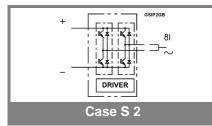
# SKiiP 592GB170-271CTV ...



## SKiiP<sup>®</sup> 2

### 2-pack - integrated intelligent Power System

#### **Power section**


SKiiP 592GB170-271CTV

### Features

- SKiiP technology inside
- Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP<sup>®</sup> 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP<sup>®</sup> 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- AC connection busbars must be connected by user, copper busbars available on request

| Absolute                                          | Maximum Ratings                                       | <sub>s</sub> = 25 °C unless otherwise specified |       |  |  |  |
|---------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-------|--|--|--|
| Symbol                                            | Conditions                                            | Values                                          | Units |  |  |  |
| IGBT                                              |                                                       |                                                 |       |  |  |  |
| V <sub>CES</sub>                                  |                                                       | 1700                                            | V     |  |  |  |
| V <sub>CES</sub><br>V <sub>CC</sub> <sup>1)</sup> | Operating DC link voltage                             | 1200                                            | V     |  |  |  |
| V <sub>GES</sub>                                  |                                                       | ± 20                                            | V     |  |  |  |
| I <sub>C</sub>                                    | T <sub>s</sub> = 25 (70) °C                           | 500 (375)                                       | А     |  |  |  |
| Inverse diode                                     |                                                       |                                                 |       |  |  |  |
| I <sub>F</sub> = - I <sub>C</sub>                 | T <sub>s</sub> = 25 (70) °C                           | 500 (375)                                       | А     |  |  |  |
| I <sub>FSM</sub>                                  | T <sub>j</sub> = 150 °C, t <sub>p</sub> = 10 ms; sin. | 4320                                            | А     |  |  |  |
| I²t (Diode)                                       | Diode, T <sub>j</sub> = 150 °C, 10 ms                 | 93                                              | kA²s  |  |  |  |
| T <sub>j</sub> , (T <sub>stg</sub> )              |                                                       | - 40 (- 25) + 150 (125)                         | °C    |  |  |  |
| V <sub>isol</sub>                                 | AC, 1 min. (mainterminals to heat sink)               | 4000                                            | V     |  |  |  |

| Characte               | Characteristics T                         |                           |         |                        |                       | $_{\rm s}$ = 25 °C unless otherwise specified |           |      |  |
|------------------------|-------------------------------------------|---------------------------|---------|------------------------|-----------------------|-----------------------------------------------|-----------|------|--|
| Symbol                 | Symbol Conditions                         |                           |         | min.                   | typ.                  | max.                                          | Units     |      |  |
| IGBT                   |                                           |                           |         |                        |                       |                                               |           |      |  |
| V <sub>CEsat</sub>     | I <sub>C</sub> = 400 /                    | A, T <sub>j</sub> = 25 (1 | 25) °C  |                        |                       | 3,3 (4,3)                                     | 3,9       | V    |  |
| V <sub>CEO</sub>       | T <sub>j</sub> = 25 (1                    |                           |         |                        |                       |                                               | 2 (2,3)   | V    |  |
| r <sub>CE</sub>        | $T_{j} = 25 (1)$                          |                           |         |                        |                       | 4 (5,9)                                       | 4,8 (6,6) | mΩ   |  |
| I <sub>CES</sub>       | V <sub>GE</sub> = 0 \                     | /, $V_{CE} = V_{CE}$      | s,      |                        |                       | (30)                                          | 2         | mA   |  |
|                        | T <sub>j</sub> = 25 (1                    |                           |         |                        |                       |                                               |           |      |  |
| $E_{on} + E_{off}$     | I <sub>C</sub> = 400 /                    | A, V <sub>CC</sub> = 900  | V C     |                        |                       |                                               | 345       | mJ   |  |
|                        |                                           | °C, V <sub>CC</sub> = 12  |         |                        |                       |                                               | 509       | mJ   |  |
| R <sub>CC' + EE'</sub> | terminal of                               | chip, T <sub>i</sub> = 12 | 5 °C    |                        |                       | 0,25                                          |           | mΩ   |  |
| L <sub>CE</sub>        | top, botto                                | m                         |         |                        |                       | 7,5                                           |           | nH   |  |
| C <sub>CHC</sub>       | per phase                                 | e, AC-side                |         |                        |                       | 1,6                                           |           | nF   |  |
| Inverse o              | Inverse diode                             |                           |         |                        |                       |                                               |           |      |  |
| $V_F = V_{EC}$         | I <sub>F</sub> = 400 A                    | A, T <sub>i</sub> = 25 (1 | 25) °C  |                        |                       | 2,3 (2,1)                                     | 2,9       | V    |  |
|                        | T <sub>i</sub> = 25 (1                    | 25) °C                    |         |                        |                       | 1,3 (1)                                       | 1,6 (1,3) | V    |  |
| r <sub>T</sub>         | T <sub>j</sub> = 25 (1                    | 25) °C                    |         |                        |                       | 2,5 (2,8)                                     | 3,2 (3,5) | mΩ   |  |
| Err                    | I <sub>C</sub> = 400 /                    | A, V <sub>CC</sub> = 900  | ) V     |                        |                       |                                               | 42        | mJ   |  |
|                        | T <sub>j</sub> = 125 °                    | °C, V <sub>CC</sub> = 12  | 200 V   |                        |                       |                                               | 50        | mJ   |  |
| Mechani                | cal data                                  |                           |         |                        |                       |                                               |           |      |  |
| M <sub>dc</sub>        | DC termi                                  | nals, SI Unit             | s       |                        | 6                     |                                               | 8         | Nm   |  |
| M <sub>ac</sub>        | AC termin                                 | nals, SI Unit             | s       |                        | 13                    |                                               | 15        | Nm   |  |
| w                      | SKiiP <sup>®</sup> 2 System w/o heat sink |                           |         |                        | 1,9                   |                                               | kg        |      |  |
| w                      | heat sink                                 |                           |         |                        |                       | 4,7                                           |           | kg   |  |
| Thermal                | charact                                   | eristics (                | P16 hea | t sink; 3 <sup>r</sup> | 10 m <sup>3</sup> /h) | ; " <sub>,</sub> " refer                      | ence to   |      |  |
| temperat               |                                           |                           |         |                        |                       | r                                             |           |      |  |
| R <sub>th(j-s)I</sub>  | per IGBT                                  |                           |         |                        |                       |                                               | 0,04      | K/W  |  |
| R <sub>th(j-s)D</sub>  | per diode                                 | ;                         |         |                        |                       |                                               | 0,133     | K/W  |  |
| $R_{th(s-a)}$          | per modu                                  | ıle                       |         |                        |                       |                                               | 0,043     | K/W  |  |
| Z <sub>th</sub>        | R <sub>i</sub> (mK/W) (max. values)       |                           |         | tau <sub>i</sub> (s)   |                       |                                               |           |      |  |
|                        | 1                                         | 2                         | 3       | 4                      | 1                     | 2                                             | 3         | 4    |  |
| Z <sub>th(j-r)I</sub>  | 4                                         | 31                        | 5       |                        | 1                     | 0,13                                          | 0,001     |      |  |
| Z <sub>th(j-r)D</sub>  | 15                                        | 103                       | 16      |                        | 1                     | 0,13                                          | 0,001     |      |  |
| Z <sub>th(r-a)</sub>   | 13,9                                      | 18,9                      | 6,6     | 3,6                    | 262                   | 50                                            | 5         | 0,02 |  |



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

# SKiiP 592GB170-271CTV ...



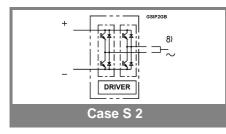
## SKiiP<sup>®</sup> 2

### 2-pack - integrated intelligent Power System

#### 2-pack integrated gate driver

SKiiP 592GB170-271CTV

### Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)Power supply protected against
- under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP<sup>®</sup> 2 gate driver)

| Absolute Maximum Ratings            |                                      |           |       |  |  |
|-------------------------------------|--------------------------------------|-----------|-------|--|--|
| Symbol                              | Conditions                           | Values    | Units |  |  |
| V <sub>S1</sub>                     | stabilized 15 V power supply         | 18        | V     |  |  |
| V <sub>S2</sub>                     | unstabilized 24 V power supply       | 30        | V     |  |  |
| V <sub>iH</sub>                     | input signal voltage (high)          | 15 + 0,3  | V     |  |  |
| dv/dt                               | secondary to primary side            | 75        | kV/µs |  |  |
| V <sub>isollO</sub>                 | input / output (AC, r.m.s., 2s )     | 4000      | Vac   |  |  |
| V <sub>isol12</sub>                 | output 1 / output 2 (AC, r.m.s., 2s) | 1500      | Vac   |  |  |
| f <sub>max</sub>                    | switching frequency                  | 10        | kHz   |  |  |
| T <sub>op</sub> (T <sub>stg</sub> ) | operating / storage temperature      | - 25 + 85 | °C    |  |  |

| Characte                                                        | Characteristics (T <sub>a</sub> =                                                                                  |         |                                                      |                |                |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------|----------------|----------------|
| Symbol                                                          | Conditions                                                                                                         | min.    | typ.                                                 | max.           | Units          |
| V <sub>S1</sub>                                                 | supply voltage stabilized                                                                                          | 14,4    | 15                                                   | 15,6           | V              |
| V <sub>S2</sub>                                                 | supply voltage non stabilized                                                                                      | 20      | 24                                                   | 30             | V              |
| I <sub>S1</sub>                                                 | V <sub>S1</sub> = 15 V                                                                                             | 210+440 | 210+440*f/f <sub>max</sub> +1,3*(I <sub>AC</sub> /A) |                |                |
| I <sub>S2</sub>                                                 | V <sub>S2</sub> = 24 V                                                                                             | 160+310 | 160+310*f/f <sub>max</sub> +1,0*(I <sub>AC</sub> /A) |                |                |
| V <sub>iT+</sub>                                                | input threshold voltage (High)                                                                                     | 11,2    |                                                      |                | V              |
| V <sub>iT-</sub>                                                | input threshold voltage (Low)                                                                                      |         |                                                      | 5,4            | V              |
| R <sub>IN</sub>                                                 | input resistance                                                                                                   |         | 10                                                   |                | kΩ             |
| t <sub>d(on)IO</sub><br>t <sub>d(off)IO</sub>                   | input-output turn-on propagation time<br>input-output turn-off propagation time<br>error memory reset time         | 9       | 1,2<br>3                                             |                | µs<br>µs<br>µs |
| t <sub>pERRRESET</sub>                                          | top / bottom switch : interlock time                                                                               | Ũ       | 3,3                                                  |                | μs             |
| I <sub>analogOUT</sub>                                          | 8 V corresponds to<br>max. current of 15 V supply voltage                                                          |         | 500                                                  |                | A              |
| I <sub>Vs1outmax</sub><br>I <sub>A0max</sub><br>V <sub>0I</sub> | (available when supplied with 24 V)<br>output current at pin 12/14<br>logic low output voltage                     |         |                                                      | 50<br>5<br>0,6 | mA<br>mA<br>V  |
| V <sub>0H</sub>                                                 | logic high output voltage                                                                                          |         |                                                      | 30             | V              |
| I <sub>TRIPSC</sub><br>I <sub>TRIPLG</sub><br>T <sub>tp</sub>   | over current trip level (I <sub>analog OUT</sub> = 10 V)<br>ground fault protection<br>over temperature protection | 110     | 625                                                  | 120            | A<br>A<br>°C   |
| U <sub>DCTRIP</sub>                                             | trip level of U <sub>DC</sub> -protection<br>( U <sub>analog OUT</sub> = 9 V); (option)                            | 1200    |                                                      |                | V              |

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

