$	－	400－2000	－	
AC input response for scan mode			10	－	50000	Hz
AC／DC voltage scan mode sensitivity＠1kHz		VR1（10M Ω input impedance）	300	400	500	mV
AC／DC current scan mode sensitivity＠1kHz		ADP，IVSL and IVSH	8	10	12	mV
RDC scan mode RES sensitivity		Parasitic capacitance allowed in $3.000 \mathrm{M} \Omega$ range	－	－	200	pF
RDC scan mode DIODE sensitivity		Forward voltage	－	0.8	－	V
RDC scan mode CAP sensitivity			400	－	－	pF
Reference voltage temperature coefficient	$\mathrm{TC}_{\mathrm{RF}}$	$100 \mathrm{~K} \Omega$ resister Between VRH $0^{\circ} \mathrm{C}<\mathrm{TA}<70^{\circ} \mathrm{C}$	－	50	－	ppm／${ }^{\circ} \mathrm{C}$
Capacitance measurement accuracy			－1．5	－	1.5	\％F．S
		$3 \mathrm{nF}-3.0 \mu \mathrm{~F}$	－5	－	5	counts
		$30 \mu \mathrm{~F} \sim 30 \mathrm{mF}$	－2．0	－	2.0	\％F．S
			－5	－	5	counts

Note：

1．Full Scale

Functional Description

1．Operation Modes

1．1 Voltage Measurement

A re－configurable voltage divider automatically provides a suitable range in voltage measurement mode．The following table summarizes the full－scale ranges in each configuration．

Configuration	Full Scale Range	Divider Ratio	Resister Connection
VR1	$300.0 \mathrm{mV}^{*}$	1	VR1 $(10 \mathrm{M} \Omega)$
VR2	$3.000 \mathrm{~V}^{* *}$	$1 / 10$	VR2 $(1.111 \mathrm{M} \Omega)$
VR3	30.00 V	$1 / 100$	VR3 $(101 \mathrm{~K} \Omega)$
VR4	300.0 V	$1 / 1000$	VR4 $(10 \mathrm{~K} \Omega)$
VR5	$1000 \mathrm{~V}^{* * *}$	$1 / 10000$	VR5 $(1 \mathrm{~K} \Omega)$

Note：
＊Exists in manual mode only by RANGE key control
＊＊This range is the default range for auto range \＆auto scan mode
＊＊＊Depends on CESEL selection

1．1．1 OL selection

ES51926 has a OL display selection feature archived by configuring a CESEL pin．If pin CESEL is connected to V－，ES51926 will have a 600.0 V overflow level in DCV and ACV mode．If pin CESEL is connected to DGND，the ES51926 will have a 1010V overflow level in DCV mode and have a 1010V overflow level in ACV mode also．When CE is floating，a 1500 V overflow level in DCV mode but ACV is still 1010 V overflow level．The meter will Show OL when the measuring signal reaches the overflow level with beeper warning．The configuration of CESEL is listed below．

CESEL	DCV	ACV
V－	600.0 V	600.0 V
DGND	1010 V	1010 V
Floating	1500 V	1010 V

1．1．2 HCF detection

ES51926 provides detection of high－crest－factor（HCF）signal in ACV auto range mode．ES51926 senses the signal and determines it as HCF if the Vpp is large enough．Once the signal is determined as HCF，ES51926 will jump up one measuring range regardless of current measurement value．It takes 60 ms to jump one range up．The jumping up process will continue until the maximum range is reached．With HCF detection，a more accurate result could be obtained．For example，when a input signal with $\mathrm{Vpp}=200 \mathrm{~V}$ ， $\mathrm{Vrms}=40 \mathrm{~V}(\mathrm{CF}=5)$ was applied， traditional DMM might stay at 30 V range but shows counts with the amount of error up to 10% or even bigger．The error rises from limited input／output swing at internal ADC．With HCF detection，DMM will stay at 300 V range and exhibits more accurate results．

1．1．3 EF mode

ES51926 supports a non－contact ac voltage measurement，which is called electric field measurement also．The EF mode is selected by SEL key when EF＿EN is active．The ADC input is configured from $A D P$ pin vs．$S G N D$ ．When no or less electric field is detected，the LCD shows＂EF＂．If the detector senses electric field，the strength will be showed on LCD by＂－＂not digits type．Level 1（weak） is＂－＂and the level 4（strong）is＂－－－－＂．Additional beeper will be output from BUZOUT pin．The buzzer frequency depends on the strength of electric field also． The Faster beeper means the stronger electric field（ac voltage）is sensed．

1．2 Current Measurement

1．2．1 For multi－meter application

ES51926 has 2 automatic and 1 manual current measurement modes for multi－ meter．The following table summarizes the full－scale range of each mode．When ES51926 operates in the current measurement modes for multi－meter，it takes high input from pin IVSH or IVSL，low input from pin SGND and reference voltage from pin VR．

Mode	Full Scale	Input Terminal	Full scale
Automatic1	$300.0 \mu \mathrm{~A} / 3000 \mu \mathrm{~A}$	IVSL／IVSH V．S．SGND	150.0 mV
Automatic2	$30.00 \mathrm{~mA} / 300.0 \mathrm{~mA}$	IVSL／IVSH V．S．SGND	150.0 mV
Manual	30.00 A	IVSH V．S．SGND	150.0 mV

1．2．2 For clamp meter application

ES51926 has 2 automatic and 4 manual current measurement modes for Clamp meter．The following table summarizes the full－scale range of each mode．When ES51926 operate in the automatic mode1\＆2，it takes high input from IVSH／IVSL（higher range／lower range），low input from SGND and reference voltage from VR．When ES51926 operate in the manual mode1～4，it takes high input from ADP，low input from SGND and reference voltage from VA＋\＆VA－．

Mode	Full Scale	Input Terminal	Full scale
Automatic1	$300.0 \mathrm{~A} / 3000 \mathrm{~A}$	IVSL／IVSH V．S．SGND	300.0 mV
Automatic2	$30.00 \mathrm{~A} / 300.0 \mathrm{~A}$	IVSL／IVSH V．S．SGND	300.0 mV
Manual1	3.000 A	ADP V．S．SGND	300.0 mV
Manual2	30.00 A	ADP V．S．SGND	300.0 mV
Manual3	300.0 A	ADP V．S．SGND	300.0 mV
Manual4	3000 A	ADP V．S．SGND	300.0 mV

1．3 Resistance Measurement

A re－configurable divider automatically provides a suitable full－scale range in resistance measurement mode．The following table summarizes the full－scale ranges and the reference resistors in each configuration．

Configuration	Full Scale Range	Relative Resistor	Equivalent value
OR1	$300.0 \Omega^{*}$	OR1	100Ω
OR2	$3.000 \mathrm{~K} \Omega$	VR 5	$1 \mathrm{~K} \Omega$
OR3	$30.00 \mathrm{~K} \Omega$	VR 4	$10 \mathrm{~K} \Omega$
OR4	$300.0 \mathrm{~K} \Omega$	$\mathrm{VR} 3 / / \mathrm{VR} 1$	$100 \mathrm{~K} \Omega$
OR5	$3.000 \mathrm{M} \Omega$	$\mathrm{VR} 2 / / \mathrm{VR} 1$	$1 \mathrm{M} \Omega$
OR6	$30.00 \mathrm{M} \Omega^{* *}$	VR 1	$10 \mathrm{M} \Omega$

Note：＊When auto scan mode is set，continuity check is implemented in this range ＊＊When auto scan mode is set，the $30.00 \mathrm{M} \Omega$ range is omitted

1．3．1 Continuity check

Continuity check shares the same configuration with 300.0Ω manual resistance measurement mode and has buzzer output to indicate continuity．The buzzer generates 2 KHz beep whenever the reading is less than 30Ω ．

1．4 Diode Measurement

Diode measurement mode shares the same configuration with 3.000 V manual voltage measurement mode and has buzzer output to indicate continuity．The buzzer generates a 2 KHz sound whenever the reading is less than 30 mV ．If the test circuit is open or the voltage drop between the two ports of the device（diode） under test is larger than 2 V ，the LCD panel will show＂OL＂．

1．5 Capacitance Measurement

The following table summarizes the eight ranges of capacitance measurement mode：

Configuration	Full Scale Range	Relative Resistor
C 1	3.000 nF	$20 \mathrm{k} \Omega \mathrm{VR}+100 \mathrm{k} \Omega$
C 2	30.00 nF	$20 \mathrm{k} \Omega \mathrm{VR}+100 \mathrm{k} \Omega$
C 3	300.0 nF	$101 \mathrm{k} \Omega$
C 4	3.000 uF	$10 \mathrm{k} \Omega$
C 5	30.00 uF	$\mathrm{R} 9 \mathrm{~K} / \mathrm{R} 1 \mathrm{~K}$
C 6	300.0 uF	$\mathrm{R} 9 \mathrm{~K} / \mathrm{R} 1 \mathrm{~K}$
C 7	$3.000 \mathrm{mF}^{*}$	$\mathrm{R} 9 \mathrm{~K} / \mathrm{R} 1 \mathrm{~K}$
C 8	$30.00 \mathrm{mF}^{* *}$	$\mathrm{R} 9 \mathrm{~K} / \mathrm{R} 1 \mathrm{~K}$

Note：＊\＆＊＊The C7－C8 both range is not available for auto scan mode

In order to obtain an accurate reading，a capacitor must be discharged before measurement begins．The chip has a built－in discharge mode to automatically discharge the capacitor．In discharge mode，the LCD displays＂dIS．C＂ Discharging through the chip is quite slow．We recommend users to discharge the capacitor with some other apparatus．

1．6 Auto power off mode（APO）

1．6．1 Idle Time selection

ES51926 has a default auto power off function．If the meter is idle for more than the given Idle Time，the chip automatically turns the power off．The idle time to trigger the auto power off function is determined by pin＇APOSEL＇．If pin APOSEL is connected to V －，the Idle Time will be set to 3 minutes．If pin APOSEL is connected to DGND or floating，the Idle Time will be set to 10 minutes．When APO happens，the state of the meter is saved．If the APO is necessary to be cancelled，power on the ES51926 when any of the push key， except for HOLD，is pressed down simultaneously．

ES51926

1．6．2 Sleep output

The meter enters sleep mode after auto power－off or push $S E L$ key to last for 2 s ． The SLEEP pin asserts low（ -3 V ）in the sleep mode，and asserts high（ +3 V ，not 0 V ） after re－power on．

1．6．3 Re－power on

After auto power－off is active，pushing any of the push function or changing the measurement function can turn on the meter again．If the meter is re－powered on by changing measurement function，the saved state is cleared．If the meter is re－ powered on by push functions，the chip restores the saved state and enters HOLD mode．The LCD displays the saved value except for the auto scan mode．

2．Functional Modes Table

Measurement mode depends on the logic level of FC1，FC2，FC3，FUA，FA， VON，AON and CLAMP．

FC1	FC2	FC3	FUA	FA	VON	AON	CLAMP	Functional Mode（pushing SEL key）	Input
1	X	0	X	X	X	0	0	$\mathrm{V}_{\mathrm{AUTO}} \rightarrow \mathrm{V}_{\mathrm{AC}} \rightarrow \mathrm{V}_{\mathrm{DC}} \rightarrow \mathrm{EF}^{*} \rightarrow \mathrm{~V}_{\mathrm{AUTO}} \rightarrow \ldots$	VR1，ADP
1	X	0	1	0	X	1	0	$\mathrm{I}_{\text {AUTO }} \rightarrow \mathrm{I}_{\mathrm{AC}} \rightarrow \mathrm{I}_{\mathrm{DC}} \rightarrow \mathrm{I}_{\text {AUTO }} \rightarrow \ldots(\mathrm{uA})$	IVSH／IVSL
1	X	0	0	0	X	1	0	$\mathrm{I}_{\mathrm{AUTO}} \rightarrow \mathrm{I}_{\mathrm{AC}} \rightarrow \mathrm{I}_{\mathrm{DC}} \rightarrow \mathrm{I}_{\text {AUTO }} \rightarrow \ldots(\mathrm{mA})$	IVSH／IVSL
1	X	0	0	1	X	1	0	$\mathrm{I}_{\mathrm{AUTO}} \rightarrow \mathrm{I}_{\mathrm{AC}} \rightarrow \mathrm{I}_{\mathrm{DC}} \rightarrow \mathrm{I}_{\mathrm{AUTO}} \rightarrow \ldots(\mathrm{A})$	IVSH
1	X	0	X	X	1	X	1	$\mathrm{V}_{\mathrm{AUTO}} \rightarrow \mathrm{V}_{\mathrm{AC}} \rightarrow \mathrm{V}_{\mathrm{DC}} \rightarrow \mathrm{V}_{\text {AUTO }} \rightarrow \ldots$	VR1
1	X	0	1	0	0	X	1	$\mathrm{I}_{\mathrm{AC}}(300.0 \mathrm{~A} / 3000 \mathrm{~A})$	IVSH／IVSL
1	X	0	0	0	0	X	1	$\mathrm{I}_{\mathrm{A}}(30.00 \mathrm{~A} / 300.0 \mathrm{~A})$	IVSH／IVSL
0	1	0	X	X	X	X	X	$\mathrm{RDC}_{\mathrm{AUTO}} \rightarrow \mathrm{R} \rightarrow \mathrm{D} \rightarrow \mathrm{C} \rightarrow \mathrm{RDC}_{\text {AUTO }} \rightarrow \ldots$	VR1
0	0	1	X	X	0	X	1	$\mathrm{I}_{\mathrm{AUTO}} \rightarrow \mathrm{I}_{\mathrm{AC}} \rightarrow \mathrm{I}_{\mathrm{DC}} \rightarrow \mathrm{I}_{\mathrm{AUTO}} \rightarrow \ldots(3.000 \mathrm{~A})$	ADP
0	1	1	X	X	0	X	1	$\mathrm{I}_{\mathrm{AUTO}} \rightarrow \mathrm{I}_{\mathrm{AC}} \rightarrow \mathrm{I}_{\mathrm{DC}} \rightarrow \mathrm{I}_{\mathrm{AUTO}} \rightarrow \ldots(30.00 \mathrm{~A})$	ADP
1	0	1	X	X	0	X	1	$\mathrm{I}_{\mathrm{AUTO}} \rightarrow \mathrm{I}_{\mathrm{AC}} \rightarrow \mathrm{I}_{\mathrm{DC}} \rightarrow \mathrm{I}_{\mathrm{AUTO}} \rightarrow \ldots(300.0 \mathrm{~A})$	ADP
1	1	1	X	X	0	X	1	$\mathrm{I}_{\mathrm{AUTO}} \rightarrow \mathrm{I}_{\mathrm{AC}} \rightarrow \mathrm{I}_{\mathrm{DC}} \rightarrow \mathrm{I}_{\mathrm{AUTO}} \rightarrow \ldots(3000 \mathrm{~A})$	ADP

Note：＊EF mode could be selected when EF＿EN is active．

3．Push Function

All the enabled push functions will be reset when the measurement mode is changed by external switch．Change measurement mode by $S E L$ function will reset enabled RANGE，HOLD，MAX／MIN，and VAHz functions．The following table lists the available function versus every measurement mode．

	$S E L$	RANGE	HOLD	MAX／MIN	$V A H z$	BKLIT
$\mathrm{V}_{\mathrm{SCAN}}$	O	X	X	X	O	O
V_{AC}	O	O	O	O	O	O
V_{DC}	O	O	O	O	O	O
EF	O	X	X	X	X	O
$\mathrm{I}_{\mathrm{SCAN}}$	O	X	X	X	O	O
I_{AC}	O	O^{*}	O	O	O	O
I_{DC}	O	O^{*}	O	O	O	O
$\mathrm{RDC}_{\mathrm{SCAN}}$	O	X	X	X	X	O
Resistance	O	O	O	O	X	O
Continuity	O	X	O	O	X	O
Diode	O	X	O	O	X	O
Capacitance	O	O	O	O	X	O

Note：For ADP input，RANGE is not available

3．1 Select function

When power on or SEL key is pressed longer than one second，ES51926 will be power－on reset to auto scan mode，which scanning mode is determined by［FC1－ FC3］function set．In auto scan mode，the ES51926 automatically selects the appropriate measurement mode and range．Pushing the $S E L$ key less than one second could select the target measurement function．Pushing the key larger than two seconds，the ES51926 will enter power down mode．If power down mode is entered，only press SEL key to last for one second or apply the power to V－ terminal could re－power on the ES51926．The following figure shows the state transition．

Note：＊Available when $E F_{-} E N$ is active only

3．2 Range function

RANGE pin switches to and from automatic and manual mode，and while in manual mode，changes the full－scale range．The following figure shows the state transition

3．3 Hold and delay－hold function

The data hold mode makes the meter stop updating the LCD panel．This mode can be nested in most of the special modes．In auto scanning mode，the $H O L D$ key is not available．Enabling hold function in automatic mode makes the meter switch to manual mode．Hold function can be cancelled by changing the measurement mode，pressing RANGE，or push HOLD again．

The delay－hold function is enabled when HOLD key is pressed larger than 2 seconds．When delay－hold function is entered successfully，the meter will stop to update the LCD data after six seconds delayed．During the six seconds waiting， the HOLD symbol on LCD panel will be blinking．

3．4 Max／Min＋Hold function

The meter displays the maximum or minimum value of the input in Max／Min mode．When $M A X / M I N$ is pressed for the first time，the meter displays the maximum value．The meter displays the minimum value，when it is pressed again． When $M A X / M I N$ is pressed for the third time，the meter displays current value． The meter returns to normal operation if $M A X / M I N$ is pressed and held for longer than one second．Pressing HOLD key in Max／Min mode makes the meter stop updating the maximum or the minimum value．

3．5 VAHz function

When voltage or current measurement mode is selected，the VAHz funtion is available．Push $V A H z$ key to select this frequency measurement mode．The frequency is measured by auto ranging．The maximum frequency range is 100 kHz ．The sensitivity of signal input is 10% full scale of voltage or current mode typically．

Configuration	Range
FR1	3.000 KHz
FR2	30.00 KHz
FR3	100.0 KHz

3．6 Back light function

When BKSEL is set to DGND or floating，push the BKLIT key to enable the back light output driving ON／OFF．If the auto back light configuration is active，the BKLIT becomes a control input for external light sensed circuit．Set to low for one second to active the back light output driving．Set to high then the driving output is inactive immediately．

BKSEL	Configuration
DGND or floating	Normal back light function
V－	Auto back light function

4．Miscellaneous

The conditions，which the meter turns on the buzzer，include：
（1）Changing measurement mode generates one beep．
（2）Pressing any of the push functions generates one beep，if the function is valid．
（3）Power on and re－power on generate one beep．
（4）Input overflow in voltage and current mode generates one beep every 0.3 seconds（or 3.33 beeps per second．）
（5）Continuity（diode）check generates a continuous 2 KHz beep whenever the measurement is less then $30 \Omega(30 \mathrm{mV})$
（6）Auto power off or power down by $S E L$ key generates a 2 KHz beeper that lasts for 1.5 seconds．
The following figures show the output waveform from the BUZOUT pin．

（a）Continuous 2 KHz beep

4．1 LCD configuration

	SEG01	SEG02	SEG03	SEG04	SEG05	SEG06	SEG07	SEG08	SEG09
BP1	SCAN	AUTO	A4	MANU	A3	HOLD	\square	APO	
BP2	-	AC	F4	B4	F3	B3	F2	A2	B2
BP3	-	DC	E4	G4	E3	G3	E2	G2	C2
BP4	BATT	DP3	D4	C4	D3	C3	DP2	D2	DP1

	SEG10	SEG11	SEG12	SEG13	SEG14	SEG15
BP1	A1	$-\perp$	μ_{2}	M	\mathbf{n}	MAX
BP2	F1	B1	\mathbf{m}_{2}	K	μ_{1}	MIN
BP3	E1	G1	\mathbf{V}	Ω	\mathbf{m}_{1}	
BP4	D1	C1	A		F	$\mathbf{H z}$

ES51926

LCD Backplane Waveform

4．2 LCD display on condition

LCD annunciates	Condition
V	In voltage measurement mode，and diode measurement mode．
A	In current measurement mode．
Ω	In resistance measurement mode，and continuity mode．
F	In capacitance measurement mode．
\square	In continuity check mode．
-1	In diode mode．
Hz	In VAHZ frequency mode．
DC	In DC voltage or DC current mode．
AC	In AC voltage or AC current mode．
SCAN	When auto scan mode is selected
AUTO	When automatic full scale range selection is enabled．
MANU	In manual mode．
K	When the reading is exceeding 30 V in DCV or ACV，the DNAGER symbol will be displayed on
HOLD	When HOLD function is enabled．When delay－hold is selected，the HOLD symbol will be blinking for 6 seconds．
Max／Min	When Max or Min function is enabled．
m_{1}	In capacitor measurement mode and the full scale range is in the order of mF．
μ_{1}	In capacitor measurement mode and the full scale range is in the order of uF．
n	In capacitor measurement mode and the full scale range is in the order of nF．
m_{2}	In voltage or current measurement mode and the full scale range is in the order of 10^{-3} ．
μ_{2}	In current measurement mode and the full scale range id in the order of uA ．
M	In resistance measurement mode and the full scale range is in the order of M Ω
K	In resistance measurement mode and the full scale range is in the order of $\mathrm{K} \Omega$
APO	When auto power off function is enabled．

Test Circuit

Voltage input
2．Resistance test

3．Current test for clampmeter

4．Current test

5．Diode test

6．Low battery

7．EF test

Application Circuit

a．）AC average rectified circuit

Notes：

1．The ESD protection circuits protect most of pins．However pins，V＋，V－，AGND，DGND and VR1 are not protected enough because the parasitic effect must be decrease．Therefore enough external protection is needed for assembling，carrying and keeping．In addition，components connecting to these unprotected pins have to be soldered on board before the IC is soldered．
2．All the zener diodes above are used for IC protection．These protections are needed and these zener diodes must be soldered on PCB first before soldering ES51926 on．
3．The OVX pin resistance have to be kept below $120 \mathrm{k} \Omega$ for the capacitance mode accuracy（ $3 / 30 \mathrm{nF}$ range）．For higher voltage protection，additional configuration of PTC protection is necessary．

b．）AC RMS circuit

Notes：

1．The ESD protection circuits protect most of pins．However pins，V＋，V－，AGND，DGND and VR1 are not protected enough because the parasitic effect must be decrease．Therefore enough external protection is needed for assembling，carrying and keeping．In addition，components connecting to these unprotected pins have to be soldered on board before the IC is soldered．
2．All the zener diodes above are used for IC protection．These protections are needed and these zener diodes must be soldered on PCB first before soldering ES51926 on．
3．The OVX pin resistance have to be kept below $120 \mathrm{k} \Omega$ for the capacitance mode accuracy $(3 / 30 \mathrm{nF}$ range）．For higher voltage protection，additional configuration of PTC protection is necessary．

Package Information

7．1 100 Pin LQFP Package

DETAIL A

7．2 Dimension Parameters

VARIATIONS（ALL DIMENSIONS SHOWN IN MM）

SYMEOLS	MIN．	NOM．	MAX．
A	--	--	1.60
A1	0.05	--	0.15
A2	1.35	1.40	1.45
b	0.17	0.20	0.27
c	0.09	0.127	0.20
D	16.00 BSC		
D1	14.00 BSC		
E	16.00 BSC		
E1	14.00 BSC		
e	0.50 BSC		
L	0.45	0.60	0.75
L1	1.00 REF		

