Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency \& optical devices and power devices.

Renesas Technology Corp. Customer Support Dept.
April 1, 2003

M306H2MC-XXXFP

1. DESCRIPTION

The M306H2MC-XXXFP is single-chip microcomputer using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and is packaged in a 116-pin plastic molded QFP. This single-chip microcomputer operates using sophisticated instructions featuring a high level of instruction efficiency. With 1 M bytes of address space, this is capable of executing instructions at high speed. This also features a built-in data acquisition circuit, making this correspondence to Teletext broadcasting service.

1.1 Features

1.2 Applications

VCR, etc

Table of contents

1. DESCRIPTION 1
1.1 Features 1
1.2 Applications 1
1.3 Pin Configuration 3
1.4 Block Diagram 4
1.5 Performance Outline 5
2. OPERATION OF FUNCTIONAL BLOCKS 9
2.1 Memory 9
2.2 Central Processing Unit (CPU) 13
2.3 Reset 16
2.4 Processor Mode 20
2.5 Clock Generating Circuit 31
2.6 Protection 40
2.7 Interrupt 41
2.8 Watchdog Timer 61
2.9 DMAC 63
2.10 Timer 73
2.11 Serial I/O 91
2.12 A-D Converter 132
2.13 D-A Converter 142
2.14 CRC Calculation Circuit 144
2.15 Expansion Function 146
2.16 Programmable I/O Ports 170
3. USAGE PRECAUTION 180
4. ELECTRICAL CHARACTERISTICS 185
5. ITEM TO BE SUBMITTED WHEN ORDERING MASKED ROM VERSION 203
6. PACKAGE OUTLINE 204
7. DIFFERENCES BETWEEN M306H2MC-XXXFP AND M306H2FCFP 205

M306H2MC-XXXFP

1.3 Pin Configuration

Figures 1.3.1 shows the pin configuration (top view).

Figure 1.3.1 Pin configuration (top view)

1.4 Block Diagram

Figure 1.4.1 is a block diagram of the M306H2MC-XXXFP.

Figure 1.4.1 Block diagram of M306H2MC-XXXFP

1.5 Performance Outline

Table 1.5.1 is a performance outline of M306H2MC-XXXFP.
Table 1.5.1 Performance outline of M306H2MC-XXXFP

Item		Performance
Number of basic instructions		91 instructions
Shortest instruction execution time		$100 \mathrm{~ns}(\mathrm{f}(\mathrm{XIN})=10 \mathrm{MHz}$)
Memory capacity	ROM	128 K bytes
	RAM	5 K bytes
I/O port	P0 to P10 (except P85)	8 bits $\times 10,7$ bits $\times 1$
Input port	P85	1 bit $\times 1$
Output port	P11	1 bit $\times 1$
Multifunction timer	TA0, TA1, TA2, TA3, TA4 TB0, TB1, TB2, TB3, TB4, TB5	$\begin{aligned} & 16 \text { bits } \times 5 \\ & 16 \text { bits } \times 6 \end{aligned}$
Serial I/O	UART0, UART1, UART2 SI/O3, SI/O4	(UART or clock synchronous) $\times 3$ (Clock synchronous) x 2
A-D converter		8 bits $\times(8+2)$ channels
D-A converter		8 bits $\times 2$ channels
DMAC		2 channels (trigger: 24 sources)
CRC calculation circuit		CRC-CCITT
Watchdog timer		15 bits $\times 1$ (with prescaler)
Interrupt		25 internal and 8 external sources, 4 software sources, 7 levels
Clock generating circuit		2 built-in clock generation circuits (built-in feedback resistor, and external ceramic or crystal oscillator)
Supply voltage		4.75 V to 5.25 V (at $\mathrm{f}(\mathrm{XIN})=10 \mathrm{MHz}$) 2.80 V to 5.25 V (at $\mathrm{f}(\mathrm{XCIIN})=32 \mathrm{kHz}$, Only low power dissipation mode)
Device configuration		CMOS high performance silicon gate
Package		116-pin plastic mold QFP
Data acquisition	Slice RAM	864 Bytes ($48 \times 18 \times 8$-bit)
	Data acquisition circuit	for PDC, VPS, EPG-J, XDS and WSS

Table 1.5.2 Pin Description

Pin name	Signal name	I/O type	Function
Vcc, Vss	Power supply input		Supply 4.75 to 5.25 V to the Vcc pin. Supply 0 V to the Vss pin.
CNVss	CNVss	Input	This pin switches between processor modes. Connect this pin to the Vss pin when after a reset you want to start operation in signal-chip mode (memory expansion mode) or the Vcc pin when starting operation in microprocessor mode.
RESET	Reset input	Input	A "L" on this input resets the microcomputer.
$\begin{aligned} & \text { XIN } \\ & \text { Xout } \end{aligned}$	Clock input Clock output	Input Output	These pins are provided for the main clock generating circuit. Connect a ceramic resonator or crystal between the XIN and the XOUT pins. To use an externally derived clock, input it to the XIn pin and leave the Xout pin open.
BYTE	External data bus width select input	Input	This pin selects the width of an external data bus. A 16 -bit width is selected when this input is "L"; an 8-bit width is selected when this input is "H". This input must be fixed to either "H" or "L". Connect this pin to the Vss pin when not using external data bus.
AVcc	Analog power supply input		This pin is a power supply input for the A-D converter. Connect this pin to Vcc.
AVss	Analog power supply input		This pin is a power supply input for the A-D converter. Connect this pin to Vss.
Vref	Reference voltage input	Input	This pin is a reference voltage input for the A-D converter.
P 00 to P07	I/O port P0	Input/output	This is an 8-bit CMOS I/O port. It has an input/output port direction register that allows the user to set each pin for input or output individually. When used for input in signal-chip mode, the port can be set to have or not have a pull-up resistor in units of four bits by software. In memory expansion and microprocessor modes, selection of the internal pull-resistor in not available
Do to D7		Input/output	When set as a separate bus, these pins input and output data (D0-D7).
P10 to P17	I/O port P1	Input/output	This is an 8-bit l/O port equivalent to PO. Pins in this port also function as external interrupt pins as selected by software.
D8 to D15		Input/output	When set as a separate bus, these pins input and output data (D8-D15).
P20 to P27	I/O port P2	Input/output	This is an 8-bit I/O port equivalent to P0.
Ao to A7		Output	These pins output 8 low-order address bits ($\mathrm{A}_{0}-\mathrm{A}_{7}$).
$\underset{\substack{\text { A7/D7 } \\ \hline}}{ }$		Input/output	If the external bus is set as an 8 -bit wide multiplexed bus, these pins input and output data (D0-D7) and output 8 low-order address bits (A0-A7) separated in time by multiplexing.
$\begin{gathered} \mathrm{A} 0, \mathrm{~A} 1 / \mathrm{Do}_{0} \\ \text { to } \mathrm{A} 7 / \mathrm{D}_{6} \end{gathered}$		Output Input/output	If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D0-D6) and output address (A1-A7) separated in time by multiplexing. They also output address (A0).
P30 to P37	I/O port P3	Input/output	This is an 8-bit I/O port equivalent to P0.
A8 to A15		Output	These pins output 8 middle-order address bits (A8-A15).
A8/D7, A9 to A15		Input/qutput	If the external bus is set as a 16 -bit wide multiplexed bus, these pins input and output data (D7) and output address (A8) separated in time by multiplexing. They also output address (A9-A15).
P40 to P47	I/O port P4	Input/output	This is an 8-bit I/O port equivalent to P0.
$\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}$, A16 to A19		Output Output	These pins output $\overline{\mathrm{CS}}-\overline{\mathrm{CS} 3}$ signals and $\mathrm{A} 16-\mathrm{A} 19 . \overline{\mathrm{CS} 0}-\overline{\mathrm{CS} 3}$ are chip select signals used to specify an access space. A16-A19 are 4 highorder address bits.

MITSUBISHI MICROCOMPUTERS

Table 1.5.3 Pin Description

Pin name	Signal name	I/O type	Function
P50 to P57	I/O port P5	Input/output	This is an 8-bit I/O port equivalent to P0. In single-chip mode, P57 in this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of the same frequency as XCIN as selected by software.
$\overline{\text { WRL }} / \overline{\mathrm{WR}}$, WRH / BHE, RD, BCLK, HLDA, HOLD, ALE, RDY		Output Output Output Output Output Input Output Input	Output WRL, WRH (WR and BHE), RD, BCLK, HLDA, and ALE signals. WRL and WRH, and BHE and WR can be switched using software control. WRL, WRH, and RD selected With a 16-bit external data bus, data is written to even addresses when the WRL signal is " L " and to the odd addresses when the WRH signal is " L ". Data is read when RD is " L ". WR, BHE, and RD selected Data is written when $\overline{W R}$ is " L ". Data is read when $\overline{R D}$ is " L ". Odd addresses are accessed when BHE is " L ". Use this mode when using an 8-bit external data bus. While the input level at the HOLD pin is " L ", the microcomputer is placed in the hold state. While in the hold state, HLDA outputs a "L" level. ALE is used to latch the address. While the input level of the RDY pin is " L ", the microcomputer is in the ready state.
P60 to P67	I/O port P6	Input/output	This is an 8-bit l/O port equivalent to P0. When used input in singlechip, memory expansion, and microprocessor modes, the port can be set to have or not have a pull-up resistor in units of four bits by software. Pins in this port also function as UART0 and UART1 I/O pins as selected by software.
P70 to P77	I/O port P7	Input/output	This is an 8-bit I/O port equivalent to P 6 (P 70 and P 71 are N channel open-drain output). Pins in this port also function as timer A0-A3, timer B5 or UART2 I/O pins as selected by software.
$\begin{aligned} & \text { P80 to P84, } \\ & \text { P86, } \\ & \text { P87, } \\ & \text { P85 } \end{aligned}$	I/O port P8 I/O port P85	Input/output Input/output Input/output Input	P80 to P84, P86, and P87 are I/O ports with the same functions as P6. Using software, they can be made to function as the I/O pins for timer A4 and the input pins for external interrupts. P86 and P87 can be set using software to function as the I/O pins for a sub clock generation circuit. In this case, connect a quartz oscillator between P86 (Xcout pin) and P87 (Xcin pin). P85 is an input-only port that also functions for NMI. The NMI interrupt is generated when the input at this pin changes from " H " to " L ". The NMI function cannot be cancelled using software. The pull-up cannot be set for this pin.
P90 to P97	I/O port P9	Input/output	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as SI/O3, 4 I/O pins, Timer B0-B4 input pins, D-A converter output pins, A-D converter extended input pins, or A-D trigger input pins as selected by software.
P100 to P107	I/O port P10	Input/output	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as A-D converter input pins. Furthermore, P104-P107 also function as input pins for the key input interrupt function.
P11	Output port P11	Output	This is a 1-bit output-only port. Pins in this port also function as SLICEON output pins as selected by software.

Table 1-5.4 Pin Description

Pin name	Signal name	I/O type	Function
VDD1, Vss1	Power supply input		Digital power supply pin. Supply 4.75 to 5.25 V to the VDD1 pin. Supply 0 V to the Vss1 pin.
VDD2, Vss2	Power supply input		Analog power supply pin. Supply 4.75 to 5.25 V to the V DD2 pin. Supply 0 V to the Vss2 pin
VDD3, Vss3	Power supply input		Analog power supply pin. Supply 4.75 to 5.25 V to the VDD3 pin. Supply 0 V to the Vss3 pin
SVREF	Synchronous slice level input	Input	When slice the vertical synchronous signal, input slice power.
CVIN1	Composite video signal input 1	Input	This pin inputs the external composite video signal. Data slices this signal internally by setting.
SYNCIN	Composite video signal input 2	Input	This pin inputs the external composite video signal. Synchronous devides this signal internally.
M1	Test input 1	Input	This is an input pin for test. Supply 0 V to the pin.
LP2	Filter output 1	Output	This is a filter output pin 1 (for fsc).
LP3	Filter output 2	Output	This is a filter output pin 2 (for VPS).
LP4	Filter output 3	Output	This is a filter output pin 3 (for PDC).
FSCIN	fsc input pin for synchronous signal generation	Input	Sub-carrier (fsc) input pin for synchronous signal generation.
M2	Test input 2	Input	This is an input pin for test. Supply 0 V to the pin.

2. OPERATION OF FUNCTIONAL BLOKS

The M306H2MC-XXXFP accommodates certain units in a single chip. These units include RAM to store instructions and data and the central processing unit (CPU) to execute arithmetic/logic operations. Also included are peripheral units such as timers, serial I/O, D-A converter, DMAC, CRC calculation circuit, A-D converter, Data slicer circuit and I/O ports.
The following explains each unit.

2.1 Memory

Figure 2.1.1 is a memory map of the M306H2MC-XXXFP. The address space extends the 1 M bytes from address 0000016 to FFFFF16. From address FFFFF16 down is ROM. In the M306H2MC-XXXFP, can use from address from E000016 to FFFFF16 as 128K bytes internal ROM area. The vector table for fixed interrupts such as the reset and NMI are mapped to from address FFFDC16 to FFFFF16. The starting address of the interrupt routine is stored here. The address of the vector table for timer interrupts, etc., can be set as desired using the internal register (INTB). See the section on interrupts for details.
5 K bytes of internal RAM is mapped to from address 0040016 to 017FF16. In addition to storing data, the RAM also stores the stack used when calling subroutines and when interrupts are generated.
The SFR area is mapped to from address 0000016 to 003FF16. This area accommodates the control registers for peripheral devices such as I/O ports, A-D converter, serial I/O, and timers, etc. Figures 2.1.2 to 2.1.4 are location of peripheral unit control registers. Any part of the SFR area that is not occupied is reserved and cannot be used for other purposes.
The special page vector table is mapped to from address FFE0016 to FFFDB16. If the starting addresses of subroutines or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions can be used as 2-byte instructions, reducing the number of program steps.
In memory expansion mode and microprocessor mode, a part of the spaces are reserved and cannot be used. The following spaces cannot be used.

- The space between 0180016 and 03FFF16 (memory expansion and microprocessor mode)
- The space between D000016 and DFFFF16 (memory expansion mode)

Figure 2.1.1 Memory map

Note: Location in the SFR area where nothing is allocated are reserved. Do not access these areas for read or write.
Figure 2.1.2 Location of peripheral unit control registers (1)

Note 1: This register is only exist in flash memory version.
Note 2: Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write.

Figure 2.1.3 Location of peripheral unit control registers (2)

Figure 2.1.4 Location of peripheral unit control registers (3)

2.2 Central Processing Unit (CPU)

The CPU has 13 registers shown in Figure 2.2.1. Seven of these registers (R0, R1, R2, R3, A0, A1, and FB) come in two sets; therefore, these have two register banks.

Figure 2.2.1 Central processing unit register

(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)

Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and arithmetic/logic operations.
Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits as (R0H/R1H), and low-order bits as (R0L/R1L). In some instructions, registers R2 and R0, as well as R3 and R1 can use as 32-bit data registers (R2R0/R3R1).

(2) Address registers (A0 and A1)

Address registers (A0 and A 1) are configured with 16 bits, and have functions equivalent to those of data registers. These registers can also be used for address register indirect addressing and address register relative addressing.
In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

(3) Frame base register (FB)

Frame base register (FB) is configured with 16 bits, and is used for FB relative addressing.

(4) Program counter (PC)

Program counter (PC) is configured with 20 bits, indicating the address of an instruction to be executed.

(5) Interrupt table register (INTB)

Interrupt table register (INTB) is configured with 20 bits, indicating the start address of an interrupt vector table.

(6) Stack pointer (USP/ISP)

Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each configured with 16 bits.
Your desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag).
This flag is located at the position of bit 7 in the flag register (FLG).

(7) Static base register (SB)

Static base register (SB) is configured with 16 bits, and is used for SB relative addressing.

(8) Flag register (FLG)

Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure 2.2.2 shows the flag .register (FLG). The following explains the function of each flag:

- Bit 0: Carry flag (C flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

- Bit 1: Debug flag (D flag)

This flag enables a single-step interrupt.
When this flag is " 1 ", a single-step interrupt is generated after instruction execution. This flag is cleared to " 0 " when the interrupt is acknowledged.

- Bit 2: Zero flag (Z flag)

This flag is set to " 1 " when an arithmetic operation resulted in 0 ; otherwise, cleared to " 0 ".

- Bit 3: Sign flag (S flag)

This flag is set to " 1 " when an arithmetic operation resulted in a negative value; otherwise, cleared to " 0 ".

- Bit 4: Register bank select flag (B flag)

This flag chooses a register bank. Register bank 0 is selected when this flag is " 0 " ; register bank 1 is selected when this flag is " 1 ".

- Bit 5: Overflow flag (O flag)

This flag is set to " 1 " when an arithmetic operation resulted in overflow; otherwise, cleared to " 0 ".

- Bit 6: Interrupt enable flag (I flag)

This flag enables a maskable interrupt.
An interrupt is disabled when this flag is " 0 ", and is enabled when this flag is " 1 ". This flag is cleared to " 0 " when the interrupt is acknowledged.

- Bit 7: Stack pointer select flag (U flag)

Interrupt stack pointer (ISP) is selected when this flag is " 0 "; user stack pointer (USP) is selected when this flag is " 1 ".
This flag is cleared to " 0 " when a hardware interrupt is acknowledged or an INT instruction of software interrupt Nos. 0 to 31 is executed.

- Bits 8 to 11: Reserved area
- Bits 12 to 14: Processor interrupt priority level (IPL)

Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.
If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt is enabled.

- Bit 15: Reserved area

The C, Z, S, and O flags are changed when instructions are executed. See the software manual for details.

Figure 2.2.2 Flag register (FLG)

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.3 Reset

There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset. (See "Software Reset" for details of software resets.) This section explains on hardware resets.
When the supply voltage is in the range where operation is guaranteed, a reset is effected by holding the reset pin level "L" (0.2Vcc max.) for at least 20 cycles. When the reset pin level is then returned to the " H " level while main clock is stable, the reset status is cancelled and program execution resumes from the address in the reset vector table.
Figure 2.3.1 shows the example reset circuit. Figure 2.3.2 shows the reset sequence.

Figure 2.3.1 Example reset circuit

Figure 2.3.2 Reset sequence

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Table 2.3.1 shows the statuses of the other pins while the RESET pin level is " L ". Figures 2.3 .3 and 2.3.4 show the internal status of the microcomputer immediately after the reset is cancelled.

Table 2.3.1 Pin status when RESET pin level is "L"

Pin name	Status		
	CNVss	CNVss = Vcc	
		BYTE $=$ Vss	BYTE $=\mathrm{Vcc}$
P0	Input port (floating)	Data input (floating)	Data input (floating)
P1	Input port (floating)	Data input (floating)	Input port (floating)
P2, P3, P40 to P43	Input port (floating)	Address output (undefined)	Address output (undefined)
P44	Input port (floating)	CSO output ("H" level is output)	CSO output ("H" level is output)
P45 to P47	Input port (floating)	Input port (floating) (pull-up resistor is on)	Input port (floating) (pull-up resistor is on)
P50	Input port (floating)	$\overline{\mathrm{WR}}$ output ("H" level is output)	$\overline{\mathrm{WR}}$ output ("H" level is output)
P51	Input port (floating)	$\overline{\text { BHE }}$ output (undefined)	$\overline{\mathrm{BHE}}$ output (undefined)
P52	Input port (floating)	$\overline{\mathrm{RD}}$ output ("H" level is output)	$\overline{\mathrm{RD}}$ output ("H" level is output)
P53	Input port (floating)	BCLK output	BCLK output
P54	Input port (floating)	HLDA output (The output value depends on the input to the HOLD pin)	HLDA output (The output value depends on the input to the HOLD pin)
P55	Input port (floating)	$\overline{\text { HOLD input (floating) }}$	$\overline{\text { HOLD input (floating) }}$
P56	Input port (floating)	ALE output ("L" level is output)	ALE output ("L" level is output)
P57	Input port (floating)	$\overline{\mathrm{RDY}}$ input (floating)	$\overline{\mathrm{RDY}}$ input (floating)
P6, P7, P80 to P84, P86, P87, P9, P10	Input port (floating)	Input port (floating)	Input port (floating)
P11	Output port	Output port	Output port
CVIN1, SVREF, SYNCIN FSCIN	Input port	Input port	Input port
LP2, LP3, LP4	Output port	Output port	Output port

2.3.1 Software Reset

Writing " 1 " to bit 3 of the processor mode register 0 (address 000416) applies a (software) reset to the microcomputer. A software reset has almost the same effect as a hardware reset. The contents of internal RAM are preserved.

Figure 2.3.3 Device's internal status after a reset is cleared

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Figure 2-3.4 Device's internal status after a reset is cleared

M306H2MC-XXXFP

 with DATA ACQUISITION CONTROLLER
2.4 Processor Mode

(1) Types of Processor Mode

Processor mode can be used at microprocessor mode.
One of three processor modes can be selected:single-chip mode,memory expansion mode,and mi-cro-processor mode.The functions of some pins,the memory map, and the access space differ according to the selected processor mode.

- Single-chip mode

In single-chip mode,only internal memory space (SFR, internal RAM, and internal ROM)can be accessed. Ports P0 to P10 can be used as programmable I/O ports or as I/O ports for the internal peripheral functions.

- Memory expansion mode

In memory expansion mode,external memory can be accessed in addition to the internal memory space (SFR, internal RAM, and internal ROM).
In this mode,some of the pins function as the address bus,the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings.(See "Bus Settings " for details..)

- Microprocessor mode

In microprocessor mode,the SFR, internal RAM, and external memory space can be accessed. The internal ROM area cannot be accessed.
In this mode,some of the pins function as the address bus,the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings.(See "2.4.1 Bus Settings " for details..)

(2) Setting Processor Modes

The processor mode is set using the CNVss pin and the processor mode bits (bits 1 and 0 at address 000416). Do not set the processor mode bits to "102 ".

Regardless of the level of the CNVss pin,changing the processor mode bits selects the mode.Therefore,
never change the processor mode bits when changing the contents of other bits.Also do not attempt to shift to or from the microprocessor mode within the program stored in the internal ROM area.

- Applying VSS to CNVSS pin

The microcomputer begins operation in single-chip mode after being reset.Memory expansion mode is selected by writing " 012 " to the processor mode is selected bits..

- Applying VCC to CNVSS pin

The microcomputer starts to operate in microprocessor mode after being reset.
Figure 2.4.1 shows the processor mode register 0 and 1.
Figure 2.4.2 shows the memory maps applicable for each of the modes when memory area dose not be expanded (normal mode).

Processor mode register 0 (Note 1)

Notes 1: Set bit 1 of the protect register (address 000A16) to " 1 " when writing new values to this register.
2: If the VCC voltage is applied to the CNVss, the value of this register when reset is 0316 . (PM00 and PM01 both are set to "1".)
3: Valid in microprocessor and memory expansion modes.
4: If the entire space is of multiplexed bus in memory expansion mode, chose an 8bit width. The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be chosen in microprocessor mode. The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256 bytes can be in used in each chip select.

Processor mode register 1 (Note)

Note : Set bit 1 of the protect register (address 000A16) to " 1 " when writing new values to this register.

Figure 2.4.1 Processor mode registers

Figure 2.4.2 Memory maps in each processor mode

2.4.1 Bus settings

The BYTE pin and bits 4 to 6 of the processor mode register 0 (address 000416) are used to change the bus settings. Table 2.4.1 shows the factors used to change the bus settings.

Table 2.4.1 Factors for switching bus settings

Bus setting	Switching factor
Switching external address bus width	Bit 6 of processor mode register 0
Switching external data bus width	BYTE pin
Switching between separate and multiplex bus	Bits 4 and 5 of processor mode register 0

(1) Selecting external address bus width

The address bus width for external output in the 1M bytes of address space can be set to 16 bits (64 K bytes address space) or 20 bits (1 M bytes address space). When bit 6 of the processor mode register 0 is set to " 1 ", the external address bus width is set to 16 bits, and P2 and P3 become part of the address bus. P40 to P43 can be used as programmable I/O ports. When bit 6 of processor mode register 0 is set to " 0 ", the external address bus width is set to 20 bits, and P2, P3, and P40 to P43 become part of the address bus.

(2) Selecting external data bus width

The external data bus width can be set to 8 or 16 bits. (Note, however, that only the separate bus can be set.) When the BYTE pin is " L ", the bus width is set to 16 bits; when " H ", it is set to 8 bits. (The internal bus width is permanently set to 16 bits.) While operating, fix the BYTE pin either to "H" or to "L".
(3) Selecting separate/multiplex bus

The bus format can be set to multiplex or separate bus using bits 4 and 5 of the processor mode register 0.

- Separate bus

In this mode, the data and address are input and output separately. The data bus can be set using the BYTE pin to be 8 or 16 bits. When the BYTE pin is " H ", the data bus is set to 8 bits and PO functions as the data bus and P1 as a programmable I/O port. When the BYTE pin is " L ", the data bus is set to 16 bits and P0 and P1 are both used for the data bus.
When the separate bus is used for access, a software wait can be selected.

- Multiplex bus

In this mode, data and address I/O are time multiplexed. With an 8-bit data bus selected (BYTE pin = "H"), the 8 bits from Do to D7 are multiplexed with Ao to A7.
With a 16 -bit data bus selected (BYTE pin = "L"), the 8 bits from Do to $D 7$ are multiplexed with A_{1} to $A 8$. D8 to D15 are not multiplexed. In this case, the external devices connected to the multiplexed bus are mapped to the microcomputer's even addresses (every 2nd address). To access these external devices, access the even addresses as bytes.
The ALE signal latches the address. It is output from P56.
Before using the multiplex bus for access, be sure to insert a software wait.
If the entire space is of multiplexed bus in memory expansion mode, choose an 8 -bit width.
The processor operates using the separate bus after reset os revoked, so the entire spacemultiplexed bus cannot be chosen on microprocessor mode.
The higher-order address become a port of the entire space multiplexed bus is chosen, so only 256 bytes can be used in each chip select.

Table 2.4.2 Pin functions for processor mode

Processor mode	Single-chip mode	Memory expansion mode / Microprocessor modes				Memory expansion mode
Multiplexed bus space select bit		$\left[\begin{array}{l}\text { "01" } \\ {\left[\begin{array}{l}\text { Either CS1 or CS2 is for } \\ \text { multiplexed bus and others } \\ \text { are for separate bus }\end{array}\right]}\end{array}\right.$		"00"(separate bus)		$\|$" 11 "(Note 1) $\left[\begin{array}{l}\text { Multiplexed bus } \\ \text { for the entire } \\ \text { space }\end{array}\right.$
Data bus width BYTE pin level		$\begin{aligned} & 8 \text { bits } \\ & \text { "H" } \end{aligned}$	$16 \text { bits }$	$8 \text { bits }$	$16 \text { bits }$	$\begin{aligned} & 8 \text { bits } \\ & \text { "H" } \end{aligned}$
P00 to P07	I/O port	Data bus	Data bus	Data bus	Data bus	I/O port
P10 to P17	I/O port	I/O port	Data bus	I/O port	Data bus	I/O port
P20	I/O port	Address bus /data bus (Note)	Address bus	Address bus	Address bus	Address bus /data bus
P21 to P27	I/O port	Address bus /data bus (Note)	Address bus /data bus (Note)	Address bus	Address bus	Address bus /data bus
P30	I/O port	Address bus /data bus (Note)	Address bus	Address bus	Address bus	A8/D7
P31 to P37	I/O port	Address bus	Address bus	Address bus	Address bus	I/O port
$P 40$ to $P 43$ Port P40 to $P 43$ function select bit $=1$	I/O port					
P40 to P43 Port P40 to P43 function select bit $=0$	I/O port	Address bus	Address bus	Address bus	Address bus	I/O port
P44 to P47	I/O port	$\overline{\mathrm{CS}}$ (chip select) or programmable I/O port (For details, refer to "Bus control")				
P50 to P53	I/O port	Outputs $\overline{\mathrm{RD}}, \overline{\mathrm{WRL}}, \overline{\mathrm{WRH}}$, and BCLK or $\overline{\mathrm{RD}}, \overline{\mathrm{BHE}}, \overline{\mathrm{WR}}$, and BCLK (For details, refer to "Bus control")				
P54	I/O port	$\overline{\text { HLDA }}$	HLDA	HLDA	HLDA	$\overline{\text { HLDA }}$
P55	I/O port	HOLD	$\overline{\text { HOLD }}$			
P56	I/O port	ALE	ALE	ALE	ALE	ALE
P57	I/O port	$\overline{\text { RDY }}$	RDY	RDY	RDY	RDY

Note 1: If the entire space is of multiplexed bus in memory expansion mode, chose an 8-bit width.
The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be chosen in microprocessor mode.
The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used in each chip select.
2: Address bus when in separate bus mode.

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.4.2 Bus Control

The following explains the signals required for accessing external devices and software waits. The signals required for accessing the external devices are valid when the processor mode is set to memory expansion mode and microprocessor mode. The software waits are valid in all processor modes.
(1) Address bus/data bus

The address bus consists of the 20 pins A 0 to A 19 for accessing the 1 M bytes of address space. The data bus consists of the pins for data I/O. When the BYTE pin is "H", the 8 ports Do to D7 function as the data bus. When BYTE is " L ", the 16 ports Do to D15 function as the data bus.
When a change is made from single-chip mode to memory expansion mode, the value of the address bus is undefined until external memory is accessed.

(2) Chip select signal

The chip select signal is output using the same pins asP4 4 to P47. Bits 0 to 3 of the chip select control register (address 000816) set each pin to function as a port or to output the chip select signal. The chip select control register is valid in memory expansion mode and microprocessor mode. IN single-chip mode, P4 4 to P47 function as programmable I/O ports regardless of the value in the chip select control register.
In microprocessor mode, only CSO outputs the chip select signal after the reset state has been cancelled. $\overline{\mathrm{CS} 1}$ to $\overline{\mathrm{CS} 3}$ function as input ports. Figure 2.4 .3 shows the chip select control register. The chip select signal can be used to split the external area. Tables 2.4 .3 show the external memory areas specified using the chip select signal.
Table 2.4.3 External areas specified by the chip select signals

Processor mode	Chip select signal			
	$\overline{\mathrm{CSO}}$	$\overline{\mathrm{CS} 1}$	$\overline{\mathrm{CS} 2}$	$\overline{\mathrm{CS3}}$
Memory expansion mode	3000016 to CFFFF16 (640K bytes)	280016 to 2FFFF16 (32K bytes)	0800016 to 27FFF16 (128K bytes)	0400016 to 07FFF16 (16K bytes)
Microprocessor mode	3000016 to FFFFF16 (832K bytes)			

Chip select control register

Symbol	Address	When reset
CSR	000816	0116

Figure 2.4.3 Chip select control register

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(3) Read/write signals

With a 16-bit data bus (BYTE pin ="L"), bit 2 of the processor mode register 0 (address 000416) select the combinations of $\overline{R D}, \overline{B H E}$, and $\overline{W R}$ signals or $\overline{R D}, \overline{W R L}$, and $\overline{W R H}$ signals. With an 8 -bit data bus (BYTE pin = "H"), use the combination of $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{BHE}}$ signals. (Set bit 2 of the processor mode register 0 (address 000416) to "0".) Tables 2.4.4 and 2.4.5 show the operation of these signals.
After a reset has been cancelled, the combination of $\overline{R D}, \overline{W R}$, and $\overline{B H E}$ signals is automatically selected. When switching to the $\overline{\mathrm{RD}}, \overline{\mathrm{WRL}}$, and $\overline{\mathrm{WRH}}$ combination, do not write to external memory until bit 2 of the processor mode register 0 (address 000416) has been set (Note).

Note: Before attempting to change the contents of the processor mode register 0 , set bit 1 of the protect register (address 000A16) to " 1 ".

Table 2.4.4 Operation of $\overline{\mathrm{RD}}, \overline{\mathrm{WRL}}$, and $\overline{\mathrm{WRH}}$ signals

Data bus width	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WRL}}$	$\overline{\text { WRH }}$	Status of external data bus
16-bit (BYTE	L	H	H	Read data
	H	L	H	Write 1 byte of data to even address
	H	H	L	Write 1 byte of data to odd address
	H	L	L	Write data to both even and odd addresses

Table 2.4.5 Operation of $\overline{R D}, \overline{W R}$, and $\overline{B H E}$ signals

Data bus width	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{BHE}}$	A 0	Status of external data bus
16-bit (BYTE $=$ "L")	H	L	L	H	Write 1 byte of data to odd address
	L	H	L	H	Read 1 byte of data from odd address
	H	L	H	L	Write 1 byte of data to even address
	L	H	H	L	Read 1 byte of data from even address
	H	L	L	L	Write data to both even and odd addresses
8-bit (BYTE $=$ "H")	L	H	L	L	Read data from both even and odd addresses
	L	L	Not used	H / L	Write 1 byte of data

(4) ALE signal

The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the ALE signal falls.

Figure 2.4.4 ALE signal and address/data bus

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(5) The $\overline{R D Y}$ signal

$\overline{\mathrm{RDY}}$ is a signal that facilitates access to an external device that requires long access time. As shown in Figure 2.4.5, if an " L " is being input to the RDY at the BCLK falling edge, the bus turns to the wait state. If an " H " is being input to the RDY pin at the BCLK falling edge, the bus cancels the wait state. Table 2.4.6 shows the state of the microcomputer with the bus in the wait state, and Figure 2.4.5 shows an example in which the $\overline{R D}$ signal is prolonged by the $\overline{R D Y}$ signal.
The $\overline{\mathrm{RDY}}$ signal is valid when accessing the external area during the bus cycle in which bits 4 to 7 of the chip select control register (address 000816) are set to " 0 ". The RDY signal is invalid when setting " 1 " to all bits 4 to 7 of the chip select control register (address 000816), but the RDY pin should be treated as properly as in non-using.
Table 2.4.6 Microcomputer status in ready state (Note)

Item	Status
Oscillation	On
R/ \bar{W} signal, address bus, data bus, $\overline{\text { CS }}$	Maintain status when $\overline{R D Y}$ signal received
ALE signal, $\overline{\text { HLDA, programmable I/O ports }}$	
Internal peripheral circuits	On

Note: The RDY signal cannot be received immediately prior to a software wait.

Figure 2.4.5 Example of $\overline{\mathrm{RD}}$ signal extended by $\overline{\mathrm{RDY}}$ signal

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(6) Hold signal

The hold signal is used to transfer the bus privileges from the CPU to the external circuits. Inputting "L" to the $\overline{\mathrm{HOLD}}$ pin places the microcomputer in the hold state at the end of the current bus access. This status is maintained and " L " is output from the HLDA pin as long as " L " is input to the HOLD pin. Table 2.4.7 shows the microcomputer status in the hold state.

Bus-using priorities are given to $\overline{\mathrm{HOLD}}, \mathrm{DMAC}$, and CPU in order of decreasing precedence.

$$
\overline{\mathrm{HOLD}}>\mathrm{DMAC}>\mathrm{CPU}
$$

Figure 2.4.6 Bus-using priorities
Table 2.4.7 Microcomputer status in hold state

Item		Status
Oscillation		ON
R/W signal, address bus, data bus, $\overline{\mathrm{CS}}, \overline{\mathrm{BHE}}$		Floating
Programmable I/O ports	P0, P1, P2, P3, P4, P5	Floating
	P6, P7, P8, P9, P10	Maintains status when hold signal is received
HLDA		Output "L"
Internal peripheral circuits		ON (but watchdog timer stops)
ALE signal		Undefined

(7) External bus status when the internal area is accessed

Table 2.4.8 shows the external bus status when the internal area is accessed.

Table 2.4.8 External bus status when the internal area is accessed

Item	SFR accessed	Internal RAM accessed
Address bus	Address output	Maintain status before accessed address of external area
Data bus	When read	Floating
	When write	Output data
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{WRL}}, \overline{\mathrm{WRH}}$	$\overline{\mathrm{RD}}, \overline{\mathrm{WR}, \overline{\mathrm{WRL}}, \overline{\mathrm{WRH}} \text { output }}$	Undefined
$\overline{\mathrm{BHE}}$	$\overline{\mathrm{BHE}}$ output	Output "H"
$\overline{\mathrm{CS}}$		Maintain status before accessed status of external area
ALE	Output "H"	Output "H"

(8) BCLK output

The user can choose the BCLK output by use of bit 7 of processor mode register 0 (000416) (Note). When set to " 1 ", the output floating.

Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protectregister (address 000A16) to " 1 ".

(9) Software wait

A software wait can be inserted by setting the wait bit (bit 7) of the processor mode register 1 (address 000516) (Note) and bits 4 to 7 of the chip select control register (address 000816).
A software wait is inserted in the internal ROM/RAM area and in the external memory area by setting the wait bit of the processor mode register 1 . When set to " 0 ", each bus cycle is executed in one BCLK cycle. When set to " 1 ", each bus cycle is executed in two or three BCLK cycles. After the microcomputer has been reset, this bit defaults to " 0 ". When set to " 1 ", a wait is applied to all memory areas (two or three BCLK cycles), regardless of the contents of bits 4 to 7 of the chip select control register. Set this bit after referring to the recommended operating conditions (main clock input oscillation frequency) of the electric characteristics. However, when the user is using the RDY signal, the relevant bit in the chip select control register's bits 4 to 7 must be set to " 0 ".
When the wait bit of the processor mode register 1 is " 0 ", software waits can be set independently for each areas selected using the chip select signal. Bits 4 to 7 of the chip select control register correspond to chip selects CSO to CS3. When one of these bits is set to " 1 ", the bus cycle is executed in one BCLK cycle. When set to " 0 ", the bus cycle is executed in two or three BCLK cycles. These bits default to " 0 " after the microcomputer has been reset.
The SFR area is always accessed in two BCLK cycles regardless of the setting of these control bits. Also, insert a software wait if using the multiplex bus to access the external memory area.
Table 2.4.9 shows the software wait and bus cycles. Figure 2.4.7 shows example bus timing when using software waits.
Note: Before attempting to change the contents of the processor mode register 1 , set bit 1 of the protect register (address 000A16) to " 1 ".

Table 2.4.9 Software waits and bus cycles

Area	Bus status	Wait bit	Bits 4 to 7 of chip select control register	Bus cycle
SFR	-	Invalid	Invalid	2 BCLK cycles
Rnternal	-	0	Invalid	1 BCLK cycle
	-	1	Invalid	2 BCLK cycles
External memory area	Separate bus	0	1	1 BCLK cycle
	Separate bus	1	0	2 BCLK cycles
	Multiplex bus	0	0 (Note)	2 BCLK cycles
	Multiplex bus	1	0	3 BCLK cycles

[^0]

Figure 2.4.7 Typical bus timings using software wait

2.5 Clock Generating Circuit

The clock generating circuit contains two oscillator circuits that supply the operating clock sources to the CPU and internal peripheral units.

Table 2-5.1 Main clock and sub clock generating circuits

	Main clock generating circuit	Sub clock generating circuit
Use of clock	\bullet CPU's operating clock source \bullet Internal peripheral units' operating clock source	• CPU's operating clock source \bullet Timer A/B's count clock source
Usable oscillator	Ceramic or crystal oscillator	Crystal oscillator
Pins to connect oscillator	XIN, XouT	XCIN, XcoUT
Oscillation stop/restart function	Available	Available
Oscillator status immediately after reset	Oscillating	Stopped
Other	Externally derived clock can be input	

2.5.1 Example of oscillator circuit

Figure 2.5.1 shows some examples of the main clock circuit, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Figure 2.5 . 2 shows some examples of sub clock circuits, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Circuit constants in Figures 2.5.1 and 2.5.2 vary with each oscillator used. Use the values recommended by the manufacturer of your oscillator.

Figure 2.5.1 Examples of main clock

Figure 2.5.2 Examples of sub clock

2.5.2 Clock Control

Figure 2.5.3 shows the block diagram of the clock generating circuit.

Figure 2.5.3 Clock generating circuit

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

The following paragraphs describes the clocks generated by the clock generating circuit.
(1) Main clock

The main clock is generated by the main clock oscillation circuit. After a reset, the clock is divided by 8 to the BCLK. The clock can be stopped using the main clock stop bit (bit 5 at address 000616). Stopping the clock, after switching the operating clock source of CPU to the sub-clock, reduces the power dissipation.After the oscillation of the main clock oscillation circuit has stabilized, the drive capacity of the main clock oscillation circuit can be reduced using the XIN-Xout drive capacity select bit (bit 5 at address 000716). Reducing the drive capacity of the main clock oscillation circuit reduces the power dissipation. This bit changes to " 1 " when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

(2) Sub-clock

The sub-clock is generated by the sub-clock oscillation circuit. No sub-clock is generated after a reset. After oscillation is started using the port Xc select bit (bit 4 at address 000616), the sub-clock can be selected as the BCLK by using the system clock select bit (bit 7 at address 000616). However, be sure that the sub-clock oscillation has fully stabilized before switching.
After the oscillation of the sub-clock oscillation circuit has stabilized, the drive capacity of the sub-clock oscillation circuit can be reduced using the Xcin-Xcout drive capacity select bit (bit 3 at address 000616). Reducing the drive capacity of the sub-clock oscillation circuit reduces the power dissipation. This bit changes to " 1 " when shifting to stop mode and at a reset.
(3) BCLK

The BCLK is the clock that drives the CPU, and is fc or the clock is derived by dividing the main clock by $1,2,4,8$, or 16 . The BCLK is derived by dividing the main clock by 8 after a reset. The BCLK signal can be output from BCLK pin by the BCLK output disable bit (bit 7 at address 000416) in the memory expansion and the microprocessor modes.
The main clock division select bit 0(bit 6 at address 000616) changes to " 1 " when shifting from high-speed/medium-speed to stop mode and at reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
(4) Peripheral function $\operatorname{clock}(f 1, f 8, f 32, f 1 S I O 2, f 8 S I O 2, f 32 S I O 2, f A D)$

The clock for the peripheral devices is derived from the main clock or by dividing it by 1,8 , or 32 . The peripheral function clock is stopped by stopping the main clock or by setting the WAIT peripheral function clock stop bit (bit 2 at 000616) to " 1 " and then executing a WAIT instruction.
(5) fc32

This clock is derived by dividing the sub-clock by 32 . It is used for the timer A and timer B counts.
(6) fc

This clock has the same frequency as the sub-clock. It is used for the BCLK and for the watchdog timer.

Figure 2.5 .4 shows the system clock control registers 0 and 1.

System clock control register 0 (Note 1)

Note 1: Set bit 0 of the protect register (address 000A16) to "1" before writing to this register.
Note 2: Changes to "1" when shifting to stop mode and at a reset.
Note 3: When entering power saving mode, main clock stops using this bit. When returning from stop mode and operating with XIN, set this bit to " 0 ". When main clock oscillation is operating by itself, set system clock select bit (CM07) to " 1 " before setting this bit to " 1 ".
Note 4 : When inputting external clock, only clock oscillation buffer is stopped and clock input is acceptable.
Note 5: If this bit is set to " 1 ", X OUT turns " H ". The built-in feedback resistor remains being connected, so XIN turns pulled up to XOUT ("H") via the feedback resistor.
Note 6: Set port Xc select bit (CM04) to " 1 " and stabilize the sub-clock oscillating before setting to this bit from " 0 " to " 1 ". Do not write to both bits at the same time. And also, set the main clock stop bit (CM05) to "0" and stabilize the main clock oscillating before setting this bit from " 1 " to " 0 ".
Note 7: This bit changes to " 1 " when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
Note 8: fC32 is not included. Do not set this bit to " 1 " in the low-speed/ low-power dissipation mode.
Note 9: When the XCIN/Xcout is used, set ports P86 and P87 as the input ports without pull-up.

System clock control register 1 (Note 1)

Note 1: Set bit 0 of the protect register (address 000A 16) to " 1 " before writing to this register.
Note 2: This bit changes to " 1 " when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
Note 3: Can be selected when bit 6 of the system clock control register 0 (address 0006 16) is " 0 ". If " 1 ", division mode is fixed at 8.
Note 4: If this bit is set to " 1 ", XOUT turns " H ", and the built-in feedback resistor is cut off. XCIN and Xcout turn highimpedance state.

Figure 2.5.4 Clock control registers 0 and 1

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.5.3 Clock output

In single-chip mode, the clock output function select bits (bits 0 and 1 at address 000616) enable f8, f 32 , or fc to be output from the P57/CLKout pin. When the WAIT peripheral function clock stop bit (bit 2 at address 000616) is set to " 1 ", the output of $f 8$ and $f 32$ stops when a WAIT instruction is executed.

2.5.4 Stop Mode

Writing " 1 " to the main clock and sub-clock stop control bit (bit 0 at address 000716) stops oscillation and the microcomputer enters stop mode. In stop mode, the content of the internal RAM is retained provided that Vcc remains above 2 V .
The internal oscillator circuit of expansion function (Data acquisition / humming function) stops oscillation when expansion register XTAL_VCO, PDC_VCO_ON, VPS_VCO_ON = "L".
Because the oscillation, BCLK, f 1 to f 32 , f 1 SIO 2 to $\mathrm{f} 32 \mathrm{SIO} 2, \mathrm{fc}, \mathrm{fC} 32$, and fad stops in stop mode, peripheral functions such as the A-D converter and watchdog timer do not function. However, timer A and timer B operate provided that the event counter mode is set to an external pulse, and UARTi($\mathrm{i}=0$ to 2) SI/O3,4 functions provided an external clock is selected. Table 2.5 .2 shows the status of the ports in stop mode. Stop mode is cancelled by a hardware reset or interrupt. If an interrupt is to be used to cancel stop mode, that interrupt must first have been enabled. If returning by an interrupt, that interrupt routine is executed. When shifting from high-speed/medium-speed mode to stop mode and at a reset, the main clock division select bit 0 (bit 6 at address 000616) is set to " 1 ". When shifting from low-speed/ low power dissipation mode to stop mode, the value before stop mode is retained.

Table 2.5.2 Port status during stop mode

Pin	Menory expansion mode Microprocessor mode	Single-chip mode
Address bus,data bus,CS0 to CS3, BHE	Retains status before wait mode	
RD,WR,WRL,WRH	"H" " "H "	
HLDA,BCLK	"H"	
ALE	Retains status before wait mode	Retains status before wait mode
Port	Valid only in single-chip mode	Does not stop
CLKout	When fC selected	Does not stop when the WAIT peripheral function clock stop bit is " ". When the WAIT peripheral function clock stop bit is "1" ", the status immediately prior to entering wait mode is main- tained.

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

 with DATA ACQUISITION CONTROLLER
2.5.5 Wait Mode

When a WAIT instruction is executed, the BCLK stops and the microcomputer enters the wait mode. In this mode, oscillation continues but the BCLKand watchdog timer stop. Writing " 1 " to the WAIT peripheral function clock stop bit and executing a WAIT instruction stops the clock being supplied to the internal peripheral functions, allowing power dissipation to be reduced. However,peripheral function clock fC32 does not stop so that the peripherals using fC32 do not contribute to the power saving. When the MCU running in low-speed or low power dissipation mode, do not enter WAIT mode with this bit set to " 1 ". Table 2.5 . 3 shows the status of the ports in wait mode.
Wait mode is cancelled by a hardware reset or an interrupt. When using an interrupt to exit wait mode, make sure the interrupt used for that purpose is enabled and those not used for that purpose have their priority levels set to " 0 " before entering wait mode. When restored from wait mode by an interrupt, the microcomputer restarts operation from the interrupt routine using as BCLK the clock with which it was operating when the WAIT instruction was executed. When using a hardware reset or NMI interrupt only, be sure to set the priority levels of all other interrupts to 0 before entering wait mode.

Table 2.5.3 Port status during wait mode

	Pin	Memory expansion mode Microprocessor mode	Single-chip mode
Address bus, data bus, CSO to CS3 BHE		Retains status before stop mode	
R', WR, WRL, $\overline{\text { WRH }}$		"H"	
HLDA, BCLK		"H"	
ALE		" H "	
Port		Retains status before wait mode	Retains status before wait mode
CLKOUT	When fc selected	Valid only in single-chip mode	Does not stop
	When f8, f32 selected	Valid only in single-chip mode	Does not stop when the WAIT peripheral function clock stop bit is " 0 ". When the WAIT peripheral function clock stop bit is " 1 ". the status immediately prior to entering wait mode is maintained.

2.5.6 Status Transition Of BCLK

Power dissipation can be reduced and low-voltage operation achieved by changing the count source for BCLK. Table 2.5.4 shows the operating modes corresponding to the settings of system clock control registers 0 and 1 .
When reset, the device starts in division by 8 mode. The main clock division select bit 0 (bit 6 at address 000616) changes to "1" when shifting from high-speed/medium-speed to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained. The following shows the operational modes of BCLK.
(1) Division by 2 mode

The main clock is divided by 2 to obtain the BCLK.
(2) Division by 4 mode

The main clock is divided by 4 to obtain the BCLK.
(3) Division by 8 mode

The main clock is divided by 8 to obtain the BCLK. When reset, the device starts operating from this mode. Before the user can go from this mode to no division mode, division by 2 mode, or division by 4 mode, the main clock must be oscillating stably. When going to low-speed or lower power dissipation mode, make sure the sub-clock is oscillating stably.
(4) Division by 16 mode

The main clock is divided by 16 to obtain the BCLK.

(5) No-division mode

The main clock is divided by 1 to obtain the BCLK.
(6) Low-speed mode
fc is used as the BCLK. Note that oscillation of both the main and sub clocks must have stabilized before transferring from this mode to another or vice versa. At least 2 to 3 seconds are required after the sub clock starts. Therefore, the program must be written to wait until this clock has stabilized immediately after powering up and after stop mode is cancelled.

(7) Low power dissipation mode

fc is the BCLK and the main clock is stopped.
Note :
Before the count source for BCLK can be changed from XIN to XCIN or vice versa, the clock to which the count source is going to be switched must be oscillating stably. Allow a wait time in software for the oscillation to stabilize before switching over the clock.

Table 2.5.4 Operating modes dictated by settings of system clock control registers $\mathbf{0}$ and 1

CM17	CM16	CM07	CM06	CM05	CM04	Operating mode of BCLK
0	1	0	0	0	Invalid	Division by 2 mode
1	0	0	0	0	Invalid	Division by 4 mode
Invalid	Invalid	0	1	0	Invalid	Division by 8 mode
1	1	0	0	0	Invalid	Division by 16 mode
0	0	0	0	0	Invalid	No-division mode
Invalid	Invalid	1	Invalid	0	1	Low-speed mode
Invalid	Invalid	1	Invalid	1	1	Low power dissipation mode

[^1]
2.5.7 Power control

The following is a description of the three available power control modes:

Modes

Power control is available in three modes.

(a) Normal operation mode

- High-speed mode

Divide-by- 1 frequency of the main clock becomes the BCLK. The CPU operates with the internal clock selected. Each peripheral function operates according to its assigned clock.

- Medium-speed mode

Divide-by-2, divide-by-4, divide-by-8, or divide-by-16 frequency of the main clock becomes the BCLK. The CPU operates according to the internal clock selected. Each peripheral function operates according to its assigned clock.

- Low-speed mode

fc becomes the BCLK. The CPU operates according to the fc clock. The fc clock is supplied by the secondary clock. Each peripheral function operates according to its assigned clock.

- Low power dissipation mode

The main clock operating in low-speed mode is stopped. The CPU operates according to the fc clock. The fc clock is supplied by the secondary clock. The only peripheral functions that operate are those with the sub-clock selected as the count source.
When in single-chip mode, the device can be operated with a low supply voltage ($\mathrm{VCC}=3.0 \mathrm{~V}$) only during low power dissipation mode. Before entering or exiting low power dissipation mode, always make sure the supply voltage Vcc is 5 V .

Note: When operating with a low supply voltage, be aware that only the CPU, ROM, RAM, input/ output ports, timers (timers A and B), and the interrupt control circuit can be used. All other internal resources (e.g., data slicer, DMAC, A/D, and D/A) cannot be used.

(b) Wait mode

The CPU operation is stopped. The oscillators do not stop.

(c) Stop mode

The main clock and the sub-clock oscillators stop. The CPU and all built-in peripheral functions stop. This mode, among the three modes listed here, is the most effective in decreasing power consumption.

Figure 2.5.5 is the state transition diagram of the above modes.

Transition of stop mode, wait mode

Transition of normal mode

Figure 2.5.5 State transition diagram of Power control mode

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.6 Protection

The protection function is provided so that the values in important registers cannot be changed in the event that the program runs out of control. Figure 2.6.1 shows the protect register. The values in the processor mode register 0 (address 000416), processor mode register 1 (address 000516), system clock control register 0 (address 000616), system clock control register 1 (address 000716), port P9 direction register (address 03F316) , SI/O3 control register (address 036216) and SI/O4 control register (address 036616) can only be changed when the respective bit in the protect register is set to " 1 ". Therefore, important outputs can be allocated to port P9.
If, after "1" (write-enabled) has been written to the port P9 direction register and SI/Oi control register ($\mathrm{i}=3,4$) write-enable bit (bit 2 at address 000A16), a value is written to any address, the bit automatically reverts to " 0 " (write-inhibited). However, the system clock control registers 0 and 1 write-enable bit (bit 0 at 000A16) and processor mode register 0 and 1 write-enable bit (bit 1 at 000A16) do not automatically return to " 0 " after a value has been written to an address. The program must therefore be written to return these bits to " 0 ".

Figure 2.6.1 Protect register

2.7 Interrupt

2.7.1 Interrupt

Figure 2.7.1 lists the types of interrupts.

Note: Peripheral I/O interrupts are generated by the peripheral functions built into the microcomputer system.

Figure 2.7.1 Classification of interrupts

- Maskable interrupt : An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority can be changed by priority level.
- Non-maskable interrupt : An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority cannot be changed by priority level.

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.7.2 Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are nonmaskable interrupts.

- Undefined instruction interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

- Overflow interrupt

An overflow interrupt occurs when executing the INTO instruction with the overflow flag (O flag) set to " 1 ". The following are instructions whose O flag changes by arithmetic:
ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

- BRK interrupt

A BRK interrupt occurs when executing the BRK instruction.

- INT interrupt

An INT interrupt occurs when assiging one of software interrupt numbers 0 through 63 and executing the INT instruction. Software interrupt numbers 0 through 31 are assigned to peripheral I/O interrupts, so executing the INT instruction allows executing the same interrupt routine that a peripheral I/O interrupt does.
The stack pointer (SP) used for the INT interrupt is dependent on which software interrupt number is involved.
So far as software interrupt numbers 0 through 31 are concerned, the microcomputer saves the stack pointer assignment flag (U flag) when it accepts an interrupt request. If change the U flag to " 0 " and select the interrupt stack pointer (ISP), and then execute an interrupt sequence. When returning from the interrupt routine, the U flag is returned to the state it was before the acceptance of interrupt request. So far as software numbers 32 through 63 are concerned, the stack pointer does not make a shift.

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.7.3 Hardware Interrupts

Hardware interrupts are classified into two types - special interrupts and peripheral I/O interrupts.
(1) Special interrupts

Special interrupts are non-maskable interrupts.

- Reset

Reset occurs if an "L" is input to the RESET pin.

- $\overline{\text { NMI }}$ interrupt

An $\overline{N M I}$ interrupt occurs if an "L" is input to the $\overline{N M I}$ pin.

- DBC interrupt

This interrupt is exclusively for the debugger, do not use it in other circumstances.

- Watchdog timer interrupt

Generated by the watchdog timer.

- Single-step interrupt

This interrupt is exclusively for the debugger, do not use it in other circumstances. With the debug flag (D flag) set to " 1 ", a single-step interrupt occurs after one instruction is executed.

- Address match interrupt

An address match interrupt occurs immediately before the instruction held in the address indicated by the address match interrupt register is executed with the address match interrupt enable bit set to "1".
If an address other than the first address of the instruction in the address match interrupt register is set, no address match interrupt occurs. For address match interrupt, see 2.7.10 Address match Interrupt.
(2) Peripheral I/O interrupts

A peripheral I/O interrupt is generated by one of built-in peripheral functions. Built-in peripheral functions are dependent on classes of products, so the interrupt factors too are dependent on classes of products. The interrupt vector table is the same as the one for software interrupt numbers 0 through 31 the INT instruction uses. Peripheral I/O interrupts are maskable interrupts.

- Bus collision detection interrupt

This is an interrupt that the serial I/O bus collision detection generates.

- DMA0 interrupt, DMA1 interrupt

These are interrupts that DMA generates.

- Key-input interrupt

A key-input interrupt occurs if an "L" is input to the $\overline{\mathrm{KI}}$ pin.

- A-D conversion interrupt

This is an interrupt that the A-D converter generates.

- UARTO, UART1, UART2/NACK, SI/O3 and SI/O4 transmission interrupt

These are interrupts that the serial I/O transmission generates.

- UARTO, UART1, UART2/ACK, SI/O3 and SI/O4 reception interrupt

These are interrupts that the serial I/O reception generates.

- Timer A0 interrupt through timer A4 interrupt

These are interrupts that timer A generates

- Timer B0 interrupt through timer B5 interrupt These are interrupts that timer B generates.

- INTO interrupt through INT5 interrupt

An $\overline{\mathrm{INT}}$ interrupt occurs if either a rising edge or a falling edge or a both edge is input to the $\overline{\mathrm{INT}}$ pin.

2.7.4 Interrupts and Interrupt Vector Tables

If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector table. Set the first address of the interrupt routine in each vector table. Figure 2.7 . 2 shows the format for specifying the address.
Two types of interrupt vector tables are available - fixed vector table in which addresses are fixed and variable vector table in which addresses can be varied by the setting.

Figure 2.7.2 Format for specifying interrupt vector addresses

- Fixed vector tables

The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area extending from FFFDC16 to FFFFF16. One vector table comprises four bytes. Set the first address of interrupt routine in each vector table. Table 2.7.1 shows the interrupts assigned to the fixed vector tables and addresses of vector tables.

Table 2.7.1 Interrupts assigned to the fixed vector tables and addresses of vector tables

Interrupt source	Vector table addresses Address (L) to address (H)	Remarks
Undefined instruction	FFFDC16 to FFFDF16	Interrupt on UND instruction
Overflow	FFFE016 to FFFE316	Interrupt on INTO instruction
BRK instruction	FFFE416 to FFFE716	If the vector contains FF16, program execution starts from the address shown by the vector in the variable vector table
Address match	FFFE816 to FFFEB16	There is an address-matching interrupt enable bit
Single step (Note)	FFFEC16 to FFFEF16	Do not use
Watchdog timer	FFFF016 to FFFF316	
DBC (Note)	FFFF416 to FFFF716	Do not use
NMI	FFFF816 to FFFFB16	External interrupt by input to NMI pin
Reset	FFFFC16 to FFFFF16	

Note: Interrupts used for debugging purposes only.

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

- Variable vector tables

The addresses in the variable vector table can be modified, according to the user's settings. Indicate the first address using the interrupt table register (INTB). The 256-byte area subsequent to the address the INTB indicates becomes the area for the variable vector tables. One vector table comprises four bytes. Set the first address of the interrupt routine in each vector table. Table 2.7.2 shows the interrupts assigned to the variable vector tables and addresses of vector tables.

Table 2.7.2 Interrupts assigned to the variable vector tables and addresses of vector tables

Software interrupt number	Vector table address Address (L) to address (H)	Interrupt source	Remarks
Software interrupt number 0	+0 to +3 (Note 1)	BRK instruction	Cannot be masked I flag
Software interrupt number 4	+16 to +19 (Note 1)	INT3	
Software interrupt number 5	+20 to +23 (Note 1)	Timer B5	
Software interrupt number 6	+24 to +27 (Note 1)	Timer B4	
Software interrupt number 7	+28 to +31 (Note 1)	Timer B3	
Software interrupt number 8	+32 to +35 (Note 1)	SI/O4/INT5 (Note 2)	
Software interrupt number 9	+36 to +39 (Note 1)	SI/O3/INT4 (Note 2)	
Software interrupt number 10	+40 to +43 (Note 1)	Bus collision detection	
Software interrupt number 11	+44 to +47 (Note 1)	DMAO	
Software interrupt number 12	+48 to +51 (Note 1)	DMA1	
Software interrupt number 13	+52 to +55 (Note 1)	Key input interrupt	
Software interrupt number 14	+56 to +59 (Note 1)	A-D	
Software interrupt number 15	+60 to +63 (Note 1)	UART2 transmit/NACK (Note 3)	
Software interrupt number 16	+64 to +67 (Note 1)	UART2 receive/ACK (Note 3)	
Software interrupt number 17	+68 to +71 (Note 1)	UART0 transmit	
Software interrupt number 18	+72 to +75 (Note 1)	UART0 receive	
Software interrupt number 19	+76 to +79 (Note 1)	UART1 transmit	
Software interrupt number 20	+80 to +83 (Note 1)	UART1 receive	
Software interrupt number 21	+84 to +87 (Note 1)	Timer A0	
Software interrupt number 22	+88 to +91 (Note 1)	Timer A1	
Software interrupt number 23	+92 to +95 (Note 1)	Timer A2	
Software interrupt number 24	+96 to +99 (Note 1)	Timer A3	
Software interrupt number 25	+100 to +103 (Note 1)	Timer A4	
Software interrupt number 26	+104 to +107 (Note 1)	Timer B0	
Software interrupt number 27	+108 to +111 (Note 1)	Timer B1	
Software interrupt number 28	+112 to +115 (Note 1)	Timer B2	
Software interrupt number 29	+116 to +119 (Note 1)	$\overline{\text { INTO }}$	
Software interrupt number 30	+120 to +123 (Note 1)	INT1	
Software interrupt number 31	+124 to +127 (Note 1)	INT2	
Software interrupt number 32 to Software interrupt number 63	$\begin{gathered} +128 \text { to }+131(\text { Note } 1) \\ \text { to } \\ +252 \text { to }+255(\text { Note } 1) \end{gathered}$	Software interrupt	Cannot be masked I flag

Note 1: Address relative to address in interrupt table register (INTB).
Note 2: It is selected by interrupt request cause bit (bit 6, 7 in address 035F16).
Note 3: When IIC mode is selected, NACK and ACK interrupts are selected.

M306H2MC-XXXFP

2.7.5 Interrupt Control

Descriptions are given here regarding how to enable or disable maskable interrupts and how to set the priority to be accepted. What is described here does not apply to non-maskable interrupts.
Enable or disable a maskable interrupt using the interrupt enable flag (l flag), interrupt priority level selection bit, or processor interrupt priority level (IPL). Whether an interrupt request is present or absent is indicated by the interrupt request bit. The interrupt request bit and the interrupt priority level selection bit are located in the interrupt control register of each interrupt. Also, the interrupt enable flag (I flag) and the IPL are located in the flag register (FLG).
Figure 2.7.3 shows the memory map of the interrupt control registers.

Figure 2.7.3 Interrupt control registers

(1) Interrupt Enable Flag (I flag)

The interrupt enable flag (I flag) controls the enabling and disabling of maskable interrupts. Setting this flag to " 1 " enables all maskable interrupts; setting it to " 0 " disables all maskable interrupts. This flag is set to " 0 " after reset.

(2) Interrupt Request Bit

The interrupt request bit is set to "1" by hardware when an interrupt is requested. After the interrupt is accepted and jumps to the corresponding interrupt vector, the request bit is set to " 0 " by hardware. The interrupt request bit can also be set to " 0 " by software. (Do not set this bit to "1").
(3) Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)

Set the interrupt priority level using the interrupt priority level select bit, which is one of the component bits of the interrupt control register. When an interrupt request occurs, the interrupt priority level is compared with the IPL. The interrupt is enabled only when the priority level of the interrupt is higher than the IPL. Therefore, setting the interrupt priority level to "0" disables the interrupt.
Table 2.7.3 shows the settings of interrupt priority levels and Table 2.7.4 shows the interrupt levels enabled, according to the consist of the IPL.

The following are conditions under which an interrupt is accepted:

- interrupt enable flag (I flag) = 1
- interrupt request bit $=1$
- interrupt priority level > IPL

The interrupt enable flag (I flag), the interrupt request bit, the interrupt priority select bit, and the IPL are independent, and they are not affected by one another.

Table 2.7.3 Settings of interrupt priority levels

Table 2.7.4 Interrupt levels enabled according to the contents of the IPL

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(4) Rewrite the interrupt control register

To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1:

INT_SWITCH1:
FCLR I ; Disable interrupts.
AND.B \#00h, 0055h ; Clear TAOIC int. priority level and int. request bit.
NOP ; Four NOP instructions are required when using HOLD function.
NOP
; Enable interrupts.

Example 2:

INT_SWITCH2:
FCLR I ; Disable interrupts.
AND.B \#00h, 0055h ; Clear TAOIC int. priority level and int. request bit.
MOV.W MEM, R0 ; Dummy read.
FSET I ; Enable interrupts.

Example 3:

INT_SWITCH3:

PUSHC	FLG	; Push Flag register onto stack
FCLR	I	; Disable interrupts.
AND.B	\#00h, $0055 h$;Clear TA0IC int. priority level and int. request bit.
POPC	FLG	;Enable interrupts.

The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.
Instructions : AND, OR, BCLR, BSET

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

 with DATA ACQUISITION CONTROLLER
2.7.6 Interrupt Sequence

An interrupt sequence - what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed - is described here.
If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.
In the interrupt sequence, the processor carries out the following in sequence given:
(a) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address 0000016.
(b) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence in the temporary register (Note) within the CPU.
(c) Sets the interrupt enable flag (l flag), the debug flag (Dflag), and the stack pointer select flag (U flag) to " 0 " (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through 63, is executed)
(d) Saves the content of the temporary register (Note) within the CPU in the stack area.
(e) Saves the content of the program counter (PC) in the stack area.
(f) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first address of the interrupt routine.
Note: This register cannot be utilized by the user.

(1) Interrupt Response Time

'Interrupt response time' is the period between the instant an interrupt occurs and the instant the first instruction within the interrupt routine has been executed. This time comprises the period from the occurrence of an interrupt to the completion of the instruction under execution at that moment (a) and the time required for executing the interrupt sequence (b). Figure 2.7.4 shows the interrupt response time.

(a) Time from interrupt request is generated to when the instruction then under execution is completed.
(b) Time in which the instruction sequence is executed.

Figure 2.7.4 Interrupt response time

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Time (a) is dependent on the instruction under execution. Thirty cycles is the maximum required for the DIVX instruction (without wait).
Time (b) is as shown in Table 2.7.5

Table 2.7.5 Time required for executing the interrupt sequence

Interrupt vector address	Stack pointer (SP) value	16 -Bit bus, without wait	8-Bit bus, without wait
Even	Even	18 cycles (Note 1)	20 cycles (Note 1)
Even	Odd	19 cycles (Note 1)	20 cycles (Note 1)
Odd (Note 2)	Even	19 cycles (Note 1)	20 cycles (Note 1)
Odd (Note 2)	Odd	20 cycles (Note 1)	20 cycles (Note 1)

Notes 1: Add 2 cycles in the case of a DBC interrupt; add 1 cycle in the case either of an address coincidence interrupt or of a single-step interrupt.
Notes 2: Locate an interrupt vector address in an even address, if possible.

Figure 2.7.5 Time required for executing the interrupt sequence
(2) Variation of IPL when Interrupt Request is Accepted

If an interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL. If an interrupt request, that does not have an interrupt priority level, is accepted, one of the values shown in Table 2.7.6 is set in the IPL.

Table 2.7.6 Relationship between interrupts without interrupt priority levels and IPL

Interrupt sources without priority levels	Value set in the IPL
Watchdog timer, $\overline{\text { NMI }}$	7
Reset	0
Other	Not changed

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(3) Saving Registers

In the interrupt sequence, only the contents of the flag register (FLG) and that of the program counter (PC) are saved in the stack area.
First, the processor saves the four higher-order bits of the program counter, and 4 upper-order bits and 8 lower-order bits of the FLG register, 16 bits in total, in the stack area, then saves 16 lower-order bits of the program counter. Figure 2.7 .6 shows the state of the stack as it was before the acceptance of the interrupt request, and the state the stack after the acceptance of the interrupt request.
Save other necessary registers at the beginning of the interrupt routine using software. Using the PUSHM instruction alone can save all the registers except the stack pointer (SP).

Figure 2.7.6 State of stack before and after acceptance of interrupt request

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

The operation of saving registers carried out in the interrupt sequence is dependent on whether the content of the stack pointer, at the time of acceptance of an interrupt request, is even or odd. If the content of the stack pointer (Note) is even, the content of the flag register (FLG) and the content of the program counter (PC) are saved, 16 bits at a time. If odd, their contents are saved in two steps, 8 bits at a time. Figure 2.7.7 shows the operation of the saving registers.
Note: When any INT instruction in software numbers 32 to 63 has been executed, this is the stack pointer indicated by the U flag. Otherwise, it is the interrupt stack pointer (ISP).

Figure 2.7.7 Operation of saving registers

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(4) Returning from an Interrupt Routine

Executing the REIT instruction at the end of an interrupt routine returns the contents of the flag register (FLG) as it was immediately before the start of interrupt sequence and the contents of the program counter (PC), both of which have been saved in the stack area. Then control returns to the program that was being executed before the acceptance of the interrupt request, so that the suspended process resumes.
Return the other registers saved by software within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

(5) Interrupt Priority

If there are two or more interrupt requests occurring at a point in time within a single sampling (checking whether interrupt requests are made), the interrupt assigned a higher priority is accepted.
Assign an arbitrary priority to maskable interrupts (peripheral I/O interrupts) using the interrupt priority level select bit. If the same interrupt priority level is assigned, however, the interrupt assigned a higher hardware priority is accepted.
Priorities of the special interrupts, such as Reset (dealt with as an interrupt assigned the highest priority), watchdog timer interrupt, etc. are regulated by hardware.
Figure 2.7.8 shows the priorities of hardware interrupts.
Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

> Reset > NMI > DBC > Watchdog timer > Peripheral I/O > Single step > Address match

Figure 2.7.8 Hardware interrupts priorities

(6) Interrupt resolution circuit

When two or more interrupts are generated simultaneously, this circuit selects the interrupt with the highest priority level. Figure 2.7 .9 shows the circuit that judges the interrupt priority level.

Figure 2.7.9 Maskable interrupts priorities (peripheral I/O interrupts)

2.7.7 INT Interrupt

$\overline{\text { INT0 }}$ to $\overline{\text { NTT } 5 ~ a r e ~ t r i g g e r e d ~ b y ~ t h e ~ e d g e s ~ o f ~ e x t e r n a l ~ i n p u t s . ~ T h e ~ e d g e ~ p o l a r i t y ~ i s ~ s e l e c t e d ~ u s i n g ~ t h e ~}$ polarity select bit.
Of interrupt control registers, 004816 is used both as serial I/O4 and external interrupt INT5 input control register, and 004916 is used both as serial I/O3 and as external interrupt INT4 input control register. Use the interrupt request cause select bits - bits 6 and 7 of the interrupt request cause select register (035F16) - to specify which interrupt request cause to select. After having set an interrupt request cause, be sure to clear the corresponding interrupt request bit before enabling an interrupt. Either of the interrupt control registers - 004816, 004916-has the polarity-switching bit. Be sure to set this bit to " 0 " to select an serial I/O as the interrupt request cause.
As for external interrupt input, an interrupt can be generated both at the rising edge and at the falling edge by setting " 1 " in the INTi interrupt polarity switching bit of the interrupt request cause select register (035 F 16). To select both edges, set the polarity switching bit of the corresponding interrupt control register to 'falling edge' ("0").
Figure 2.7.10 shows the Interrupt request cause select register.

Interrupt request cause select register

Figure 2.7.10 Interrupt request cause select register

2.7.8 NMI Interrupt

An NMI interrupt is generated when the input to the P85/NMI pin changes from " H " to " L ". The NMI interrupt is a non-maskable external interrupt. The pin level can be checked in the port P85 register (bit 5 at address 03F016).
This pin cannot be used as a normal port input.

2.7.9 Key Input Interrupt

If the direction register of any of P104 to P 107 is set for input and a falling edge is input to that port, a key input interrupt is generated. A key input interrupt can also be used as a key-on wakeup function for cancelling the wait mode or stop mode. However, if you intend to use the key input interrupt, do not use P104 to P107 as A-D input ports. Figure 2.7.11 shows the block diagram of the key input interrupt. Note that if an "L" level is input to any pin that has not been disabled for input, inputs to the other pins are not detected as an interrupt.

Figure 2.7.11 Block diagram of key input interrupt

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.7.10 Address Match Interrupt

An address match interrupt is generated when the address match interrupt address register contents match the program counter value. Two address match interrupts can be set, each of which can be enabled and disabled by an address match interrupt enable bit. Address match interrupts are not affected by the interrupt enable flag (I flag) and processor interrupt priority level (IPL). The value of the program counter (PC) for an address match interrupt varies depending on the instruction being executed. Note that when using the external data bus in width of 8 bits, the address match interrupt cannot be used for external area.
Figure 2.7.12 shows the address match interrupt-related registers.

Figure 2.7.12 Address match interrupt-related registers

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.7.11 Precautions for Interrupts

(1) Reading address 0000016

- When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence. The interrupt request bit of the certain interrupt written in address 0000016 will then be set to "0". Reading address 0000016 by software sets enabled highest priority interrupt source request bit to " 0 ".
Though the interrupt is generated, the interrupt routine may not be executed.
Do not read address 0000016 by software.
(2) Setting the stack pointer
- The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in the stack pointer before accepting an interrupt. When using the $\overline{\mathrm{NMI}}$ interrupt, initialize the stack point at the beginning of a program. Concerning the first instruction immediately after reset, generating any interrupts including the $\overline{\text { NMI interrupt is prohibited. }}$
(3) The $\overline{\mathrm{NMI}}$ interrupt
- As for the $\overline{\mathrm{NMI}}$ interrupt pin, an interrupt cannot be disabled. Connect it to the Vcc pin via a resistor (pull-up) if unused. Be sure to work on it.
- The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register allows reading the pin value. Use the reading of this pin only for establishing the pin level at the time when the $\overline{\mathrm{NMI}}$ interrupt is input.
- Do not reset the CPU with the input to the NMI pin being in the "L" state.
- Do not attempt to go into stop mode with the input to the $\overline{\mathrm{NMI}}$ pin being in the "L" state. With the input to the NMI being in the "L" state, the CM10 is fixed to " 0 ", so attempting to go into stop mode is turned down.
- Do not attempt to go into wait mode with the input to the NMI pin being in the "L" state. With the input to the NMI pin being in the "L" state, the CPU stops but the oscillation does not stop, so no power is saved. In this instance, the CPU is returned to the normal state by a later interrupt.
- Signals input to the $\overline{\text { NMI }}$ pin require an "L" level of 1 clock or more, from the operation clock of the CPU.
(4) External interrupt
- Either an "L" level or an "H" level of at least 250 ns width is necessary for the signal input to pins INT0 through $\overline{\mathrm{INT} 5}$ regardless of the CPU operation clock.
- When the polarity of the $\overline{\mathrm{INT}}$ to $\overline{\mathrm{INT5}}$ pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0". Figure 2.7 .13 shows the procedure for changing the INT interrupt generate factor.

Figure 2.7.13 Switching condition of $\overline{\text { INT }}$ interrupt request

(5) Rewrite the interrupt control register

- To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1:

INT_SWITCH1:

FCLR	I	; Disable interrupts.
AND.B	\#00h, 0055h	; Clear TAOIC int. priority level and int. request bit.
NOP		Four NOP instructions are required when using HOLD function.
NOP		; Enable interrupts.

Example 2:

INT_SWITCH2:
FCLR I ; Disable interrupts.
AND.B \#00h, 0055h ; Clear TAOIC int. priority level and int. request bit.
MOV.W MEM, RO ; Dummy read.
FSET I ; Enable interrupts.

Example 3:

INT_SWITCH3:

PUSHC	FLG
FCLR	I
AND.B	\#00h, 0055 h Flag register onto stack
; Disable interrupts.	
POPC	FLG

The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

- When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.
Instructions : AND, OR, BCLR, BSET

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.8 Watchdog Timer

The watchdog timer has the function of detecting when the program is out of control. The watchdog timer is a 15 -bit counter which down-counts the clock derived by dividing the BCLK using the prescaler. A watchdog timer interrupt is generated when an underflow occurs in the watchdog timer. When XIN is selected for the BCLK, bit 7 of the watchdog timer control register (address 000F16) selects the prescaler division ratio (by 16 or by 128). When XCIN is selected as the BCLK, the prescaler is set for division by 2 regardless of bit 7 of the watchdog timer control register (address 000F16). Thus the watchdog timer's period can be calculated as given below. The watchdog timer's period is, however, subject to an error due to the pre-scaler.

With Xin chosen for BCLK

Watchdog timer period =
pre-scaler dividing ratio (16 or 128) X watchdog timer count (32768)

$$
\overline{B C L K}
$$

With Xcin chosen for BCLK

Watchdog timer period = pre-scaler dividing ratio (2) X watchdog timer count (32768)

BCLK

For example, suppose that BCLK runs at 10 MHz and that 16 has been chosen for the dividing ratio of the pre-scaler, then the watchdog timer's period becomes approximately 52.4 ms .

The watchdog timer is initialized by writing to the watchdog timer start register (address 000E16) and when a watchdog timer interrupt request is generated. The prescaler is initialized only when the microcomputer is reset. After a reset is cancelled, the watchdog timer and prescaler are both stopped. The count is started by writing to the watchdog timer start register (address 000E16).
Figure 2.8.1 shows the block diagram of the watchdog timer. Figure 2.8 .2 shows the watchdog timerrelated registers.

Figure 2.8.1 Block diagram of watchdog timer

Watchdog timer control register

Watchdog timer start register

Figure 2.8.2 Watchdog timer control and start registers

2.9 DMAC

This microcomputer has two DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC shares the same data bus with the CPU. The DMAC is given a higher right of using the bus than the CPU, which leads to working the cycle stealing method. On this account, the operation from the occurrence of DMA transfer request signal to the completion of 1-word (16-bit) or 1-byte (8-bit) data transfer can be performed at high speed. Figure 2.9.1 shows the block diagram of the DMAC. Table 2.9.1 shows the DMAC specifications. Figures 2.9.2 to 2.9.4 show the registers used by the DMAC.

Note: Pointer is incremented by a DMA request.

Figure 2.9.1 Block diagram of DMAC
Either a write signal to the software DMA request bit or an interrupt request signal is used as a DMA transfer request signal. But the DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the interrupt priority level. The DMA transfer doesn't affect any interrupts either.
If the DMAC is active (the DMA enable bit is set to 1), data transfer starts every time a DMA transfer request signal occurs. If the cycle of the occurrences of DMA transfer request signals is higher than the DMA transfer cycle, there can be instances in which the number of transfer requests doesn't agree with the number of transfers. For details, see the description of the DMA request bit.

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

Table 2.9.1 DMAC specifications

Item	Specification
No. of channels	2 (cycle steal method)
Transfer memory space	- From any address in the 1M bytes space to a fixed address - From a fixed address to any address in the 1M bytes space - From a fixed address to a fixed address (Note that DMA-related registers [002016 to 003F16] cannot be accessed)
Maximum No. of bytes transferred	128 K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)
DMA request factors (Note)	Falling edge of $\overline{\mathbb{N T O}}$ or $\overline{\mathrm{NT1}}$ ((INT0 can be selected by DMAO, $\overline{\mathrm{NT} 1}$ by DMA1) or both edge Timer A0 to timer A4 interrupt requests Timer B0 to timer B5 interrupt requests UART0 transfer and reception interrupt requests UART1 transfer and reception interrupt requests UART2 transfer and reception interrupt requests Serial I/O3, 4 interrpt requests A-D conversion interrupt requests Software triggers
Channel priority	DMA0 takes precedence if DMA0 and DMA1 requests are generated simultaneously
Transfer unit	8 bits or 16 bits
Transfer address direction	forward/fixed (forward direction cannot be specified for both source and destination simultaneously)
Transfer mode	- Single transfer mode After the transfer counter underflows, the DMA enable bit turns to " 0 ", and the DMAC turns inactive - Repeat transfer mode After the transfer counter underflows, the value of the transfer counter reload register is reloaded to the transfer counter. The DMAC remains active unless a " 0 " is written to the DMA enable bit.
DMA interrupt request generation timing	When an underflow occurs in the transfer counter
Active	When the DMA enable bit is set to " 1 ", the DMAC is active. When the DMAC is active, data transfer starts every time a DMA transfer request signal occurs.
Inactive	-When the DMA enable bit is set to " 0 ", the DMAC is inactive. - After the transfer counter underflows in single transfer mode
Forward address pointer and reload timing for transfer counter	At the time of starting data transfer immediately after turning the DMAC active, the value of one of source pointer and destination pointer - the one specified for the forward direction - is reloaded to the forward direction address pointer, and the value of the transfer counter reload register is reloaded to the transfer counter.
Writing to register	Registers specified for forward direction transfer are always write enabled. Registers specified for fixed address transfer are write-enabled when the DMA enable bit is " 0 ".
Reading the register	Can be read at any time. However, when the DMA enable bit is " 1 ", reading the register set up as the forward register is the same as reading the value of the forward address pointer.

Note: DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the interrupt priority level.

Figure 2.9.2 DMAC register (1)

DMA1 request cause select register

DMAi control register

Note 1: DMA request can be cleared by resetting the bit.
Note 2: This bit can only be set to " 0 ".
Note 3: Source address direction select bit and destination address direction select bit cannot be set to " 1 " simultaneously.

Figure 2.9.3 DMAC register (2)

DMAi source pointer $(\mathrm{i}=0,1)$

DMAi destination pointer ($\mathrm{i}=0,1$)

DMAi transfer counter ($\mathrm{i}=0,1$)

Figure 2.9.4 DMAC register (3)

(1) Transfer cycle

The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area (source read) and the bus cycle in which the data is written to memory or to the SFR area (destination write). The number of read and write bus cycles depends on the source and destination addresses and, the level of the BYTE pin. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on the level of the BYTE pin. Also, the bus cycle itself is longer when software waits are inserted.

(a) Effect of source and destination addresses

When 16 -bit data is transferred on a 16 -bit data bus, and the source and destination both start at odd addresses, there are one more source read cycle and destination write cycle than when the source and destination both start at even addresses.

(b) Effect of BYTE pin level

When transferring 16 -bit data over an 8 -bit data bus (BYTE pin $=$ " H ") in memory expansion mode and microprocessor mode, the 16 bits of data are sent in two 8-bit blocks. Therefore, two bus cycles are required for reading the data and two are required for writing the data. Also, in contrast to when the CPU accesses internal memory, when the DMAC accesses internal memory (internal RAM, and SFR), these areas are accessed using the data size selected by the BYTE pin.

(c) Effect of software wait

When the SFR area or a memory area with a software wait is accessed, the number of cycles is increased for the wait by 1 bus cycle. The length of the cycle is determined by BCLK.

Figure 2.9.5 shows the example of the transfer cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating the transfer cycle, remember to apply the respective conditions to both the destination write cycle and the source read cycle. For example (2) in Figure 2.9.5, if data is being transferred in 16 -bit units on an 8 -bit bus, two bus cycles are required for both the source read cycle and the destination write cycle.

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER
(1) 8-bit transfers

16-bit transfers from even address and the source address is even.

(2) 16-bit transfers and the source address is odd

Transferring 16-bit data on an 8 -bit data bus (In this case, there are also two destination write cycles).

(3) One wait is inserted into the source read under the conditions in (1)

(4) One wait is inserted into the source read under the conditions in (2)
(When 16 -bit data is transferred on an 8 -bit data bus, there are two destination write cycles).

Note: The same timing changes occur with the respective conditions at the destination as at the source.

Figure 2.9.5 Example of the transfer cycles for a source read

(2) DMAC transfer cycles

Any combination of even or odd transfer read and write addresses is possible. Table 2.9.2 shows the number of DMAC transfer cycles.
The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit $=$ No. of read cycles $\times \mathrm{j}+$ No. of write cycles $\times \mathrm{k}$
Table 2.9.2 No. of DMAC transfer cycles

Transfer unit	Bus width	Access address	Single-chip mode		Memory expansion modeMicroprocessor mode	
			No. of read cycles	No. of write cycles	No. of read cycles	No. of write cycles
8-bit transfers (DMBIT= "1")	$\begin{gathered} \text { 16-bit } \\ \text { (BYTE= "L") } \end{gathered}$	Even	1	1	1	1
		Odd	1	1	1	1
	$\begin{gathered} \hline \text { 8-bit } \\ \text { (BYTE = "H") } \end{gathered}$	Even	-	-	1	1
		Odd	-	-	1	1
16-bit transfers (DMBIT= "0")	$\begin{gathered} \text { 16-bit } \\ \text { (BYTE = "L") } \end{gathered}$	Even	1	1	1	1
		Odd	2	2	2	2
	$\begin{gathered} \text { 8-bit } \\ \text { (BYTE = "H") } \end{gathered}$	Even	-	-	2	2
		Odd	-	-	2	2

Coefficient \mathbf{j}, \mathbf{k}

Internal memory			External memory		
Internal ROM/RAM No wait	Internal ROM/RAM With wait	SFR area	Separate bus No wait	Separate bus With wait	Multiplex bus
1	2	2	1	2	3

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.9.1 DMA enable bit

Setting the DMA enable bit to "1" makes the DMAC active. The DMAC carries out the following operations at the time data transfer starts immediately after DMAC is turned active.
(1) Reloads the value of one of the source pointer and the destination pointer - the one specified for the forward direction - to the forward direction address pointer.
(2) Reloads the value of the transfer counter reload register to the transfer counter.

Thus overwriting "1" to the DMA enable bit with the DMAC being active carries out the operations given above, so the DMAC operates again from the initial state at the instant " 1 " is overwritten to the DMA enable bit.

2.9.2 DMA request bit

The DMAC can generate a DMA transfer request signal triggered by a factor chosen in advance out of DMA request factors for each channel.
DMA request factors include the following.

* Factors effected by using the interrupt request signals from the built-in peripheral functions and software DMA factors (internal factors) effected by a program.
* External factors effected by utilizing the input from external interrupt signals.

For the selection of DMA request factors, see the descriptions of the DMAi factor selection register.
The DMA request bit turns to " 1 " if the DMA transfer request signal occurs regardless of the DMAC's state (regardless of whether the DMA enable bit is set " 1 " or to " 0 "). It turns to " 0 " immediately before data transfer starts.
In addition, it can be set to "0" by use of a program, but cannot be set to "1".
There can be instances in which a change in DMA request factor selection bit causes the DMA request bit to turn to " 1 ". So be sure to set the DMA request bit to " 0 " after the DMA request factor selection bit is changed.
The DMA request bit turns to " 1 " if a DMA transfer request signal occurs, and turns to "0" immediately before data transfer starts. If the DMAC is active, data transfer starts immediately, so the value of the DMA request bit, if read by use of a program, turns out to be " 0 " in most cases. To examine whether the DMAC is active, read the DMA enable bit.
Here follows the timing of changes in the DMA request bit.
(1) Internal factors

Except the DMA request factors triggered by software, the timing for the DMA request bit to turn to "1" due to an internal factor is the same as the timing for the interrupt request bit of the interrupt control register to turn to "1" due to several factors.
Turning the DMA request bit to "1" due to an internal factor is timed to be effected immediately before the transfer starts.
(2) External factors

An external factor is a factor caused to occur by the leading edge of input from the INTi pin (i depends on which DMAC channel is used).
Selecting the INTi pins as external factors using the DMA request factor selection bit causes input from these pins to become the DMA transfer request signals.
The timing for the DMA request bit to turn to "1" when an external factor is selected synchronizes with the signal's edge applicable to the function specified by the DMA request factor selection bit (synchronizes with the trailing edge of the input signal to each INTi pin, for example).
With an external factor selected, the DMA request bit is timed to turn to " 0 " immediately before data transfer starts similarly to the state in which an internal factor is selected.

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(3) The priorities of channels and DMA transfer timing

If a DMA transfer request signal falls on a single sampling cycle (a sampling cycle means one period from the leading edge to the trailing edge of BCLK), the DMA request bits of applicable channels concurrently turn to "1". If the channels are active at that moment, DMA0 is given a high priority to start data transfer. When DMA0 finishes data transfer, it gives the bus right to the CPU. When the CPU finishes single bus access, then DMA1 starts data transfer and gives the bus right to the CPU.
An example in which DMA transfer is carried out in minimum cycles at the time when DMA transfer request signals due to external factors concurrently occur.
Figure 2.9.6 An example of DMA transfer effected by external factors.

Figure 2.9.6 An example of DMA transfer effected by external factors

2.10 Timer

There are eleven 16 -bit timers. These timers can be classified by function into timers A (five) and timers B (six). All these timers function independently.
Figures 2.10.1 and 2.10.2 show the block diagram of timers.

Figure 2.10.1 Timer A block diagram

Figure 2.10.2 Timer B block diagram

2.10.1 Timer A

Figure 2.10.3 shows the block diagram of timer A. Figures 2.10 .4 to 2.10 .6 show the timer A-related registers.
Except in event counter mode, timers A0 through A4 all have the same function. Use the timer Ai mode register ($\mathrm{i}=0$ to 4) bits 0 and 1 to choose the desired mode.
Timer A has the four operation modes listed as follows:

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or a timer over flow.
- One-shot timer mode: The timer stops counting when the count reaches " 000016 ".
- Pulse width modulation (PWM) mode: The timer outputs pulses of a given width.

Figure 2.10.3 Block diagram of timer A

Figure 2.10.4 Timer A-related registers (1)

Figure 2.10.5 Timer A-related registers (2)

One-shot start flag	Symbo ONSF	Address 038216	When reset 00×000002	
	Bit symbol	Bit name	Function	R:W
	TA00S	Timer A0 one-shot start flag	1 : Timer start When read, the value is " 0 "	$\bigcirc \mathrm{O}$
	TA1OS	Timer A1 one-shot start flag		$\bigcirc \mathrm{O}$
	TA2OS	Timer A2 one-shot start flag		O O
	TA3OS	Timer A3 one-shot start flag		0 O
	TA4OS	Timer A4 one-shot start flag		$\bigcirc \mathrm{O}$
	Nothing is assigned. In an attempt to write to this bit, write " 0 ". The value, if read, turns out to be indeterminate.			
	TAOTGL	Timer A0 event/trigger select bit	b7 b6 00 : Input on TAOIn is selected (Note) 01 : TB2 overflow is selected 10 :TA4 overflow is selected 11 : TA1 overflow is selected	O, O
	TAOTGH			OO

Note: Set the corresponding port direction register to "0".

Trigger select register

Note: Set the corresponding port direction register to "0".

Clock prescaler reset flag

Figure 2.10.6 Timer A-related registers (3)

(1) Timer mode

In this mode, the timer counts an internally generated count source. (See Table 2.10.1) Figure 2.10.7 shows the timer Ai mode register in timer mode.

Table 2.10.1 Specifications of timer mode

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	- Down count - When the timer underflows, it reloads the reload register contents before continuing counting
Divide ratio	1/(n+1) n : Set value
Count start condition	Count start flag is set (=1)
Count stop condition	Count start flag is reset (=0)
Interrupt request generation timing	When the timer underflows
TAils pin function	Programmable I/O port or gate input
TAiout pin function	Programmable I/O port or pulse output
Read from timer	Count value can be read out by reading timer Ai register
Write to timer	- When counting stopped When a value is written to timer Ai register, it is written to both reload register and counter - When counting in progress When a value is written to timer Ai register, it is written to only reload register (Transferred to counter at next reload time)
Select function	- Gate function Counting can be started and stopped by the TAiln pin's input signal - Pulse output function Each time the timer underflows, the TAiout pin's polarity is reversed

Timer Ai mode register

Note 1: The settings of the corresponding port register and port direction register are invalid.
Note 2: The bit can be " 0 " or " 1 ".
Note 3: Set the corresponding port direction register to " 0 ".
Figure 2.10.7 Timer Ai mode register in timer mode

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(2) Event counter mode

In this mode, the timer counts an external signal or an internal timer's overflow. Timers A0 and A1 can count a single-phase external signal. Timers A2, A3, and A4 can count a single-phase and a twophase external signal. Table 2.10.2 lists timer specifications when counting a single-phase external signal. Figure 2.10 .8 shows the timer Ai mode register in event counter mode.
Table 2.10.3 lists timer specifications when counting a two-phase external signal. Figure 2.10.9 shows the timer Ai mode register in event counter mode.
Table 2.10.2 Timer specifications in event counter mode (when not processing two-phase pulse signal)

Item	Specification
Count source	- External signals input to TAiln pin (effective edge can be selected by software) - TB2 overflow, TAj overflow
Count operation	- Up count or down count can be selected by external signal or software - When the timer overflows or underflows, it reloads the reload register con tents before continuing counting (Note)
Divide ratio	$1 /($ FFFF16 - $\mathrm{n}+1)$ for up count $1 /(\mathrm{n}+1)$ for down count
Count start condition C Set value	

Note: This does not apply when the free-run function is selected.

Figure 2.10.8 Timer Ai mode register in event counter mode

Table 2.10.3 Timer specifications in event counter mode (when processing two-phase pulse signal with timers A2, A3, and A4)

Item	Specification
Count source	- Two-phase pulse signals input to TAiln or TAiout pin
Count operation	- Up count or down count can be selected by two-phase pulse signal - When the timer overflows or underflows, the reload register content is reloaded and the timer starts over again (Note1)
Divide ratio	1/ (FFFF16-n +1) for up count 1/ $(n+1)$ for down count
Count start condition	Count start flag is set (=1)
Count stop condition	Count start flag is reset (=0)
Interrupt request generation timing	Timer overflows or underflows
TAiln pin function	Two-phase pulse input
TAiOUT pin function	Two-phase pulse input
Read from timer	Count value can be read out by reading timer A2, A3, or A4 register
Write to timer	- When counting stopped When a value is written to timer A2, A3, or A4 register, it is written to both reload register and counter - When counting in progress When a value is written to timer A2, A3, or A4 register, it is written to only reload register. (Transferred to counter at next reload time.)
Select function(Note 2)	- Normal processing operation (Timer A2 and Timer A3) The timer counts up rising edges or counts down falling edges on the TAiln pin when input signal on the TAiout pin is " H " - Multiply-by-4 processing operation (Timer A3 and Timer A4) If the phase relationship is such that the TAiln pin goes " H " when the input signal on the TAiout pin is " H ", the timer counts up rising and falling edges on the TAiout and TAiln pins. If the phase relationship is such that the TAiln pin goes "L" when the input signal on the TAiout pin is "H", the timer counts down rising and falling edges on the TAiout and TAiIn pins. TAiout TAiln (i=3,4)

Note 1: This does not apply when the free-run function is selected.
Note 2: Timer A3 alone can be selected.Timer A2 is fixed to normal processing operation, and timer A4 is fixed to multiply-by-4 processing operation.

Timer Ai mode register
(When not using two-phase pulse signal processing)

Note 1: In event counter mode, the count source is selected by the event / trigger select bit (addresses 038216 and 038316).
Note 2: The settings of the corresponding port register and port direction register are invalid. Note 3: Valid only when counting an external signal.
Note 4: When an "L" signal is input to the TAi OUT pin, the downcount is activated. When " H ", the upcount is activated. Set the corresponding port direction register to " 0 ".
Note 5: In the case of using "Event counter mode" as "Free-Run type", the timer register contents may be unkown when counting begins.(Refer 3. Usage Precaution.)

Timer Ai mode register
(When using two-phase pulse signal processing)

Note 1: This bit is valid for timer A3 mode register. Timer A2 is fixed to normal processing operation, and timer A4 is fixed to multiply-by-4 processing operation.
Note 2: When performing two-phase pulse signal processing, make sure the two-phase pulse signal processing operation select bit (address 038416) is set to " 1 ". Also, always be sure to set the event/trigger select bit (address 038316) to "00".
Note 3: In the case of using "Event counter mode" as "Free-Run type", the timer register contents may be unkown when counting begins.(Refer 3. Usage Precaution.)

Figure 2.10.9 Timer Ai mode register in event counter mode

(3) One-shot timer mode

In this mode, the timer operates only once. (See Table 2.10.4) When a trigger occurs, the timer starts up and continues operating for a given period. Figure 2.10.10 shows the timer Ai mode register in one-shot timer mode.
Table 2.10.4 Timer specifications in one-shot timer mode

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	- The timer counts down - When the count reaches 000016 , the timer stops counting after reloading a new count - If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide ratio	$1 / \mathrm{n} \quad \mathrm{n}$: Set value
Count start condition	- An external trigger is input - The timer overflows - The one-shot start flag is set (=1)
Count stop condition	- A new count is reloaded after the count has reached 000016 - The count start flag is reset (= 0)
Interrupt request generation timing	The count reaches 000016
TAiln pin function	Programmable I/O port or trigger input
TAiOUT pin function	Programmable I/O port or pulse output
Read from timer	When timer Ai register is read, it indicates an indeterminate value
Write to timer	- When counting stopped When a value is written to timer Ai register, it is written to both reload register and counter - When counting in progress When a value is written to timer Ai register, it is written to only reload register (Transferred to counter at next reload time)

Timer Ai mode register

Note 1: The settings of the corresponding port register and port direction register are invalid.
Note 2: Valid only when the TAiln pin is selected by the event/trigger select bit
(addresses 038216 and 038316). If timer overflow is selected, this bit can be " 1 " or " 0 ".
Note 3: Set the corresponding port direction register to " 0 ".
Figure 2.10.10 Timer Ai mode register in one-shot timer mode

(4) Pulse width modulation (PWM) mode

In this mode, the timer outputs pulses of a given width in succession. (See Table 2.10.5) In this mode, the counter functions as either a 16-bit pulse width modulator or an 8-bit pulse width modulator.
Figure 2.10.11 shows the timer Ai mode register in pulse width modulation mode. Figure 2.10.12 shows the example of how a 16-bit pulse width modulator operates. Figure 2.10 .13 shows the example of how an 8-bit pulse width modulator operates.

Table 2.10.5 Timer specifications in pulse width modulation mode

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	- The timer counts down (operating as an 8-bit or a 16-bit pulse width modulator) - The timer reloads a new count at a rising edge of PWM pulse and continues counting - The timer is not affected by a trigger that occurs when counting
16-bit PWM	- High level width n/fi n: Set value - Cycle time $\quad\left(2^{16}-1\right) /$ fi fixed
8-bit PWM	- High level width $\mathrm{n} \times(\mathrm{m}+1) / \mathrm{fi} \quad \mathrm{n}$: values set to timer Ai register's high-order address - Cycle time $\quad\left(2^{8}-1\right) \times(\mathrm{m}+1) / \mathrm{fi} \quad \mathrm{m}$: values set to timer Ai register's low-order address
Count start condition	- External trigger is input - The timer overflows - The count start flag is set $(=1)$
Count stop condition	- The count start flag is reset (=0)
Interrupt request generation timing	PWM pulse goes "L"
TAiln pin function	Programmable I/O port or trigger input
TAiOUT pin function	Pulse output
Read from timer	When timer Ai register is read, it indicates an indeterminate value
Write to timer	- When counting stopped When a value is written to timer Ai register, it is written to both reload register and counter - When counting in progress When a value is written to timer Ai register, it is written to only reload register (Transferred to counter at next reload time)

Figure 2.10.11 Timer Ai mode register in pulse width modulation mode

Figure 2.10.12 Example of how a 16-bit pulse width modulator operates

Figure 2.10.13 Example of how an 8-bit pulse width modulator operates

2.10.2 Timer B

Figure 2.10.14 shows the block diagram of timer B. Figures 2.10 .15 and 2.10 .16 show the timer Brelated registers.
Use the timer Bi mode register ($\mathrm{i}=0$ to 5) bits 0 and 1 to choose the desired mode.
Timer B has three operation modes listed as follows:

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or a timer overflow.
- Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.

Figure 2.10.14 Block diagram of timer B

Figure 2.10.15 Timer B-related registers (1)

Note: Read and write data in 16-bit units.

Count start flag

Timer B3, 4, 5 count start flag

Clock prescaler reset flag

Figure 2.10.16 Timer B-related registers (2)

(1) Timer mode

In this mode, the timer counts an internally generated count source. (See Table 2.10.6) Figure 2.10.17 shows the timer Bi mode register in timer mode.

Table 2.10.6 Timer specifications in timer mode

Item	Specification
Count source	$\mathrm{f1}, \mathrm{f}, \mathrm{f} 32, \mathrm{fC} 32$
Count operation	- Counts down - When the timer underflows, it reloads the reload register contents before continuing counting
Divide ratio	$1 /(\mathrm{n}+1 \mathrm{n} \mathrm{n}:$ Set value
Count start condition	Count start flag is set $(=1)$
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	The timer underflows
TBiin pin function	Programmable I/O port
Read from timer	Count value is read out by reading timer Bi register Write to timer When counting stopped - When a value is written to timer Bi register, it is written to both reload register and counter in progress When a value is written to timer Bi register, it is written to only reload register (Transferred to counter at next reload time)

Figure 2.10.17 Timer Bi mode register in timer mode

(2) Event counter mode

In this mode, the timer counts an external signal or an internal timer's overflow. (See Table 2.10.7)
Figure 2.10.18 shows the timer Bi mode register in event counter mode.
Table 2.10.7 Timer specifications in event counter mode

Item	Specification
Count source	- External signals input to TBiin pin - Effective edge of count source can be a rising edge, a falling edge, or falling and rising edges as selected by software
Count operation	- Counts down - When the timer underflows, it reloads the reload register contents before continuing counting
Divide ratio	$1 /(\mathrm{n}+1) \quad \mathrm{n}$: Set value
Count start condition	Count start flag is set (=1)
Count stop condition	Count start flag is reset (=0)
Interrupt request generation timing	The timer underflows
TBiln pin function	Count source input
Read from timer	Count value can be read out by reading timer Bi register
Write to timer	- When counting stopped When a value is written to timer Bi register, it is written to both reload register and counter - When counting in progress When a value is written to timer Bi register, it is written to only reload register (Transferred to counter at next reload time)

Figure 2.10.18 Timer Bi mode register in event counter mode

(3) Pulse period/pulse width measurement mode

In this mode, the timer measures the pulse period or pulse width of an external signal. (See Table 2.10.8) Figure 2.10 .19 shows the timer Bi mode register in pulse period/pulse width measurement mode. Figure 2.10.20 shows the operation timing when measuring a pulse period. Figure 2.10.21 shows the operation timing when measuring a pulse width.

Table 2.10.8 Timer specifications in pulse period/pulse width measurement mode

Item	Specification
Count source	$\mathrm{f1,f8,f32,fc32}$
Count operation	\bullet Up count \bullet Counter value "000016" is transferred to reload register at measurement pulse's effective edge and the timer continues counting
Count start condition	Count start flag is set (=1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	• When measurement pulse's effective edge is input (Note 1) - When an overflow occurs. (Simultaneously, the timer Bi overflow flag changes to "1". The timer Bi overflow flag changes to "0" when the count start flag is "1" and a value is written to the timer Bi mode register.)
TBiln pin function	Measurement pulse input
Read from timer	When timer Bi register is read, it indicates the reload register's content (measurement result) (Note 2)
Write to timer	Cannot be written to

Note 1: An interrupt request is not generated when the first effective edge is input after the timer has started counting.
Note 2: The value read out from the timer Bi register is indeterminate until the second effective edge is input after the timer.

Figure 2.10.19 Timer Bi mode register in pulse period/pulse width measurement mode

Figure 2.10.20 Operation timing when measuring a pulse period

Figure 2.10.21 Operation timing when measuring a pulse width

2.11 Serial I/O

Serial I/O is configured as five channels: UARTO, UART1, UART2, S I/O3 and S I/O4.

2.11.1 UARTO to 2

UARTO, UART1 and UART2 each have an exclusive timer to generate a transfer clock, so they operate independently of each other.
Figure 2.11.1 shows the block diagram of UART0, UART1 and UART2. Figures 2.11.2 and 2.11.3 show the block diagram of the transmit/receive unit.
UARTi (i=0 to 2) has two operation modes: a clock synchronous serial I/O mode and a clock asynchronous serial I/O mode (UART mode). The contents of the serial I/O mode select bits (bits 0 to 2 at addresses 03A016, 03A816 and 037816) determine whether UARTi is used as a clock synchronous serial I/O or as a UART. Although a few functions are different, UART0, UART1 and UART2 have almost the same functions.
UART0 through UART2 are almost equal in their functions with minor exceptions. UART2, in particular, is compliant with the SIM interface with some extra settings added in clock-asynchronous serial I/O mode (Note). It also has the bus collision detection function that generates an interrupt request if the TxD pin and the RxD pin are different in level.
Table 2.11.1 shows the comparison of functions of UART0 through UART2, and Figures 2.11.4 to 2.11.8 show the registers related to UARTi.

Note: SIM : Subscriber Identity Module
Table 2.11.1 Comparison of functions of UART0 through UART2

| Function | UARTO | UART1 | UART2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CLK polarity selection | Possible (Note 1) | Possible (Note 1) | Possible (Note 1) |
| LSB first / MSB first selection | Possible (Note 1) | Possible (Note 1) | Possible (Note 2) |
| Continuous receive mode selection | Possible (Note 1) | Possible (Note 1) | Possible (Note 1) |
| Transfer clock output from multiple
 pins selection | Impossible | Possible (Note 1) | Impossible |
| Serial data logic switch | Impossible | Impossible | Possible (Note 4) |
| Sleep mode selection | Possible (Note 3) | Possible (Note 3) | Impossible |
| TxD, RxD I/O polarity switch | Impossible | Impossible | Possible |
| TxD, RxD port output format | CMOS output | CMOS output | N-channel open-drain
 output |
| Parity error signal output | Impossible | Impossible | Possible (Note 4) |
| Bus collision detection | Impossible | Impossible | Possible |

[^2]

Figure 2.11.1 Block diagram of UARTi (i=0 to 2)

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Figure 2.11.2 Block diagram of UARTi $(\mathbf{i}=\mathbf{0}, \mathbf{1})$ transmit/receive unit

Figure 2.11.3 Block diagram of UART2 transmit/receive unit

Figure 2.11.4 UARTi I/O-related registers (1)

UARTi transmit/receive mode register

Note: Set the corresponding direction register to "0".

UART2 transmit/receive mode register

Notes1: Bit 2 to bit 0 are set to " 0102 " when $\mathrm{I}^{2} \mathrm{C}$ mode is used.
2 : Set the corresponding direction register to " 0 ".

Figure 2.11.5 UARTiI I/O-related registers (2)

UARTi transmit/receive control register 0

Note 1: Set the corresponding port direction register to "0".
Note 2: The settings of the corresponding port register and port direction register are invalid.
UART2 transmit/receive control register 0

Note 1: Set the corresponding port direction register to " 0 ".
Note 2: The settings of the corresponding port register and port direction register are invalid. Note 3: Only clock synchronous serial I/O mode and 8-bit UART mode are valid.

Figure 2.11.6 UARTi I/O-related registers (3)

UARTi transmit/receive control register 1

UART2 transmit/receive control register 1

Figure 2.11.7 UARTi I/O-related registers (4)

UART transmit/receive control register 2

UART2 special mode register

Notes 1: Nothing but "0" may be written.
2: Do not write "1" except at I ${ }^{2} \mathrm{C}$ mode. Must always be " 0 " at normal mode. Bit 7 to bit5 (DL2 to DL0 = SDA digital delay value setting bit) of UART2 special mode register 3 (U2SMR3/address 037516) are initialized and become "000" when this bit is "0", analog delay circuit is selected. Reading and writing U2SMR3 are enablewhen SDDS = "0".
3: Delaying ; Only analog delay value when analog delay is selected, and only digital delay value when digital delay is selected.

Figure 2.11.8 UARTi I/O-related registers (5)

UART2 special mode register 2 ($I^{2} \mathrm{C}$ bus exclusive register)

UART2 special mode register $3\left(I^{2} \mathrm{C}\right.$ bus exclusive register)

Figure 2.11.9 UARTi -related registers (6)

2.11.2 Clock synchronous serial I/O mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Tables 2.11.2 and 2.11.3 list the specifications of the clock synchronous serial I/O mode. Figur 2.11 .10 shows the UARTi transmit/receive mode register.
Table 2.11.2 Specifications of clock synchronous serial I/O mode (1)

Item	Specification
Transfer data format	- Transfer data length: 8 bits
Transfer clock	- When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816 $=$ " 0 ") : fi/ $2(\mathrm{n}+1$) (Note 1) $\mathrm{fi}=\mathrm{f} 1, \mathrm{f} 8, \mathrm{f} 32$ - When external clock is selected (bit 3 at addresses 03A016, 03A816, 037816 = "1") : Input from CLKi pin
Transmission/reception control	- CTS function/RTS function/CTS, RTS function chosen to be invalid
Transmission start condition	- To start transmission, the following requirements must be met: - Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1" - Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0" - When CTS function selected, CTS input level = "L" - Furthermore, if external clock is selected, the following requirements must also be met: - CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) $=$ " 0 ": CLKi input level = " H " - CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "1": CLKi input level = "L"
Reception start condition	- To start reception, the following requirements must be met: - Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = "1" - Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) $=" 1 "$ - Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) $=$ " 0 " - Furthermore, if external clock is selected, the following requirements must also be met: - CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) $=$ " 0 ": CLKi input level = "H" - CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) $=$ " 1 ": CLKi input level $=$ " L "
Interrupt request generation timing	- When transmitting - Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at address 037D16) = " 0 ": Interrupts requested when data transfer from UARTi transfer buffer register to UARTi transmit register is completed - Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at address 037D16) = "1": Interrupts requested when data transmission from UARTi transfer register is completed - When receiving - Interrupts requested when data transfer from UARTi receive register to UARTi receive buffer register is completed
Error detection	- Overrun error (Note 2) This error occurs when the next data is ready before contents of UARTi receive buffer register are read out

Note 1: "n" denotes the value 0016 to FF16 that is set to the UART bit rate generator.
Note 2: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit does not change.

Table 2.11.3 Specifications of clock synchronous serial I/O mode (2)

Item	Specification
Select function	- CLK polarity selection
	Whether transmit data is output/input at the rising edge or falling edge of the transfer clock can be selected
	- LSB first/MSB first selection
	Whether transmission/reception begins with bit 0 or bit 7 can be selected
	Reception is enabled simultaneously by a read from the receive buffer register - Transfer clock output from multiple pins selection (UART1)
	UART1 transfer clock can be chosen by software to be output from one of the two pins set
	- Switching serial data logic (UART2)
	Whether to reverse data in writing to the transmission buffer register or reading the reception buffer register can be selected. - TxD, RxDI/Opolarity reverse (UART2)
	This function is reversing TxD port output and RxD port input. All I/O data level is reversed.

UARTi transmit/receive mode registers

Note 1: Set a corresponding direction register to "0."

UART2 transmit/receive mode register

Figure 2.11.10 UARTi transmit/receive mode register in clock synchronous serial I/O mode

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Table 2.11.4 lists the functions of the input/output pins during clock synchronous serial I/O mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open-drain is selected, this pin is in floating state.)

Table 2.11.4 Input/output pin functions in clock synchronous serial I/O mode

Pin name	Function	Method of selection
$\begin{aligned} & \hline \text { TxDi } \\ & \text { (P63, P67, P70) } \end{aligned}$	Serial data output	(Outputs dummy data when performing reception only)
$\begin{aligned} & \mathrm{RxDi} \\ & \text { (P62, P66, P71) } \end{aligned}$	Serial data input	Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16, bit 1 at address 03EF16)= " 0 " (Can be used as an input port when performing transmission only)
$\begin{aligned} & \text { CLKi } \\ & \text { (P61, P65, P72) } \end{aligned}$	Transfer clock output	Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) $=$ " 0 "
	Transfer clock input	Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) $=$ " 1 " Port P61, P65 and P72 direction register (bits 1 and 5 at address 03EE16, bit 2 at address 03EF16) $=$ " 0 "
$\begin{aligned} & \overline{\mathrm{CTSi}} / \overline{\mathrm{RTSi}} \\ & (\mathrm{P} 60, \mathrm{P} 64, \mathrm{P} 73) \end{aligned}$	$\overline{\text { CTS }}$ input	$\overline{\mathrm{CTS}} / \overline{\mathrm{RTS}}$ disable bit (bit 4 at address 03A416, 03AC16, 037C16) ="0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) $=$ " 0 " Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16, bit 3 at address 03EF16) $=$ " 0 "
	$\overline{\text { RTS output }}$	$\overline{\text { CTS }} /$ RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) $=$ " 0 " CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) $=$ " 1 "
	Programmable I/O port	$\overline{\mathrm{CTS}} / \overline{\mathrm{RTS}}$ disable bit (bit 4 at address 03A416, 03AC16, 037C16) $=$ " 1 "

- Example of transmit timing (when internal clock is selected)

Shown in () are bit symbols.

The above timing applies to the following settings:

- Internal clock is selected
- CTS function is selected
- CLK polarity select bit = " 0 ".
- Transmit interrupt cause select bit $=$ " 0 "

Tc = TCLK = 2($\mathrm{n}+1$) / fi
fi: frequency of BRGi count source ($\mathrm{f} 1, \mathrm{f} 8, \mathrm{f} 32$)
n : value set to BRGi

- Example of receive timing (when external clock is selected)

Shown in () are bit symbols.
The above timing applies to the following settings:
Meet the following conditions are met when the CLK

Figure 2.11.11 Typical transmit/receive timings in clock synchronous serial I/O mode

(1) Polarity select function

As shown in Figure 2.11.12 the CLK polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) allows selection of the polarity of the transfer clock.

Figure 2.11.12 Polarity of transfer clock

(2) LSB first/MSB first select function

As shown in Figure 2.11.13, when the transfer format select bit (bit 7 at addresses 03A416, 03AC16, $037 \mathrm{C} 16)=$ " 0 ", the transfer format is "LSB first"; when the bit $=$ " 1 ", the transfer format is "MSB first".

- When transfer format select bit $=$ " 0 "

- When transfer format select bit = " 1 "

Note: This applies when the CLK polarity select bit = " 0 ".

Figure 2.11.13 Transfer format

(3) Transfer clock output from multiple pins function (UART1)

This function allows the setting two transfer clock output pins and choosing one of the two to output a clock by using the CLK and CLKS select bit (bits 4 and 5 at address 03B016). (See Figure 2.11.14) The multiple pins function is valid only when the internal clock is selected for UART1.

Note: This applies when the internal clock is selected and transmission is performed only in clock synchronous serial I/O mode.

Figure 2.11.14 The transfer clock output from the multiple pins function usage

(4) Continuous receive mode

If the continuous receive mode enable bit (bits 2 and 3 at address 03B016, bit 5 at address 037D16) is set to " 1 ", the unit is placed in continuous receive mode. In this mode, when the receive buffer register is read out, the unit simultaneously goes to a receive enable state without having to set dummy data to the transmit buffer register back again.

(5) Serial data logic switch function (UART2)

When the data logic select bit (bit6 at address 037D16) = "1", and writing to transmit buffer register or reading from receive buffer register, data is reversed. Figure 2.11 .15 shows the example of serial data logic switch timing.

Figure 2.11.15 Serial data logic switch timing

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.11.3 Clock asynchronous serial I/O (UART) mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Tables 2.11.5 and 2.11.6 list the specifications of the UART mode. Figure 2.11.16 shows the UARTi transmit/receive mode register.

Table 2.11.5 Specifications of UART Mode (1)

Item	Specification
Transfer data format	- Character bit (transfer data): 7 bits, 8 bits, or 9 bits as selected - Start bit: 1 bit - Parity bit: Odd, even, or nothing as selected - Stop bit: 1 bit or 2 bits as selected
Transfer clock	-When internal clock is selected (bit 3 at addresses 03A016 ,03A816, 037816 = "0") : $\mathrm{fi} / 16(\mathrm{n}+1)$ (Note 1) fi $=\mathrm{f} 1, \mathrm{f} 8, \mathrm{f} 32$ - When external clock is selected (bit 3 at addresses 03A016 and 03A816 = " 1 ") : fExT/16(n+1) (Note 1) (Note 2) (Do not set external clock for UART2)
Transmission/reception control	- CTS function/RTS function/CTS, RTS function chosen to be invalid
Transmission start condition	- To start transmission, the following requirements must be met: - Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1" - Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0" - When CTS function selected, $\overline{\text { CTS }}$ input level $=$ " L "
Reception start condition	- To start reception, the following requirements must be met: - Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) $=$ " $1 "$ - Start bit detection
Interrupt request generation timing	- When transmitting - Transmit interrupt cause select bits (bits 0,1 at address 03B016, bit4 at address 037D16) = " 0 ": Interrupts requested when data transfer from UARTi transfer buffer register to UARTi transmit register is completed - Transmit interrupt cause select bits (bits 0, 1 at address 03B016, bit4 at address 037D16) $=$ " 1 ": Interrupts requested when data transmission from UARTi transfer register is completed - When receiving - Interrupts requested when data transfer from UARTi receive register to UARTi receive buffer register is completed
Error detection	- Overrun error (Note 3) This error occurs when the next data is ready before contents of UARTi receive buffer register are read out - Framing error This error occurs when the number of stop bits set is not detected - Parity error This error occurs when if parity is enabled, the number of 1 's in parity and character bits does not match the number of 1's set - Error sum flag This flag is set $(=1)$ when any of the overrun, framing, and parity errors is encountered

Note 1: ' n ' denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.
Note 2: fEXT is input from the CLKi pin.
Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit does not change.

M306H2MC-XXXFP

Table 2.11.6 Specifications of UART Mode (2)

Item	Specification
Select function	• Sleep mode selection (UART0, UART1)
	This mode is used to transfer data to and from one of multiple slave micro-
	computers
	• Serial data logic switch (UART2)
	This function is reversing logic value of transferring data. Start bit, parity bit
	and stop bit are not reversed.
	• TXD, RxD I/O polarity switch (UART2)
	This function is reversing TxD port output and RxD port input. All I/O data
	level is reversed.

UARTi transmit / receive mode registers

Note: Set a corresponding direction register to "0."

UART2 transmit / receive mode register

Note: Usually set to "0".

Figure 2.11.16 UARTi transmit/receive mode register in UART mode

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Table 2.11.7 lists the functions of the input/output pins during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a " H ". (If the N -channel open-drain is selected, this pin is in floating state.)

Table 2.11.7 Input/output pin functions in UART mode

Pin name	Function	Method of selection
$\begin{aligned} & \hline \text { TxDi } \\ & \text { (P63, P67, P70) } \end{aligned}$	Serial data output	
$\begin{aligned} & \text { RxDi } \\ & \text { (P62, P66, P71) } \end{aligned}$	Serial data input	Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16, bit 1 at address 03EF16)= " 0 " (Can be used as an input port when performing transmission only)
$\begin{aligned} & \text { CLKi } \\ & \text { (P61, P65, P72) } \end{aligned}$	Programmable I/O port	Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) $=$ " 0 "
	Transfer clock input	Internal/external clock select bit (bit 3 at address 03A016, 03A816) = "1" Port P61, P65 direction register (bits 1 and 5 at address 03EE16) $=$ " 0 " (Do not set external clock for UART2)
$\begin{aligned} & \overline{\mathrm{CTSi}} / \overline{\mathrm{RTSi}} \\ & \text { (P60, P64, P73) } \end{aligned}$	$\overline{\text { CTS }}$ input	$\overline{\mathrm{CTS}} / \overline{\mathrm{RTS}}$ disable bit (bit 4 at address 03A416, 03AC16, 037C16) $=$ "0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) $=$ " 0 " Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16, bit 3 at address 03EF16) $=$ " 0 "
	$\overline{\text { RTS output }}$	$\overline{\text { CTS }} / \overline{\text { RTS }}$ disable bit (bit 4 at address 03A416, 03AC16, 037C16) $=$ "0" $\overline{\text { CTS }} /$ RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) $=" 1$ "
	Programmable I/O port	$\overline{\mathrm{CTS}} / \overline{\mathrm{RTS}}$ disable bit (bit 4 at address 03A416, 03AC16, 037C16) $=$ " 1 "

- Example of transmit timing when transfer data is 8 bits long (parity enabled, one stop bit)

- Example of transmit timing when transfer data is 9 bits long (parity disabled, two stop bits)

Shown in () are bit symbols.

The above timing applies to the following settings :

- Parity is disabled.
- Two stop bits.
- CTS function is disabled.
- Transmit interrupt cause select bit = " 0 ".

Tc = $16(\mathrm{n}+1) /$ fi or $16(\mathrm{n}+1) / \mathrm{fEXT}$
fi : frequency of BRGi count source ($\mathrm{f} 1, \mathrm{f} 8, \mathrm{f} 32$) fEXT : frequency of BRGi count source (external clock) n : value set to BRGi

Figure 2.11.17 Typical transmit timings in UART mode(UART0,UART1)

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Note: The transmit is started with overflow timing of BRG after having written in a value at the transmit buffer in the above timing.

Figure 2.11.18 Typical transmit timings in UART mode(UART2)

- Example of receive timing when transfer data is 8 bits long (parity disabled, one stop bit)

Figure 2.11.19 Typical receive timing in UART mode

(1) Sleep mode (UART0, UART1)

This mode is used to transfer data between specific microcomputers among multiple microcomputers connected using UARTi. The sleep mode is selected when the sleep select bit (bit 7 at addresses 03A016, 03A816) is set to " 1 " during reception. In this mode, the unit performs receive operation when the MSB of the received data $=$ " 1 " and does not perform receive operation when the MSB $=$ " 0 ".

(2) Function for switching serial data logic (UART2)

When the data logic select bit (bit 6 of address 037D16) is assigned 1, data is inverted in writing to the transmission buffer register or reading the reception buffer register. Figure 2.11.20 shows the example of timing for switching serial data logic.

Figure 2.11.20 Timing for switching serial data logic

M306H2MC-XXXFP

(3) TxD, RxD I/O polarity reverse function (UART2)

This function is to reverse TXD pin output and RxD pin input. The level of any data to be input or output (including the start bit, stop bit(s), and parity bit) is reversed. Set this function to " 0 " (not to reverse) for usual use.

(4) Bus collision detection function (UART2)

This function is to sample the output level of the TxD pin and the input level of the RxD pin at the rising edge of the transfer clock; if their values are different, then an interrupt request occurs. Figure 2.11.21 shows the example of detection timing of a buss collision (in UART mode).

Figure 2.11.21 Detection timing of a bus collision (in UART mode)

2.11.4 Clock-asynchronous serial I/O mode (compliant with the SIM interface)

The SIM interface is used for connecting the microcomputer with a memory card or the like; adding some extra settings in UART2 clock-asynchronous serial I/O mode allows the user to effect this function. Table 2.11 .8 shows the specifications of clock-asynchronous serial I/O mode (compliant with the SIM interface).
Table 2.11.8 Specifications of clock-asynchronous serial I/O mode (compliant with the SIM interface)

Item	Specification
Transfer data format	- Transfer data 8 -bit UART mode (bit 2 through bit 0 of address $037816=$ " 1012 ") - One stop bit (bit 4 of address $037816=$ " 0 ") - With the direct format chosen Set parity to "even" (bit 5 and bit 6 of address $037816=$ " 1 " and " 1 " respectively) Set data logic to "direct" (bit 6 of address 037D16 = "0"). Set transfer format to LSB (bit 7 of address $037 \mathrm{C} 16=$ " 0 "). - With the inverse format chosen Set parity to "odd" (bit 5 and bit 6 of address $037816=$ " 0 " and " 1 " respectively) Set data logic to "inverse" (bit 6 of address 037D16 = " 1 ") Set transfer format to MSB (bit 7 of address 037C16 = "1")
Transfer clock	- With the internal clock chosen (bit 3 of address $037816=" 0$ ") : fi/ $16(\mathrm{n}+1)$ (Note 1) : fiift, f8, f32 (Do not set external clock)
Transmission / reception control	- Disable the CTS and RTS function (bit 4 of address 037C16 = "1")
Other settings	- The sleep mode select function is not available for UART2 - Set transmission interrupt factor to "transmission completed" (bit 4 of address 037D16 = "1")
Transmission start condition	- To start transmission, the following requirements must be met: - Transmit enable bit (bit 0 of address 037D16) = "1" - Transmit buffer empty flag (bit 1 of address 037D16) = "0"
Reception start condition	- To start reception, the following requirements must be met: - Reception enable bit (bit 2 of address 037D16) = "1" - Detection of a start bit
Interrupt request generation timing	- When transmitting When data transmission from the UART2 transfer register is completed (bit 4 of address 037D16 = "1") -When receiving When data transfer from the UART2 receive register to the UART2 receive buffer register is completed
Error detection	- Overrun error (see the specifications of clock-asynchronous serial I/O) (Note 2) - Framing error (see the specifications of clock-asynchronous serial I/O) - Parity error (see the specifications of clock-asynchronous serial I/O) - On the reception side, an "L" level is output from the TxD2 pin by use of the parity error signal output function (bit 7 of address 037D16 = "1") when a parity error is detected - On the transmission side, a parity error is detected by the level of input to the RxD2 pin when a transmission interrupt occurs - The error sum flag (see the specifications of clock-asynchronous serial I/O)

Note 1: 'n' denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.
Note 2: If an overrun error occurs, the UART2 receive buffer will have the next data written in. Note also that the UART2 receive interrupt request bit does not change.

Figure 2.11.22 Typical transmit/receive timing in UART mode (compliant with the SIM interface)

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(1) Parity error signal output function

If a parity error is detected when the error signal output enable bit (address 037D16, bit 7) has been set to "1", a low-level signal can be output from the TxD2 pin. Also, when operating in transmit mode, a transmit-complete interrupt is generated a half transfer clock cycle later than when the error signal output enable bit (address 037D16, bit 7) is set to "0". Therefore, a parity error signal can be detected in the transmit-complete interrupt program. Figure 2.11.23 shows the timing at which a parity error signal is output.

Figure 2.11.23 Output timing of the parity error signal
(2) Direct format/inverse format

Connecting the SIM card allows you to switch between direct format and inverse format. If you choose the direct format, D0 data is output from TxD2. If you choose the inverse format, D7 data is inverted and output from TxD2.
Figure 2.11.24 shows the SIM interface format.

Figure 2.11.24 SIM interface format

M306H2MC-XXXFP

Figure 2.11.25 shows the example of connecting the SIM interface. Connect TxD2 and RxD2 and apply pull-up.

Figure 2.11.25 Connecting the SIM interface

2.11.5 UART2 Special Mode Register

The UART2 special mode register (address 037716) is used to control UART2 in various ways.
Figure 2.11.26 shows the UART2 special mode register.
Bit 0 of the UART special mode register (037716) is used as the $\mathrm{I}^{2} \mathrm{C}$ mode selection bit.
Setting " 1 " in the $\mathrm{I}^{2} \mathrm{C}$ mode select bit (bit 0) goes the circuit to achieve the $\mathrm{I}^{2} \mathrm{C}$ bus interface effective.
Since this function uses clock-synchronous serial I/O mode, set this bit to "0" in UART mode.

UART2 special mode register

UART2 special mode register 3 (${ }^{2} \mathrm{C}$ bus exclusive register)

Notes 1: Reading and writing is possible when bit7 (SDDS = SDA digital delay selection bit) of UART2 special mode register (U2SMR/address 0377 16) is " 1 ". When set SDDS = "1" and read out initialized value of UART2 special mode register 3(U2SMR3), this value is "00 16 ". When set SDDS $=$ " 1 " and write to UART2 special mode register 3(U2SMR3), set " 0 " to bit 0 to bit 4 . When SDDS $=$ " 0 ", writing is enable. When read out, this value is indeterminate.
2 : When SDDS $=$ " 0 ", this bit is initialized and become " 000 ", selected analog delay circuit. This bit is become "000" after end reset released, and selected SDDS = " 0 ", value which was read out is indeterminate Delaying; Only analog delay value when analog delay is
3: Delaying ; Only analog delay value when analog delay is selected, and only digital delay value when digital delay is selected. delay is increase around 100 ns . So test first, and use this.

Figure 2.11.26 UART2 special mode register

Figure 2.11.27 Functional block diagram for $\mathrm{I}^{2} \mathrm{C}$ mode
Table 2.11.9 Features in $I^{2} C$ mode

	Function	Normal mode	I 2 C mode (Note 1)
1	Factor of interrupt number 10 (Note 2)	Bus collision detection	Start condition detection or stop condition detection
2	Factor of interrupt number 15 (Note 2)	UART2 transmission	No acknowledgment detection (NACK)
3	Factor of interrupt number 16 (Note 2)	UART2 reception	Acknowledgment detection (ACK)
4	UART2 transmission output delay	Not delayed	Delayed(Digital / analog selection is possible)
5	P70 at the time when UART2 is in use	TxD2 (output)	SDA (input/output) (Note 3)
6	P71 at the time when UART2 is in use	RxD2 (input)	SCL (input/output)
7	P72 at the time when UART2 is in use	CLK2	P72
8	DMA1 factor at the time when 1101 is assigned to the DMA request factor selection bits	UART2 reception	Acknowledgment detection (ACK)
9	Noise filter width	$15 n s$	50ns
10	Reading P71	Reading the terminal when 0 is assigned to the direction register	Reading the terminal regardless of the value of the direction register
11	Initial value of UART2 output	H level (when 0 is assigned to the CLK polarity select bit)	The value set in latch P70 when the port is selected

Note 1: Make the settings given below when $I^{2} \mathrm{C}$ mode is in use.
Set 010 in bits 2, 1, 0 of the UART2 transmission/reception mode register.
Disable the RTS/CTS function. Choose the MSB First function.
Note 2: Follow the steps given below to switch from a factor to another.

1. Disable the interrupt of the corresponding number.
2. Switch from a factor to another.
3. Reset the interrupt request flag of the corresponding number.
4. Set an interrupt level of the corresponding number.

Note 3: Set an initial value of SDA transmission output when serial I/O is invalid.

M306H2MC-XXXFP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Figure 2.11.27 hows the functional block diagram for $\mathrm{I}^{2} \mathrm{C}$ mode. Setting " 1 " in the $\mathrm{I}^{2} \mathrm{C}$ mode selection bit (IICM) causes ports P70, P71, and P72 to work as data transmission-reception terminal SDA, clock input-output terminal SCL, and port P72 respectively. A delay circuit is added to the SDA transmission output, so the SDA output changes after SCL fully goes to "L". Can select analog delay or digital delay by SDA digital delay selection bit (7 bit of address 037716). When select digital delay, can select delay to 2 cycle to 8 cycle of $f 1$ by UART2 special mode register 3 (address 037516). Functions changed by $1^{2} \mathrm{C}$ mode selection bit 2 is shown in below.
Table 2.11.10 Delay circuit selection condition

	Register value			Contents

An attempt to read Port P71 (SCL) results in getting the terminal's level regardless of the content of the port direction register. The initial value of SDA transmission output in this mode goes to the value set in port P70. The interrupt factors of the bus collision detection interrupt, UART2 transmission interrupt, and of UART2 reception interrupt turn to the start/stop condition detection interrupt, acknowledgment non-detection interrupt, and acknowledgment detection interrupt respectively.
The start condition detection interrupt refers to the interrupt that occurs when the falling edge of the SDA terminal (P70) is detected with the SCL terminal (P71) staying "H". The stop condition detection interrupt refers to the interrupt that occurs when the rising edge of the SDA terminal (P70) is detected with the SCL terminal (P71) staying "H". The bus busy flag (bit 2 of the UART2 special mode register) is set to " 1 " by the start condition detection, and set to " 0 " by the stop condition detection.
The acknowledgment non-detection interrupt refers to the interrupt that occurs when the SDA terminal level is detected still staying " H " at the rising edge of the 9th transmission clock. The acknowledgment detection interrupt refers to the interrupt that occurs when SDA terminal's level is detected already went to " L " at the 9th transmission clock. Also, assigning 1101(UART2 reception) to the DMA1 request factor select bits provides the means to start up the DMA transfer by the effect of acknowledgment detection.
Bit 1 of the UART2 special mode register (037716) is used as the arbitration loss detecting flag control bit. Arbitration means the act of detecting the nonconformity between transmission data and SDA terminal data at the timing of the SCL rising edge. This detecting flag is located at bit 11 of the UART2 reception buffer register (037F16, 037E16), and " 1 " is set in this flag when nonconformity is detected. Use the arbitration lost detecting flag control bit to choose which way to use to update the flag, bit by bit or byte by byte. When setting this bit to " 1 " and updated the flag byte by byte if nonconformity is detected, the arbitration lost detecting flag is set to " 1 " at the falling edge of the 9th transmission clock. If update the flag byte by byte, must judge and clear ("0") the arbitration lost detecting flag after completing the first byte acknowledge detect and before starting the next one byte transmission.
Bit 3 of the UART2 special mode register is used as SCL- and L-synchronous output enable bit. Setting this bit to "1" goes the P71 data register to "0" in synchronization with the SCL terminal level going to "L".

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Some other functions added are explained here. Figure 2.11 .28 shows their workings.
Bit 4 of the UART2 special mode register is used as the bus collision detect sampling clock select bit. The bus collision detect interrupt occurs when the RxD2 level and TxD2 level do not match, but the nonconformity is detected in synchronization with the rising edge of the transfer clock signal if the bit is set to " 0 ". If this bit is set to " 1 ", the nonconformity is detected at the timing of the overflow of timer A0 rather than at the rising edge of the transfer clock.
Bit 5 of the UART2 special mode register is used as the auto clear function select bit of transmit enable bit. Setting this bit to " 1 " automatically resets the transmit enable bit to " 0 " when " 1 " is set in the bus collision detect interrupt request bit (nonconformity).
Bit 6 of the UART2 special mode register is used as the transmit start condition select bit. Setting this bit to " 1 " starts the TxD transmission in synchronization with the falling edge of the RxD terminal.

1. Bus collision detect sampling clock select bit (Bit 4 of the UART2 special mode register)

2. Auto clear function select bit of transmt enable bit (Bit 5 of the UART2 special mode register)

3. Transmit start condition select bit (Bit 6 of the UART2 special mode register) 0 : In normal state

With "1: falling edge of RxD2" selected

Figure 2.11.28 Some other functions added

2.11.6 UART2 Special Mode Register 2

UART2 special mode register 2 (address 037616) is used to further control UART2 in $I^{2} \mathrm{C}$ mode. Figure 2.11.29 shows the UART2 special mode register 2.

UART2 special mode register 2

Figure 2.11.29 UART2 special mode register 2

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Bit 0 of the UART2 special mode register 2 (address 037616) is used as the $\mathrm{I}^{2} \mathrm{C}$ mode selection bit 2. Table 2.11 .11 shows the types of control to be changed by $I^{2} \mathrm{C}$ mode selection bit 2 when the $\mathrm{I}^{2} \mathrm{C}$ mode selection bit is set to "1". Table 2.11 .12 shows the timing characteristics of detecting the start condition and the stop condition. Set the start/stop condition control bit (bit 7 of UART2 special mode register 2) to " 1 " in $\mathrm{I}^{2} \mathrm{C}$ mode.

Table 2.11.11 Functions changed by $\mathrm{I}^{2} \mathrm{C}$ mode selection bit 2

	Function	IICM2 = 0	IICM2 $=1$
1	Factor of interrupt number 15	No acknowledgment detection (NACK)	UART2 transmission (the rising edge of the final bit of the clock)
2	Factor of interrupt number 16	Acknowledgment detection (ACK)	UART2 reception (the falling edge of the final bit of the clock)
3	DMA1 factor at the time when 1 1 0 1 is assigned to the DMA request factor selection bits	Acknowledgment detection (ACK)	UART2 reception (the falling edge of the final bit of the clock)
4	Timing for transferring data from the UART2 reception shift register to the reception buffer.	The rising edge of the final bit of the reception clock	The falling edge of the final bit of the reception clock
5	Timing for generating a UART2 reception/ACK interrupt request	The rising edge of the final bit of the reception clock	The falling edge of the final bit of the reception clock

Table 2.11.12 Timing characteristics of detecting the start condition and the stop condition(Note1)

```
3 to 6 cycles < duration for setting-up (Note2)
3 to 6 cycles < duration for holding (Note2)
```

Note 1 : When the start/stop condition count bit is "1" .
Note 2 : "cycles" is in terms of the input oscillation frequency $f(\mathrm{XIN})$ of the main clock.

Figure 2.11.30 Functional block diagram for $\mathrm{I}^{2} \mathrm{C}$ mode
Functions available in $\mathrm{I}^{2} \mathrm{C}$ mode are shown in Figure 2.11.30- a functional block diagram.
Bit 3 of the UART2 special mode register 2 (address 037616) is used as the SDA output stop bit. Setting this bit to "1" causes an arbitration loss to occur, and the SDA pin turns to high-impedance state the instant when the arbitration loss detection flag is set to "1".
Bit 1 of the UART2 special mode register 2 (address 037616) is used as the clock synchronization bit. With this bit set to "1" at the time when the internal SCL is set to " H ", the internal SCL turns to "L" if the falling edge is found in the SCL pin; and the baud rate generator reloads the set value, and start counting within the "L" interval. When the internal SCL changes from "L" to "H" with the SCL pin set to "L", stops counting the baud rate generator, and starts counting it again when the SCL pin turns to "H". Due to this function, the UART2 transmission-reception clock becomes the logical product of the signal flowing through the internal SCL and that flowing through the SCL pin. This function operates over the period from the moment earlier by a half cycle than falling edge of the UART2 first clock to the rising edge of the ninth bit. To use this function, choose the internal clock for the transfer clock.
Bit 2 of the UART2 special mode register 2 (037616) is used as the SCL wait output bit. Setting this bit to "1" causes the SCL pin to be fixed to "L" at the falling edge of the ninth bit of the clock. Setting this bit to " 0 " frees the output fixed to "L".

M306H2MC-XXXFP

Bit 4 of the UART2 special mode register 2 (address 037616) is used as the UART2 initialization bit. Setting this bit to "1", and when the start condition is detected, the microcomputer operates as follows.
(1) The transmission shift register is initialized, and the content of the transmission register is transferred to the transmission shift register. This starts transmission by dealing with the clock entered next as the first bit. The UART2 output value, however, doesn't change until the first bit data is output after the entrance of the clock, and remains unchanged from the value at the moment when the microcomputer detected the start condition.
(2) The reception shift register is initialized, and the microcomputer starts reception by dealing with the clock entered next as the first bit.
(3) The SCL wait output bit turns to "1". This turns the SCL pin to "L" at the falling edge of the ninth bit of the clock.

Starting to transmit/receive signals to/from UART2 using this function doesn't change the value of the transmission buffer empty flag. To use this function, choose the external clock for the transfer clock. Bit 5 of the UART2 special mode register 2 (037616) is used as the SCL pin wait output bit 2 . Setting this bit to "1" with the serial I/O specified allows the user to forcibly output an "L" from the SCL pin even if UART2 is in operation. Setting this bit to " 0 " frees the "L" output from the SCL pin, and the UART2 clock is input/output.
Bit 6 of the UART2 special mode register 2 (037616) is used as the SDA output enable bit. Setting this bit to "1" forces the SDA pin to turn to the high-impedance state. Refrain from changing the value of this bit at the rising edge of the UART2 transfer clock. There can be instances in which arbitration lost detection flag is turned on.

M306H2MC-XXXFP

2.11.7 S I/O3, 4

S I/O3 and S I/O4 are exclusive clock-synchronous serial I/Os.
Figure 2.11.31 shows the S I/O3, 4 block diagram, and Figure 2.11 .32 shows the S I/O3, 4 control register.Table 2.11.13 shows the specifications of $\mathrm{S} / \mathrm{O}, 4$.

Figure 2.11.31 S I/O3, 4 block diagram

S I/Oi control register ($\mathrm{i}=3,4$) (Note 1)

Note 1: Set "1" in bit 2 of the protection register (000A 16) in advance to write to the S I/Oi control register ($i=3,4$).
Note 2: When using the port as an input/output port by setting the SI/Oi port select bit $(\mathrm{i}=3,4)$ to " 1 ", be sure to set the sync clock select bit to " 1 ".

SI/Oi bit rate generator (Note 1, Note 2)

Note 1: Write a value to this register while transmit/receive halts.
Note 2: Use MOV instruction to write to this register.

SI/Oi transmit/receive register (Note)

Symbol
S3TRR
Address
When reset
S4TRR
036016
Indeterminate Indeterminate

Indeterminate	R
Transmission/reception starts by writing data to this register.	
After transmission/reception finishes, reception data is input.	

Note: Write a value to this register while transmit/receive halts.

Figure 2.11.32 S I/O3, 4 related register

Table 2.11.13 Specifications of S I/O3, 4

Item	Specifications
Transfer data format	- Transfer data length: 8 bits
Transfer clock	- With the internal clock selected (bit 6 of 036216, $036616=" 1$ "): f1/2(ni+1), f8/2(ni+1), f32/2(ni+1) (Note 1) - With the external clock selected (bit 6 of $036216,036616=0$):Input from the CLKi terminal (Note 2)
Conditions for transmission/ reception start	- To start transmit/reception, the following requirements must be met: - Select the synchronous clock (use bit 6 of 036216, 036616). Select a frequency dividing ratio if the internal clock has been selected (use bits 0 and 1 of 036216, 036616). - Souti initial value set bit (use bit 7 of 036216,036616) $=1$. - S I/Oi port select bit (bit 3 of 036216,036616) $=1$. - Select the transfer direction (use bit 5 of 036216, 036616) -Write transfer data to SI/Oi transmit/receive register (036016, 036416) - To use S I/Oi interrupts, the following requirements must be met: - Clear the SI/Oi interrupt request bit before writing transfer data to the SI/Oi transmit/receive register (bit 3 of 004916, 004816) $=0$.
Interrupt request generation timing	- Rising edge of the last transfer clock. (Note 3)
Select function	- LSB first or MSB first selection Whether transmission/reception begins with bit 0 (LSB) or bit 7 (MSB) can be selected. - Function for setting an Souti initial value selection When using an external clock for the transfer clock, the user can choose the Souti pin output level during a non-transfer time. For details on how to set, see Figure 2.11.33.
Precaution	- Unlike UART0-2, SI/Oi $(\mathrm{i}=3,4)$ is not divided for transfer register and buffer. Therefore, do not write the next transfer data to the SI/Oi transmit/receive register (addresses 036016, 036416) during a transfer. When the internal clock is selected for the transfer clock, Souti holds the last data for a $1 / 2$ transfer clock period after it finished transferring and then goes to a high-impedance state. However, if the transfer data is written to the SI/Oi transmit/receive register (addresses 036016, 036416) during this time, SOUTi is placed in the high-impedance state immediately upon writing and the data hold time is thereby reduced.

Note 1: n is a value from 0016 through FF16 set in the S I/Oi transfer rate register $(\mathrm{i}=3,4)$.
Note 2: With the external clock selected:
-Before data can be written to the SI/Oi transmit/receive register (addresses 036016, 036416), the CLKi pin input must be in the low state. Also, before rewriting the SI/Oi Control Register (addresses 036216, 036616)'s bit 7 (Souti initial value set bit), make sure the CLKi pin input is held low.

- The S I/Oi circuit keeps on with the shift operation as long as the synchronous clock is entered in it, so stop the synchronous clock at the instant when it counts to eight. The internal clock, if selected, automatically stops.
Note 3: If the internal clock is used for the synchronous clock, the transfer clock signal stops at the "H" state.

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(1) Functions for setting an Souti initial value

When using an external clock for the transfer clock, the Souti pin output level during a non-transfer time can be set to the high or the low state. Figure 2.11 .33 shows the timing chart for setting an Souti initial value and how to set it.

Figure 2.11.33 Timing chart for setting Souti's initial value and how to set it
(2) S I/Oi operation timing

Figure 2.11.34 shows the S I/Oi operation timing

Figure 22.11.34 S I/Oi operation timing chart

2.12 A-D Converter

The A-D converter consists of one 8-bit successive approximation A-D converter circuit with a capacitive coupling amplifier. Pins P100 to P107, P95, and P96 also function as the analog signal input pins. The direction registers of these pins for A-D conversion must therefore be set to input. The Vref connect bit (bit 5 at address 03D716) can be used to isolate the resistance ladder of the A-D converter from the reference voltage input pin (VREF) when the A-D converter is not used. Doing so stops any current flowing into the resistance ladder from Vref, reducing the power dissipation. When using the A-D converter, start A-D conversion only after setting bit 5 of 03D716 to connect VREF.
The result of A-D conversion is stored in the A-D registers of the selected pins.
Table 2.12 .1 shows the performance of the A-D converter. Figure 2.12 .1 shows the block diagram of the A-D converter, and Figures 2.12 .2 and 2.12 .3 show the A-D converter-related registers.

Table 2.12.1 Performance of A-D converter

Item	Performance
Method of A-D conversion	Successive approximation (capacitive coupling amplifier)
Analog input voltage (Note 1)	OV to AVcc (Vcc)
Operating clock ϕ AD (Note 2) Resolution	fAD/divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN) 8-bit
Absolute precision	- Without sample and hold function \pm 3LSB - With sample and hold function $\pm 2 L S B$
Operating modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0, and repeat sweep mode 1
Analog input pins	8 pins (ANo to AN7) + 2pins (ANEX0 and ANEX1)
A-D conversion start condition	- Software trigger A-D conversion starts when the A-D conversion start flag changes to " 1 " - External trigger (can be retriggered) A-D conversion starts when the A-D conversion start flag is " 1 " and the $\overline{A D T R G} / P 97$ input changes from " H " to " L "
Conversion speed per pin	- Without sample and hold function 49ϕ AD cycles - With sample and hold function 28ϕ AD cycles

Note 1: Does not depend on use of sample and hold function.
Note 2: Without sample and hold function, set the $\phi A D$ frequency to 250 kHz min.
With the sample and hold function, set the $\phi A D$ frequency to 1 MHz min.

Figure 2.12.1 Block diagram of A-D converter

A-D control register 0 (Note 1)

A-D control register 1 (Note)

Figure 2.12.2 A-D converter-related registers (1)

Figure 2.12.3 A-D converter-related registers (2)

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(1) One-shot mode

In one-shot mode, the pin selected using the analog input pin select bit is used for one-shot A-D conversion. Table 2.12 .2 shows the specifications of one-shot mode. Figure 2.12 .4 shows the A-D control register in one-shot mode.
Table 2.12.2 One-shot mode specifications

Item	Specification
Function	The pin selected by the analog input pin select bit is used for one A-D conversion
Start condition	Writing "1" to A-D conversion start flag
Stop condition	- End of A-D conversion (A-D conversion start flag changes to "0", except when external trigger is selected) - Writing "0" to A-D conversion start flag
Interrupt request generation timing	End of A-D conversion
Input pin	One of ANo to AN7, as selected
Reading of result of A-D converter	Read A-D register corresponding to selected pin

A-D control register 0 (Note 1)

Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate.
Note 2: When changing A-D operation mode, set analog input pin again.

A-D control register 1 (Note)

Figure 2.12.4 A-D conversion register in one-shot mode

(2) Repeat mode

In repeat mode, the pin selected using the analog input pin select bit is used for repeated A-D conversion. Table 2.12.3 shows the specifications of repeat mode. Figure 2.12 .5 shows the A-D control register in repeat mode.
Table 2.12.3 Repeat mode specifications

Item	Specification
Function	The pin selected by the analog input pin select bit is used for repeated A-D conversion
Star condition	Writing "1" to A-D conversion start flag
Stop condition	Writing "0" to A-D conversion start flag
Interrupt request generation timing	None generated
Input pin	One of ANo to AN7, as selected
Reading of result of A-D converter	Read A-D register corresponding to selected pin

Figure 2.12.5 A-D conversion register in repeat mode

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(3) Single sweep mode

In single sweep mode, the pins selected using the A-D sweep pin select bit are used for one-by-one A-D conversion. Table 2.12 .4 shows the specifications of single sweep mode. Figure 2.12 .6 shows the A-D control register in single sweep mode.
Table 2.12.4 Single sweep mode specifications

Item	Specification
Function	The pins selected by the A-D sweep pin select bit are used for one-by-one A-D conversion
Start condition	Writing "1" to A-D converter start flag
Stop condition	- End of A-D conversion (A-D conversion start flag changes to "0", except when external trigger is selected) - Writing "0" to A-D conversion start flag
Interrupt request generation timing	End of A-D conversion
Input pin	ANo and AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), or ANo to AN7 (8 pins)
Reading of result of A-D converter	Read A-D register corresponding to selected pin

A-D control register 0 (Note)

A-D control register 1 (Note 1)

Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result isindeterminate.
Note 2: Neither "01" nor "10" can be selected with the external op-amp connection mode bit
Figure 2.12.6 A-D conversion register in single sweep mode

(4) Repeat sweep mode 0

In repeat sweep mode 0 , the pins selected using the A-D sweep pin select bit are used for repeat sweep A-D conversion. Table 2.12.5 shows the specifications of repeat sweep mode 0. Figure 2.12.7 shows the A-D control register in repeat sweep mode 0.

Table 2.12.5 Repeat sweep mode 0 specifications

Item	Specification
Function	The pins selected by the A-D sweep pin select bit are used for repeat sweep A-D conversion
Start condition	Writing "1" to A-D conversion start flag
Stop condition	Writing "0" to A-D conversion start flag
Interrupt request generation timing	None generated
Input pin	ANo and AN1 (2 pins), AN0 to AN3 (4 pins), ANo to AN5 (6 pins), or AN0 to AN7 (8 pins)
Reading of result of A-D converter	Read A-D register corresponding to selected pin (at any time)

A-D control register 0 (Note)

A-D control register 1 (Note 1)

Figure 2.12.7 A-D conversion register in repeat sweep mode 0

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

(5) Repeat sweep mode 1

In repeat sweep mode 1, all pins are used for A-D conversion with emphasis on the pin or pins selected using the A-D sweep pin select bit. Table 2.12 .6 shows the specifications of repeat sweep mode 1. Figure 2.12 .8 shows the A-D control register in repeat sweep mode 1.
Table 2.12.6 Repeat sweep mode 1 specifications

Item	Specification
Function	All pins perform repeat sweep A-D conversion, with emphasis on the pin or pins selected by the A-D sweep pin select bit Example : ANo selected ANo \rightarrow AN1 \rightarrow ANo \rightarrow AN2 \rightarrow ANo \rightarrow AN3, etc
Start condition	Writing "1" to A-D conversion start flag
Stop condition	Writing "0" to A-D conversion start flag
Interrupt request generation timing	None generated
Input pin	ANo (1 pin), ANo and AN1 (2 pins), ANo to AN2 (3 pins), ANo to AN3 (4 pins)
Reading of result of A-D converter	Read A-D register corresponding to selected pin (at any time)

A-D control register 0 (Note)

A-D control register 1 (Note 1)

Figure 2.12.8 A-D conversion register in repeat sweep mode 1

(a) Sample and hold

Sample and hold is selected by setting bit 0 of the A-D control register 2 (address 03D416) to " 1 ". When sample and hold is selected, the rate of conversion of each pin increases. As a result, a 28 fAD cycle is achieved. Sample and hold can be selected in all modes. However, in all modes, be sure to specify before starting A-D conversion whether sample and hold is to be used.

(b) Extended analog input pins

In one-shot mode and repeat mode, the input via the extended analog input pins ANEX0 and ANEX1 can also be converted from analog to digital.
When bit 6 of the A-D control register 1 (address 03D716) is " 1 " and bit 7 is " 0 ", input via ANEX0 is converted from analog to digital. The result of conversion is stored in A-D register 0.
When bit 6 of the A-D control register 1 (address 03D716) is " 0 " and bit 7 is " 1 ", input via ANEX1 is converted from analog to digital. The result of conversion is stored in A-D register 1.

(c) External operation amp connection mode

In this mode, multiple external analog inputs via the extended analog input pins, ANEX0 and ANEX1, can be amplified together by just one operation amp and used as the input for A-D conversion. When bit 6 of the A-D control register 1 (address 03D716) is " 1 " and bit 7 is " 1 ", input via ANo to AN7 is output from ANEX0. The input from ANEX1 is converted from analog to digital and the result stored in the corresponding A-D register. The speed of A-D conversion depends on the response of the external operation amp. Do not connect the ANEX0 and ANEX1 pins directly. Figure 2.12 .9 is an example of how to connect the pins in external operation amp mode.

Figure 2.12.9 Example of external op-amp connection mode

2.13 D-A Converter

This is an 8-bit, R-2R type D-A converter. The microcomputer contains two independent D-A converters of this type.
D-A conversion is performed when a value is written to the corresponding D-A register. Bits 0 and 1 (D-A output enable bits) of the D-A control register decide if the result of conversion is to be output. Do not set the target port to output mode if $\mathrm{D}-\mathrm{A}$ conversion is to be performed.
Output analog voltage $(\mathrm{V}$) is determined by a set value (n : decimal) in the $\mathrm{D}-\mathrm{A}$ register.

$$
\begin{aligned}
& V=\text { VREF } X n / 256 \text { (} \mathrm{n}=0 \text { to } 255 \text {) } \\
& \text { VREF : reference voltage }
\end{aligned}
$$

Table 2.13.1 lists the performance of the D-A converter. Figure 2.13.1 shows the block diagram of the D-A converter. Figure 2.13 .2 shows the D-A control register. Figure 2.13.3 shows the D-A converter equivalent circuit.

Table 2.13.1 Performance of D-A converter

Item	Performance
Conversion method	R-2R method
Resolution	8 bits
Analog output pin	2 channels

Figure 2.13.1 Block diagram of D-A converter

Figure 2.13.2 D-A control register

Figure 2.13.3 D-A converter equivalent circuit

2.14 CRC Calculation Circuit

The Cyclic Redundancy Check (CRC) calculation circuit detects an error in data blocks. The microcomputer uses a generator polynomial of CRC_CCITT $\left(X^{16}+X^{12}+X^{5}+1\right)$ to generate CRC code.
The CRC code is a 16-bit code generated for a block of a given data length in multiples of 8 bits. The CRC code is set in a CRC data register each time one byte of data is transferred to a CRC input register after writing an initial value into the CRC data register. Generation of CRC code for one byte of data is completed in two machine cycles.
Figure 2.14.1 shows the block diagram of the CRC circuit. Figure 2.14.2 shows the CRC-related registers. Figure 2.14.3 shows the calculation example using the CRC calculation circuit

Figure 2.14.1 Block diagram of CRC circuit

Figure 2.14.2 CRC-related registers

Figure 2.14.3 Calculation example using the CRC calculation circuit

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.15 Expansion Function

2.15.1 Expansion function description

Expansion function cousists of data acquisition function and humming decoder function. Each function is controld by expansion memories.
(1) Data acquisition function

Corresponds to
Hardware : TELETEXT, PDC, VPS, VBI and EPG-J
Software : XDS, WSS and VBI-ID
(2) Humming decoder function

8/4 humming and 24/18 humming

Figure 2.15.1 Block diagram of expansion function

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.15.2 Expansion memory

Expansion function memory is divided by 2 patterns ; Slice RAM and expansion register. (Humming decoder operates by the register placed on SFR). Data writing and read out to the Slice RAM and the expansion register are carried out 16 bit unit by the data setting register (addresses 020E16, 021016, 021616 and 021816) placed on SFR.
Contents of each memory and data setting register are shown in Table 2.15.1.
Table 2.15.1 Expansion memory composition

Expansion memory	Contents	Data setting register
Slice RAM	Store acquisition data.	Slice RAM address control register (020E16) Slice RAM data control register (021016)
Expansion register	This register controls data acquisition	Expansion register address control register (021616) Expansion register data control register (021816)

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.15.3 Slice RAM

Store 18 -line slice data. There are 3 types of Slice data : PDC, VPS and VBI. All data are stored to addresses which corresponds to acquisition line (ex. 22 line' data is stored to addresses 20016 to 21716). 24 addresses (SR00x to SR17x) are prepared for 1 line, acquisition data is stored in order from LSB side. Then, acquisition datas and field information are stored to the top address of each line. Slice RAM composite is shown in Table 2.15.2.

Table 2.15.2 Slice RAM composition

Slice RAM addresses (SA9 to SA0)	SD15	SD14	SD13	SD12	SD11	SD10	SD9	SD8	SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0	Remarks	
00016	SR00F	SR00E	SR00D	SR00C	SR00B	SR00A	SR009	SR008	SR007	SR006	SR005	SR004	SR003	SR002	SR001	SR000	8th line	
00116	SR01F	SR01E	SR01D	SR01C	SR01B	SR01A	SR019	SR018	SR017	SR016	SR015	SR014	\|SR013	\|SR012		SR011	\|SR010	slice data
01616	SR16F	SR16E	SR16D	SR16C	SR16B	SR16A	SR169	SR168	SR167	SR166	SR165	SR164	SR163	SR162	SR161	SR160		
01716	SR17F	SR17E	SR17D	SR17C	SR17B	SR17A	SR179	SR178	SR177	SR176	SR175	SR174	SR173	SR172	SR171	SR170		
$\begin{gathered} 01816 \\ \vdots \\ 01 F_{16} \\ \hline \end{gathered}$								Unus	ed area									
$\begin{gathered} 02016 \\ \vdots \\ 03716 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SR00F } \\ \vdots \\ \text { SR17F } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SR00E } \\ \vdots \\ \text { SR17E } \\ \hline \end{array}$	$\begin{gathered} \text { SR00D } \\ \vdots \\ \text { SR17D } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SR00C } \\ \vdots \\ \text { SR17C } \end{array}$	$\begin{gathered} \text { SR00B } \\ \vdots \\ \text { SR17B } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SR00A } \\ \vdots \\ \text { SR17AA } \end{array}$	$\begin{gathered} \text { SR009 } \\ \vdots \\ \text { SR179 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SR008 } \\ \vdots \\ \text { SR178 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SR007 } \\ \vdots \\ \text { SR177 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SR006 } \\ \vdots \\ \text { SR176 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SR005 } \\ \vdots \\ \text { SR175 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SR004 } \\ \vdots \\ \text { SR174 } \end{array}$	$\begin{array}{\|c\|} \hline \text { SR003 } \\ \vdots \\ \text { SR173 } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { SR002 } \\ \vdots \\ \text { SR172 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { SR001 } \\ \vdots \\ \text { SR171 } \end{array}$	$\begin{array}{\|c\|} \hline \text { SR000 } \\ \vdots \\ \text { SR170 } \\ \hline \end{array}$	7th line or 319th line slice data	
$\begin{gathered} \hline 04016 \\ \vdots \\ 1 F 716 \\ \hline \end{gathered}$!									8th line to 21th line or 320th line to 333 line slice data	
$\begin{gathered} 20016 \\ \vdots \\ 21716 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { SR00F } \\ \vdots \\ \text { SR17F } \end{array}$	$\begin{array}{\|c\|} \hline \text { SR00E } \\ \vdots \\ \text { SR17E } \\ \hline \end{array}$	$\begin{gathered} \hline \text { SR00D } \\ \vdots \\ \text { SR17D } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SR00C } \\ \vdots \\ \text { SR17C } \\ \hline \end{array}$	$\begin{gathered} \text { SR00B } \\ \vdots \\ \text { SR17B } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SR00A } \\ \vdots \\ \text { SR17A } \end{array}$	$\begin{gathered} \text { SR009 } \\ \vdots \\ \text { SR179 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SR008 } \\ \vdots \\ \text { SR178 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { SR007 } \\ \vdots \\ \text { SR177 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { SR006 } \\ \vdots \\ \text { SR176 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SR005 } \\ \vdots \\ \text { SR175 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { SR004 } \\ \vdots \\ \text { SR174 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SR003 } \\ \vdots \\ \text { SR173 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SR002 } \\ \vdots \\ \text { SR172 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SR001 } \\ \vdots \\ \text { SR171 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SR000 } \\ \vdots \\ \text { SR170 } \\ \hline \end{array}$	22th line or 334th line slice data	
$\begin{gathered} 22016 \\ \vdots \\ 23716 \\ \hline \end{gathered}$	$\begin{gathered} \text { SR00F } \\ \vdots \\ \text { SR17F } \end{gathered}$	$\left\|\begin{array}{c} \text { SR00E } \\ \vdots \\ \text { SR17E } \end{array}\right\|$	$\begin{gathered} \text { SR00D } \\ \vdots \\ \text { SR17D } \end{gathered}$	$\begin{gathered} \text { SR00C } \\ \vdots \\ \text { SR17C } \end{gathered}$	$\begin{gathered} \text { SR00B } \\ \vdots \\ \text { SR17B } \end{gathered}$	$\begin{array}{\|c} \text { SR00A } \\ \vdots \\ \text { SR17A } \end{array}$	$\begin{gathered} \text { SR009 } \\ \vdots \\ \text { SR179 } \end{gathered}$	$\begin{array}{\|c} \hline \text { SR008 } \\ \vdots \\ \text { SR178 } \\ \hline \end{array}$	$\begin{array}{\|c} \text { SR007 } \\ \vdots \\ \text { SR177 } \end{array}$	$\begin{array}{\|c} \text { SR006 } \\ \vdots \\ \text { SR176 } \end{array}$	$\begin{gathered} \text { SR005 } \\ \vdots \\ \text { SR175 } \end{gathered}$	$\begin{gathered} \text { SR004 } \\ \vdots \\ \text { SR174 } \end{gathered}$	$\begin{array}{\|c} \text { SR003 } \\ \vdots \\ \text { SR173 } \end{array}$	$\left\|\begin{array}{c} \text { SR002 } \\ \vdots \\ \text { SR172 } \end{array}\right\|$	$\begin{array}{\|c} \text { SR001 } \\ \vdots \\ \text { SR171 } \end{array}$	SR000 \vdots SR170	23th line or 335th line slice data	

For accessing to Slice RAM data, set accessing address (SA9 to SA0) (shown in Table 2.15.2) to Slice RAM address control register (address 020E16). Then read out data from Slice RAM data control register (address 021016). When end the data reading, Slice RAM address control register increments address automatically. Then, next address data reading is possible. Do not access to unused area of each character codes. Must set address to each line because unused area has no address' automatically increment.
Slice RAM bit composition is shown in Figure 2.15.2, Slice RAM access registers are shown in Figure 2.15.3 and Slice RAM access block diagram is shown in Figure 2.15.4.

The each head address of the address is corresponded to acquisition line has stored next acquisition information.

	SR00F to SR004	SR003	SR002	SR001	SR000
PDC	0	field ${ }^{*}$ (Note)	0	0	1
VPS	0	field ${ }^{*}$ (Note)	0	1	0
VBI	0	field ${ }^{*}$ (Note)	1	0	0
Other	0	0	0	0	0

Note : * the first field : 1
the second field : 0
(1) PDC

In case of the PDC data, 16 bits (2 data) are stored for the 1 address from the LSB side.

(2) VPS

In case of the VPS data, 8 bits (a data) are stored for an address from the LSB side.
Low-order 8 bits stores the acquisition data. And, high-order 8 bits become warning bit, when the send data is not recognized as bi-phase type.
The case of bi-phase data $=" 1,0$ " or " 0,1 " (the bi-phase type) becomes " 0 " for this warning bit, and it becomes " 1 " in bi-phase data $=" 0,0$ " or " 1,1 " (it is not the bi-phase type). (For example, bi-phase data of SR011 is " 0,0 " or " 1,1 ", " 1 " is set to SR019.)

SR0Ex to SR17x are unused area.

Figure 2.15.2 Slice RAM bit composition

Slice RAM address control register

Note : When access to Slice RAM, must be set Slice RAM at first, then use Slice RAM data control register (021016).
Slice RAM address control register increments by accessing Slice RAM data control register. So, it is not neccesary to setting the next Slice RAM address.

Slice RAM data control register

Note : Data access must be 16-bit unit. 8-bit unit access is disable.

Figure 2.15.3 Slice RAM access registers

Figure 2.15.4 Slice RAM access block diagram

2．15．4 Expansion Register

Control Data acquisition function．Expansion register composition is shown in Table 2．15．3．

Table 2．15．3 Expansion register composition

	1	1	${ }^{1}$		1	1	1	1	1	1	1									1														1	，
吕	1	1	1	1	1	1	，	1	1	1	1	1	，	1	1	，	1	1	$\begin{array}{\|c\|} \hline \stackrel{\circ}{\mathrm{g}} \\ \text { en } \end{array}$				$\begin{array}{\|l\|} \hline 0 \\ \mathbf{N}_{1} \\ 0_{0} \\ \hline \end{array}$			$\begin{array}{r} \bar{U} \\ 0 \\ 0 \end{array}$	$\begin{array}{\|c} \hline 0 \\ y_{1}^{4} \\ 0_{1} \\ 0 \\ \hline \end{array}$	1	$\begin{aligned} & 0 \stackrel{0}{0} \\ & 0 \\ & 0_{1} \\ & \vdots \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \\ 0 \\ 0 \\ 3 \\ \vdots \\ \vdots \\ \hline \end{array}$			$\begin{aligned} & \stackrel{\otimes}{x} \\ & \frac{1}{2} \end{aligned}$	1	，
$\bar{\square}$	1	1	।	1	1	1	1	1	1	1	1	1	1	1	1	1	$\begin{array}{\|l\|} \hline \stackrel{9}{\omega_{1}} \\ \omega_{1} \\ \omega_{0} \\ \hline \stackrel{y}{\|c\|} \\ \hline \end{array}$	1	$\begin{array}{\|c\|} \stackrel{\rightharpoonup}{\vec{~}} \\ 山 \end{array}$	1						$\begin{aligned} & \text { N} \\ & \stackrel{U}{0} \\ & \mathrm{Q} \end{aligned}$	$\begin{array}{\|c} \hline \bar{y}_{1} \\ \bar{u}_{1} \\ 0_{2} \\ \hline \end{array}$	1	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & z_{1}^{\prime} \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline \overline{0} \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$			$\begin{aligned} & \bar{x} \\ & \stackrel{\Sigma}{\Sigma} \end{aligned}$	1	，
合	1	1	।	1	1	1	1	1	1	1	1	1	，	1	1	，	1	1	$$					$\begin{aligned} & \stackrel{\circ}{2} \\ & \mathbf{n}_{1} \\ & \omega \\ & \stackrel{\omega}{5} \end{aligned}$		$\begin{aligned} & \frac{\pi}{\omega} \\ & \stackrel{\omega}{\nu} \end{aligned}$	$\begin{array}{\|c\|} \hline y_{u}^{u} \\ \mathrm{u}_{1} \\ \mathrm{a} \\ \hline \end{array}$	，	$\begin{aligned} & \tilde{e ̂} \\ & 0 \\ & 0 \\ & a_{0}^{\prime} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \tilde{\omega} \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$			$\begin{aligned} & \tilde{x} \\ & \frac{\Sigma}{\Sigma} \end{aligned}$	1	।
合	1	1	1	1	1	，	1	1	1	1	1	1	1	1	1	1	1	1	$\begin{gathered} \left.\frac{m}{\substack{w \\ 山}} \right\rvert\, \end{gathered}$			$\begin{array}{\|c\|} \hline \stackrel{0}{\circ} \\ \substack{1 \\ \vec{t} \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \mathbf{N}_{1} \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \circ \\ & \frac{0}{1} \\ & \mathbf{1}_{1} \\ & \stackrel{\omega}{5} \end{aligned}$		$\begin{aligned} & \frac{\pi}{\omega} \\ & \stackrel{\omega}{n} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ y_{1} \\ 0_{1} \\ 0 \\ 0 \\ \hline \end{array}$	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & z_{0} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0_{1}^{\prime} \\ \vdots \\ \hline \end{array}$			$\begin{aligned} & \tilde{X} \\ & \frac{\Gamma}{\Sigma} \end{aligned}$	1	।
合	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	$\begin{array}{\|l\|l} 0 \\ \dot{n}_{1}^{\prime} \\ { }_{1}^{\prime} \\ \hline \end{array}$	1	$\begin{array}{\|c\|c} \stackrel{\rightharpoonup}{2} \\ \underset{\sim}{4} \end{array}$				$\begin{array}{l\|} \hat{\hat{O}} \\ \mathbf{N}_{1} \\ \mathrm{a}^{2} \end{array}$	$\begin{aligned} & \hat{\hat{N}_{1}} \\ & \omega_{1} \\ & \stackrel{\omega}{\rho} \end{aligned}$		$\frac{\overline{1}}{\stackrel{y}{D}}$	$\left\lvert\, \begin{gathered} \text { d } \\ \text { 岂 } \\ 0_{0} \\ \text { a } \end{gathered}\right.$	1	$\begin{gathered} \overline{0} \\ a_{1} \\ \lambda_{0} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \bar{n} \\ \sum_{1} \\ \vdots \\ \hline \mathbf{y} \\ \hline \end{array}$		9	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	1	1
吕	1	1	।	1	1	1	1	1	1	1	1	1	1	1		$\begin{array}{\|c\|} \hline I_{0} \\ 0 \\ Q_{1}^{\prime} \\ \hline \\ \hline \end{array}$	$\begin{aligned} & \hline \overline{{ }_{n}^{2}} \\ & \sum_{1}^{\prime} \\ & \overline{1} \\ & \hline \end{aligned}$	1		1			$\begin{array}{\|l\|} \infty \\ \stackrel{\infty}{\mathbf{N}_{1}} \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathbf{N}} \\ & \mathbf{N}_{1}^{\prime} \\ & \stackrel{\omega}{5} \end{aligned}$		$\begin{aligned} & \frac{\mathrm{U}}{\stackrel{\mathrm{~N}}{\mathrm{~N}}} \end{aligned}$	$\begin{array}{\|c\|} \hline 3 \\ 0 \\ \breve{1}_{1} \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ x_{1}^{\prime} \\ \hline 0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{a}_{1} \\ & \mathrm{c}^{2} \end{aligned}$	$\begin{array}{\|l\|} \hline \tilde{\infty} \\ 0 \\ \vdots \\ \vdots \\ \hline \end{array}$			$\begin{aligned} & \frac{n}{x} \\ & \frac{1}{2} \end{aligned}$	1	，
$\left\lvert\, \begin{aligned} & \circ \\ & \circ 口 力 \end{aligned}\right.$	1	1	।	1	1	，	1	1	1	1	1	$\begin{array}{\|l\|l} \hline 0 \\ \hline \text { 응 } \end{array}$	1	1	1	，	$\begin{aligned} & \hline N_{1} \\ & \sum_{1}^{\prime} \\ & \vec{\omega} \end{aligned}$	1				$\begin{array}{\|l\|l} \hline z_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \mathbf{o} \\ \mathbf{N}_{1} \\ 0 \\ \hline \end{array}$		1		$\begin{array}{\|l\|} \hline 0 \\ \stackrel{0}{u_{1}} \\ 0 \\ 0 \\ \hline \end{array}$	1	$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & a_{1} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0_{1} \\ \vdots \\ \vdots \\ \hline \end{array}$				1	，
$\hat{0}$	1	1	।	1	1	，	，	1	1	1	1	1	1	1	1	1	$\begin{array}{\|l\|} \hline \\ \underset{\sim}{\omega} \\ \stackrel{a}{\omega} \\ \hline \end{array}$	1					$\begin{aligned} & \hline \frac{0}{2} \\ & \overline{1}_{1} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{0}{2} \\ & \frac{i}{1} \\ & \omega_{1} \\ & \stackrel{\omega}{3} \end{aligned}$	1		$\begin{array}{\|c\|} \hat{0} \\ u_{1}^{u} \\ 0_{0} \\ \hline \end{array}$	1	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{a}} \\ & \mathrm{a} \\ & z_{1} \end{aligned}$	$\begin{array}{\|l} \hline \\ \mathbf{0} \\ \vdots \\ \vdots \\ \grave{y} \\ \hline \end{array}$		$\begin{aligned} & 0 \\ & \substack{0 \\ 00 \\ \underset{Z}{2} \\ \hline} \end{aligned}$		1	।
另		，	।	1	1	1	1	1	1	1	1	1	1	1	1	$\begin{array}{\|l\|} \hline \mathrm{z} \\ \text { 号 } \end{array}$	1	1				1	，	，			$\begin{array}{\|l\|} \hline \stackrel{3}{3} \\ {\underset{u}{1}}^{u_{1}} \\ 0 \\ \hline \end{array}$		莒	$\begin{array}{\|l} \boxed{6} \\ 0_{1} \\ \vdots \\ \vdots \\ \hline \end{array}$			$\frac{2}{2}$	1	।
洛	1	1	।	1	1	1	1	1	1	1	1	1	1	1	1	，	，	1				$\begin{aligned} & z_{0} \\ & 0_{1}^{\prime} \\ & 0 \\ & \omega_{5}^{\prime} \\ & \hline \end{aligned}$	$\bar{\square}$	1			$\begin{array}{\|l} \hline \\ \bar{J}_{1} \\ u_{1} \\ 0 \\ \hline \end{array}$		边	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$			$\bar{\Sigma}$	1	，
음	1	1	1	$\begin{gathered} \stackrel{\circ}{6} \\ \stackrel{y y y}{*} \end{gathered}$	1	1	1	1	1	1	1	1	1	1	1	1		1					ก	1			$\begin{array}{\|l\|} \hline \tilde{N}_{1} \\ u_{1} \\ \omega^{1} \\ \mathrm{j} \\ \hline \end{array}$	1	$\begin{aligned} & \hat{0} \\ & \hat{o}_{1}^{\prime} \\ & z_{0} \end{aligned}$	$\begin{aligned} & \hat{\infty} \\ & \sum_{n}^{N} \\ & \overrightarrow{0} \end{aligned}$			$\frac{\tilde{z}}{\sum}$	1	।
$\stackrel{\overline{\mathrm{F}}}{\mathrm{~L}}$	1	1	1	$\stackrel{\underset{y}{5}}{\stackrel{y}{5}}$	1	1	1	1	1	1	1	1	1	1	1	，	，	1				，	，	${ }^{\prime}$				1	道	$\begin{array}{\|l\|l} \infty \\ \infty \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$			$\frac{\sum}{\sum}$	1	।
$\stackrel{N}{\circ}$	1	，	।	$\stackrel{\underset{5}{5}}{\stackrel{y}{\sim}}$	1	1	1	1	1	1	1	1		$\frac{n}{z}$	1	1	1	1						$$				$\begin{array}{\|l\|} \hline \infty \\ n_{1}^{\prime} \\ x_{1}^{\prime} \\ \hline \end{array}$	触	，			$\frac{\underset{\Sigma}{ \pm}}{\stackrel{\rightharpoonup}{2}}$	1	，
$\stackrel{\circ}{\circ}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1				$\begin{aligned} & \stackrel{5}{\circ} \\ & \stackrel{y}{6} \end{aligned}$	，	1	，			1	1	，			$\frac{n}{\Sigma}$	1	，
$\stackrel{\partial}{\partial}$	1	1	1	1	1	1	1	1	1	1	1	号	1	1	1	1	，	1	，		，	，		$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & \mathbf{0} \\ & \mathbf{T} \end{aligned}$	1		（	1	，	，				1	，
$\stackrel{\circ}{\circ}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	，	，	1						$\begin{aligned} & \vec{~} \\ & \text { O} \\ & \hline \mathbf{I} \\ & \hline \end{aligned}$	1		（	1	1	，				，	1
¢	$\stackrel{\circ}{\circ}$	$\stackrel{0}{5}$	$\stackrel{\circ}{\mathrm{D}}$	$\stackrel{\circ}{0}$	$\frac{\circ}{寸}$	$\begin{aligned} & \stackrel{0}{8} \\ & \stackrel{8}{0} \end{aligned}$		$\begin{array}{\|c} \circ \\ \stackrel{0}{0} \end{array}$	$\begin{array}{\|c\|} \hline 00 \\ \hline 0 \end{array}$	$\begin{array}{\|c\|} \hline \circ \\ \hline 8 \\ \hline \end{array}$	$\frac{0}{5}$	$\begin{aligned} & \text { © } \\ & \text { © } \end{aligned}$	$\begin{array}{\|l\|} \hline \circ \\ \hline 0 \end{array}$	$\stackrel{\circ}{0}$	$\begin{array}{\|c\|} \hline \stackrel{\circ}{山 己} \\ \stackrel{1}{6} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{0}{1} \\ \stackrel{y}{1} \end{array}$	$\stackrel{\circ}{\circ}$	$\stackrel{\varrho}{\stackrel{\circ}{5}}$	$\begin{array}{\|c} \stackrel{\circ}{\mathrm{N}} \end{array}$	$\stackrel{\circ}{\stackrel{\circ}{\sim}}$	$\begin{array}{\|l\|} \hline 0 \\ \underset{y}{2} \end{array}$	$\begin{aligned} & \circ \\ & \hline \stackrel{\circ}{\circ} \end{aligned}$	$$	$\stackrel{\circ}{\vdots}$	$\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\circ}{0}}$	$\stackrel{\circ}{\circ}$	$\stackrel{0}{5}$	$\begin{array}{\|c\|} \stackrel{\circ}{\oplus} \\ \stackrel{1}{0} \end{array}$	$\stackrel{\circ}{0}$	$\begin{array}{\|c\|} \hline \circ \\ \vdots \end{array}$	$\stackrel{\stackrel{\circ}{ \pm}}{\sim}$	$\stackrel{\bullet}{\stackrel{1}{4}}$	$\stackrel{\circ}{\sim}$	$\stackrel{\varrho}{\mathrm{N}}$	$\stackrel{\bullet}{\text { N }}$

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

For accessing to expantion register data, set accessing address (DA5 to DA0) (shown in Table 2.15.3) to expantion register address control register (address 021616). Then write data (DD15 to DD0) by expantion register data control register (address 021816). When end the data accessing, expantion register address control register increments address automatically. Then, next address data writing is possible.
Expantion register access registers are shown in Figure 2.15.5, expansion register access block diagram is shown in Figure 2.15.6, and expansion register bit compositions are shown in p153 to 163.

Figure 2.15.5 Expansion register access registers composition

Figure 2.15.6 Expansion register access block diagram

Expansion register construction

(1) Address 0016 (= DA5 to 0)

(2) Addresses 0116, 0216 (= DA5 to 0)

(3) Address 0316 (= DA5 to 0)

(4) Address 0416 to 0A16 (= DA5 to 0)

(5) Address 0B16 (= DA5 to 0)

(6) Address 0C16 (= DA5 to 0)
DD15 DD8DD7 DD0 $0010|1010| 0|0| 0|0| 0|0| 0|0| 0 \mid 010$

Bit symbol	Bit name	Function	R
Reserved bit	Must always be set to "0".	\times	
TIMBAS	Time base selection bit	0	Time base OFF
		Time base ON	\vdots
Reserved bit	Must always be set to "0".		\times

(7) Address 0D16 (= DA5 to 0)

(8) Address 0E16 (= DA5 to 0)

DD15

0	0	0	0	0	0	0	0	0	0	0	0	0

Bit symbol	Bit name	Function	R
Reserved bit	Must always be set to "0".	\times	0

(9) Address 0F16 (= DA5 to 0)

(10) Address 1016 (= DA5 to 0)

(11) Address 1116 (= DA5 to 0)

(12) Address 1216 (= DA5 to 0)

(13) Addresses 1316, 1416 (= DA5 to 0)

Bit symbol	Bit name	Function	R
Reserved bit	Must always be set to "0".	\times	

(14) Address 1516 (= DA5 to 0)

(15) Address 1616 (= DA5 to 0)

(16) Address 1716 (= DA5 to 0)

(17) Address 1816 (= DA5 to 0)

DD15 DD8DD7 DD0

Bit symbol	Bit name	Function	R
Reserved bit	Must always be set to " 0 ".	\times	\times

(18) Address 1916 (= DA5 to 0)

(19) Address 1 A16 (= DA5 to 0)

(20) Address 1B16 (= DA5 to 0)

Note1. At VBI acquisition, must be set to "1".

(21) Address 1C16 (= DA5 to 0)

(22) Address 1D16 (= DA5 to 0)

(23) Address 1E16 (= DA5 to 0)

DD15
0 DDED 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(24) Address 1F16 (= DA5 to 0)

[^3](25) Address 2016 (= DA5 to 0)

(26) Address 2116, 2216 (= DA5 to 0)

2.15.5 Expansion Register Construction Composition

(1) Acquisition timming

The SLICEON signal is output in the acquisition possible period.

Figure 2.15.7 Acquisition timing

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.15.6 8/4 Humming Decoder

$8 / 4$ humming decoder opetates only by written the data which $8 / 4$ humming- decoded to $8 / 4$ humming register (address 021A16). 8/4 humming register consists of 16 bits, can decode two data at a time. Can obtain the decoded result by reading 8/4 humming register, and the decoded value and error information are output. Corrects and outputs the decoded value for single error, and outputs only error information for double error. Decoded result is shown in Figure 2.15.8 and humming 8/4 register composition is shown in Figure 2.15.9.

Figure 2.15.8 Decoded result

Humming 8/4 register

Figure 2.15.9 Humming 8/4 register composition

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

2.15.7 24/18Humming Decoder

24/18 humming decoder operates only by written the data which $24 / 18$ humming-encoded to 24/18 humming register 0 (address 021 C 16) and 1 (address 021E16). Can obtain the decoded result by reading the same 24/18 humming register. Decoded result is shown in Figure 2.15.10 and humming 24/18 register composition is shown in Figure 2.15.11.

Figure 2.15.10 Decoded result

Humming 24/18 register 0

Humming 24/18 register 1

Figure 2.15.11 Humming 24/18 register composition

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Continuous error correction

When uses humming $8 / 4$ (address 021 A 16) at tha same time as humming 24/18, can do the continuous error correction.

Continuous error correction sequence is shown in Figure 2.15.12.

1. Writes data A to address $021 \mathrm{C}_{16}$ and writes data B to address $021 \mathrm{E}_{16}$. (Setting the humming data (1) and L of humming data (2.)
2. Reads addresses $021 \mathrm{C}_{16}$ and $021 \mathrm{E}_{16}$ data (Obtains the decoded value and error information on the humming data (1)).
3. Writes data C to address $021 \mathrm{~A}_{16}$ (Setting H and M of the humming data (2).
4. Reads addresses $021 \mathrm{C}_{16}$ and $021 \mathrm{E}_{16}$ data (Obtains the decoded value and error information on the humming data (2).
5. Writes data D to address $021 \mathrm{C}_{16}$ and writes data E to $021 \mathrm{E}_{16}$ (Setting the humming data (3) and L of humming data (4.)
6. Reads addresses $021 \mathrm{C}_{16}$ and $021 \mathrm{E}_{16}$ data (Obtains the decoded value and error information on the humming data (3).
7. Writes data F to address $021 \mathrm{~A}_{16}$ (Setting H and M of the humming data (4).
8. Reads addresses $021 \mathrm{C}_{16}$ and $021 \mathrm{E}_{16}$ data (Obtains the decoded value and error information on the humming data (4)).

Figure 2.15.12 Continuous error correction sequence
Then, because using a part of circuit of humming 8/4 about this operation, cannot use this operation at the same time.
When using the humming circuit, do the decoded result reading operation at once after the setting data of humming. And do not access other memories (Including the humming circuit) before reading of the decoded result.

M306H2MC-XXXFP

2.15.8 I/O Composition of pins for Expansion Memory

Figure 2.15.13 and figure 2.15 .14 show pins for expansion memory.

Figure 2.15.13 Pins for expansion memory(1)

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Figure 2.15.14 Pins for expansion memory(2)

2.16 Programmable I/O Ports

There are 87 programmable I/O ports: P0 to P10 (excluding P85). Each port can be set independently for input or output using the direction register. A pull-up resistance for each block of 4 ports can be set. P85 is an input-only port and has no built-in pull-up resistance.
Figures 2.16 .1 to 2.16 .4 show the programmable I/O ports. Figure 2.16 .5 shows the I/O pins.
Each pin functions as a programmable I/O port and as the I/O for the built-in peripheral devices.
To use the pins as the inputs for the built-in peripheral devices, set the direction register of each pin to input mode. When the pins are used as the outputs for the built-in peripheral devices (other than the D-A converter), they function as outputs regardless of the contents of the direction registers. When pins are to be used as the outputs for the D-A converter, do not set the direction registers to output mode. See the descriptions of the respective functions for how to set up the built-in peripheral devices.

(1) Direction registers

Figure 2.16 .6 shows the direction registers.
These registers are used to choose the direction of the programmable I/O ports. Each bit in these registers corresponds one for one to each I/O pin.
In memory expansion and microprocessor mode, the contents of corresponding direction register of pins A0 to A19, D0 to D15, $\overline{\mathrm{CS}}$ to $\overline{\mathrm{CS3}}, \overline{\mathrm{RD}}, \overline{\mathrm{WRL}} / \overline{\mathrm{WR}}, \overline{\mathrm{WRH}} / \overline{\mathrm{BHE}}, \mathrm{ALE}, \overline{\mathrm{RDY}}, \overline{\mathrm{HOLD}}, \overline{\mathrm{HLDA}}$ and BCLK cannot be modified.
Note: There is no direction register bit for P85.

(2) Port registers

Figure 2.16.7 shows the port registers.
These registers are used to write and read data for input and output to and from an external device. A port register consists of a port latch to hold output data and a circuit to read the status of a pin. Each bit in port registers corresponds one for one to each I/O pin.
In memory expansion and microprocessor mode, the contents of corresponding port register of pins A0 to A19, D0 to D15, $\overline{\mathrm{CS}}$ to $\overline{\mathrm{CS3}}, \overline{\mathrm{RD}}, \overline{\mathrm{WRL}} / \overline{\mathrm{WR}}, \overline{\mathrm{WRH}} / \overline{\mathrm{BHE}}, \mathrm{ALE}, \overline{\mathrm{RDY}}, \overline{\mathrm{HOLD}}, \overline{\mathrm{HLDA}}$ and BCLK cannot be modified.

(3) Pull-up control registers

Figure 2.16.8 shows the pull-up control registers.
The pull-up control register can be set to apply a pull-up resistance to each block of 4 ports. When ports are set to have a pull-up resistance, the pull-up resistance is connected only when the direction register is set for input.
However, in memory expansion mode and microprocessor mode, the pull-up control register of P0 to P3, P40 to P43, and P5 is invalid. The contents of register can be changed, but the pull-up resistance is not connected.

(4) Port control register

Figure 2.16 .9 shows the port control register.
The bit 0 of port control resister is used to read port P1 as follows:
0 : When port P1 is input port, port input level is read.
When port P 1 is output port, the contents of port P 1 register is read.
1 : The contents of port P1 register is read always.
In microprocessor mode and memory expansion mode, this register is valid in the following:

- External bus width is 8 bits.
- Port P1 can be used as a port in multiplexed bus for the entire space.

P00 to $\mathrm{P} 07, \mathrm{P} 20$ to P 27 ,
P30 to P37, P40 to P47,
P50 to P54, P56

P10 to P14

P15 to P17

P57, P60, P61, P64, P65, P72 to P76, P80, P81,
P90, P92

Note1:- $-\cdots \cdots$.... symbolizes a parasitic diode. Do not apply a voltage higher than Vcc to each port.

Figure 2.16.1 Programmable I/O ports (1)

Figure 2.16.2 Programmable I/O ports (2)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Figure 2.16.3 Programmable I/O ports (3)

Figure 2.16.4 Programmable I/O ports (4)

Figure 2.16.5 I/O pins

Port Pi direction register (Note 1, 2)

Symbol

PDi (i = 0 to 10, except 8)

Address

03E216, 03E316, 03E616, 03E716, 03EA16 03EB16, 03EE16, 03EF16, 03F316, 03F616

When reset
0016
0016

Port P8 direction register

Figure 2.16.6 Direction register

Port Pi register (Note 2)

Note 1: Since P70 and P71 are N-channel open drain ports, the data is high-impedance.
Note 2: In memory expansion and microprocessor mode, the contents of corresponding port Pi direction register of pins Ao to A19, Do to D15, $\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}, \overline{\mathrm{RD}}, \overline{\mathrm{WRL}} / \overline{\mathrm{WR}}, \overline{\mathrm{WRH}} / \overline{\mathrm{BHE}}, \mathrm{ALE}, \overline{\mathrm{RDY}}, \overline{\mathrm{HOLD}}, \overline{\mathrm{HLDA}}$ and BCLK cannot be modified.

Port P8 register

Figure 2.16.7 Port register

Pull-up control register 0

Pull-up control register 1

Note 1: Since P70 and P71 are N-channel open drain ports, pull-up is not available for them.
Note 2: When the Vcc level is being impressed to the CNVss terminal, this register becomes to 0216 when reset (PU11 becomes to " 1 ").
Note 3: In memory expansion and microprocessor mode,the content of these bits can be changed,but the pull-up resistance is not connected.
Pull-up control register 2

Figure 2.16.8 Pull-up control register

Port control register

Figure 2.16.9 Port control register

Table 2.16.1 Example connection of unused pins in single-chip mode

Pin name	Connection
Ports P0 to P10 (excluding P85)	After setting for input mode, connect every pin to Vss or Vcc via a resistor; or after setting for output mode, leave these pins open.
Xout(Note)	Open
$\overline{\text { NMI }}$	Connect via register to Vcc (pull-up)
AVcc	Connect to Vcc
AVss, VREF, BYTE	Connect to Vss

Note: With external clock input to XIN pin.
Table 2.16.2 Example connection of unused pins in memory expansion mode and microprocessor mode

Pin name	Connection
Ports P6 to P10 (excluding P85)	After setting for input mode, connect every pin to Vss or Vcc via a resistor; or after setting for output mode, leave these pins open.
$\mathrm{P} 45 / \overline{\mathrm{CS} 1}$ toP47//CS3	Sets ports to input mode, sets bits $\overline{\mathrm{CS} 1}$ through $\overline{\mathrm{CS} 3}$ to 0 , and connects to Vcc via resistors (pull-up).
$\overline{B H E}$, ALE, $\overline{H L D A}$, Xout(Note1), BCLK(Note2)	Open
$\overline{\mathrm{HOLD}}, \overline{\mathrm{RDY}}, \overline{\mathrm{NMI}}$	Connect via resistor to Vcc (pull-up)
AVcc	Connect to Vcc
AVss, Vref	Connect to Vss

Note 1: With external clock input to XIN pin.
Note 2: When the BCLK output disable bit (bit 7 at address 000416) is set to " 1 ", connect to
Vcc via a resistor (pull-up).

Note : When the BCLK output disable bit (bit7 at address 000416) is set to " 1 ", connet to Vcc via a resistor (pull-up)

Figure 2.16.10 Example connection of unused pins

3. USAGE PRECAUTION

Timer A (timer mode)

(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFFF16". Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.

Timer A (event counter mode)

(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFFF16" by underflow or " 000016 " by overflow. Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.
(2) When stop counting in free run type, set timer again.
(3) In the case of using "Event counter mode" as "Free-Run type" for timer A, the timer register contents may be unkown when counting begins. If the timer register is set before counting has started, then the starting value will be unkown.
This issue will occuer only for the "Event counter mode" operating as "Free-Run type". The value of the timer register will not be unkown during counting.

Timer A (one-shot timer mode)

(1) Setting the count start flag to " 0 " while a count is in progress causes as follows:

- The counter stops counting and a content of reload register is reloaded.
- The TAiout pin outputs "L" level.
- The interrupt request generated and the timer Ai interrupt request bit goes to " 1 ".
(2) The timer Ai interrupt request bit goes to " 1 " if the timer's operation mode is set using any of the following procedures:
- Selecting one-shot timer mode after reset.
-Changing operation mode from timer mode to one-shot timer mode.
- Changing operation mode from event counter mode to one-shot timer mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer $A i$ interrupt request bit to " 0 " after the above listed changes have been made.

Timer A (pulse width modulation mode)

(1) The timer Ai interrupt request bit becomes " 1 " if setting operation mode of the timer in compliance with any of the following procedures:

- Selecting PWM mode after reset.
-Changing operation mode from timer mode to PWM mode.
-Changing operation mode from event counter mode to PWM mode.
Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to " 0 " after the above listed changes have been made.
(2) Setting the count start flag to " 0 " while PWM pulses are being output causes the counter to stop counting. If the TAiout pin is outputting an "H" level in this instance, the output level goes to "L", and the timer Ai interrupt request bit goes to " 1 ". If the TAiout pin is outputting an " L " level in this instance, the level does not change, and the timer Ai interrupt request bit does not becomes " 1 ".

Timer B (timer mode, event counter mode)

(1) Reading the timer Bi register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Bi register with the reload timing gets "FFFF16". Reading the timer Bi register after setting a value in the timer Bi register with a count halted but before the counter starts counting gets a proper value.

Timer B (pulse period/pulse width measurement mode)

(1) If changing the measurement mode select bit is set after a count is started, the timer Bi interrupt request bit goes to " 1 ".
(2) When the first effective edge is input after a count is started, an indeterminate value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.

A-D Converter

(1) Write to each bit (except bit 6) of A-D control register 0 , to each bit of A-D control register 1, and to bit 0 of A-D control register 2 when A-D conversion is stopped (before a trigger occurs). In particular, when the Vref connection bit is changed from " 0 " to " 1 ", start A-D conversion after an elapse of $1 \mu \mathrm{~s}$ or longer.
(2) When changing A-D operation mode, select analog input pin again.
(3) Using one-shot mode or single sweep mode

Read the correspondence A-D register after confirming A-D conversion is finished. (It is known by A-D conversion interrupt request bit.)
(4) Using repeat mode, repeat sweep mode 0 or repeat sweep mode 1 Use the undivided main clock as the internal CPU clock.

Stop Mode and Wait Mode

(1) When returning from stop mode by hardware reset, RESET pin must be set to "L" level until main clock oscillation is stabilized.
(2) When switching to either wait mode or stop mode, instructions occupying four bytes either from the WAIT instruction or from the instruction that sets the every-clock stop bit to "1" within the instruction queue are prefetched and then the program stops. So put at least four NOPs in succession either to the WAIT instruction or to the instruction that sets the every-clock stop bit to "1".
(3) When the MCU running in low-speed or low power dissipation mode, do not enter WAIT mode with WAIT periphheral function clock stop bit set to " 1 ".

Interrupts

(1) Reading address 0000016

- When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence.
The interrupt request bit of the certain interrupt written in address 0000016 will then be set to " 0 ".
Reading address 0000016 by software sets enabled highest priority interrupt source request bit to " 0 ".
Though the interrupt is generated, the interrupt routine may not be executed.
Do not read address 0000016 by software.
(2) Setting the stack pointer
- The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in the stack pointer before accepting an interrupt.
When using the $\overline{\text { NMI }}$ interrupt, initialize the stack point at the beginning of a program. Concerning the first in struction immediately after reset, generating any interrupts including the $\overline{\mathrm{NMI}}$ interrupt is prohib ited.
(3) The $\overline{\text { NMI }}$ interrupt
- As for the NMI interrupt pin, an interrupt cannot be disabled. Connect it to the Vcc pin via a resistor (pull-up) if unused. Be sure to work on it.
- Do not get either into stop mode with the NMI pin set to "L".
(4) External interrupt
- When the polarity of the $\overline{\mathrm{NT} 0}$ to $\overline{\mathrm{INT5}}$ pins is changed, the interrupt request bit is sometimes set to " 1 ". After changing the polarity, set the interrupt request bit to " 0 ".
(5) Rewrite the interrupt control register
- To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1:

INT_SWITCH1:
FCLR I ; Disable interrupts.
AND.B \#00h, 0055h ; Clear TAOIC int. priority level and int. request bit.
NOP ; Four NOP instructions are required when using HOLD function.
NOP
FSET I ; Enable interrupts.

Example 2:

INT_SWITCH2:
FCLR I ; Disable interrupts.
AND.B \#00h, 0055h ; Clear TA0IC int. priority level and int. request bit.
MOV.W MEM, RO ; Dummy read.
FSET I ; Enable interrupts.

Example 3:

INT_SWITCH3:
PUSHC FLG ; Push Flag register onto stack
FCLR I ; Disable interrupts.
AND.B \#00h, 0055h ; Clear TAOIC int. priority level and int. request bit.
POPC FLG ; Enable interrupts.
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

- When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been gener ated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.
Instructions : AND, OR, BCLR, BSET

Electric Characteristic Differences Between Mask ROM and Flash Memory Version MCUs

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and Flash Memory version MCUs due to the difference in the manufacturing processes.
When manufacturing an application system with the Flash Memory version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Other Notes

(1) Timing of power supplying

The power need to supply to Vcc, VDD1, VDD2, VDD3 and AVCc at a time. While operating, must set same voltage.
(2) Power supply noise and latch-up

In order to avoid power supply noise and latch-up, connect a bypass capacitor (more than $0.1 \mu \mathrm{~F}$) directly between the Vcc pin and Vss pin, VdD1 pin and Vss1 pin, VdD2 pin and Vss2 pin, VdD3 pin and Vss3 pin, AVcc pin and AVss pin using a heavy wire.
(3) When oscillation circuit stop for data slicer

Expansion register XTAL-VCO, PDC_VCO_ON,VPS_VCO_ON is set at "L", when the data slicer is not used, and the oscillation is stopped. When starting oscillation again, set data at the folowing order.
(a) Set expansion register XTAL-VCO = "H".
(b) Set expansion register PDC_VCO_ON,VPS_VCO_ON = "H".
(c) 60 ms or more is a waiting state (stability period of internal oscillation circuit + data slice preparation).

To operate slice RAM, set expansion register XTAL_VCO = "H". And input 4.43 MHz sub carrier frequency clock from the FSCIN pin.

Access the memories after wating for 20 ms certainly when resuming synchronous oscillation from the off state, and begin to input clock into the FSCIN pin.
(4) At stop mode (clock is stopped)

Set each input pins to as follows.
(a) Set M1 pin = Vss.
(b) Stop the FSCIN pin input.
(c) Set expansion register STBYO and STBY1 = "H".

Set all expansion registers to "L" except for the superscription register.
(5) When operation start from stand-by mode (clock is stopped)

Input FSCIN pin clock after set " L " to register STBY0 and STBY1.
At next, set expansion register as notes (3).

M306H2MC-XXXFP

(6) Notes on operating with a low supply voltage (VCC $=3.0 \mathrm{~V}$)

When in single-chip mode, this product can operate with a low supply voltage (Vcc = 3.0 V) only during low power dissipation mode. Before operating with a low supply voltage, always be sure to set the relevant register bits to select low power dissipation mode (BCLK : $f(X C I N)$, main clock XIN : stop, subclock XcIN : oscillating). Then reduce the power supply voltage Vcc to 3.0 V .

Also, when returning to normal operation, raise the power supply voltage to 5 V while in low power consumption mode before entering normal operation mode.

When moving from any operation mode to another, make sure a state transition occurs according to the state transition diagram (Figure 2.5.5) in Section 2.5.7, "Power control."

The status of the power supply voltage VCC during operation mode transition is shown in Figure 3.1 below.

Figure 3.1 Status of the power supply voltage VCC during operation mode transition

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

4. ELECTRICAL CHARACTERISTICS

Table 4.1 Absolute maximum ratings

Symbol		Parameter	Condition	Rated value	Unit
Vcc	Supply voltage		Vcc=AVcc	-0.3 to 5.75	V
AVcc	Analog supply voltage		$\mathrm{VcC=AVcc}$	-0.3 to 5.75	V
VI	Input voltage	RESET, CNV ${ }_{\text {ss, }}$ BYTE, P 00 to $\mathrm{P} 07, \mathrm{P} 10$ to $\mathrm{P} 17, \mathrm{P} 20$ to P 27 , P30 to P37, P4o to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P87, P9o to P97, P100 to P107, Vref, XIn, M1, M2		-0.3 to Vcc+0.3	V
		P70, P71		-0.3 to 5.75	V
Vo	Output voltage	P0 to P07, P1o to P17, P20 to P27, $P 30$ to $P 37, P 40$ to $P 47, P 50$ to $P 57$, P6o to P67,P72 to P77, P80 to P84, P86, P87, P9o to P97, P10 to P107, Xout, P11		-0.3 to Vcc +0.3	V
		P70, P71		-0.3 to 5.75	V
Pd	Power dissipation		Ta=25 ${ }^{\circ} \mathrm{C}$	1000	mW
Topr	Operating ambient temperature			-20 to 70	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature			-40 to 125	C

Tabl 4.2 Recommended operating conditions (referenced to $\mathrm{Vcc}=4.75 \mathrm{~V}$ to 5.25 V at $\mathrm{Ta}=-20$ to

 $70^{\circ} \mathrm{C}$ unless otherwise specified)

Note 1: Noise component is within 30 mV .
Note 2: The mean output current is the mean value within 100 ms .
Note 3: The total IOL (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IOH (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IOL (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be 80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P72 to P77, and P80 to P84 must be 80 mA max.
Note 4: Use the low power dissipation mode.

Table 4.3 Electrical characteristics (1)Vcc $=5 \mathrm{~V}$ (referenced to $\mathrm{Vcc}=5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$, $f(X I N)=10 \mathrm{MHz}$ unless otherwise specified)

Symbol	Parameter			Measuring condition	Standard			Unit	
				Min	Typ.	Max.			
Voh	HIGH output P 00 to $\mathrm{P} 07, \mathrm{P} 10$ to $\mathrm{P} 17, \mathrm{P} 20$ to P 27 , voltage $\quad P 30$ to $P 37, P 40$ to $P 47, P 50$ to $P 57$, P6o to P67, P72 to P77, P80 to P84, P86, P87, P9o to P97, P100 to P107, P11				$\mathrm{IOH}=-5 \mathrm{~mA}$	3.0			V
Voh	HIGH output P0o to P07, P10 to P17, P20 to P27, voltage P 30 to $\mathrm{P} 37, \mathrm{P} 40$ to $\mathrm{P} 47, \mathrm{P} 50$ to P57, P6o to P67, P72 to P77, P80 to P84, P86, P87, P9o to P97, P10o to P107, P11			$\mathrm{IOH}=-200 \mu \mathrm{~A}$	4.7			V	
Vor	HIGH output voltage	P2 to LP		$\mathrm{VCC}=4.75 \mathrm{~V}$, $\mathrm{IOH}=-0.05 \mathrm{~mA}$	3.75			V	
VOH	HIGH output voltage	Xout	HIGHPOWER	$\mathrm{IOH}=-1 \mathrm{~mA}$	3.0			V	
			LOWPOWER	$\mathrm{IOH}=-0.5 \mathrm{~mA}$	3.0				
	HIGH output voltage	Xcout	HIGHPOWER	With no load applied		3.0		V	
			LOWPOWER	With no load applied		1.6			
Vol	LOW output P00 to P07, P1o to P17, P20 to P27, voltage $P 30$ to $P 37, P 40$ to $\mathrm{P} 47, \mathrm{P} 50$ to P 57 , P60 to P67, P70 to P77, P80 to P84, P86, P87, P9o to P97, P100 to P107, P11			$\mathrm{loL}=5 \mathrm{~mA}$			2.0	V	
Vol	LOW output P0o to $\mathrm{P} 07, \mathrm{P} 10$ to $\mathrm{P} 17, \mathrm{P} 20$ to P 27 , voltage $P 30$ to $P 37, P 40$ to $P 47, P 50$ to $P 57$, P6o to P67, P70 to P77, P80 to P84, P86, P87, P9o to P97, P10o to P107, P11			$l \mathrm{loL}=200 \mu \mathrm{~A}$			0.45	V	
Vol	$\begin{aligned} & \text { LOW output LP2 to LP4 } \\ & \text { voltage } \end{aligned}$			$\mathrm{VCC}=4.75 \mathrm{~V}$, $\mathrm{IOL}=0.05 \mathrm{~mA}$			0.4	V	
Vol	LOW output voltage	Xout	HIGHPOWER	$\mathrm{loL}=1 \mathrm{~mA}$			2.0	V	
			LOWPOWER	IoL= 0.5 mA			2.0		
	LOW output voltage	Xcout	HIGHPOWER	With no load applied		0		V	
			LOWPOWER	With no load applied		0			
$\mathrm{V}_{\text {T+- }} \mathrm{V}_{\text {T- }}$					0.2		0.8	V	
$\mathrm{V}_{\text {T+ }}$ - $\mathrm{V}_{\text {T- }}$	ysteresis CTSo, CLKo				0.2		1.4	V	
$V_{T+} \mathrm{V}_{\text {T- }}$	Hysteresis RESET				0.2		1.8	V	
IIH				V I $=5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$	
IIL	LOW input P 00 to $\mathrm{P} 07, \mathrm{P} 10$ to $\mathrm{P} 17, \mathrm{P} 20$ to P 27, current P 30 to $\mathrm{P} 37, \mathrm{P} 40$ to $\mathrm{P} 47, \mathrm{P} 50$ to P 57, P 60 to $\mathrm{P} 67, \mathrm{P} 70$ to $\mathrm{P} 77, \mathrm{P} 80$ to P 87, P 90 to $\mathrm{P97}, \mathrm{P} 100$ to P 107, XIN, $\overline{\mathrm{RESET}, \mathrm{CNV} \text {, }}$, BYTE, $\mathrm{M} 1, \mathrm{M} 2$			$\mathrm{V}=0 \mathrm{~V}$			-5.0	$\mu \mathrm{A}$	
RPullup	Pull-up resistance	P0o to P07, P10 to P17, P2o to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P84, P86, P87, P9o to P97, P100 to P107		$\mathrm{V}=0 \mathrm{~V}$	30.0	50.0	167.0	k Ω	
$V_{\text {SYNCIN }}$	Sync voltage amplitude				0.3	0.6	1.2	V	
$\mathrm{V}_{\text {dat(text) }}$	Teletext data voltage amplitude				0.6	0.9	1.4	V	
$\Delta \mathrm{f} / \mathrm{f}$	Range for display oscillator circuit				± 7			\%	
$f \mathrm{H}$	Horizontal synchronous signal frequency				14.6	15.625	17.0	kHz	

Table 4.4 Electrical characteristics (2) $\mathrm{Vcc}=3 \mathrm{~V}$ (referenced to $\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, $f(X C I N)=32 K H z$ unless otherwise specified)

Symbol	Parameter			Measuring condition	Standard			Unit	
				Min	Typ.	Max.			
VOH	HIGH output P00 to P07, P10 to P17, P2o to P27, voltage $\quad \mathrm{P} 30$ to $\mathrm{P} 37, \mathrm{P} 40$ to $\mathrm{P} 47, \mathrm{P} 50$ to P 57 , P6o to P67, P72 to P77, P80 to P84, P86, P87, P9o to P97, P10o to P107 P11				$\mathrm{IOH}=-150 \mu \mathrm{~A}$	2.5			V
VOH	HIGH output voltage	Xcout	HIGHPOWER	With no load applied		3.0		V	
			LOWPOWER	With no load applied		1.6			
Vol	LOW output P0o to P07, P10 to P17, P2o to P27, voltage $\quad \mathrm{P} 30$ to $\mathrm{P} 37, \mathrm{P} 40$ to $\mathrm{P} 47, \mathrm{P} 50$ to P 57 , P6o to P67, P70 to P77, P80 to P84, P86, P87, P9o to P97, P10o to P107 P11			$\mathrm{loL}=150 \mu \mathrm{~A}$			0.5	V	
Vol	LOW output voltage	Xcout	HIGHPOWER	With no load applied		0		V	
			LOWPOWER	With no load applied		0			
$\mathrm{V}_{\text {T+ }} \mathrm{V}_{\text {T- }}$	Hysteresis	TAOin to TA4in, TBOin to TB2in, $\overline{\mathrm{INT} 0}$ to $\overline{\mathrm{INT5}}$, TA2out to TA40ut, $\overline{\mathrm{NMI}, \overline{\mathrm{Klo}} \text { to } \overline{\mathrm{Kl} 3}}$			0.2		0.8	V	
ІІн	HIGH input voltage	POo to P P3o to P6o to P P9o to XIn, RES M1, M2	7, P20 to P27, 4, P50 to P57, 7, P80 to P87, 107, BYTE,	V I $=3 \mathrm{~V}$			4.0	$\mu \mathrm{A}$	
IIL	LOW input voltage	POo to P P3o to P6o to P P9o to P XIN, RES M1, M2	7, P20 to P27, 7, P50 to P57, 7, P80 to P87, 107, BYTE,	V I $=0 \mathrm{~V}$			-4.0	$\mu \mathrm{A}$	
Rpullup	Pull-up resistance	P0o to P3o to P6o to P86, P8	17, P20 to P27, 47, P50 to P57, 77, P80 to P84, P100 to P107	$\mathrm{V}=0 \mathrm{~V}$	66.0	120.0	500.0	$\mathrm{k} \Omega$	

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Table 4.5 Electrical characteristics (referenced to $\mathrm{Vcc}=5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Measuring condition	Standard			Unit
			Min	Typ.	Max.	
$\mathrm{R}_{\text {fxin }}$	Feedback resistance XIN			1.0		M Ω
RfxCin	Feedback resistance XCIN			6.0		M Ω
$V_{\text {RAM }}$	RAM retention voltage	When clock is stopped	2.0			V
I co	Power supply current	At the time of sicer operation $f(\mathrm{XCM})=10 \mathrm{kHz}$		150	180	mA
		Vcc=5.0V f(Xcin)=32kHz A rectangular wave (Notes 1,2)		90.0		$\mu \mathrm{A}$
		Vcc=3.0V f(Xcin)=32kHz A rectangular wave (Notes 1, 2)		40.0		$\mu \mathrm{A}$
		VCC=5.0V f(XcIN) 32 kHz At the time of weight (Notes 1,2)		5.0	10.0	$\mu \mathrm{A}$
		Vcc=3.0V f(Xcin) 32 kHz At the ime of weight (Notes 1, 2)		3.0	8.0	$\mu \mathrm{A}$
		At the time of a clock stop (Notes 2)			5.0	$\mu \mathrm{A}$

Note 1: This is a state where only one timer is operating with fc32 while the oscillation capability is set to LOWand slicer operation is turned OFF.
Note 2: • VDD1, VDD2, and VDD3 all are at the same potential level as Vcc.

- Extension register (address 0016 DD8) STBY0 and (address 1516 DD13) STBY1 are set to 1 while all other extension registers (addresses 0016 through 2216) are set to 0.
- Clock input to the FSCIN pin is disabled.
- Inputs to the SYNCIN and CVIN1 pins are disabled.

Tabl 4.6 Video signal input conditions (Vcc $=5.0 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.70^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Measuring condition	Standard			Unit
			Min	Typ.	Max.	
VIN-cu	Composite video signal input clamp voltage	Sync-chip voltage		1.0		V

Table 4.7 A-D conversion characteristics (referenced to Vcc $=\mathrm{AVCc}=\mathrm{VREF}=5 \mathrm{~V}$, Vss $=\mathrm{AVss}=0 \mathrm{~V}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}(\mathrm{XIN})=\mathbf{1 0 M H z}$ unless otherwise specified)

Symbol	Parameter		Measuring condition	Standard			Unit	
			Min.	Typ.	Max.			
-	Resolution			$\mathrm{V}_{\text {REF }}=\mathrm{VcC}$			8	Bits
-	Absolute accuracy	Sample \& hold function not available	$\mathrm{V}_{\text {REF }}=\mathrm{VCC}=5 \mathrm{~V}$			± 3	LSB	
		Sample \& hold function available(8bit)	$\mathrm{V}_{\text {REF }}=\mathrm{VCC}=5 \mathrm{~V}$			± 2	LSB	
Rladder	Ladder resistance		$\mathrm{V}_{\text {REF }}=\mathrm{VcC}$	10		40	k Ω	
tconv	Conversion time(8bit)			2.8			$\mu \mathrm{S}$	
tsamp	Sampling time			0.3			$\mu \mathrm{s}$	
VReF	Reference voltage			2		Vcc	V	
VIA	Analog input voltage			0		VReF	V	

Table 4.8 D-A conversion characteristics (referenced to $\mathrm{Vcc}=5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$, $\mathrm{VreF}=5 \mathrm{~V}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}(\mathrm{XIN})=10 \mathrm{MHz}$ unless otherwise specified)

Symbol	Parameter	Measuring condition	Standard			Unit
				Min.	Typ.	
-	Resolution				8	Bits
-	Absolute accuracy				1.0	$\%$
tsu	Setup time				3	$\mu \mathrm{~s}$
Ro	Output resistance		4	10	20	$\mathrm{k} \Omega$
Ivref	Reference power supply input current	(Note)			1.5	mA

Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "0016".
The A-D converter's ladder resistance is not included.
Also, when the Vref is unconnected at the A-D control register, IVREF is sent.

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Timing requirements (referenced to $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Table 4.9 External clock input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc	External clock input cycle time	100		ns
tw((H)	External clock input HIGH pulse width	40		ns
$\mathrm{tw}(\mathrm{L})$	External clock input LOW pulse width	40		ns
tr	External clock rise time		18	ns
tf	External clock fall time		18	ns

Table 4.10 In memory expansion and microprocessor modes

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tac1(RD-DB)	Data input access time (no wait)		(Note)	ns
tac2(RD-DB)	Data input access time (with wait)		(Note)	ns
tac3(RD-DB)	Data input access time (when accessing multiplex bus area)		(Note)	ns
tsu(DB-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	$\overline{\mathrm{RDY}}$ input setup time	30		ns
tsu(HOLD-BCLK)	HOLD input setup time	40		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK -RDY)	$\overline{\text { RDY input hold time }}$	0		ns
th(BCLK-HOLD)	$\overline{\text { HOLD }}$ input hold time	0		ns
to(BCLK-HLDA)	HLDA output delay time		40	ns

Note: Calculated according to the BCLK frequency as follows:

$$
\begin{aligned}
& \operatorname{tac} 1(R D-D B)=\frac{10^{9}}{f(B C L K) \times 2}-45 \quad[\mathrm{~ns}] \\
& \operatorname{tac} 2(R D-D B)=\frac{3 \times 10^{9}}{f(B C L K) \times 2}-45 \quad[\mathrm{~ns}] \\
& \operatorname{tac} 3(R D-D B)=\frac{3 \times 10^{9}}{f(B C L K) \times 2}-45 \quad[\mathrm{~ns}]
\end{aligned}
$$

Timing requirements (referenced to $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V} s \mathrm{~S}=0 \mathrm{~V}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Table 4.11 Timer A input (counter input in event counter mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{tc}(\mathrm{TA})$	TAiIN input cycle time	100		ns
$\mathrm{tw}(\mathrm{TAH})$	TAiin input HIGH pulse width	40		ns
$\mathrm{tw}(\mathrm{TAL})$	TAiin input LOW pulse width	40	ns	

Table 4.12 Timer A input (gating input in timer mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(TA)	TAiln input cycle time	400		ns
tw(TAH)	TAis input HIGH pulse width	200		ns
tw(TAL)	TAils input LOW pulse width	200		ns

Table 4.13 Timer A input (external trigger input in one-shot timer mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(TA)	TAils input cycle time	200		ns
tw(TAH)	TAis input HIGH pulse width	100		ns
tw(TAL)	TAils input LOW pulse width	100		ns

Table 4.14 Timer A input (external trigger input in pulse width modulation mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tw(TAH)	TAiIN input HIGH pulse width	100		ns
tw(TAL)	TAiin input LOW pulse width	100		ns

Table 4.15 Timer A input (up/down input in event counter mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(UP)	TAiout input cycle time	2000		ns
tw(UPH)	TAiout input HIGH pulse width	1000		ns
tw(UPL)	TAiout input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiout input setup time	400		ns
th(TIN-UP)	TAiout input hold time	400		ns

MITSUBISHI MICROCOMPUTERS

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Timing requirements (referenced to $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VsS}=0 \mathrm{~V}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Table 4.16 Timer B input (counter input in event counter mode)

Symbol	Parameter		Standard	
		Unit		
$\mathrm{tc}(\mathrm{TB})$	TBiin input cycle time (counted on one edge)			ns
$\mathrm{tw}(\mathrm{TBH})$	TBiin input HIGH pulse width (counted on one edge)	40		ns
$\mathrm{tw}(\mathrm{TBL})$	TBiin input LOW pulse width (counted on one edge)	40		ns
$\mathrm{tc}(\mathrm{TB})$	TBiin input cycle time (counted on both edges)	200		ns
$\mathrm{tw}(\mathrm{TBH})$	TBiin input HIGH pulse width (counted on both edges)	80		ns
$\mathrm{tw}(\mathrm{TBL})$	TBiin input LOW pulse width (counted on both edges)	80	ns	

Table 4.17 Timer B input (pulse period measurement mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{tc}(\mathrm{TB})$	TBiin input cycle time	400		ns
$\mathrm{tw}_{\mathrm{w}}(\mathrm{TBH})$	TBiin input HIGH pulse width	200		ns
$\mathrm{tw}(\mathrm{TBL})$	TBiin input LOW pulse width	200	ns	

Table 4.18 Timer B input (pulse width measurement mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{tc}(\mathrm{TB})$	TBiin input cycle time	400		ns
$\mathrm{tw}(\mathrm{TBH})$	TBiin input HIGH pulse width	200		ns
$\mathrm{tw}(\mathrm{TBL})$	TBiin input LOW pulse width	200	ns	

Table 4.19 A-D trigger input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{tc}(\mathrm{AD})$	$\overline{\mathrm{ADTRG}}$ input cycle time (trigger able minimum)	1000		ns
$\mathrm{tw}(\mathrm{ADL})$	$\overline{\text { ADTRG input LOW pulse width }}$	125		ns

Table 4.20 Serial I/O

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
$\operatorname{th}(\mathrm{C}-\mathrm{Q})$	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	30		ns
$\operatorname{th}(\mathrm{C}-\mathrm{D})$	RxDi input hold time	90		ns

Table 4.21 External interrupt $\overline{\text { INTi }}$ inputs

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{tw}(\mathrm{INH})$	$\overline{\mathrm{INTi}}$ input HIGH pulse width	250		ns
$\mathrm{tw}(\mathrm{INL})$	$\overline{\mathrm{INTi}}$ input LOW pulse width	250	ns	

Switching characteristics (referenced to $\mathrm{Vcc}=5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CM} 15=$ " 1 " unless otherwise specified)

Table 4.22 In memory expansion and microprocessor modes (No wait)

Symbol	Parameter	Measuring condition	Standard		Unit
			Min.	Max.	
ta(BCLK-AD)	Address output delay time	Figure 4.1		40	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		0		ns
td(BCLK-CS)	Chip select output delay time			40	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
td(BCLK-ALE)	ALE signal output delay time			40	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			40	ns
th(BCLK-RD)	RD signal output hold time		0		ns
to(BCLK-WR)	WR signal output delay time			40	ns
th(BCLK-WR)	WR signal output hold time		0		ns
to(BCLK-DB)	Data output delay time (BCLK standard)			40	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note 1)		ns
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns

Note 1: Calculated according to the BCLK frequency as follows:

$$
\operatorname{td}(\mathrm{DB}-\mathrm{WR})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2}-40 \quad[\mathrm{~ns}]
$$

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.
Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.
Hold time of data bus is expressed in

$$
t=-C R X \ln (1-V O L / V C C)
$$

by a circuit of the right figure.
For example, when VoL $=0.2 \mathrm{Vcc}, \mathrm{C}=30 \mathrm{pF}, \mathrm{R}=1 \mathrm{k} \Omega$, hold time
 of output "L" level is

$$
\begin{aligned}
\mathrm{t} & =-30 \mathrm{pF} \times 1 \mathrm{k} \Omega \times \ln (1-0.2 \mathrm{Vcc} / \mathrm{Vcc}) \\
& =6.7 \mathrm{~ns}
\end{aligned}
$$

Switching characteristics (refer to $\mathrm{Vcc}=5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CM} 15=$ " 1 " unless otherwise specified)

Table 4.23 In memory expansion and microprocessor modes (With wait, accessing external memory)

Symbol	Parameter	Measuring condition	Standard		Unit
			Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 4.1		40	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		0		ns
td(BCLK-CS)	Chip select output delay time			40	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
td(BCLK-ALE)	ALE signal output delay time			40	ns
tr (BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			40	ns
th (BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			40	ns
tr (BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			40	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns

Note 1: Calculated according to the BCLK frequency as follows:

$$
\operatorname{td}(\mathrm{DB}-\mathrm{WR})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK})}-40 \quad[\mathrm{~ns}]
$$

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.
Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.
Hold time of data bus is expressed in

$$
\mathrm{t}=-\mathrm{CR} \mathrm{X} \ln (1-\mathrm{VoL} / \mathrm{Vcc})
$$

by a circuit of the right figure.
For example, when $\mathrm{VoL}=0.2 \mathrm{Vcc}, \mathrm{C}=30 \mathrm{pF}, \mathrm{R}=1 \mathrm{k} \Omega$, hold time
 of output " L " level is

$$
\begin{aligned}
\mathrm{t} & =-30 \mathrm{pF} \times 1 \mathrm{k} \Omega \times \ln (1-0.2 \mathrm{Vcc} / \mathrm{Vcc}) \\
& =6.7 \mu \mathrm{~s}
\end{aligned}
$$

Switching characteristics (referenced to $\mathrm{Vcc}=5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ at $\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{CM} 15=$ "1" unless otherwise specified)

Table 4.24 In memory expansion and microprocessor modes (With wait, accessing external memory, multiplex bus area selected)

Symbol	Parameter	Measuring condition	Standard		Unit
			Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 4.1		40	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
t (RD-AD)	Address output hold time (RD standard)		(Note)		ns
th(WR-AD)	Address output hold time (WR standard)		(Note)		ns
td(BCLK-CS)	Chip select output delay time			40	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
th(RD-CS)	Chip select output hold time (RD standard)		(Note)		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note)		ns
td(BCLK-RD)	RD signal output delay time			40	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			40	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			40	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			40	ns
th (BCLK-ALE)	ALE signal output hold time (BCLK standard)		-4		ns
td(AD-ALE)	ALE signal output delay time (Address standard)		(Note)		ns
th(ALE-AD)	ALE signal output hold time (Adderss standard)		50		ns
td(AD-RD)	Post-address RD signal output delay time		0		ns
td(AD-WR)	Post-address WR signal output delay time		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

Note: Calculated according to the BCLK frequency as follows:

$$
\begin{aligned}
& \operatorname{th}(\mathrm{RD}-\mathrm{AD})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2} \\
& \operatorname{th}(\mathrm{WR}-\mathrm{AD})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2} \\
& \operatorname{th}(\mathrm{RD}] \\
&\operatorname{ths}-\mathrm{CS})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2} \\
& \operatorname{th}(\mathrm{WR}-\mathrm{CS})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2} \\
& \operatorname{td}(\mathrm{DB}-\mathrm{WR})=\frac{10^{9} \times 3}{\mathrm{f}(\mathrm{BCLK}) \times 2}-40 \\
& {[\mathrm{~ns}] } \\
& \operatorname{th}(\mathrm{WR}-\mathrm{DB})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2} \\
& \operatorname{td}(\mathrm{AD}-\mathrm{ALE})=\frac{10^{9}}{\mathrm{f}(B C L K) \times 2}-40 \quad[\mathrm{~ns}]
\end{aligned}
$$

Figure 4.1 Port P0 to P11 measurement circuit

Figure 4.2 Timing diagram (1)

Figure 4.3 Timing diagram (2)

Figure 4.4 Timing diagram (3)

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

In memory expansion and microprocessor modes
(When Accessing External Memory Area With Wait)

Read timing

Write timing

Figure 4.5 Timing diagram (4)

Figure 4.6 Timing diagram (5)

M306H2MC-XXXFP

5. ITEMS TO BE SUBMITTED WHEN ORDERING MASKED ROM VERSION

Please submit the following when ordering masked ROM products.
(1) Mask ROM confirmation form
(2) Mark specification sheet
(3) ROM data : EPROMs (3 sets) or Floppy disks
*: In the case of EPROMs, there sets of EPROMs are required per pattern.
*: In the case of floppy disks, 3.5-inch double-sided high-density disk (IBM format) is required per pattern.

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

6. PACKAGE OUTLINE

116P6A-A MMP
Plastic $\mathbf{1 1 6}$ pin $20 \times 20 \mathrm{~mm}$ body LQFP

EIAJ Package Code	JEDEC Code	Weight(g)	Lead Material	Recommended Mount Pad										
			Cu Alloy											
Recommended Mount Pad														
(30) (58)					Symbol	Min								
					A	-	-	1.7						
					A1	0.05	0.125	0.2						
					A2	-	1.4	-						
					b	0.17	0.22	0.27						
					c	0.105	0.125	0.175						
					D	19.9	20.0	20.1						
					E	19.9	20.0	20.1						
					-	-	0.65	-						
					HD	21.8	22.0	22.2						
					HE	21.8	22.0	22.2						
			A		L	0.35	0.5	0.65						
					L1	-	1.0	-						
					Lp	0.45	0.6	0.75						
					A3	-	0.25	-						
-	-			4	x	-	-	0.13						
	吅		41		y	-	-	0.1						
,					θ	0°	-	8°						
\square	* \emptyset x		θ		b2	-	0.225	-						
			p		12	0.95	-	-						
			Detail F		MD	-	20.4	-						
					ME	-	20.4	-						

7. DIFFERENCES BETWEEN M306H2MC-XXXFP AND M306H2FCFP

Item	M306H2MC-XXXFP	M306H2FCFP
Processor mode	Single-chip mode Memory extension mode Microprocessor mode(Note 1)	Single-chip mode Memory expansion mode
ROM type	Mask ROM	Flash memory
M1/M2 pin function	M1: Test input (Connect it to the Vss pin.)	M2: Test input (Connect it to the Vss pin.)
CNVss pin function	This pin switches between processor modes.	Normally connect it to the Vss pin.(Note 2)
BYTE pin function	This pin switches between external data buses.	This pin switches between external data buses. (Note 3)

Notes 1: Microprocessor mode can be used only on M306H2MC-XXXFP.
2: These pins are used to control flash memory mode. For more information, consult M306H2FCFP flash memory specifications.
3 :When use flash memory mode (parallel I/O, standard serial I/O and CPU rewriting mode), connect with VSS pin.
4 :Since it differs in part about an electrical characteristics, check the specification of M306H2MC-XXXFP and M306H2FCFP.
5 :There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and Flash Memory version MCUs due to the difference in the manufacturing processes. When manufacturing an application system with the Flash Memory version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.
6: Before using the M306H2FCFP's standard serial input/output mode (boot mode) during, for example, application product development or mass-production startup, always refer to the pin connection diagrams and typical application circuits in Figures 7.1 through 7.3. Be careful at the time of mask ROM development.

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Figure 7.1 Pin connections for M306H2FCFP serial I/O mode

Figure 7.2 Example circuit application for M306H2FCFP standard serial I/O mode 1

M306H2MC-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with DATA ACQUISITION CONTROLLER

Figure 7.3 Example circuit application for M306H2FCFP standard serial I/O mode 2

REVISION DESCRIPTION LIST	M306H2MC-XXXFP Data Sheet		
Rev. No.	Revision Description	Rev.	
1.0	First Edition	date	

[^0]: Note: When using the $\overline{\mathrm{RDY}}$ signal, always set to " 0 ".

[^1]: CM1i: bit i of address 000716
 CMOi: bit i of address 000616

[^2]: Note 1: Only when clock synchronous serial I/O mode.
 Note 2: Only when clock synchronous serial I/O mode and 8-bit UART mode.
 Note 3: Only when UART mode.
 Note 4: Using for SIM interface.

[^3]: Note 1:This flag detects unwanted signals during the sync signal (slice period).

