

ardware

Manu

M16C/6N Group (M16C/6N4) Hardware Manual

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / M16C/60 SERIES

Before using this material, please visit our website to verify that this is the most updated document available.

Rev. 2.30 Revision date: Oct. 24, 2005 RenesasTechnology www.renesas.com

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

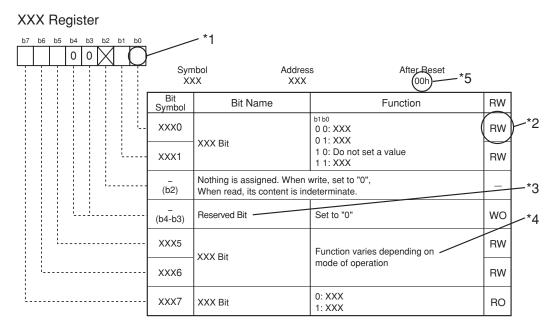
Notes regarding these materials -

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.


How to Use This Manual

1. Introduction

This hardware manual provides detailed information on the M16C/6N Group (M16C/6N4) of microcomputers. Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

*1

Blank:Set to "0" or "1" according to the application

- 0 : Set to "0"
- 1: Set to "1"
- X: Nothing is assigned
- *2
- RW: Read and write
- RO: Read only
- WO: Write only
- Nothing is assigned
- *3
- Reserved bit

Reserved bit. Set to specified value.

*4

Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

- Do not set to this value
 - The operation is not guaranteed when a value is set.
- Function varies depending on mode of operation
 - Bit function varies depending on peripheral function mode.
 - Refer to respective register for each mode.

*5

Follow the text in each manual for binary and hexadecimal notations.

3. M16C Family Documents

The following documents were prepared for the M16C family ⁽¹⁾.

Document	Contents	
Short Sheet	Hardware overview	
Data Sheet	Hardware overview and electrical characteristics	
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral	
	specifications, electrical characteristics, timing charts)	
Software Manual	Detailed description of assembly instructions and microcompute	
	performance of each instruction	
Application Note • Application examples of peripheral functions		
	Sample programs	
	 Introduction to the basic functions in the M16C family 	
	 Programming method with Assembly and C languages 	
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.	

NOTE:

1. Before using this material , please visit our website to verify that this is the most updated document available.

Table of Contents

SFR Page Reference	B-1
1. Overview	
1.1 Applications	1
1.2 Performance Outline	
1.3 Block Diagram	3
1.4 Product List	4
1.5 Pin Configuration	5
1.6 Pin Description	9
2. Central Processing Unit (CPU)	
2.1 Data Registers (R0, R1, R2, and R3)	
2.2 Address Registers (A0 and A1)	
2.3 Frame Base Register (FB)	13
2.4 Interrupt Table Register (INTB)	13
2.5 Program Counter (PC)	13
2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)	13
2.7 Static Base Register (SB)	13
2.8 Flag Register (FLG)	
2.8.1 Carry Flag (C Flag)	13
2.8.2 Debug Flag (D Flag)	
2.8.3 Zero Flag (Z Flag)	
2.8.4 Sign Flag (S Flag)	
2.8.5 Register Bank Select Flag (B Flag)	
2.8.6 Overflow Flag (O Flag)	
2.8.7 Interrupt Enable Flag (I Flag)	
2.8.8 Stack Pointer Select Flag (U Flag)	
2.8.9 Processor Interrupt Priority Level (IPL)	
2.8.10 Reserved Area	
3. Memory	
4. Special Function Register (SFR)	
5. Reset	
5.1 Hardware Reset	31
5.1.1 Reset on a Stable Supply Voltage	
5.1.2 Power-on Reset	
5.2 Software Reset	
5.3 Watchdog Timer Reset	
5.4 Oscillation Stop Detection Reset	
5.5 Internal Space	
6. Processor Mode	
6.1 Types of Processor Mode	34
6.2 Setting Processor Modes	34
7. Bus	
7.1 Bus Mode	
7.1.1 Separate Bus	
7.1.2 Multiplexed Bus	40

7.2 Bus Control	41
7.2.1 Address Bus	41
7.2.2 Data Bus	41
7.2.3 Chip Select Signal	41
7.2.4 Read and Write Signals	43
7.2.5 ALE Signal	43
7.2.6 The RDY Signal	44
7.2.7 HOLD Signal	45
7.2.8 BCLK Output	45
7.2.9 External Bus Status When Internal Area Accessed	47
7.2.10 Software Wait	47
8. Clock Generating Circuit	51
8.1 Types of Clock Generating Circuit	51
8.1.1 Main Clock	58
8.1.2 Sub Clock	59
8.1.3 On-chip Oscillator Clock	60
8.1.4 PLL Clock	60
8.2 CPU Clock and Peripheral Function Clock	62
8.2.1 CPU Clock and BCLK	62
8.2.2 Peripheral Function Clock	62
8.3 Clock Output Function	62
8.4 Power Control	63
8.4.1 Normal Operation Mode	63
8.4.2 Wait Mode	65
8.4.3 Stop Mode	67
8.5 Oscillation Stop and Re-oscillation Detection Function	72
8.5.1 Operation When CM27 Bit = 0 (Oscillation Stop Detection Reset)	72
8.5.2 Operation When CM27 Bit = 1 (Oscillation Stop, Re-oscillation Detection Interrupt)	72
8.5.3 How to Use Oscillation Stop and Re-oscillation Detection Function	73
9. Protection	74
10. Interrupt	75
10.1 Type of Interrupts	75
10.2 Software Interrupts	76
10.2.1 Undefined Instruction Interrupt	76
10.2.2 Overflow Interrupt	76
10.2.3 BRK Interrupt	76
10.2.4 INT Instruction Interrupt	76
10.3 Hardware Interrupts	77
10.3.1 Special Interrupts	77
10.3.2 Peripheral Function Interrupts	77
10.4 Interrupts and Interrupt Vector	78
10.4.1 Fixed Vector Tables	78
10.4.2 Relocatable Vector Tables	79
10.5 Interrupt Control	80
10.5.1 Flag	82
10.5.2 IR Bit	
10.5.3 ILVL2 to ILVL0 Bits and IPL	

10.5.4 Interrupt Sequence	
10.5.5 Interrupt Response Time	
10.5.6 Variation of IPL when Interrupt Request is Accepted	
10.5.7 Saving Registers	
10.5.8 Returning from an Interrupt Routine	
10.5.9 Interrupt Priority	
10.5.10 Interrupt Priority Resolution Circuit	
10.6 INT Interrupt	
10.7 NMI Interrupt	
10.8 Key Input Interrupt	
10.9 CAN0/1 Wake-up Interrupt	
10.10 Address Match Interrupt	91
11. Watchdog Timer	
11.1 Count Source Protective Mode	94
12. DMAC	
12.1 Transfer Cycle	
12.1.1 Effect of Source and Destination Addresses	
12.1.2 Effect of BYTE Pin Level	
12.1.3 Effect of Software Wait	
12.1.4 Effect of RDY Signal	
12.2 DMA Transfer Cycles	
12.3 DMA Enable	
12.4 DMA Request	
12.5 Channel Priority and DMA Transfer Timing	
13. Timers	
13.1 Timer A	
13.1.1 Timer Mode	
13.1.2 Event Counter Mode	
13.1.3 One-shot Timer Mode	
13.1.4 Pulse Width Modulation (PWM) Mode	
13.2 Timer B	
13.2.1 Timer Mode	
13.2.2 Event Counter Mode	
13.2.3 Pulse Period and Pulse Width Measurement Mode	
14. Three-Phase Motor Control Timer Function	
15. Serial Interface	
15.1 UARTi	
15.1.1 Clock Synchronous Serial I/O Mode	
15.1.2 Clock Asynchronous Serial I/O (UART) Mode	
15.1.3 Special Mode 1 (I ² C Mode)	
15.1.4 Special Mode 2	
15.1.5 Special Mode 3 (IE Mode)	
15.1.6 Special Mode 4 (SIM Mode) (UART2)	
15.2 SI/O3	
	191
15.2.1 SI/O3 Operation Timing	
15.2.1 SI/O3 Operation Timing	

16. A/D Converter	
16.1 Mode Description	
16.1.1 One-shot Mode	
16.1.2 Repeat Mode	
16.1.3 Single Sweep Mode	
16.1.4 Repeat Sweep Mode 0	
16.1.5 Repeat Sweep Mode 1	
16.2 Function	
16.2.1 Resolution Select Function	
16.2.2 Sample and Hold	
16.2.3 Extended Analog Input Pins	
16.2.4 External Operation Amplifier (Op-Amp) Connection Mode	
16.2.5 Current Consumption Reducing Function	
16.2.6 Output Impedance of Sensor under A/D Conversion	
17. D/A Converter	210
18. CRC Calculation	
19. CAN Module	
19.1 CAN Module-Related Registers	
19.1.1 CAN Message Box	
19.1.2 Acceptance Mask Registers	
19.1.3 CAN SFR Registers	
19.2 CANi Message Box	
19.3 Acceptance Mask Registers	
19.4 CAN SFR Registers	
19.5 Operational Modes	
19.5.1 CAN Reset/Initialization Mode	
19.5.2 CAN Operation Mode	
19.5.3 CAN Sleep Mode	
19.5.4 CAN Interface Sleep Mode	
19.5.5 Bus Off State	
19.6 Configuration CAN Module System Clock	
19.7 Bit Timing Configuration	
19.8 Bit-rate	
19.8.1 Calculation of Bit-rate	
19.9 Acceptance Filtering Function and Masking Function	
19.10 Acceptance Filter Support Unit (ASU)	
19.11 Basic CAN Mode	
19.12 Return from Bus Off Function	
19.13 Time Stamp Counter and Time Stamp Function	
19.14 Listen-Only Mode	
19.15 Reception and Transmission	
19.15.1 Reception	
19.15.2 Transmission	
19.16 CAN Interrupt	

20. Programmable I/O Ports	
20.1 PDi Register	
20.2 Pi Register	
20.3 PURj Register	
20.4 PCR Register	
21. Flash Memory Version	251
21.1 Memory Map	
21.1.1 Boot Mode	
21.2 Functions to Prevent Flash Memory from Rewriting	
21.2.1 ROM Code Protect Function	
21.2.2 ID Code Check Function	
21.3 CPU Rewrite Mode	
21.3.1 EW0 Mode	
21.3.2 EW1 Mode	
21.3.3 FMR0, FMR1 Registers	
21.3.4 Precautions on CPU Rewrite Mode	
21.3.5 Software Commands	
21.3.6 Data Protect Function	
21.3.7 Status Register (SRD Register)	
21.3.8 Full Status Check	
21.4 Standard Serial I/O Mode	
21.4.1 ID Code Check Function	
21.4.2 Example of Circuit Application in Standard Serial I/O Mode	
21.5 Parallel I/O Mode	
21.5.1 User ROM and Boot ROM Areas	
21.5.2 ROM Code Protect Function	
21.6 CAN I/O Mode	
21.6.1 ID Code Check Function	
21.6.2 Example of Circuit Application in CAN I/O Mode	
21.7 Electrical Characteristics	
21.7.1 Electrical Characteristics (T/V-ver.) 21.7.2 Electrical Characteristics (Normal-ver.)	
22. Electrical Characteristics	
22.1 Electrical Characteristics (T/V-ver.)	
22.2 Electrical Characteristics (Normal-ver.)	
23. Usage Precaution	
23.1 External Bus	
23.2 PLL Frequency Synthesizer	
23.3 Power Control	
23.4 Protection	
23.5 Interrupt	
23.5.1 Reading Address 00000h	
23.5.2 Setting SP	
23.5.3 NMI Interrupt	
23.5.4 Changing Interrupt Generate Factor	
23.5.5 INT Interrupt	
23.5.6 Rewrite Interrupt Control Register	
23.5.7 Watchdog Timer Interrupt	

23.6 DMAC	350
23.6.1 Write to DMAE Bit in DMiCON Register	350
23.7 Timers	351
23.7.1 Timer A	351
23.7.2 Timer B	354
23.8 Serial Interface	356
23.8.1 Clock Synchronous Serial I/O Mode	356
23.8.2 Special Modes	357
23.8.3 SI/O3	358
23.9 A/D Converter	359
23.10 CAN Module	361
23.10.1 Reading CiSTR Register	361
23.10.2 Performing CAN Configuration	363
23.10.3 Suggestions to Reduce Power Consumption	364
23.10.4 CAN Transceiver in Boot Mode	365
23.11 Programmable I/O Ports	366
23.12 Electrical Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers	367
23.13 Mask ROM Version	368
23.14 Flash Memory Version	369
23.14.1 Functions to Prevent Flash Memory from Rewriting	369
23.14.2 Stop Mode	369
23.14.3 Wait Mode	369
23.14.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode	369
23.14.5 Writing Command and Data	369
23.14.6 Program Command	369
23.14.7 Lock Bit Program Command	369
23.14.8 Operation Speed	370
23.14.9 Prohibited Instructions	370
23.14.10 Interrupt	370
23.14.11 How to Access	370
23.14.12 Rewriting in User ROM Area	370
23.14.13 DMA Transfer	370
23.15 Flash Memory Programming Using Boot Program	371
23.15.1 Programming Using Serial I/O Mode	
23.15.2 Programming Using CAN I/O Mode	371
23.16 Noise	372
ppendix 1. Package Dimensions	373
egister Index	375

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

SFR Page Reference

Address	Register	Symbol	Page	Address	Register	Symbol
0000h				0040h		
0001h				0041h	CAN0/1 Wake-up Interrupt Control Register	
0002h				0042h	CAN0 Successful Reception Interrupt Control Register	
0003h				0043h	CAN0 Successful Transmission Interrupt Control Register	
0004h	Processor Mode Register 0	PM0	35	0044h	INT3 Interrupt Control Register	INT3IC
		PM1	36	0045h	Timer B5 Interrupt Control Register	TB5IC
0006h	System Clock Control Register 0	CM0	53	0046h	Timer B4 Interrupt Control Register	TB4IC
0007h	System Clock Control Register 1	CM1	54	004011	UART1 Bus Collision Detection Interrupt Control Register	U1BCNIC
0008h	Chip Select Control Register	CSR	41	0047h	Timer B3 Interrupt Control Register	TB3IC
0009h	Address Match Interrupt Enable Register	AIER	92	004711	UART0 Bus Collision Detection Interrupt Control Register	U0BCNIC
000Ah	Protect Register	PRCR	74	0048h	CAN1 Successful Reception Interrupt Control Register	C1RECIC
000Bh				004011	INT5 Interrupt Control Register	INT5IC
000Ch	Oscillation Stop Detection Register	CM2	55		CAN1 Successful Transmission Interrupt Control Register	C1TRMIC
000Dh				0049h	SI/O3 Interrupt Control Register	S3IC
000Eh	Watchdog Timer Start Register	WDTS	94		INT4 Interrupt Control Register	INT4IC
000Fh	Watchdog Timer Control Register	WDC	94		UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC
0010h				004Bh	DMA0 Interrupt Control Register	DM0IC
0011h	Address Match Interrupt Register 0	RMAD0	92	004Ch		DM1IC
0012h				004Dh		C01ERRIC
0013h				00455	A/D Conversion Interrupt Control Register	ADIC
0014h				004Eh	Key Input Interrupt Control Register	KUPIC
0015h	Address Match Interrupt Register 1	RMAD1	92	004Fh	UART2 Transmit Interrupt Control Register	
0016h				0050h	UART2 Receive Interrupt Control Register	S2RIC
0017h				0051h	UART0 Transmit Interrupt Control Register	SOTIC
0018h					UART0 Receive Interrupt Control Register	
0019h					UART1 Transmit Interrupt Control Register	
001Ah					UART1 Receive Interrupt Control Register	
001Bh		CSE	47		Timer A0 Interrupt Control Register	TA0IC
001Ch	PLL Control Register 0	PLC0	57	0056h		TA1IC
001Dh				0057h	· · ·	TA2IC
001Eh	Processor Mode Register 2	PM2	57	0058h		TA3IC
001Fh				0059h	· · · · · ·	TA4IC
0020h				005Ah		TB0IC
0021h	DMA0 Source Pointer	SAR0	99	005Bh	Timer B1 Interrupt Control Register	TB1IC
0022h					Timer B2 Interrupt Control Register	TB2IC
0023h				005Dh	INT0 Interrupt Control Register	INTOIC
0024h					INT1 Interrupt Control Register	INT1IC
0025h	DMA0 Destination Pointer	DAR0	99	005Fh	INT2 Interrupt Control Register	INT2IC
0026h				0060h 0061h		
0027h				0062h		
0028h	DMA0 Transfer Counter	TCR0	99	0063h	CAN0 Message Box 0: Identifier / DLC	
0029h				0064h		
002Ah				0065h		
002Bh		DUADON		0066h		
002Ch	DMA0 Control Register	DM0CON	98	0067h		
002Dh				0068h		
002Eh				0069h	CAN0 Message Box 0: Data Field	
002Fh				006Ah 006Bh	. č	
0030h				006Ch		
0031h	DMA1 Source Pointer	SAR1	99	006Dh		
0032h				006Eh		
0033h				006Fh	CAN0 Message Box 0: Time Stamp	
0034h				0070h		
0035h	DMA1 Destination Pointer	DAR1	99	0071h		
0036h				0072h	CAN0 Message Box 1: Identifier / DLC	
0037h				0073h	DANG Message Dox 1. Identifier / DEC	
0038h	DMA1 Transfer Counter	TCR1	99	0074h		
0039h		10111	- 55	0075h		
003Ah				0076h 0077h	1	
003Bh				0077h 0078h	1	
003Ch	DMA1 Control Register	DM1CON	98	0078h	1	
003Dh				0073h	CAN0 Message Box 1: Data Field	
003Eh				007Bh	1	
003Fh				007Ch		
he blan	k areas are reserved.			007Dh		
				007Eh 007Fh	CAN0 Message Box 1: Time Stamp	
				007Fh		1

Page

80

80

80

81

80

80

80

80

80

81

81

81

81

81

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

81

81

81

216 217

007Fh

Address	Register	Symbol	Page
0080h			
0081h			
0082h	CANO Magagage Roy 2: Identifier / DLC		
0083h	CAN0 Message Box 2: Identifier / DLC		
0084h			
0085h			
0086h			
0087h			
0088h			
0089h	CANO Magagara Day 2: Data Field		
008Ah	CAN0 Message Box 2: Data Field		
008Bh			
008Ch			
008Dh			
008Eh	CANO Magagaga Boy 2: Tima Stamp		
008Fh	CAN0 Message Box 2: Time Stamp		
0090h			
0091h			
0092h	CAN0 Message Box 3: Identifier / DLC		
0093h	Onito Message Dox 3. Identilier / DEC		
0094h			
0095h			
0096h			
0097h			
0098h			
0099h	CAN0 Message Box 3: Data Field		
009Ah	CANO Message Box 5. Data Tield		
009Bh			
009Ch			
009Dh			
009Eh	CAN0 Message Box 3: Time Stamp		
009Fh			216
00A0h			217
00A1h			
00A2h	CAN0 Message Box 4: Identifier / DLC		
00A3h	of the message box 4. Identifier / DEC		
00A4h			
00A5h			
00A6h			
00A7h			
00A8h			
00A9h	CAN0 Message Box 4: Data Field		
00AAh			
00ABh			
00ACh			
00ADh			
00AEh 00AFh	CAN0 Message Box 4: Time Stamp		
00AFn 00B0h			
00B0h			
00B1h			
00B2n	CAN0 Message Box 5: Identifier / DLC		
00B3h			
00B411			
00B5h			
00B0h			
00B8h			
00B9h			
00B9h	CAN0 Message Box 5: Data Field		
00BBh			
00BCh			
00BDh			
00BEh			
00BFh	CAN0 Message Box 5: Time Stamp		

Address	Register	Symbol	Page
00C0h	Ŭ		T
00C1h			
00C2h	CANO Magazara Day 6: Identifiar / DI C		
00C3h	CAN0 Message Box 6: Identifier / DLC		
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh	CAN0 Message Box 6: Data Field		
00CBh			
00CCh			
00CDh			
00CEh			
00CFh	CAN0 Message Box 6: Time Stamp		
00D0h			
00D1h			
00D2h			
00D3h	CAN0 Message Box 7: Identifier / DLC		
00D4h			
00D5h			
00D6h			
00D7h			
00D8h			
00D9h			
00DAh	CAN0 Message Box 7: Data Field		
00DBh			
00DCh			
00DDh			
00DEh			
00DFh	CAN0 Message Box 7: Time Stamp		216
00E0h			217
00E1h			
00E2h			
00E3h	CAN0 Message Box 8: Identifier / DLC		
00E4h			
00E5h			
00E6h			
00E7h			
00E8h			
00E9h			
00EAh	CAN0 Message Box 8: Data Field		
00EBh			
00EDh			
00EDh			
00EEh			
00EFh	CAN0 Message Box 8: Time Stamp		
00F0h			
00F1h			
00F2h			
00F3h	CAN0 Message Box 9: Identifier / DLC		
00F4h			
00F5h			
00F6h			
00F7h			
00F8h			
00F9h			
00FAh	CAN0 Message Box 9: Data Field		
00FBh			
00FCh			
00FDh			
00FEh			
00FFh	CAN0 Message Box 9: Time Stamp		

Address	Register	Symbol	Page
0100h			
0101h			
0102h	CAN0 Message Box 10: Identifier / DLC		
0103h			
0104h			
0105h			
0106h			
0107h 0108h			
0108h			
010Ah	CAN0 Message Box 10: Data Field		
010Ah			
010Ch			
010Dh			
010Eh			
010Fh	CAN0 Message Box 10: Time Stamp		
0110h			
0111h			
0112h	CANO Magaga Box 11: Identifier / DI C		
0113h	CAN0 Message Box 11: Identifier / DLC		
0114h			
0115h			
0116h			
0117h			
0118h			
0119h	CAN0 Message Box 11: Data Field		
011Ah			
011Bh			
011Ch 011Dh			
011Eh			
011Fh	CAN0 Message Box 11: Time Stamp		216
0120h			217
0120h			217
0122h			
0123h	CAN0 Message Box 12: Identifier / DLC		
0124h			
0125h			
0126h			
0127h			
0128h			
0129h	CAN0 Message Box 12: Data Field		
012Ah	UNIN MESSAYE DUX 12. Dala FIEIU		
012Bh			
012Ch			
012Dh			
012Eh	CAN0 Message Box 12: Time Stamp		
012Fh			
0130h			
0131h			
0132h	CAN0 Message Box 13: Identifier / DLC		
0133h 0134h	, v v v v v v v v v v v v v v v v v v v		
0134h			
0135h			
01301 0137h			
0138h			
0139h			
013Ah	CAN0 Message Box 13: Data Field		
013Bh			
013Ch			
013Dh	1		
013Eh			
013Fh	CAN0 Message Box 13: Time Stamp		
The latera	k areas are reserved		

Address	Register	Symbol	Page
0140h			
0141h			
0142h	CAN0 Message Box 14: Identifier /DLC		
0143h	5		
0144h			
0145h			-
0146h 0147h			
0147h			
0149h			
0140h	CAN0 Message Box 14: Data Field		
014Bh			
014Ch			
014Dh			
014Eh	CAN0 Message Box 14: Time Stamp]
014Fh	CANO Message Box 14. Time Stamp		216
0150h			217
0151h			
0152h	CAN0 Message Box 15: Identifier /DLC		
0153h			
0154h			
0155h			1
0156h 0157h			
0157h 0158h			
0159h			
015Ah	CAN0 Message Box 15: Data Field		
015Bh			
015Ch			
015Dh			
015Eh			
015Fh	CAN0 Message Box 15: Time Stamp		
0160h			
0161h			
0162h	CAN0 Global Mask Register	COGMR	218
0163h			
0164h			
0165h 0166h			
0160h			
0168h			
0169h	CAN0 Local Mask A Register	COLMAR	218
016Ah			
016Bh			
016Ch			
016Dh			
016Eh	CANO Legal Maak D. Davister	COLMBR	218
016Fh	CAN0 Local Mask B Register		210
0170h			
0171h			
0172h			
0173h 0174h			
0174h 0175h			
0175h			
0170h			
0178h			<u> </u>
0179h			
101/31			1
017911 017Ah			1
017Ah			
017Ah 017Bh			
017Ah 017Bh 017Ch			

Address	Register	Symbol	Page	Address	Register	Symbol	Page
0180h		,	Ŭ	01C0h	Timer B3, B4, B5 Count Start Flag	TBŚR	124
0181h				01C1h	· · ·		
0182h				01C2h	Timer A1 1 Desister	TA11	135
0183h				01C3h	Timer A1-1 Register		155
0184h				01C4h	Timer A2-1 Register	TA21	135
0185h				01C5h	Timer Az-T Register	174	100
0186h				01C6h	Timer A4-1 Register	TA41	135
0187h				01C7h	•		
0188h				01C8h		INVC0	132
0189h				01C9h	Three-Phase PWM Control Register 1	INVC1	133
018Ah					Three-Phase Output Buffer Register 0	IDB0	134
018Bh					Three-Phase Output Buffer Register 1	IDB1	134
018Ch					Dead Time Timer	DTT	134
018Dh					Timer B2 Interrupt Occurrence Frequency Set Counter	ICTB2	136
018Eh				01CEh 01CFh			
018Fh				01CFn 01D0h			
0190h					Timer B3 Register	TB3	123
0191h				01D1h	,		
0192h				01D2h	Timer B4 Register	TB4	123
0193h 0194h				01D3h 01D4h	-		
0194h 0195h			+	01D4n 01D5h	Timer B5 Register	TB5	123
0195h				01D5h			
0196h 0197h				01D6h			
019711 0198h				01D7h			
01981 0199h				01D8h			
01990 019Ah				01D9h			
019An					Timer B3 Mode Register	TB3MR	123
019Bh					Timer B4 Mode Register	TB4MR	125
0190h					Timer B5 Mode Register	TB5MR	126
019Eh					Interrupt Cause Select Register 0	IFSR0	128 89
019Eh				01DEh	Interrupt Cause Select Register 0	IFSR1	89
01A0h				01E0h	SI/O3 Transmit/Receive Register	S3TRR	189
01A0h				01E1h	SI/OS Mansmit/Neceive Negister	551111	103
01A2h					SI/O3 Control Register	S3C	189
01A3h				01E3h	SI/O3 Bit Rate Generator	S3BRG	189
01A4h				01E4h		COBING	100
01A5h				01E5h			
01A6h				01E6h			
01A7h				01E7h			
01A8h				01E8h			
01A9h				01E9h			
01AAh				01EAh			
01ABh				01EBh			
01ACh				01ECh	UART0 Special Mode Register 4	U0SMR4	150
01ADh					UART0 Special Mode Register 3	U0SMR3	149
01AEh					UART0 Special Mode Register 2	U0SMR2	149
01AFh					UART0 Special Mode Register	U0SMR	148
01B0h					UART1 Special Mode Register 4	U1SMR4	150
01B1h					UART1 Special Mode Register 3	U1SMR3	149
01B2h				01F2h	UART1 Special Mode Register 2	U1SMR2	149
01B3h				01F3h	UART1 Special Mode Register	U1SMR	148
01B4h				01F4h	UART2 Special Mode Register 4	U2SMR4	150
01B5h	Flash Memory Control Register 1	FMR1	257	01F5h		U2SMR3	149
01B6h					UART2 Special Mode Register 2	U2SMR2	149
01B7h	Flash Memory Control Register 0	FMR0	257	01F7h	UART2 Special Mode Register	U2SMR	148
01B8h				01F8h		U2MR	146
01B9h	Address Match Interrupt Register 2	RMAD2	92	01F9h	UART2 Bit Rate Generator	U2BRG	145
01BAh				01FAh	UART2 Transmit Buffer Register	U2TB	145
01BBh	Address Match Interrupt Enable Register 2	AIER2	92	01FBh	•	ULID	143
01BCh				01FCh	UART2 Transmit/Receive Control Register 0	U2C0	146
01BDh	Address Match Interrupt Register 3	RMAD3	92		UART2 Transmit/Receive Control Register 1	U2C1	147
			ı I				1
01BEh 01BFh				01FEh 01FFh	UART2 Receive Buffer Register	U2RB	145

Address	Register	Symbol	Page
0200h	CAN0 Message Control Register 0	COMCTLO	r aye
020011 0201h	CANO Message Control Register 0 CANO Message Control Register 1	COMCTL0	
020111 0202h	CANO Message Control Register 2	COMCTL1 COMCTL2	
020211 0203h	CANO Message Control Register 2 CANO Message Control Register 3	COMCTL2 COMCTL3	
020311 0204h	CANO Message Control Register 3	COMCTL3	
0204n 0205h	CANO Message Control Register 4 CANO Message Control Register 5	COMCTL4 COMCTL5	
0205h	CANO Message Control Register 5 CANO Message Control Register 6	COMCTL5 COMCTL6	
		COMCTL6 COMCTL7	
0207h	CANO Message Control Register 7		219
0208h	CANO Message Control Register 8	COMCTL8	
0209h	CANO Message Control Register 9	C0MCTL9 C0MCTL10	
020Ah	CANO Message Control Register 10		
020Bh	CANO Message Control Register 11	COMCTL11	
020Ch	CAN0 Message Control Register 12	COMCTL12	
020Dh	CAN0 Message Control Register 13	COMCTL13	
020Eh	CAN0 Message Control Register 14	COMCTL14	
020Fh	CAN0 Message Control Register 15	C0MCTL15	
0210h 0211h	CAN0 Control Register	COCTLR	220
021111 0212h			
021211 0213h	CAN0 Status Register	COSTR	221
0214h	CAN0 Slot Status Register	COSSTR	222
0215h	CANO SIOL STATUS REGISTER	003311	222
0216h 0217h	CAN0 Interrupt Control Register	COICR	222
0217h 0218h	`		
0218h 0219h	CAN0 Extended ID Register	COIDR	222
0219h 021Ah	-		
021An	CAN0 Configuration Register	C0CONR	223
	CANO Resolve Error Count Register	CORECR	224
021Ch 021Dh	CANO Receive Error Count Register	CORECR	224
021Dh 021Eh	CAN0 Transmit Error Count Register	COTECR	224
021En 021Fh	CAN0 Time Stamp Register	COTSR	224
0220h	CAN1 Message Control Register 0	C1MCTL0	
0221h	CAN1 Message Control Register 1	C1MCTL1	
0222h	CAN1 Message Control Register 2	C1MCTL2	
0223h	CAN1 Message Control Register 3	C1MCTL3	
0224h	CAN1 Message Control Register 4	C1MCTL4	
0225h	CAN1 Message Control Register 5		
022011			
0226h		C1MCTL5	
0226h	CAN1 Message Control Register 6	C1MCTL6	
0227h	CAN1 Message Control Register 6 CAN1 Message Control Register 7	C1MCTL6 C1MCTL7	219
0227h 0228h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8	C1MCTL6 C1MCTL7 C1MCTL8	219
0227h 0228h 0229h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9	219
0227h 0228h 0229h 022Ah	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10	219
0227h 0228h 0229h 022Ah 022Bh	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11	219
0227h 0228h 0229h 022Ah 022Bh 022Ch	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12	219
0227h 0228h 0229h 022Ah 022Bh 022Ch 022Dh	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13	219
0227h 0228h 0229h 022Ah 022Bh 022Ch 022Dh 022Eh	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 14	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14	219
0227h 0228h 0229h 022Ah 022Bh 022Ch 022Dh 022Eh 022Fh	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15	219
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Eh 022Fh 0230h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 14	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14	219 220
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Eh 022Fh 022Fh 0230h 0231h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 14	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15	
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Eh 022Fh 022Fh 0230h 0231h 0232h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 14	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15	
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Eh 022Fh 0230h 0231h 0232h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Status Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR	220 221
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Eh 022Fh 0230h 0231h 0232h 0233h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR	220
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Eh 022Fh 0230h 0231h 0232h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Status Register CAN1 Status Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR C1SSTR	220 221 222
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Eh 022Fh 0230h 0231h 0232h 0233h 0233h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Status Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR	220 221
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Fh 0230h 0231h 0232h 0233h 0233h 0235h 0236h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Control Register CAN1 Status Register CAN1 Slot Status Register CAN1 Interrupt Control Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR C1STR C1SSTR	220 221 222 222
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Eh 022Fh 0230h 0231h 0232h 0233h 0233h 0233h 0235h 0236h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Status Register CAN1 Status Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR C1SSTR	220 221 222
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Fh 0230h 0231h 0232h 0233h 0233h 0233h 0235h 0236h 0237h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Control Register CAN1 Status Register CAN1 Status Register CAN1 Slot Status Register CAN1 Interrupt Control Register CAN1 Extended ID Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR C1STR C1SSTR C1ICR	220 221 222 222 222 222
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Eh 022Fh 0230h 0231h 0233h 0233h 0233h 0233h 0235h 0236h 0237h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Control Register CAN1 Status Register CAN1 Slot Status Register CAN1 Interrupt Control Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR C1STR C1SSTR	220 221 222 222
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Fh 0230h 0231h 0233h 0233h 0233h 0235h 0236h 0237h 0238h 0239h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Control Register CAN1 Status Register CAN1 Status Register CAN1 Slot Status Register CAN1 Interrupt Control Register CAN1 Extended ID Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR C1STR C1SSTR C1ICR	220 221 222 222 222
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Fh 0230h 0231h 0233h 0233h 0233h 0233h 0233h 0233h 0233h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Status Register CAN1 Status Register CAN1 Status Register CAN1 Status Register CAN1 Interrupt Control Register CAN1 Extended ID Register CAN1 Configuration Register CAN1 Configuration Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR C1STR C1STR C1ICR C1IDR C1ICNR C1CONR C1RECR	220 221 222 222 222 222 223
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Fh 0230h 0231h 0232h 0233h 0233h 0233h 0233h 0233h 0233h 0233h 0233h	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Status Register CAN1 Status Register CAN1 Status Register CAN1 Interrupt Control Register CAN1 Extended ID Register CAN1 Configuration Register CAN1 Receive Error Count Register CAN1 Transmit Error Count Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR C1STR C1STR C1ICR C1IDR C1CONR C1RECR C1RECR	220 221 222 222 222 223 223 224 224
0227h 0228h 0229h 022Ah 022Ch 022Ch 022Ch 022Fh 0230h 0231h 0233h 0233h 0233h 0233h 0233h 0233h 0233h 023Ah 023Ah 023Ah	CAN1 Message Control Register 6 CAN1 Message Control Register 7 CAN1 Message Control Register 8 CAN1 Message Control Register 9 CAN1 Message Control Register 10 CAN1 Message Control Register 11 CAN1 Message Control Register 12 CAN1 Message Control Register 13 CAN1 Message Control Register 13 CAN1 Message Control Register 14 CAN1 Message Control Register 14 CAN1 Message Control Register 15 CAN1 Control Register CAN1 Status Register CAN1 Status Register CAN1 Status Register CAN1 Status Register CAN1 Interrupt Control Register CAN1 Extended ID Register CAN1 Configuration Register CAN1 Configuration Register	C1MCTL6 C1MCTL7 C1MCTL8 C1MCTL9 C1MCTL10 C1MCTL11 C1MCTL12 C1MCTL13 C1MCTL14 C1MCTL15 C1CTLR C1STR C1STR C1STR C1ICR C1IDR C1ICNR C1CONR C1RECR	220 221 222 222 222 222 223 224

Address	Register	Symbol	Page
0240h	1 16919161	Gymbol	i aye
0240h			
0242h			
0243h	CAN0 Acceptance Filter Support Register	COAFS	224
0240h			
0245h	CAN1 Acceptance Filter Support Register	C1AFS	224
0246h			
0247h			
0248h			
0249h			
024Ah			
024/th			
024Ch			
024Dh			
024Eh			
024Eh			
0250h			
0250h			
0252h			
0252h			
0253h			
0255h			
0256h			
0257h			
0258h			
0259h			
0255h			
025Bh			
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	56
025Eh	CAN0/1 Clock Select Register	CCLKR	56
0260h		002101	
0261h			
0262h			
0263h	CAN1 Message Box 0: Identifier / DLC		
0264h			
0265h			
0266h			
0267h			
0268h			
0269h			
026Ah	CAN1 Message Box 0: Data Field		
026Bh			
026Ch			
026Dh			
026Eh			
026Fh	CAN1 Message Box 0:Time Stamp		216
0270h			217
0271h			
0272h	CAN1 Message Box 1: Identifier / DLC		
0273h	Unit message bux 1. Identilier / DLC		
0274h			
0275h			
0276h			
0277h			
0278h			
0279h	CANIT Magaging Day 1: Data Field		
027Ah	CAN1 Message Box 1: Data Field		
027Bh			ı I
027Bh 027Ch			
027Ch			
027Ch 027Dh	CAN1 Message Box 1:Time Stamp		

1280h (282h) (283h) (284h) (284h) CAN1 Message Box 2: Identifier / DLC 1283h (284h) (285h) (286h) (288h) (288h) (288h) (288h) (288h) (288h) (288h) (288h) (288h) (288h) (288h) (288h) (288h) (288h) (288h) (288h) (289h) (290h) (291h) (201h) (291h) (291h) (201h) (291h) (291h) (201h) (291h) (201h) (291h) (201h) (291h) (201h)	Address	Register	Symbol	Page
0282h 0284h 0285h 0286h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0288h 0299h 0291h 0291h 0291h 0291h 0294h	0280h			
C283h (2284h) CAN1 Message Box 2: Identifier / DLC C286h (2287h) CAN1 Message Box 2: Data Field C288h (228h) CAN1 Message Box 2: Data Field C288h (228h) CAN1 Message Box 2: Time Stamp C289h (228h) CAN1 Message Box 3: Identifier / DLC C289h (229h) CAN1 Message Box 3: Identifier / DLC C299h (229h) CAN1 Message Box 3: Data Field C299h (229h) CAN1 Message Box 3: Data Field C299h (229h) CAN1 Message Box 3: Time Stamp C299h (229h) CAN1 Message Box 3: Time Stamp C299h (229h) CAN1 Message Box 4: Identifier / DLC C299h (229h) CAN1 Message Box 4: Identifier / DLC C299h (22Ath (22Ath) CAN1 Message Box 4: Data Field C2Ach (22Ath) CAN1 Message Box 4: Data Field C2Ach (22Ath) CAN1 Message Box 4: Data Field C2Ach (22Ath) CAN1 Message Box 5: Identifier / DLC C2Ach (22Ath) CAN1 Message Box 5: Identifier / DLC C28bh (22Ath) CAN1 Message Box 5: Data Field C28bh (22Bh) CAN1 Message Box 5: Data Field C28bh (22Bh) CAN1 Message Box 5: Data Field C28bh (22Bh) CAN1 Message Box 5: Data Field	0281h			
02283h CAN1 Message Box 2: Data Field 0286h CAN1 Message Box 2: Data Field 0286h CAN1 Message Box 2: Time Stamp 0286h CAN1 Message Box 3: Identifier / DLC 0286h CAN1 Message Box 3: Identifier / DLC 0287h CAN1 Message Box 3: Identifier / DLC 0286h CAN1 Message Box 3: Data Field 0290h CAN1 Message Box 3: Data Field 0294h CAN1 Message Box 3: Data Field 0295h CAN1 Message Box 3: Time Stamp 0296h CAN1 Message Box 3: Time Stamp 0297h CAN1 Message Box 4: Identifier / DLC 0298h CAN1 Message Box 4: Identifier / DLC 0298h CAN1 Message Box 4: Identifier / DLC 0298h CAN1 Message Box 4: Identifier / DLC 024Ah CAN1 Message Box 4: Identifier / DLC 02Abh CAN1 Message Box 4: Identifier / DLC 02Abh CAN1 Message Box 5: Identifier / DLC 02Bh CAN1 Message Box 5: Data Field 02Bh CAN1 Message Box 5: Data	0282h	CAN1 Message Box 2: Identifier / DI C		
0285h CAN1 Message Box 2: Data Field Image: Canada field 0286h CAN1 Message Box 2: Time Stamp Canada field 0286h CAN1 Message Box 2: Time Stamp Canada field 0286h CAN1 Message Box 3: Identifier / DLC Canada field 0286h CAN1 Message Box 3: Identifier / DLC Canada field 0290h CAN1 Message Box 3: Data Field Canada field 0290h CAN1 Message Box 3: Data Field Canada field 0290h CAN1 Message Box 3: Time Stamp Canada field 0290h CAN1 Message Box 3: Time Stamp Canada field 0290h CAN1 Message Box 4: Identifier / DLC Canada field 0290h CAN1 Message Box 4: Identifier / DLC Canada field 0290h CAN1 Message Box 4: Identifier / DLC Canada field 024Ah CAN1 Message Box 4: Data Field Canada field 02AAh CAN1 Message Box 5: Identifier / DLC Canada field 02AAh CAN1 Message Box 5: Identifier / DLC Canada field 02AAh CAN1 Message Box 5: Identifier / DLC Canada field 02AAh CAN1 Message Box 5: Identifier / DLC Canada field 02Bh		OANT Message Dox 2. Identilier / DEO		
0286h (0287h) (0280h) (0280h) (0280h) (0280h) (0280h) (0280h) (0280h) (0280h) (0290h) (0291h) (0291h) (0292h) (0292h) (0293h) (0293h) (0296h) (0286h) (
0287h 0288h 0280h 0280h 0280h 0280h 0280h 0280h 0280h 0280h 0280h 0280h 0280h 0280h 0280h 0280h 0290h 0291h 0294h 0296h	0285h			
0288h 028Ah 028Ah 028Ah 028Bh 028Bh 028Bh 028Bh 028Fh 028Fh 028Fh 0290h 0290h 0290h 0292h 0292h 0292h 0298h 0288h AN1 Message Box 4: Identifier / DLC 216 217 0411 Message Box 5: Identifier / DLC 218 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Q289h Q280h Q280hCAN1 Message Box 2: Data FieldQ280h Q280hCAN1 Message Box 2: Time StampQ290h Q291h Q293h Q293hCAN1 Message Box 3: Identifier / DLCQ290h Q293h Q293hCAN1 Message Box 3: Identifier / DLCQ294h Q293h Q296hCAN1 Message Box 3: Data FieldQ296h Q297h Q298h Q296hCAN1 Message Box 3: Data FieldQ298h Q296h Q292hCAN1 Message Box 3: Time StampQ296h Q292h Q292hCAN1 Message Box 3: Time StampQ296h Q292h Q294hCAN1 Message Box 4: Identifier / DLCQ296h Q294h Q241h Q2A2h Q2A3h Q2A3h Q2A6				
028Ah 028Bh 028Ch 028Ch CAN1 Message Box 2: Data Field 1 028Bh 028Ch 028Ch CAN1 Message Box 2: Time Stamp 1 0290h 0292h 0293h CAN1 Message Box 3: Identifier / DLC 1 0294h 0294h CAN1 Message Box 3: Data Field 1 0299h 0294h CAN1 Message Box 3: Data Field 1 0299h 0299h CAN1 Message Box 3: Time Stamp 216 0290h CAN1 Message Box 3: Time Stamp 217 0290h CAN1 Message Box 4: Identifier / DLC 217 0290h CAN1 Message Box 4: Identifier / DLC 217 024Ah CAN1 Message Box 4: Identifier / DLC 217 02A0h CAN1 Message Box 4: Identifier / DLC 217 02A3h CAN1 Message Box 4: Identifier / DLC 217 02A3h CAN1 Message Box 4: Identifier / DLC 224 02A3h CAN1 Message Box 5: Identifier / DLC 226 02A3h CAN1 Message Box 5: Identifier / DLC 228 02B0h CAN1 Message Box 5: Data Field 228 02B3h CAN1 Message Box 5: Data Field 228 02B3h CAN1 Message Box 5: Data Field 228 02B3h				
02280h 2280h 2290h 2290h <t< td=""><td></td><td>CAN1 Message Box 2: Data Field</td><td></td><td></td></t<>		CAN1 Message Box 2: Data Field		
028Ch 028Ch 028Eh 028Fh 028Fh 028Fh 028Fh 028Fh 028Fh 028Fh 028Fh 028Fh 0290h 0290h 0291h 0292h 0293h 0293h 0293h 0293h 0296h 0297h 0298h 0298h 0298h <td< td=""><td></td><td></td><td></td><td></td></td<>				
028Dh CAN1 Message Box 2: Time Stamp 0290h CAN1 Message Box 3: Identifier / DLC 0292h CAN1 Message Box 3: Identifier / DLC 0294h CAN1 Message Box 3: Data Field 0296h CAN1 Message Box 3: Data Field 0298h CAN1 Message Box 3: Time Stamp 0292h CAN1 Message Box 3: Time Stamp 0292h CAN1 Message Box 3: Time Stamp 0292h CAN1 Message Box 4: Identifier / DLC 0292h CAN1 Message Box 4: Identifier / DLC 0292h CAN1 Message Box 4: Identifier / DLC 024Ah CAN1 Message Box 5: Identifier / DLC 024Ah CAN1 Message Box 5: Identifier / DLC 024Ah CAN1 Message Box 5: Data Field 024Ah CAN1 Message Box 5: Data Field 028Ah CAN1 Message Box 5: Data Field 028Ah CAN1 Message Box 5: Data Field 028Ah CAN1 Message Box 5: Data Field				
028Eh 028Fh 0297h 0293h 0293h 0293h 0293h 0293h 0293h 0293h 0293h 0298h 0297h 0298h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0292h 0299h 0292h 0292h 0292h 0292h 0292h 0292h 0292h 0292h 0294h 0292h 0294h 0292h 0294h				
028Fh CAN1 Message Box 2: Time Stamp 2201 0290h CAN1 Message Box 3: Identifier / DLC 2294h 0292h CAN1 Message Box 3: Identifier / DLC 2294h 0293h CAN1 Message Box 3: Data Field 2294h 0297h CAN1 Message Box 3: Data Field 2294h 0297h CAN1 Message Box 3: Time Stamp 216 0292h CAN1 Message Box 3: Time Stamp 216 0292h CAN1 Message Box 4: Identifier / DLC 217 0292h CAN1 Message Box 4: Identifier / DLC 216 02A0h CAN1 Message Box 4: Identifier / DLC 217 02A2hh CAN1 Message Box 4: Identifier / DLC 216 02A3h CAN1 Message Box 4: Identifier / DLC 217 02A4h CAN1 Message Box 4: Data Field 224 02A5h CAN1 Message Box 5: Identifier / DLC 228 02A2h CAN1 Message Box 5: Identifier / DLC 228 02B0h CAN1 Message Box 5: Data Field				
0290h CAN1 Message Box 3: Identifier / DLC 0293h CAN1 Message Box 3: Identifier / DLC 0293h CAN1 Message Box 3: Data Field 0297h CAN1 Message Box 3: Data Field 0298h CAN1 Message Box 3: Time Stamp 0297h CAN1 Message Box 3: Time Stamp 0297h CAN1 Message Box 3: Time Stamp 0297h CAN1 Message Box 4: Identifier / DLC 0297h CAN1 Message Box 4: Identifier / DLC 0297h CAN1 Message Box 4: Identifier / DLC 024Ah CAN1 Message Box 4: Identifier / DLC 02Abh CAN1 Message Box 4: Identifier / DLC 02Abh CAN1 Message Box 4: Data Field 02Abh CAN1 Message Box 4: Data Field 02Abh CAN1 Message Box 5: Identifier / DLC 02Abh CAN1 Message Box 5: Identifier / DLC 02Abh CAN1 Message Box 5: Identifier / DLC 02Bbh CAN1 Message Box 5: Data Field		CAN1 Message Box 2: Time Stamp		
0291h 0292h 0293h CAN1 Message Box 3: Identifier / DLC 216 0296h 0297h 0298h 0299h 0299h 0299h 0299h 0290h CAN1 Message Box 3: Data Field 216 0298h 0290h 0290h CAN1 Message Box 3: Time Stamp 216 0292h 0292h 0292h 0292h CAN1 Message Box 3: Time Stamp 216 0242h 0242h 0242h CAN1 Message Box 4: Identifier / DLC 217 0242h 024Ah CAN1 Message Box 4: Identifier / DLC 216 024Ah 024Ah CAN1 Message Box 4: Identifier / DLC 216 02Ach 02Ach CAN1 Message Box 4: Identifier / DLC 216 02Ach 02Abh CAN1 Message Box 4: Data Field 217 02Abh CAN1 Message Box 5: Identifier / DLC 216 02Abh CAN1 Message Box 5: Identifier / DLC 216 02B0h CAN1 Message Box 5: Identifier / DLC 216 02B0h CAN1 Message Box 5: Identifier / DLC 216 02B0h CAN1 Message Box 5: Data Field 217 02B0h CAN1 Message Box 5: Data Field 216 02B0h CAN1 Message Box 5: Data Field 216 02B0h CAN1 Message Box 5: Data Field 216 02B0h CAN1 Message Box 5: Data Field	-			
0292h 0293h 0294h 0294h 0295h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0299h 0292h 0299h 0292h				
0293h 0294h 0295h 0295h 0297h 0298h 0299h 0299h 0292h				
0294h 0295h 0297h 0297h 0298h 0299h 0299h 0299h 0299h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0240h 02800	-	CAN1 Message Box 3: Identifier / DLC		
0295h				
0296h 0297h 0298h 0299h 0299h 0299h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0290h 0240h 02A0h 02A0h 02A0h 02A0h 02A4h 02A3h 02A4h 02A3h 02A4h 02A4h 02A8h 02A6h 02B6h				
0297h 0298h 0290h 0290h 0290h 0290h CAN1 Message Box 3: Data Field 216 217 0290h 0290h 0290h CAN1 Message Box 3: Time Stamp 216 217 0290h 0290h CAN1 Message Box 3: Time Stamp 216 217 0240h 02A0h 02A0h 02A4h CAN1 Message Box 4: Identifier / DLC 216 217 02A4h 02A4h CAN1 Message Box 4: Identifier / DLC 216 217 02A6h 02A7h CAN1 Message Box 4: Identifier / DLC 216 217 02A6h 02A9h CAN1 Message Box 4: Identifier / DLC 216 217 02A8h CAN1 Message Box 4: Identifier / DLC 216 217 02A8h CAN1 Message Box 5: Identifier / DLC 216 217 02A8h CAN1 Message Box 5: Identifier / DLC 216 217 02B0h CAN1 Message Box 5: Identifier / DLC 216 217 02B0h CAN1 Message Box 5: Data Field 216 217 02B0h CAN1 Message Box 5: Data Field 216	-			
0298h 0299h 029Ah 029Ch 029Dh CAN1 Message Box 3: Data Field 216 217 029Eh 029Dh CAN1 Message Box 3: Time Stamp 216 217 02A0h 02A0h 02A1h 02A4h 02A4h 02A4h CAN1 Message Box 4: Identifier / DLC 216 217 02A0h 02A4h 02A4h CAN1 Message Box 4: Identifier / DLC 216 217 02A6h 02A7h 02A8h 02A6h 02A7h CAN1 Message Box 4: Identifier / DLC 216 217 02A8h 02A6h 02A7h CAN1 Message Box 4: Identifier / DLC 216 217 02A8h 02A8h CAN1 Message Box 4: Data Field 216 217 02A8h 02A8h CAN1 Message Box 4: Data Field 216 217 02A8h 02B1h CAN1 Message Box 5: Identifier / DLC 216 217 02B4h 02B3h CAN1 Message Box 5: Identifier / DLC 216 217 02B4h 02B4h CAN1 Message Box 5: Data Field 216 217 02B5h CAN1 Message Box 5: Data Field 216 217 02B6h 02B6h CAN1 Message Box 5: Data Field 216 217				
0299h 029Bh 029DhCAN1 Message Box 3: Data Field216 217029Eh 029Eh 029Eh 029Eh 029A0h 024Ah 02A3h 02A4h 02A3h 02A4h 02A3h 02A6h 02A6h 02A6h 02A6h 02A6h 02AAh <b< td=""><td></td><td></td><td></td><td></td></b<>				
029Ah 029Bh 029Ch 029Ch 029Dh CAN1 Message Box 3: Data Field 216 217 029Fh 029Fh 029Fh CAN1 Message Box 3: Time Stamp 216 217 02A0h 02A0h 02A1h CAN1 Message Box 4: Identifier / DLC 217 02A4h 02A3h CAN1 Message Box 4: Identifier / DLC 217 02A6h 02A7h CAN1 Message Box 4: Identifier / DLC 217 02A8h 02A9h CAN1 Message Box 4: Data Field 217 02A8h 02A9h CAN1 Message Box 4: Data Field 217 02A8h CAN1 Message Box 5: Identifier / DLC 218 02A8h CAN1 Message Box 5: Identifier / DLC 218 02A8h CAN1 Message Box 5: Data Field 228 02B0h CAN1 Message Box 5: Data Field 228 02B9h CAN1 Message Box 5: Data Field 228 02B9h CAN1 Message Box 5: Data Field 228 02B0h CAN1 Message Box 5: Data Field 228 02B9h CAN1 Message Box 5: Data Field 228 02B0h CAN1 Message Box 5: Data Field 228				
029Bh 2926h 2926h 216 029Dh 029Eh CAN1 Message Box 3: Time Stamp 216 02A0h 202Ah 217 217 02A1h 02A2h CAN1 Message Box 4: Identifier / DLC 217 02A3h CAN1 Message Box 4: Identifier / DLC 216 217 02A4h CAN1 Message Box 4: Identifier / DLC 216 02A4h CAN1 Message Box 4: Identifier / DLC 217 02A8h CAN1 Message Box 4: Data Field 217 02A8h CAN1 Message Box 4: Data Field 226 02AAh CAN1 Message Box 4: Time Stamp 228 02A2h CAN1 Message Box 5: Identifier / DLC 228 02B0h CAN1 Message Box 5: Identifier / DLC 228 02B1h CAN1 Message Box 5: Identifier / DLC 228 02B2h CAN1 Message Box 5: Data Field 228 02B2h CAN1 Messag		CAN1 Message Box 3: Data Field		
029Dh216029FhCAN1 Message Box 3: Time Stamp21602A0hCAN1 Message Box 4: Identifier / DLC21702A1hCAN1 Message Box 4: Identifier / DLC21702A4hCAN1 Message Box 4: Identifier / DLC2245h02A6hCAN1 Message Box 4: Data Field2285h02A8hCAN1 Message Box 4: Data Field2286h02A2AhCAN1 Message Box 4: Time Stamp2280h02AFhCAN1 Message Box 5: Identifier / DLC2280h02B1hCAN1 Message Box 5: Identifier / DLC2286h02B3hCAN1 Message Box 5: Data Field2286h02B7hCAN1 Message Box 5: Data Field2280h02B1hCAN1 Message Box 5: Data Field2280h02B2bhCAN1 Message Box 5: Data Field2280h02B3hCAN1 Message Box 5: Data Field2280h02B3hCAN1 Message Box 5: Data Field2280h02B3hCAN1 Message Box 5: Data Field2280h02B2bhCAN1 Message Box 5: Data Field2280h02B3hCAN1 Message Box 5: Data Field2280h02B3hCAN1 Message Box 5: Data Field2280h02B3hCAN1 Message Box 5: Data Field2280h02B4hCAN1 Message Box 5: Data Field2280h				
029Eh 029FhCAN1 Message Box 3: Time Stamp216 21702A0h 02A1h 02A2h 02A3h 02A4hCAN1 Message Box 4: Identifier / DLC21702A4h 02A3h 02A4h 02A4hCAN1 Message Box 4: Identifier / DLC21702A6h 02A7h 02A8h 02A6h 02A8h 02A8h 02A8h 02A8h 02A8h 02A8h 02B6h 02B3h 02B6h 02B8h <br< td=""><td>029Ch</td><td></td><td></td><td></td></br<>	029Ch			
029Fh 0280h 02A0h 02A1h 02A2h 02A3h 02A3h 02A4h 02A4h 02A4h 02A4h 02A4h 02A4h 02A6h 02A7h 02A8h 02A8h 02AAh 02A8h 02AAh 02BAh 02BAh 02BAh 02BAh 02BAh 02BAh 02BAh 02BAh 02BAh 02BAh 02BAh 02BAh 02BAh 02BAH 02BAH 02BAH 02BAAA	029Dh			
0230h 02A0h 02A1h 02A2h 02A3h 02A4h 02A3h 02A4h 02A5h CAN1 Message Box 4: Identifier / DLC 217 02A3h 02A4h 02A3h 02A6h 02A7h 02A8h 02A8h 02A8h 02A6h 02B6h CAN1 Message Box 5: Identifier / DLC 1	029Eh	OANIA Maaaana Darra Status Olaren		
02A1h 02A2h 02A3h 02A4h CAN1 Message Box 4: Identifier / DLC 02A4h 02A5h CAN1 Message Box 4: Data Field 02A7h 02A8h 02A9h 02A4h CAN1 Message Box 4: Data Field 02A8h 02A0h CAN1 Message Box 4: Time Stamp 02AFh 02AFh 02AFh CAN1 Message Box 5: Identifier / DLC 02B0h 02B1h 02B3h 02B4h CAN1 Message Box 5: Identifier / DLC 02B6h 02B3h CAN1 Message Box 5: Data Field 02B6h 02B3h CAN1 Message Box 5: Data Field 02B6h 02B3h CAN1 Message Box 5: Data Field 02B6h CAN1 Message Box 5: Data Field 02B8h CAN1 Message Box 5: Data Field	029Fh	CANT Message Box 3: Time Stamp		216
02A2h 02A3h 02A4h CAN1 Message Box 4: Identifier / DLC 02A4h 02A5h CAN1 Message Box 4: Data Field 02A8h 02A9h 02A4h CAN1 Message Box 4: Data Field 02A8h 02A2h CAN1 Message Box 4: Time Stamp 02A2Fh 02A2h CAN1 Message Box 5: Identifier / DLC 02B0h 02B1h CAN1 Message Box 5: Identifier / DLC 02B3h CAN1 Message Box 5: Identifier / DLC 02B3h CAN1 Message Box 5: Data Field	02A0h			217
02A3h 02A4h 02A5h CAN1 Message Box 4: Identifier / DLC 02A6h 02A6h 02A7h 02A8h 02A9h 02A8h 02AAh 02A8h 02AAh 02ACh 02ACh 02ACh 02ACh 02ACh 02ACh 02AFh 02AFh 02AFh 02B0h 02B1h 02B3h 02B3h 02B3h 02B3h CAN1 Message Box 4: Data Field 02AFh 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h CAN1 Message Box 5: Identifier / DLC 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h 02B3h CAN1 Message Box 5: Identifier / DLC 02B3h 02B3h 02B3h 02B3h 02B3h CAN1 Message Box 5: Data Field	02A1h			
02A3h 02A4h 02A5h 02A6h 02A7h 02A8h 02A9h 02B0h 02B1h 02B4h	-	CAN1 Message Box 4: Identifier / DI C		
02A5h	-	OANT Message Dox 4. Identilier / DEC		
02A6h 02A7h 02A8h 02A9h 02A9h 02A9h 02A9h 02A9h 02A8h 02A9h 02A8h 02A9h 02A8h 02A8h 02A8h 02A8h 02A8h 02A0h 02A0h 02A0h 02AFh 02AFh 02AFh 02AFh 02AFh 02AFh 02B0h 02B1h 02B2h 02B3h 02B3h 02B4h 02B5h 02B6h 02B7h 02B8h 02B9h 02B0h				
02A7h 02A8h 02A9h 02A9h 02A4h 02B4h				
02A8h CAN1 Message Box 4: Data Field 02A4h CAN1 Message Box 4: Data Field 02ABh CAN1 Message Box 4: Time Stamp 02AEh CAN1 Message Box 4: Time Stamp 02AFh CAN1 Message Box 5: Identifier / DLC 02B0h CAN1 Message Box 5: Identifier / DLC 02B3h CAN1 Message Box 5: Identifier / DLC 02B4h CAN1 Message Box 5: Identifier / DLC 02B5h CAN1 Message Box 5: Data Field 02B6h CAN1 Message Box 5: Data Field 02B7h CAN1 Message Box 5: Data Field 02B6h CAN1 Message Box 5: Data Field 02B6h CAN1 Message Box 5: Data Field	-			
02A9h 02AAh 02AAh 02ABh 02ACh 02ACh 02ADh 02AEh 02AFh 02BAh 02B0h 02B1h 02B3h 02B3h 02B4h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B3h 02B6h 02B3h 02B6h 02B3h				
02AAh 02ABh 02ACh 02ACh 02ADh CAN1 Message Box 4: Data Field 02ACh 02ACh 02AFh 02BAh 02B0h 02B1h 02B3h 02B3h 02B4h 02B3h 02B6h 02B6h 02B7h 02B8h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B6h 02B3h 02B				
02AAII 02AAII 02ABh 02ACh 02ADh 02ACh 02AEh CAN1 Message Box 4: Time Stamp 02Bh 02Bh 02Bh CAN1 Message Box 5: Identifier / DLC 02B3h 02B4h 02B6h CAN1 Message Box 5: Identifier / DLC 02B5h CAN1 Message Box 5: Identifier / DLC 02B6h CAN1 Message Box 5: Data Field 02B7h CAN1 Message Box 5: Data Field 02B6h CAN1 Message Box 5: Data Field 02B0h CAN1 Message Box 5: Data Field		CAN1 Message Box 4: Data Field		
02ACh 02ADh 02AEh 02AFh 02AFh 02AFh 02AFh 02AFh 02AFh 02AFh 02AFh 02AFh 02B0h 02B1h 02B2h 02B3h 02B4h 02B5h 02B6h 02B7h 02B8h 02B9h 02BAh 02B0h 02B0h 02B0h 02B0h 02B0h 02B2h 02B0h 02B0h 02B0h 02B0h 02B0h 02B0h 02B0h 02B0h 02B0h		ž		
02ADh Image: Carrier of the stamp 02AEh CAN1 Message Box 4: Time Stamp 02B0h Carrier of the stamp 02B1h Carrier of the stamp 02B3h Carrier of the stamp 02B3h Carrier of the stamp 02B4h Carrier of the stamp 02B3h Carrier of the stamp 02B4h Carrier of the stamp 02B5h Carrier of the stamp 02B6h Carrier of the stamp 02B3h Carrier of the stamp 02B4h Carrier of the stamp 02B5h Carrier of the stamp 02B6h Carrier of the stamp 02B3h Carrier of the stamp 02B4h Carrier of the stamp 02B5h Carrier of the stamp 02B6h Carrier of the stamp 02B5h Carrier of the stamp				
02AEh 02AFh 02AFh CAN1 Message Box 4: Time Stamp 02B0h 02B1h 02B2h 02B3h 02B4h CAN1 Message Box 5: Identifier / DLC 02B4h 02B5h CAN1 Message Box 5: Identifier / DLC 02B6h 02B7h 02B8h 02B8h CAN1 Message Box 5: Data Field 02B8h 02B8h CAN1 Message Box 5: Data Field 02B8h 02B0h CAN1 Message Box 5: Time Stamp				
02AFh CAN1 Message Box 4: Time Stamp 02B0h 02B1h 02B2h CAN1 Message Box 5: Identifier / DLC 02B3h CAN1 Message Box 5: Identifier / DLC 02B4h 02B5h 02B6h CAN1 Message Box 5: Identifier / DLC 02B7h CAN1 Message Box 5: Data Field 02B8h CAN1 Message Box 5: Data Field 02B8h CAN1 Message Box 5: Data Field 02B6h CAN1 Message Box 5: Data Field				
02B0h 02B1h 02B2h 02B3h 02B3h 02B4h 02B5h 02B6h 02B7h 02B8h 02B8h 02B9h 02B8h 02		CAN1 Message Box 4: Time Stamp		
02B1h 02B2h 02B3h CAN1 Message Box 5: Identifier / DLC 02B4h 02B5h 02B6h 02B7h 02B7h 02B8h 02B9h CAN1 Message Box 5: Data Field 02B8h 02B8h 02B8h 02B8h 02B8h 02B8h 02B8h 02B8h 02B0h CAN1 Message Box 5: Data Field 02B8h CAN1 Message Box 5: Time Stamp				
02B2h 02B3h 02B3h 02B4h 02B5h CAN1 Message Box 5: Identifier / DLC 02B4h 02B5h 02B6h 02B7h 02B8h 02B9h 02B8h 02B8h 02B0h CAN1 Message Box 5: Data Field 02B8h 02B0h 02BCh 02BCh CAN1 Message Box 5: Data Field				
02B3h CAN1 Message Box 5: Identifier / DLC 02B4h 02B5h 02B5h 02B6h 02B7h 02B8h 02B9h CAN1 Message Box 5: Data Field 02B8h 02B9h 02B8h CAN1 Message Box 5: Data Field 02B8h 02B8h 02B0h CAN1 Message Box 5: Data Field 02B8h CAN1 Message Box 5: Data Field				
02B4h 02B5h 02B6h 02B7h 02B8h 02B9h 02B8h 02B8h 02BBh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh		CAN1 Message Box 5: Identifier / DLC		
02B5h 02B6h 02B7h 02B8h 02B9h 02B8h 02B8h 02BBh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh				
02B7h 02B8h 02B9h 02BAh 02BBh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh				
02B8h 02B9h 02BAh 02BBh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh 02BCh	02B6h			
02B9h 02BAh 02BBh 02BCh 02BDh 02BEh 02BEh	02B7h			
02BAh CAN1 Message Box 5: Data Field 02BBh 02BCh 02BDh 02BEh 02BEh CAN1 Message Box 5: Time Stamp	02B8h			
02BBh 02BCh 02BDh 02BEh 02BEh		CANI Message Box 5: Data Field		
02BCh 02BDh 02BEh CANII Moscago Box 5: Timo Stamp		CAN MESSAGE DOX 3. Data Held		
02BDh 02BEh CANIT Mossage Box 5: Time Stamp				
02BEh CANI Massaga Bay 5: Tima Stamp				
CANII Moccogo Boy b: Limo Stamp				
UZBEN S		CAN1 Message Box 5: Time Stamp		
	02BFN	5		

Address	Register	Symbol	Page
02C0h			
02C1h			
02C2h	CAN1 Message Box 6: Identifier / DLC		
02C3h	er in message box e. identilier / bee		
02C4h			
02C5h			
02C6h 02C7h			
02C7h			
02C9h			
02CAh	CAN1 Message Box 6: Data Field		
02CBh			
02CCh			
02CDh			
02CEh	CAN1 Message Box 6: Time Stamp		
02CFh			
02D0h 02D1h			
02D111 02D2h			
02D2h	CAN1 Message Box 7: Identifier / DLC		
02D0h			
02D5h			
02D6h			
02D7h			
02D8h			
02D9h	CAN1 Message Box 7: Data Field		
02DAh 02DBh	-		
02DDh			
02DDh			
02DEh	CANI Magagan Bay 7: Time Stamp		
02DFh	CAN1 Message Box 7: Time Stamp		216
02E0h			217
02E1h			
02E2h 02E3h	CAN1 Message Box 8: Identifier / DLC		
02E311 02E4h	-		
02E5h			
02E6h			
02E7h			
02E8h			
02E9h	CAN1 Message Box 8: Data Field		
02EAh	of a third box of Data Field		
02EBh			
02ECh 02EDh			
02EDh			
02EEh	CAN1 Message Box 8: Time Stamp		
02F0h			
02F1h			
02F2h	CAN1 Message Box 9: Identifier / DLC		
02F3h	o, att moodage box of identifier / DEO		
02F4h 02F5h			
02F5h			
02F611 02F7h			
02F8h			
02F9h	OANIA Maagaana Davida Diri a Erikk		
02FAh	CAN1 Message Box 9: Data Field		
02FBh			
02FCh			
02FDh			
02FEh	CAN1 Message Box 9: Time Stamp		
02FFh			

0300h 0302h 0302h 0304h 0304h 0305h 0305h 0306h 0307h 0311h 0317h 0318h 0316h 0317h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0320h 020000000000	Address	Register	Symbol	Page
0302h 0304h 0304h 0305h CAN1 Message Box 10: Identifier / DLC 0304 0305h 0306h 0307h 0308h 0308h 0308h 0308h 0308h 0308h 0306h CAN1 Message Box 10: Data Field 0306h 0307h 0307h 0307h CAN1 Message Box 10: Time Stamp 0306h 0307h 0307h CAN1 Message Box 11: Identifier / DLC 0307h 0307h CAN1 Message Box 11: Identifier / DLC 0311h 0318h 0316h 0316h 0317h CAN1 Message Box 11: Data Field 0316h 0317h 0318h 0316h CAN1 Message Box 11: Data Field 0317h 0318h 0319h CAN1 Message Box 11: Data Field 0317h 0328h CAN1 Message Box 12: Identifier / DLC 0327h CAN1 Message Box 12: Data Field 0328h CAN1 Message Box 13: Identifier / DLC 0328h CAN1 Message Box 13: Identifier / DLC 0338h CAN1 Message Box 13: Data Field	0300h			
G303h (303h) (304h) (305h) (306h) (307h) (308h) (308h) (308h) (309h) (308h) (308h) (300h) (300h) (300h) (300h) (300h) (300h) (300h) (300h) (300h) (311h) (322h) (
0304h 0304h 0304h 0304h 0307h 0307h 0308h 0307h 0308h 0307h 0308h 0307h 0308h 0307h 0307h 0307h 0306h 0307h 0307h 0307h 0311h 0316h 0317h 0318h 0318h 0316h 0317h 0318h 0318h 0316h 0317h 0318h 0318h 0316h 0321h 0311h 0322h 032h 032h 032h 032h 032h 0322h		CAN1 Message Box 10: Identifier / DLC		
0305h 0307h 0307h CAN1 Message Box 10: Data Field 0308h 0308h 0308h CAN1 Message Box 10: Time Stamp 0306h CAN1 Message Box 11: Identifier / DLC 0307h CAN1 Message Box 11: Identifier / DLC 0307h CAN1 Message Box 11: Identifier / DLC 0317h CAN1 Message Box 11: Identifier / DLC 0318h CAN1 Message Box 11: Data Field 0317h CAN1 Message Box 11: Data Field 0316h CAN1 Message Box 11: Data Field 0317h CAN1 Message Box 12: Identifier / DLC 0320h CAN1 Message Box 12: Identifier / DLC 0321h CAN1 Message Box 12: Data Field 0322h CAN1 Message Box 12: Identifier / DLC 0322h CAN1 Message Box 12: Data Field 0322h CAN1 Message Box 12: Time Stamp 0322h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Data Field 0336h </td <td></td> <td>j</td> <td></td> <td></td>		j		
0306h (3307h) (308h) (309h) (300h) (300h) CAN1 Message Box 10: Data Field 0 0306h (330b) (330b) (330b) CAN1 Message Box 10: Time Stamp 0 0307h (330b) (330b) CAN1 Message Box 11: Identifier / DLC 0 0310h (311h) (311h) (311h) CAN1 Message Box 11: Identifier / DLC 0 0310h (311h) (311h) CAN1 Message Box 11: Data Field 0 0316h (317h) (318h) CAN1 Message Box 11: Data Field 216 0316h (317h) (318h) CAN1 Message Box 11: Data Field 217 0318h (318h) CAN1 Message Box 12: Identifier / DLC 217 0320h (322h) CAN1 Message Box 12: Identifier / DLC 217 0328h (322h) CAN1 Message Box 12: Data Field 217 0328h (322h) CAN1 Message Box 12: Time Stamp 0 0322h (332h) CAN1 Message Box 13: Identifier / DLC 0 0330h (333h) CAN1 Message Box 13: Identifier / DLC 0 0336h (337h) CAN1 Message Box 13: Data Field 0 0338h (338h) CAN1 Message Box 13: Data Field 0 0338h (333h) CAN1 Message Box 13: Data Field 0 0338h (333h)				
0307h (3309h (3309h) (330Ah (330Ch) CAN1 Message Box 10: Data Field Image: Canada Sector Sec				
0308h 0309h 0300h 0300h CAN1 Message Box 10: Data Field 1 0308h 0300h 0300h CAN1 Message Box 10: Time Stamp 1 0301h 0300h CAN1 Message Box 10: Time Stamp 1 0311h 0311h CAN1 Message Box 11: Identifier / DLC 1 0311h 0311h CAN1 Message Box 11: Data Field 1 0316h 0316h CAN1 Message Box 11: Data Field 1 0318h CAN1 Message Box 11: Data Field 1 0311h CAN1 Message Box 12: Identifier / DLC 1 0320h CAN1 Message Box 12: Identifier / DLC 1 0322h CAN1 Message Box 12: Identifier / DLC 1 0322h CAN1 Message Box 12: Data Field 1 0322h CAN1 Message Box 12: Data Field 1 0322h CAN1 Message Box 13: Identifier / DLC 1 0322h CAN1 Message Box 13: Identifier / DLC 1 0332h CAN1 Message Box 13: Identifier / DLC 1 0333h CAN1 Message Box 13: Identifier / DLC 1 0333h CAN1 Message Box 13: Identifier / DLC 1 0333h CAN1 Message Box 13: D				
0309h 030Ah 030Bh 030Ch CAN1 Message Box 10: Data Field Image: Canada Sector S				
030Ah 030Bh 030Ch 030Ch CAN1 Message Box 10: Data Field 1111 030Dh 030Dh 030Dh CAN1 Message Box 10: Time Stamp 1111 031Dh 031Dh 0311h 0312h 0314h 0318h CAN1 Message Box 11: Identifier / DLC 1111 0312h 031Bh 0318h CAN1 Message Box 11: Data Field 1111 0318h 0319h 0318h CAN1 Message Box 11: Data Field 1111 0318h 0319h CAN1 Message Box 11: Data Field 1111 0318h CAN1 Message Box 11: Data Field 1111 0321h CAN1 Message Box 12: Identifier / DLC 1111 0322h CAN1 Message Box 12: Data Field 1111 0322h CAN1 Message Box 12: Data Field 1111 0322h CAN1 Message Box 12: Time Stamp 1111 0322h CAN1 Message Box 12: Time Stamp 1111 0322h CAN1 Message Box 13: Identifier / DLC 1111 0332h CAN1 Message Box 13: Identifier / DLC 1111 0332h CAN1 Message Box 13: Data Field 1111 0333h CAN1 Message Box 13: Data Field 1111 0333h CAN1 Message Box 13: Data Field 1111				
030Bh 030Ch 030Dh		CAN1 Message Box 10: Data Field		
030Ch 030Eh CAN1 Message Box 10: Time Stamp 030Fh 030Fh CAN1 Message Box 11: Identifier / DLC 0310h 0311h CAN1 Message Box 11: Identifier / DLC 0313h 0314h CAN1 Message Box 11: Identifier / DLC 0313h 0316h CAN1 Message Box 11: Data Field 0317h 0316h CAN1 Message Box 11: Data Field 0317h 0318h CAN1 Message Box 11: Time Stamp 216 0317h CAN1 Message Box 12: Identifier / DLC 217 0320h CAN1 Message Box 12: Identifier / DLC 217 0322h CAN1 Message Box 12: Identifier / DLC 217 0322h CAN1 Message Box 12: Data Field 217 0322h CAN1 Message Box 12: Time Stamp 216 0322h CAN1 Message Box 12: Time Stamp 217 0322h CAN1 Message Box 13: Identifier / DLC 216 032h CAN1 Message Box 13: Identifier / DLC 217 0333h CAN1 Message Box 13: Identifier / DLC 217 0333h CAN1 Message Box 13: Identifier / DLC 216 0333h CA				
030Dh 030Eh 030Dh 030Eh 030Fh CAN1 Message Box 10: Time Stamp 0310h 0310h 0311h 0312h 0313h CAN1 Message Box 11: Identifier / DLC 0314h 0314h 0315h CAN1 Message Box 11: Data Field 0318h CAN1 Message Box 11: Data Field 0318h CAN1 Message Box 11: Time Stamp 0312h CAN1 Message Box 11: Time Stamp 0312h CAN1 Message Box 12: Identifier / DLC 0320h CAN1 Message Box 12: Identifier / DLC 0322h CAN1 Message Box 12: Data Field 0322h CAN1 Message Box 12: Data Field 0322h CAN1 Message Box 12: Time Stamp 0322h CAN1 Message Box 12: Time Stamp 0322h CAN1 Message Box 13: Identifier / DLC 0332h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Data Field 0333bh				
030Eh 030Fh 0310h 0311h CAN1 Message Box 10: Time Stamp 000000000000000000000000000000000000				
030Fh CAN1 Message Box 10: Time Stamp 216 0311h 0314h 216 0316h 0317h 216 0317h 0318h 0318h 0318h 0318h 0318h 0318h 0317h 216 0318h 0318h 216 0318h 0318h 217 0318h 0318h 216 0318h 0318h 217 0318h 0318h 216 0318h 0318h 216 0318h 0318h 216 0318h 0318h 217 0320h 0321h 216 0321h 0322h 032h 0322h 032h 032h 0322h 032h 032h 0322h 032h 032h 0322h 032h 032h 0322h 033h 033h 0332h 033h 033h 0332h 033h 033h 0338h				
0311h 0312h 0313h 0314h 0315h 0316h 0316h 0316h 0319h 0319h 0319h 0310h 0310h 0310h 0310h CAN1 Message Box 11: Data Field 216 217 0318h 0319h 0310h CAN1 Message Box 11: Time Stamp 216 217 0321h 0320h 0322h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0328h 0329h CAN1 Message Box 12: Data Field 216 217 0328h 0328h CAN1 Message Box 12: Data Field 216 217 0338h CAN1 Message Box 13: Identifier / DLC 216 217 0338h CAN1 Message Box 13: Identifier / DLC 216 217 0338h CAN1 Message Box 13: Data Field 216 217 0338h CAN1 Message Box 13: Data Field 216 217 0338h CAN1 Message Box 13: Data Field 216 217		CAN1 Message Box 10: Time Stamp		
0312h 0313h 0314h CAN1 Message Box 11: Identifier / DLC 216 0316h 0316h 0316h CAN1 Message Box 11: Data Field 216 0316h 0318h CAN1 Message Box 11: Time Stamp 216 0320h CAN1 Message Box 12: Identifier / DLC 217 0322h CAN1 Message Box 12: Identifier / DLC 216 0322h CAN1 Message Box 12: Identifier / DLC 217 0322h CAN1 Message Box 12: Identifier / DLC 216 0322h CAN1 Message Box 12: Identifier / DLC 217 0328h CAN1 Message Box 12: Data Field 217 0328h CAN1 Message Box 12: Data Field 217 0328h CAN1 Message Box 12: Time Stamp 216 0329h CAN1 Message Box 13: Identifier / DLC 217 0328h CAN1 Message Box 13: Identifier / DLC 217 0330h CAN1 Message Box 13: Identifier / DLC 217 0333h CAN1 Message Box 13: Identifier / DLC 218 0333h CAN1 Message Box 13: Identifier / DLC 217 0333h CAN1 Message Box 13: Data Field 218 0333h	0310h			
0313h 0314h 0314h 0314h 0316h 0317h 0318h 0319h 0319h 0318h 0319h 0318h 0319h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0320h 0321h 0322h 0322h 0322h 0322h 0328h 0338h 0388h 0	0311h			
0313h 0314h 0315h	0312h	CANII Magaga Boy 11: Identifier / DI C		
0315h	0313h	CANT WESSAGE DUX TT. IDENUILER / DLC		
0316h 0317h 0318h 0319h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 0318h 032h 0320h 032h 032h 0328h 0338h 038h 0				
0317h 0318h 0319h 0319h 0319h 0316h 031Ch CAN1 Message Box 11: Data Field 216 217 031Eh 031Fh 031Fh CAN1 Message Box 11: Time Stamp 216 217 0320h 0320h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0328h CAN1 Message Box 12: Data Field 216 217 0328h CAN1 Message Box 12: Data Field 217 0328h CAN1 Message Box 12: Time Stamp 216 217 0328h CAN1 Message Box 13: Identifier / DLC 217 0328h CAN1 Message Box 13: Identifier / DLC 217 0339h CAN1 Message Box 13: Identifier / DLC 217 0338h CAN1 Message Box 13: Data Field 218 0339h CAN1 Message Box 13: Data Field 216 0338h CAN1 Message Box 13: Data Field 217 0338h CAN1 Message Box 13: Data Field 216 0338h CAN1 Message Box 13: Data Field 216				
0318h 0319h 031Ah 031Ah 031Ch CAN1 Message Box 11: Data Field 216 217 031Eh 031Ch CAN1 Message Box 11: Time Stamp 216 217 0320h 0321h CAN1 Message Box 12: Identifier / DLC 216 217 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h CAN1 Message Box 12: Identifier / DLC 216 0324h CAN1 Message Box 12: Identifier / DLC 216 0322h CAN1 Message Box 12: Data Field 216 0322h CAN1 Message Box 12: Data Field 217 032bh CAN1 Message Box 12: Data Field 216 032Fh CAN1 Message Box 12: Time Stamp 218 032Fh CAN1 Message Box 13: Identifier / DLC 217 0332h CAN1 Message Box 13: Identifier / DLC 217 0332h CAN1 Message Box 13: Identifier / DLC 218 0336h CAN1 Message Box 13: Data Field 216 0337h CAN1 Message Box 13: Data Field 217 0338h CAN1 Message Box 13: Data Field 217 0338h CAN1 Message Box 13: Data Field 216 0338h CA				
0319h 031Ah 031Bh 031Bh 031Ch 031Dh CAN1 Message Box 11: Data Field 216 217 031Eh 031Eh 032Dh 0322h 0322h 0322h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h CAN1 Message Box 12: Identifier / DLC 216 217 032h CAN1 Message Box 12: Data Field 216 217 032bh CAN1 Message Box 12: Time Stamp 217 0332h CAN1 Message Box 13: Identifier / DLC 217 0334h CAN1 Message Box 13: Identifier / DLC 217 0333h CAN1 Message Box 13: Identifier / DLC 217 0333h CAN1 Message Box 13: Identifier / DLC 217 0334h CAN1 Message Box 13: Data Field 217 0338h CAN1 Message Box 13: Data Field 217 0335h CAN1 Message Box 13: Data Field 217 0335h CAN1 Message Box 13: Data Field 217				
031Ah 031Bh 031Ch 031Dh CAN1 Message Box 11: Data Field 216 217 031Eh 031Fh 031Fh CAN1 Message Box 11: Time Stamp 216 217 0320h 0320h 0322h 0322h CAN1 Message Box 12: Identifier / DLC 216 217 0322h 0322h CAN1 Message Box 12: Identifier / DLC 217 0328h 0322h CAN1 Message Box 12: Data Field 216 217 0328h CAN1 Message Box 12: Data Field 216 217 0328h CAN1 Message Box 12: Data Field 216 217 0328h CAN1 Message Box 12: Time Stamp 216 217 0328h CAN1 Message Box 13: Identifier / DLC 216 217 0328h CAN1 Message Box 13: Identifier / DLC 217 0330h CAN1 Message Box 13: Identifier / DLC 217 0338h CAN1 Message Box 13: Identifier / DLC 217 0338h CAN1 Message Box 13: Data Field 216 0338h CAN1 Message Box 13: Data Field 217 0338h CAN1 Message Box 13: Data Field 216 0338h CAN1 Message Box 13: Data Field 217				
031Rh 031Bh 031Ch 031Ch 031Eh CAN1 Message Box 11: Time Stamp 216 0320h 217 0321h CAN1 Message Box 12: Identifier / DLC 217 0322h CAN1 Message Box 12: Identifier / DLC 216 0322h CAN1 Message Box 12: Identifier / DLC 217 0328h 0326h 0327h 0328h CAN1 Message Box 12: Data Field 0328h 0322h CAN1 Message Box 12: Time Stamp 0328h 0322h CAN1 Message Box 12: Time Stamp 0328h 0322h CAN1 Message Box 13: Identifier / DLC 0338h 0322h CAN1 Message Box 13: Identifier / DLC 0333h 0332h CAN1 Message Box 13: Identifier / DLC 0333h 0336h CAN1 Message Box 13: Data Field 033ch 0336h CAN1 Message Box 13: Data Field 033h 0336h CAN1 Message Box 13: Data Field 033h 0336h CAN1 Message Box 13: Time Stamp 033h		CAN1 Message Box 11: Data Field		
031Ch 216 031Eh CAN1 Message Box 11: Time Stamp 216 0320h CAN1 Message Box 12: Identifier / DLC 217 0321h CAN1 Message Box 12: Identifier / DLC 217 0324h CAN1 Message Box 12: Identifier / DLC 217 0324h CAN1 Message Box 12: Identifier / DLC 217 0325h CAN1 Message Box 12: Data Field 216 0327h CAN1 Message Box 12: Data Field 217 0328h CAN1 Message Box 12: Time Stamp 216 0322h CAN1 Message Box 12: Time Stamp 217 0328h CAN1 Message Box 13: Identifier / DLC 217 0328h CAN1 Message Box 13: Identifier / DLC 217 0331h CAN1 Message Box 13: Identifier / DLC 216 0334h CAN1 Message Box 13: Identifier / DLC 217 0336h CAN1 Message Box 13: Data Field 216 0336h CAN1 Message Box 13: Data Field 217 0336h CAN1 Message Box 13: Data Field 216 0336h CAN1 Message Box 13: Data Field 216 0336h <td></td> <td>je stranje se se</td> <td></td> <td></td>		je stranje se		
031Dh 216 031Fh CAN1 Message Box 11: Time Stamp 216 0320h CAN1 Message Box 12: Identifier / DLC 217 0321h CAN1 Message Box 12: Identifier / DLC 217 0322h CAN1 Message Box 12: Identifier / DLC 217 0324h 0324h 0325h 0326h 0327h CAN1 Message Box 12: Data Field 032h 032Ah CAN1 Message Box 12: Time Stamp 032h 0322h CAN1 Message Box 12: Time Stamp 032h 032Fh CAN1 Message Box 13: Identifier / DLC 033h 032Fh CAN1 Message Box 13: Identifier / DLC 033h 0336h CAN1 Message Box 13: Identifier / DLC 033h 0336h CAN1 Message Box 13: Identifier / DLC 033h 0336h CAN1 Message Box 13: Data Field 033h				
031Eh 031Fh CAN1 Message Box 11: Time Stamp 216 0320h 217 0321h CAN1 Message Box 12: Identifier / DLC 217 0324h CAN1 Message Box 12: Identifier / DLC 217 0324h CAN1 Message Box 12: Identifier / DLC 217 0324h CAN1 Message Box 12: Data Field 217 0326h CAN1 Message Box 12: Data Field 217 0328h CAN1 Message Box 12: Data Field 217 0322h CAN1 Message Box 12: Time Stamp 217 032Fh CAN1 Message Box 12: Time Stamp 217 032Fh CAN1 Message Box 13: Identifier / DLC 217 0330h CAN1 Message Box 13: Identifier / DLC 217 0335h CAN1 Message Box 13: Identifier / DLC 217 0336h CAN1 Message Box 13: Data Field 217 0336h				
031Fh CAN1 Message Box 11: Time Stamp 216 0320h 217 0321h CAN1 Message Box 12: Identifier / DLC 217 0324h CAN1 Message Box 12: Identifier / DLC 218 0324h CAN1 Message Box 12: Identifier / DLC 217 0324h CAN1 Message Box 12: Data Field 217 0326h CAN1 Message Box 12: Data Field 217 0328h CAN1 Message Box 12: Data Field 217 0322h CAN1 Message Box 12: Time Stamp 217 032Fh CAN1 Message Box 12: Time Stamp 217 032Fh CAN1 Message Box 13: Identifier / DLC 217 0330h CAN1 Message Box 13: Identifier / DLC 217 0336h CAN1 Message Box 13: Identifier / DLC 217 0336h CAN1 Message Box 13: Data Field 217				
0320h 217 0321h CAN1 Message Box 12: Identifier / DLC 217 0323h CAN1 Message Box 12: Identifier / DLC 217 0324h 0325h 0326h 227 0327h 0328h CAN1 Message Box 12: Data Field 228 0322h CAN1 Message Box 12: Data Field 228 228 0322h CAN1 Message Box 12: Time Stamp 0328 0328 0322h CAN1 Message Box 13: Identifier / DLC 0331h 0334h 0332h CAN1 Message Box 13: Identifier / DLC 0336h 0336h 0337h CAN1 Message Box 13: Identifier / DLC 0336h 0336h 0337h CAN1 Message Box 13: Data Field 036h 037h 0338h CAN1 Message Box 13: Data Field 036h 037h 0338h CAN1 Message Box 13: Data Field 036h 037h 0338h CAN1 Message Box 13: Data Field 036h 037h 0338h CAN1 Message Box 13: Data Field 036h 037h		CAN1 Message Box 11: Time Stamp		216
0321h CAN1 Message Box 12: Identifier / DLC 0323h CAN1 Message Box 12: Identifier / DLC 0324h CAN1 Message Box 12: Data Field 0327h CAN1 Message Box 12: Data Field 0328h CAN1 Message Box 12: Time Stamp 032Fh CAN1 Message Box 12: Time Stamp 032Fh CAN1 Message Box 13: Identifier / DLC 0330h CAN1 Message Box 13: Identifier / DLC 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field				
0322h 0323h 0324h CAN1 Message Box 12: Identifier / DLC 0326h 0326h 0327h 0328h CAN1 Message Box 12: Data Field 0328h 0329h CAN1 Message Box 12: Data Field 0320h CAN1 Message Box 12: Time Stamp 032Fh CAN1 Message Box 12: Time Stamp 0330h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Identifier / DLC 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field				217
0323h CAN1 Message Box 12: Identifier / DLC 0324h 0325h 0326h 0327h 0328h CAN1 Message Box 12: Data Field 0329h CAN1 Message Box 12: Data Field 0320h CAN1 Message Box 12: Time Stamp 0320h CAN1 Message Box 12: Time Stamp 032Fh CAN1 Message Box 12: Time Stamp 0330h CAN1 Message Box 13: Identifier / DLC 0330h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Data Field 0333h CAN1 Message Box 13: Data Field 033Bh CAN1 Message Box 13: Data Field 033Bh CAN1 Message Box 13: Time Stamp				
0324h 0325h 0326h 0327h 0328h 0328h 0329h CAN1 Message Box 12: Data Field 032Bh 032Bh 032Ch 032Dh 032Eh CAN1 Message Box 12: Time Stamp 032Fh CAN1 Message Box 12: Time Stamp 0330h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Identifier / DLC 0338h CAN1 Message Box 13: Identifier / DLC 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field		CAN1 Message Box 12: Identifier / DLC		
0325h 0326h 0327h 0328h 0329h CAN1 Message Box 12: Data Field 0328h CAN1 Message Box 12: Time Stamp 032Ch CAN1 Message Box 12: Time Stamp 032Fh CAN1 Message Box 12: Time Stamp 032Fh CAN1 Message Box 13: Identifier / DLC 0330h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Identifier / DLC 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field				
0327h 0328h 0329h 032Ah 032Ah 032Bh 032Bh 032Ch 032Dh 032Eh 032Dh 032Eh 032Fh 032Fh 032Fh 0330h 0331h 0333h 0333h 0333h 0336h 0337h 0338h 0338h 0338h 0338h 0333h 0336h 0337h 0338h 0339h 0330h 0331h 0332h CAN1 Message Box 13: Identifier / DLC 0338h 0339h 0330h				
0328h CAN1 Message Box 12: Data Field 032Ah CAN1 Message Box 12: Data Field 032Bh CAN1 Message Box 12: Time Stamp 032Fh CAN1 Message Box 12: Time Stamp 032Fh CAN1 Message Box 12: Time Stamp 0330h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field	0326h			
0329h 032Ah 032Bh 032Bh 032Ch 032Ch CAN1 Message Box 12: Data Field 032Ch 032Dh CAN1 Message Box 12: Time Stamp 032Fh 0330h 0331h 0332h CAN1 Message Box 12: Time Stamp 0330h 0331h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field	0327h			
032Ah CAN1 Message Box 12: Data Field 032Bh 032Ch 032Dh CAN1 Message Box 12: Time Stamp 032Fh CAN1 Message Box 12: Time Stamp 0330h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field	0328h			
032An 032Bh 032Bh 032Ch 032Dh 032Eh 032Fh CAN1 Message Box 12: Time Stamp 0330h 0331h 0332h CAN1 Message Box 13: Identifier / DLC 0333h 0333h 0333h 0333h 0333h 0333h 0333h 0333h 0333h 0333h 0333h CAN1 Message Box 13: Identifier / DLC 0333h 0336h 0333h CAN1 Message Box 13: Data Field 033Bh CAN1 Message Box 13: Data Field 033Bh CAN1 Message Box 13: Time Stamp		CANI Message Box 12: Data Field		
032Ch 032Dh 032Eh 032Fh 032Fh 0330h 0331h 0332h 0333h 0334h 0335h 0336h 0336h 0337h 0338h		CANTINGSSAGE DUX 12. Data Helu		
032Dh 032Eh 032Fh CAN1 Message Box 12: Time Stamp 0330h 0331h 0332h 0333h 0334h 0335h 0336h 0337h 0338h 0380				
032Eh 032Fh CAN1 Message Box 12: Time Stamp 0330h 0331h CAN1 Message Box 12: Time Stamp 0331h CAN1 Message Box 13: Identifier / DLC 0334h CAN1 Message Box 13: Identifier / DLC 0335h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field				
032Fh CAN1 Message Box 12: Time Stamp 0330h 0331h 0332h CAN1 Message Box 13: Identifier / DLC 0333h CAN1 Message Box 13: Identifier / DLC 0334h CAN1 Message Box 13: Identifier / DLC 0335h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Identifier / DLC 0336h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0338h CAN1 Message Box 13: Data Field 0332h CAN1 Message Box 13: Data Field				
032Ph 032Ph 0330h 0331h 0332h CAN1 Message Box 13: Identifier / DLC 0333h 0334h 0336h 0336h 0337h 0338h 0338h 0339h 0338h CAN1 Message Box 13: Data Field		CAN1 Message Box 12: Time Stamp		
0331h 0332h 0332h CAN1 Message Box 13: Identifier / DLC 0333h Cannot message Box 13: Identifier / DLC 0334h Cannot message Box 13: Identifier / DLC 0335h Cannot message Box 13: Identifier / DLC 0336h Cannot message Box 13: Identifier / DLC 0336h Cannot message Box 13: Data Field 0338h Cannot message Box 13: Data Field 0332h Cannot message Box 13: Data Field 0332h Cannot message Box 13: Time Stamp				
0332h CAN1 Message Box 13: Identifier / DLC 0333h 0334h 0335h 0336h 0336h 0337h 0338h 0338h				
O333h CAN1 Message Box 13: Identifier / DLC 0334h 0334h 0335h 0336h 0337h 0338h 0338h 0339h 0338h 0338h				
0333h 0334h 0335h 0335h 0336h 0337h 0338h 0338h 0339h CAN1 Message Box 13: Data Field 033Bh 033Bh 033Ch 033Dh 033Bh CAN1 Message Box 13: Time Stamp		CAN1 Message Box 13: Identifier / DLC		
0335h 0336h 0337h 0337h 0338h 0339h 033Ah 033Bh 033Ch 033Ch 033Bh 033Ch 033Bh 033Bh 033Ch 033Bh 033Bh				
0336h 0337h 0337h 0338h 0339h CAN1 Message Box 13: Data Field 033Bh 033Ch 033Dh CAN1 Message Box 13: Time Stamp				
0337h 0338h 0339h 033Ah 033Ah 033Bh 033Ch 033Dh 033Eh 033Eh 033Eh 033Eh 033Eh				
0338h 0339h 033Ah 033Bh 033Ch 033Ch 033Bh 033Bh 033Bh 033Bh 033Bh				
0339h CAN1 Message Box 13: Data Field 033Bh 033Ch 033Dh 033Eh 033Eh CAN1 Message Box 13: Time Stamp				
033Ah 033Bh 033Ch 033Dh 033Eh CANI Message Box 13: Data Field 033Bh 033Ch				
033Bh 033Ch 033Dh 033Eh CANI Massaga Boy 13: Time Stamp		CAN1 Message Box 13: Data Field		
033Ch 033Dh 033Eh CANI Massaga Boy 13: Time Stamp				
033Eh CANII Message Box 13: Time Stamp				
	033Dh			
033Fh		CANI Message Box 12: Time Stamp		
	033Fh	CART MESSAGE DUX 13. TITLE STATIO		

0340h	nbol Page
0341h	
0342h CAN1 Message Box 14: Identifier / DLC	
03431	
0344h	
0345h	
0346h	
0347h	
0348h	
0349h CAN1 Message Box 14: Data Field	
034Ah CANT Message Box 14. Data Field	
034Bh	
034Ch	
034Dh	
034Eh CAN1 Message Box 14: Time Stamp	
034FII	216
0350h	217
0351h	
0352h CAN1 Message Box 15: Identifier / DLC	
03530	
0354h	
0355h	
0356h	
0357h	
0358h	
0359h CANI Message Box 15: Data Field	
035Ah CAN1 Message Box 15: Data Field	
035Bh	
035Ch	
035Dh	
035Eh CAN1 Message Box 15: Time Stamp	
030FII	
0360h	
0361h	
0362h 0262h CAN1 Global Mask Register C1GM	IR 218
0363h	10
0364h	
0365h	
0366h	
0367h	
0368h CAN1 Local Mask A Register C1LM	AR 218
036911	
036Ah	
036Bh	
036Ch	
036Dh	
036Eh CAN1 Local Mask B Register C1LM	BR 218
036FN	
0370h	
0371h	
0372h	
0373h	
0374h	
0375h	
0376h	
0377h	
0378h	
0379h	
037Ah	
037Bh	
037Ch	
037Dh	
037Eh	
037Fh	

Address	Register	Symbol	Page
0380h	Count Start Flag	TABSR	109,124,137
0381h	Clock Prescaler Reset Flag	CPSRF	110,124
0382h	One-Shot Start Flag	ONSF	110
0383h	Trigger Select Register	TRGSR	110,137
0384h	Up/Down Flag	UDF	109
0385h	op/Down hag	001	100
0386h			
0387h	Timer A0 Register	TA0	108
0388h			108
0389h	Timer A1 Register	TA1	135
038Ah			108
038Bh	Timer A2 Register	TA2	135
038Ch			100
038Dh	Timer A3 Register	TA3	108
038Eh			108
038Eh	Timer A4 Register	TA4	135
0390h			135
	Timer B0 Register	TB0	123
0391h			
0392h	Timer B1 Register	TB1	123
0393h	-		100
0394h	Timer B2 Register	TB2	123
0395h	-		135
0396h	Timer A0 Mode Register	TAOMR	108
0397h	Timer A1 Mode Register	TA1MR	111 138
0398h	Timer A2 Mode Register	TA2MR	113 115,138
0399h	Timer A3 Mode Register	TA3MR	118 115
039Ah	Timer A4 Mode Register	TA4MR	120 115,138
039Bh	Timer B0 Mode Register	TB0MR	123,125
039Ch	Timer B1 Mode Register	TB1MR	126,128
039Dh	Timer B2 Mode Register	TB2MR	138
039Eh	Timer B2 Special Mode Register	TB2SC	136
039Fh		TBLOO	100
03A0h	UART0 Transmit/Receive Mode Register	U0MR	146
03A01	UARTO Bit Rate Generator	UOBRG	146
	UANTO BIL NALE GENERALOI	UUBRG	140
03A2h 03A3h	UART0 Transmit Buffer Register	U0TB	145
03A3h	LIADTO Transmit/Dessitive Control Desistor 0	11000	140
	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0	146
03A5h	UARTU Transmit/Receive Control Register T	U0C1	147
03A6h 03A7h	UART0 Receive Buffer Register	U0RB	145
	-		
03A8h			
03A9h	UART1 Transmit/Receive Mode Register	U1MR	146
03AAh	UART1 Transmit/Receive Mode Register UART1 Bit Rate Generator	U1MR U1BRG	146 145
1	UART1 Bit Rate Generator	U1BRG	145
03ABh	UART1 Bit Rate Generator UART1 Transmit Buffer Register	U1BRG U1TB	145 145
03ACh	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0	U1BRG U1TB U1C0	145 145 146
03ACh 03ADh	UART1 Bit Rate Generator UART1 Transmit Buffer Register	U1BRG U1TB	145 145
03ACh 03ADh 03AEh	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1BRG U1TB U1C0 U1C1	145 145 146 147
03ACh 03ADh	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1BRG U1TB U1C0 U1C1 U1RB	145 145 146
03ACh 03ADh 03AEh	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1BRG U1TB U1C0 U1C1	145 145 146 147
03ACh 03ADh 03AEh 03AFh	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1BRG U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ACh 03ADh 03AEh 03AFh 03B0h	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1BRG U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ACh 03ADh 03AEh 03AFh 03B0h 03B1h	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1BRG U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1BRG U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1BRG U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1BRG U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1BRG U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2	U1BRG U1TB U1C0 U1C1 U1RB UCON	145 145 146 147 145 148
03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1BRG U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Cause Select Register	U1BRG U1TB U1C0 U1C1 U1RB UCON DM0SL	145 145 146 147 145 148 97
03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2	U1BRG U1TB U1C0 U1C1 U1RB UCON	145 145 146 147 145 148
03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03B9h	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Cause Select Register	U1BRG U1TB U1C0 U1C1 U1RB UCON DM0SL	145 145 146 147 145 148 97
03ACh 03ADh 03AEh 03B1h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03BAh 03BBh 03BCh	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Cause Select Register	U1BRG U1TB U1C0 U1C1 U1RB UCON DM0SL	145 145 146 147 145 148 97
03ACh 03ADh 03AEh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03BBh 03BDh	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Cause Select Register DMA1 Request Cause Select Register CRC Data Register	U1BRG U1TB U1C0 U1C1 U1RB UCON UCON DM0SL DM0SL DM1SL CRCD	145 145 146 147 145 148 97 97 98 212
03ACh 03ADh 03AEh 03B1h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03BAh 03BBh 03BCh	UART1 Bit Rate Generator UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Cause Select Register DMA1 Request Cause Select Register	U1BRG U1TB U1C0 U1C1 U1RB UCON DM0SL DM1SL	145 145 146 147 145 148 97 97 98

Address	Register	Symbol	Page
03C0h			
03C1h	A/D Register 0	AD0	
03C2h			
03C3h	A/D Register 1	AD1	
03C4h		AD2	
03C5h	A/D Register 2	ADZ	
03C6h	A/D Bogistor 2	AD3	
03C7h	A/D Register 3	Abo	196
03C8h	A/D Register 4	AD4	
03C9h			
03CAh	A/D Register 5	AD5	
03CBh			
03CCh	A/D Register 6	AD6	
03CDh			
03CEh 03CFh	A/D Register 7	AD7	
03CFI			
03D0h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	196
03D5h		1.200.12	
03D6h	A/D Control Register 0	ADCON0	195,198,200
03D7h	A/D Control Register 1	ADCON1	202,204,206
03D8h	D/A Register 0	DA0	211
03D9h			
03DAh	D/A Register 1	DA1	211
03DBh			
	D/A Control Register	DACON	211
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	246
03E1h	Port P1 Register	P1	246
03E2h	Port P0 Direction Register	PD0	245
03E3h	Port P1 Direction Register	PD1	245
03E4h 03E5h	Port P2 Register	P2	246 246
03E51	Port P3 Register Port P2 Direction Register	P3 PD2	240
03E01	Port P3 Direction Register	PD2 PD3	245
03E8h	Port P4 Register	P4	245
	Port P5 Register	P5	246
	Port P4 Direction Register	PD4	245
	Port P5 Direction Register	PD5	245
	Port P6 Register	P6	246
	Port P7 Register	P7	246
	Port P6 Direction Register	PD6	245
03EFh	Port P7 Direction Register	PD7	245
03F0h	Port P8 Register	P8	246
03F1h	Port P9 Register	P9	246
03F2h	Port P8 Direction Register	PD8	245
03F3h	Port P9 Direction Register	PD9	245
03F4h	Port P10 Register	P10	246
03F5h			
03F6h	Port P10 Direction Register	PD10	245
03F7h			
03F8h			
03F9h			
03FAh			
03FBh		DUDA	047
U3FCh	Pull-up Control Register 0	PUR0	247
	Pull-up Control Register 1	PUR1	247 247
03FEh 03FFh	Pull-up Control Register 2	PUR2	247
USELI	Port Control Register	PCR	240

Renesas

M16C/6N Group (M16C/6N4) SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

1. Overview

The M16C/6N Group (M16C/6N4) of single-chip microcomputers are built using the high-performance silicon gate CMOS process using an M16C/60 Series CPU core and are packaged in 100-pin plastic molded QFP and LQFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. Being equipped with two CAN (Controller Area Network) modules in M16C/6N Group (M16C/6N4), the microcomputer is suited to drive automotive and industrial control systems. The CAN modules comply with the 2.0B specification. In addition, this microcomputer contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.

1.1 Applications

- Automotive, industrial control systems and other automobile, other (T/V-ver. product)
- Car audio and industrial control systems, other (Normal-ver. product)

1.2 Performance Outline

Table 1.1 lists a performance outline of M16C/6N Group (M16C/6N4).

	Item		Perfor	•	
			Normal-ver.	T/V-ver.	
CPU			91 instructions		
	Minimum Inst		41.7ns (f(BCLK) = 24MHz,	50.0ns (f(BCLK) = 20MHz,	
	Execution Tim	-	1/1 prescaler, without software wait)		
	Operation Mo		Single-chip, memory expansion	on and microprocessor modes	
	Address Spa		1 Mbyte		
	Memory Cap	acity	See Table 1.2 Product List		
Peripheral	Port		Input/Output: 87 pins, Input: 1		
Function	Multifunction	Timer	Timer A: 16 bits \times 5 channels		
			Timer B: 16 bits $ imes$ 6 channels		
			Three-phase motor control cir	cuit	
	Serial Interfa	се	3 channels		
			Clock synchronous, UART,	I ² C-bus ⁽¹⁾ , IEBus ⁽²⁾	
			1 channel		
			Clock synchronous		
	A/D Converte	er	10-bit A/D converter: 1 circuit	26 channels	
	D/A Converte	er	8 bits \times 2 channels		
	DMAC		2 channels		
	CRC Calcula	tion Circuit	CRC-CCITT		
	CAN Module		2 channels with 2.0B specification		
N	Watchdog Timer		15 bits \times 1 channel (with prescaler)		
	Interrupt		Internal: 31 sources, External: 9 sources		
			Software: 4 sources, Priority level: 7 levels		
	Clock Generating Circuit		4 circuits		
	Clock denerating choan		Main clock oscillation circuit (*)		
			Sub clock oscillation circuit (*)		
			• On-chip oscillator		
			PLL frequency synthesizer		
			(*) Equipped with a built-in feedback resistor		
	Oscillation Stop Detection		Main clock oscillation stop and re-oscillation detection function		
	Function				
Electrical	Supply Voltage		VCC = 3.0 to 5.5V (f(BCLK) = 24MHz,	$V_{CC} = 4.2 \text{ to } 5.5 \text{V} (f(BCLK) = 20 \text{MHz})$	
Characteristics		ge	1/1 prescaler, without software wait)	1/1 prescaler, without software wait)	
Onaracteristics	Power	Mask ROM	20mA (f(BCLK) = 24MHz,	18mA (f(BCLK) = 20MHz,	
	Consumption		PLL operation, no division)	PLL operation, no division)	
	Consumption	Flash Memory	22mA (f(BCLK) = 24MHz,	20mA (f(BCLK) = $20MHz$,	
		Flash wellory			
			PLL operation, no division)	PLL operation, no division)	
		Mask ROM	$3\mu A$ (f(BCLK) = 32kHz, Wait mod		
	D	Flash Memory	0.8μA (Stop mode, Topr = 25°C)		
Flash Memory		117	3.0 ± 0.3V or 5.0 ± 0.5V	5.0 ± 0.5V	
Version		rase Endurance			
I/O	I/O Withstand		5.0V		
Characteristics			5mA	T	
Operating A	mbient Tempe	erature	-40 to 85°C	T version: -40 to 85°C	
			V version: -40 to 125°C (option)		
Device Configuration			CMOS high performance silicon gate		
Device Conf Package	figuration		CMOS high performance silic 100-pin plastic mold QFP, LQ		

Table 1 1	Performance	Outline	of M16C/6N	Group	(M16C/6N4)
	renomiance	Outime		Group	(WIIOC/ON4)

NOTES:

1. l²C-bus is a registered trademark of Koninklijke Philips Electronics N.V.

2. IEBus is a registered trademark of NEC Electronics Corporation.

option: All options are on request basis.

1.3 Block Diagram

Figure 1.1 shows a block diagram of M16C/6N Group (M16C/6N4).

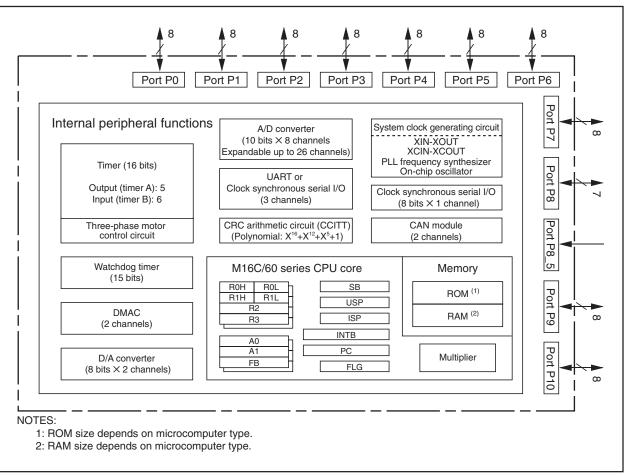


Figure 1.1 Block Diagram

1.4 Product List

Table 1.2 lists the M16C/6N Group (M16C/6N4) products and Figure 1.2 shows the type numbers, memory sizes and packages.

Fable 1.2 Product List As of Oct. 2005						
Type No.		ROM Capacity	RAM Capacity	Package Type	Re	marks
M306N4FCFP	(D)	128 K + 4 Kbytes	5 Kbytes	PRQP0100JB-A	Flash	Normal-ver.
M306N4FCGP	(D)			PLQP0100KB-A	memory	
M306N4FGFP	(D)	256 K + 4 Kbytes	10 Kbytes	PRQP0100JB-A	version (1)	
M306N4FGGP	(D)			PLQP0100KB-A		
M306N4FCTFP		128 K + 4 Kbytes	5 Kbytes	PRQP0100JB-A		T-ver.
M306N4FCTGP	(D)			PLQP0100KB-A		
M306N4FGTFP		256 K + 4 Kbytes	10 Kbytes	PRQP0100JB-A		
M306N4FGTGP	(D)			PLQP0100KB-A		
M306N4FCVFP		128 K + 4 Kbytes	5 Kbytes	PRQP0100JB-A		V-ver.
M306N4FCVGP	(D)			PLQP0100KB-A		
M306N4FGVFP		256 K + 4 Kbytes	10 Kbytes	PRQP0100JB-A		
M306N4FGVGP	(D)			PLQP0100KB-A		
M306N4MC-XXXGP	(D)	128 Kbytes	5 Kbytes	PLQP0100KB-A	Mask	Normal-ver.
M306N4MG-XXXGP	(D)	256 Kbytes	10 Kbytes	PLQP0100KB-A	ROM	
M306N4MCT-XXXFP		128 Kbytes	5 Kbytes	PRQP0100JB-A	version	T-ver.
M306N4MCT-XXXGP	(D)			PLQP0100KB-A		
M306N4MGT-XXXFP		256 Kbytes	10 Kbytes	PRQP0100JB-A		
M306N4MGT-XXXGP	(D)			PLQP0100KB-A		
M306N4MCV-XXXFP		128 Kbytes	5 Kbytes	PRQP0100JB-A		V-ver.
M306N4MCV-XXXGP	(D)			PLQP0100KB-A		
M306N4MGV-XXXFP	(D)	256 Kbytes	10 Kbytes	PRQP0100JB-A		
M306N4MGV-XXXGP	(D)]		PLQP0100KB-A		

(D): Under development

NOTE:

1. In the flash memory version, there is 4-Kbyte space (block A).

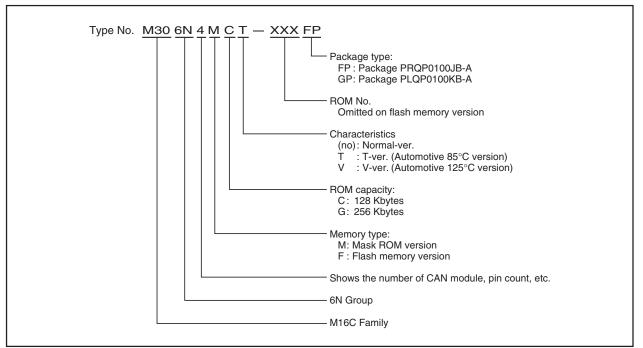


Figure 1.2 Type No., Memory Size, and Package

1.5 Pin Configuration

Figures 1.3 and 1.4 show the pin configuration (top view). Tables 1.3 and 1.4 list the pin characteristics.

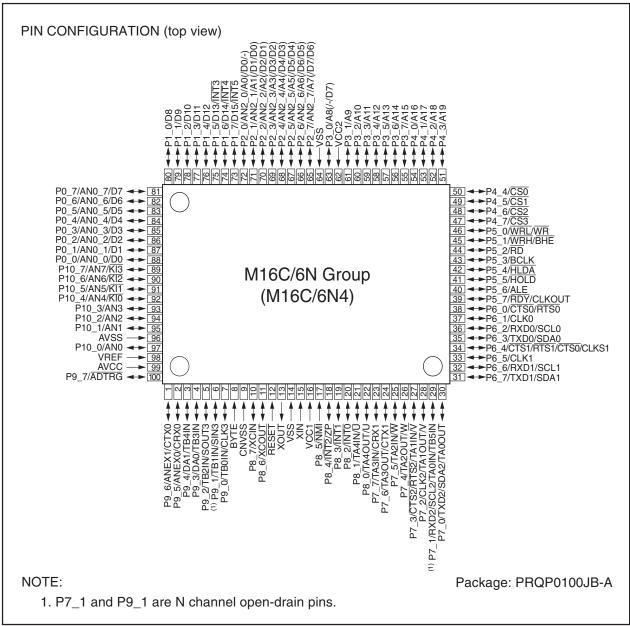


Figure 1.3 Pin Configuration (Top View) (1)

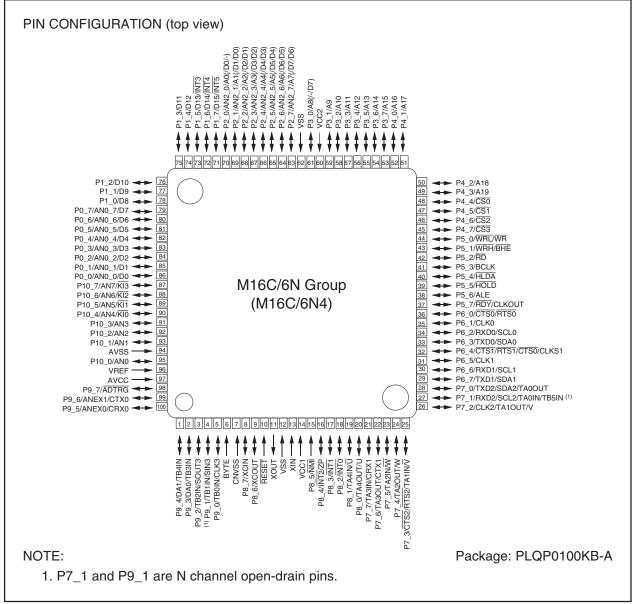


Figure 1.4 Pin Configuration (Top View) (2)

Table 1.3 Pin Characteristics (1)

Pin FP	No. GP	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	Bus Control Pir
1	99		P9_6				ANEX1	CTX0	
2	100		P9_5				ANEX0	CRX0	
3	1		P9_4		TB4IN		DA1		
4	2		P9_3		TB3IN		DA0		
5	3		P9_2		TB2IN	SOUT3			
6	4		P9_1		TB1IN	SIN3			
7	5		 P9_0		TBOIN	CLK3			
8	6	BYTE							
9	7	CNVSS							
10	8	XCIN	P8_7						
11	9	хсоит	 P8_6						
12	10	RESET							
13	11	XOUT							
14	12	VSS							
15	13	XIN							
16	14	VCC1							
17	15		P8_5	NMI					
18	16		P8_4	INT2	ZP				
19	17		P8_3	INT1					
20	18		P8_2	INTO					
21	19		P8_1		TA4IN/U				
22	20		P8_0		TA4OUT/U				
23	21		P7_7		TA3IN			CRX1	
24	22		P7_6		TA3OUT			CTX1	
25	23		P7_5		TA2IN/W				
26	24		P7_4		TA2OUT/W				
27	25		P7_3		TA1IN/V	CTS2/RTS2			
28	26		P7_2		TA1OUT/V	CLK2			
29	27		P7_1		TA0IN/TB5IN	RXD2/SCL2			
30	28		P7_0		TAOOUT	TXD2/SDA2			
31	29		P6_7		140001	TXD1/SDA1			
32	30		P6_6			RXD1/SCL1			
33			P6_5			CLK1			
33 34	32		P6_4			CTS1/RTS1/CTS0/CLKS1			
34 35	33		P6_3			TXD0/SDA0			
36	34		P6_2			RXD0/SCL0			
36 37	34		P6_2 P6_1			CLK0			
37 38	35		P6_1 P6_0			CTS0/RTS0			
30 39	36		P6_0 P5_7			0100/0100			RDY/CLKOUT
			P5_7 P5_6						ALE
40 41	38 39								HOLD
			P5_5						
42	40		P5_4					-	HLDA
43	41		P5_3						BCLK
44	42		P5_2						RD
45			P5_1						WRH/BHE
46	44		P5_0						WRL/WR
47	45		P4_7						CS3
48	46		P4_6						CS2
49	47		P4_5	-				ļ	CS1
50	48		P4_4						CS0

FP: PRQP0100JB-A, GP: PLQP0100KB-A

Table 1.4 Pin Characteristics (2)

Tabi	•		araoterr	51105 (2)					
Pin FP	No. GP	Control Pin	Port	Interrupt	Timer Pin	UART Pin	Analog Pin	CAN Module	Bus Control Pin
FP 51	49	Pin	P4_3	Pin			Pin	Pin	A19
51	49 50		P4_3 P4_2						A19 A18
	50								A10 A17
53 54	51		P4_1						A17 A16
54 55	52		P4_0 P3_7						A15
									A15 A14
56 57	54		P3_6						A14 A13
57 58	55 56		P3_5						A13 A12
58 59	50 57		P3_4 P3_3						A12 A11
59 60	57		P3_3 P3_2						A10
61	50								A10 A9
		VCC2	P3_1						A9
62 63	60 61	VCC2	D2 0						
63 64		VSS	P3_0						A8(/-/D7)
	62	V35							
65	63 64		P2_7				AN2_7		A7(/D7/D6)
66 67			P2_6				AN2_6		A6(/D6/D5)
	65		P2_5				AN2_5		A5(/D5/D4)
68	66		P2_4				AN2_4		A4(/D4/D3)
69 70	67		P2_3				AN2_3		A3(/D3/D2)
70	68		P2_2				AN2_2		A2(/D2/D1)
71	69		P2_1				AN2_1		A1(/D1/D0)
72	70		P2_0				AN2_0		A0(/D0/-)
73	71		P1_7	INT5					D15
74	72		P1_6	INT4					D14
75	73		P1_5	INT3					D13
76	74		P1_4						D12
77	75		P1_3						D11
78	76		P1_2						D10
79	77		P1_1						D9
80	78		P1_0						D8
81	79		P0_7				AN0_7		D7
82	80		P0_6				AN0_6		D6
83	81		P0_5				AN0_5		D5
84	82		P0_4				AN0_4		D4
85	83		P0_3				AN0_3		D3
86	84		P0_2				AN0_2		D2
87	85		P0_1				AN0_1		D1
88	86		P0_0				AN0_0		D0
89	87		P10_7	KI3			AN7		
90	88		P10_6	KI2			AN6		
91	89		P10_5	KI1			AN5		
92	90		P10_4	KI0			AN4		
93	91		P10_3				AN3		
94	92		P10_2				AN2		
95	93	41/00	P10_1				AN1		
96		AVSS					A N I O		
97	95	VDEE	P10_0				AN0		
98	96	VREF							
99	97	AVCC							
100			P9_7				ADTRG		

FP: PRQP0100JB-A, GP: PLQP0100KB-A

RENESAS

1.6 Pin Description

Tables 1.5 to 1.7 list the pin descriptions.

Table 1.5 Pin Description (1)

Signal Name	Pin Name	I/O Type		
Power supply input	VCC1, VCC2, VSS		Apply 4.2 to 5.5V (T/V-ver.), 3.0 to 5.5V (Normal-ver.) to the VCC and VCC2 pins and 0V to the VSS pin. The VCC apply condition i	
A 1			that VCC2 = VCC1 ⁽¹⁾ .	
Analog power supply input	AVCC, AVSS		Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.	
Reset input	RESET	1	The microcomputer is in a reset state when applying "L" to the this pir	
CNVSS	CNVSS		Switches processor mode. Connect this pin to VSS to when after	
011000	011100		a reset to start up in single-chip mode. Connect this pin to VCC	
			to start up in microprocessor mode.	
External data	BYTE	1	Switches the data bus in external memory space. The data bu	
bus width			is 16-bit long when the this pin is held "L" and 8-bit long whe	
select input			the this pin is held "H". Set it to either one. Connect this pin t	
Select input			VSS when an single-chip mode.	
Bus control	D0 to D7	I/O	Inputs and outputs data (D0 to D7) when these pins are set a	
pins		1/0	the separate bus.	
pins	D8 to D15	I/O	Inputs and outputs data (D8 to D15) when external 16-bit dat	
	0010013	1/0	bus is set as the separate bus.	
	A0 to A19	0	Output address bits (A0 to A19).	
	A0/D0 to A7/D7	I/O	Input and output data (D0 to D7) and output address bits (A0 t	
		1/0	A7) by time-sharing when external 8-bit data bus are set as th	
			multiplexed bus.	
	A1/D0 to A8/D7	I/O	Input and output data (D0 to D7) and output address bits (A1	
		1/0	A8) by time-sharing when external 16-bit data bus are set as the	
			multiplexed bus.	
	CS0 to CS3	0	Output CS0 to CS3 signals. CS0 to CS3 are chip-select signal	
	030 10 033		to specify an external space.	
	WRL/WR	0	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH	
	WRH/BHE		BHE and WR can be switched by program.	
	RD		• WRL, WRH and RD are selected	
			The WRL signal becomes "L" by writing data to an even addres	
			in an external memory space.	
			The WRH signal becomes "L" by writing data to an odd addres	
			in an external memory space.	
			The RD pin signal becomes "L" by reading data in an extern	
			memory space.	
			• WR, BHE and RD are selected	
			The WR signal becomes "L" by writing data in an externa	
			memory space.	
			The RD signal becomes "L" by reading data in an extern	
			memory space.	
			The BHE signal becomes "L" by accessing an odd address.	
			Select WR, BHE and RD for an external 8-bit data bus.	
	ALE	0	ALE is a signal to latch the address.	
	HOLD		While the HOLD pin is held "L", the microcomputer is placed i	
			a hold state.	
		0	In a hold state, HLDA outputs a "L" signal.	
	HLDA		While applying a "L" signal to the RDY pin, the microcompute	
	RDY		is placed in a wait state.	
			no placed in a wait state.	

NOTE:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

Signal Name	Pin Name	I/O Type		
Main clock	XIN	I	I/O pins for the main clock oscillation circuit. Connect a ceramic	
input			resonator or crystal oscillator between XIN and XOUT ⁽¹⁾ .	
Main clock	XOUT	0	To use the external clock, input the clock from XIN and leave	
output			XOUT open.	
Sub clock	XCIN	I	I/O pins for a sub clock oscillation circuit. Connect a crystal	
input			oscillator between XCIN and XCOUT ⁽¹⁾ .	
Sub clock	XCOUT	0	To use the external clock, input the clock from XCIN and leave	
output			XCOUT open.	
BCLK output	BCLK	0	Outputs the BCLK signal.	
Clock output	CLKOUT	0	The clock of the same cycle as fC, f8, or f32 is output.	
INT interrupt input	INT0 to INT5	I	Input pins for the INT interrupt.	
NMI interrupt input	NMI	I	Input pin for the NMI interrupt.	
Key input	KI0 to KI3		Input pins for the key input interrupt.	
interrupt input	*			
Timer A	TA0OUT to TA4OUT	I/O	These are timer A0 to timer A4 I/O pins.	
	TA0IN to TA4IN		These are timer A0 to timer A4 input pins.	
	ZP	I	Input pin for the Z-phase.	
Timer B	TB0IN to TB5IN	I	These are timer B0 to timer B5 input pins.	
Three-phase motor	$\overline{U, \overline{U}, V, \overline{V}, W, \overline{W}}$	0	These are Three-phase motor control output pins.	
control output				
Serial interface	CTS0 to CTS2		These are send control input pins.	
	RTS0 to RTS2 O		These are receive control output pins.	
	CLK0 to CLK3	I/O	These are transfer clock I/O pins.	
	RXD0 to RXD2	I	These are serial data input pins.	
	SIN3	I	These are serial data input pins.	
	TXD0 to TXD2 O		These are serial data output pins.	
	SOUT3	0	These are serial data output pins.	
	CLKS1 O		This is output pin for transfer clock output from multiple pins	
			function.	
I ² C mode	SDA0 to SDA2	I/O	These are serial data I/O pins.	
	SCL0 to SCL2	I/O	These are transfer clock I/O pins. (however, SCL2 for the	
			N-channel open drain output.)	
Reference	VREF	I	Applies the reference voltage for the A/D converter and D/A	
voltage input			converter.	
A/D converter	AN0 to AN7	I	Analog input pins for the A/D converter.	
	AN0_0 to AN0_7			
	AN2_0 to AN2_7			
	ADTRG	I	This is an A/D trigger input pin.	
	ANEX0	I/O	This is the extended analog input pin for the A/D converter,	
	-		and is the output in external op-amp connection mode.	
	ANEX1		This is the extended analog input pin for the A/D converter.	
D/A converter	DA0, DA1	0	These are the output pins for the D/A converter.	
CAN module		1	These are the input pins for the CAN module.	
	CRX0, CRX1			
: Input O:	CTX0, CTX1 Output I/O: In	O put/Outpu	These are the output pins for the CAN module.	

I: Input O: Output I/O: Input/Output

NOTE:

1. Ask the oscillator maker the oscillation characteristic.

Table 1.7 Pin Description (3)

Signal Name	Pin Name	I/O Type	Description
I/O port	P0_0 to P0_7	I/O	8-bit I/O ports in CMOS, having a direction register to select
	P1_0 to P1_7		an input or output.
	P2_0 to P2_7		Each pin is set as an input port or output port. An input port
	P3_0 to P3_7		can be set for a pull-up or for no pull-up in 4-bit unit by
	P4_0 to P4_7		program.
	P5_0 to P5_7		(however, P7_1 and P9_1 for the N-channel open drain
	P6_0 to P6_7		output.)
	P7_0 to P7_7		
	P8_0 to P8_4		
	P8_6, P8_7		
	P9_0 to P9_7		
	P10_0 to P10_7		
Input port	P8_5	I	Input pin for the MII interrupt.
			Pin states can be read by the P8_5 bit in the P8 register.

I: Input O: Output I/O: Input/Output

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

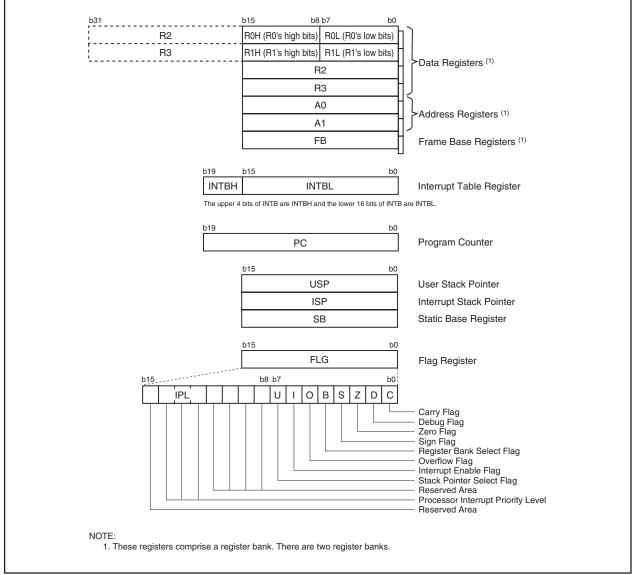


Figure 2.1 CPU Registers

2.1 Data Registers (R0, R1, R2, and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

2.2 Address Registers (A0 and A1)

The A0 register consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and arithmetic/logic operations. A1 is the same as A0.

In some instructions, A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

This flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt. Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is set to "0" when the interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is "0"; USP is selected when the U flag is "1". The U flag is set to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

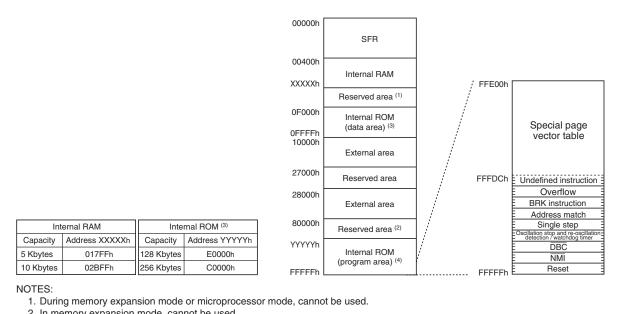
If a requested interrupt has priority greater than IPL, the interrupt request is enabled.

2.8.10 Reserved Area

When white to this bit, write "0". When read, its content is indeterminate.

Figure 3.1 shows a memory map of the M16C/6N Group (M16C/6N4). The address space extends the 1 Mbyte from address 00000h to FFFFh.

The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a 128-Kbyte internal ROM is allocated to the addresses from E0000h to FFFFFh.


As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 5-Kbyte internal RAM is allocated to the addresses from 00400h to 017FFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SFR is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to M16C/60, M16C/20, M16C/Tiny Series Software Manual. In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users.

2. In memory expansion mode, cannot be used.

3. As for the flash memory version, 4-Kbyte space (block A) exists.

4. When using the masked ROM version, write nothing to internal ROM area.

5. Shown here is a memory map for the case where the PM10 bit in the PM1 register is "1" (block A enabled, addresses 10000h to 26FFFh for CS2 area) and the PM13 bit in the PM1 register is "1" (internal RAM area is expanded over 192 Kbytes).

Figure 3.1 Memory Map

4. Special Function Register (SFR)

SFR (Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.16 list the SFR information.

Table 4.1	SFR	Information	(1)
-----------	-----	-------------	-----

Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0 ⁽¹⁾	PM0	00000000b (CNVSS pin is "L") 00000011b (CNVSS pin is "H")
0005h	Processor Mode Register 1	PM1	00001000b
0006h	System Clock Control Register 0	CM0	01001000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Chip Select Control Register	CSR	0000001b
0009h	Address Match Interrupt Enable Register	AIER	XXXXXX00b
000Ah	Protect Register	PRCR	XX000000b
000Bh			
000Ch	Oscillation Stop Detection Register (2)	CM2	0X00000b
000Dh			
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00XXXXXXb
0010h	5		00h
0011h	Address Match Interrupt Register 0	RMAD0	00h
0012h	······		X0h
0013h			
0014h			00h
0015h	Address Match Interrupt Register 1	RMAD1	00h
0016h			X0h
0017h			
0018h			
0019h			
001Ah			
001Bh	Chip Select Expansion Control Register	CSE	00h
001Ch	PLL Control Register 0	PLC0	0001X010b
001Dh			
001Eh	Processor Mode Register 2	PM2	XXX00000b
001Eh			
0020h			XXh
0021h	DMA0 Source Pointer	SARO	XXh
0022h			XXh
0023h			•••
0024h			XXh
0024h	DMA0 Destination Pointer	DAR0	XXh
0025h		Divito	XXh
0020h			77711
0027h			XXh
0020h	DMA0 Transfer Counter	TCR0	XXh
0023h			2001
002An			
002Dh	DMA0 Control Register	DM0CON	00000X00b
0020h		Divideorit	000000000
002Eh			
002Eh			
002111 0030h			XXh
0031h	DMA1 Source Pointer	SAR1	XXh
0031h			XXh
0032h			7711
003311 0034h			XXh
003411 0035h	DMA1 Destination Pointer	DAR1	XXh
0035h		DANT	XXh
0030h			7711
0037h			XXh
0038h	DMA1 Transfer Counter	TCR1	XXh
00391 003Ah			~~!!
003An			
003Bh 003Ch	DMA1 Control Register	DM1CON	00000X00b
003Ch		DIVITCOIN	0000000
003Dh			
003En			

X: Undefined

NOTES:

The PM00 and PM01 bits in the PM0 register do not change at software reset, watchdog timer reset and oscillation stop detection reset.
 The CM20, CM21, and CM27 bits in the CM2 register do not change at oscillation stop detection reset.

3. The blank areas are reserved and cannot be accessed by users.

M16C/6N Group (M16C/6N4)

Table 4.2 SFR Information (2)

Address	Register	Symbol	After Reset
0040h	Č.		
0041h	CAN0/1 Wake-up Interrupt Control Register	C01WKIC	XXXXX000b
0042h	CAN0 Successful Reception Interrupt Control Register	CORECIC	XXXXX000b
0043h	CAN0 Successful Transmission Interrupt Control Register	COTRMIC	XXXXX000b
0044h	INT3 Interrupt Control Register	INT3IC	XX00X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	XXXXX000b
0046h	Timer B4 Interrupt Control Register	TB4IC U1BCNIC	XXXXX000b
	UART1 Bus Collision Detection Interrupt Control Register	TB3IC	
0047h	Timer B3 Interrupt Control Register UART0 Bus Collision Detection Interrupt Control Register	UOBCNIC	XXXXX000b
	CAN1 Successful Reception Interrupt Control Register	C1RECIC	
0048h	INT5 Interrupt Control Register	INT5IC	XX00X000b
	CAN1 Successful Transmission Interrupt Control Register	C1TRMIC	
0049h	SI/O3 Interrupt Control Register	S3IC	XX00X000b
004011	INT4 Interrupt Control Register	INT4IC	7.0.007.0000
004Ah	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXXX000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXXX000b
004Dh	CAN0/1 Error Interrupt Control Register	C01ERRIC	XXXXX000b
	A/D Conversion Interrupt Control Register	ADIC	
004Eh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	Timer A0 Interrupt Control Register	TA0IC	XXXXX000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXXX000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXXX000b
0058h	Timer A3 Interrupt Control Register	TA3IC	XXXXX000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXXX000b
005Ah	Timer B0 Interrupt Control Register	TB0IC	XXXXX000b
005Bh	Timer B1 Interrupt Control Register	TB1IC	XXXXX000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00X000b
0060h			XXh
0061h			XXh
0062h	CAN0 Message Box 0: Identifier / DLC		XXh
0063h			XXh XXh
0064h			XXh
0065h			XXh
0066h 0067h			XXh
0067h			XXh
0069h			XXh
006Ah	CAN0 Message Box 0: Data Field		XXh
006Bh			XXh
006Ch			XXh
006Dh			XXh
006Eh			XXh
006Fh	CAN0 Message Box 0: Time Stamp		XXh
0070h			XXh
0071h]		XXh
0072h	CANO Massage Rev. 1. Identifier / DL C		XXh
0073h	CAN0 Message Box 1: Identifier / DLC		XXh
0074h			XXh
0075h			XXh
0076h			XXh
0077h			XXh
0078h			XXh
0079h	CAN0 Message Box 1: Data Field		XXh
007Ah	CARTO MODDAYO DOX 1. DAIA FICIU		XXh
007Bh	4		XXh
007Ch	4		XXh
007Dh			XXh
007Eh	CAN0 Message Box 1: Time Stamp		XXh
007Fh			XXh

X: Undefined

NOTE:

1. The blank area is reserved and cannot be accessed by users.

Table 4.3 SFR Information (3)

Address	Register	Symbol	After Reset
0080h			XXh
0081h			XXh
0082h	CAN0 Message Box 2: Identifier / DLC		XXh
0083h			XXh
0084h 0085h			XXh XXh
0085h			XXh
0087h			XXh
0088h			XXh
0089h	CAN0 Message Box 2: Data Field		XXh
008Ah	on to moodage box 2. Bata Flora		XXh
008Bh			XXh
008Ch 008Dh			XXh XXh
008Eh			XXh
008Fh	CAN0 Message Box 2: Time Stamp		XXh
0090h			XXh
0091h			XXh
0092h	CAN0 Message Box 3: Identifier / DLC		XXh
0093h			XXh
0094h 0095h			XXh XXh
0095h			XXh
0090h			XXh
0098h			XXh
0099h	CAN0 Message Box 3: Data Field		XXh
009Ah	OANO Message Dox 3. Data Field		XXh
009Bh			XXh
009Ch			XXh XXh
009Dh 009Eh			XXh
009Eh	CAN0 Message Box 3: Time Stamp		XXh
00A0h			XXh
00A1h			XXh
00A2h	CAN0 Message Box 4: Identifier / DLC		XXh
00A3h			XXh
00A4h 00A5h			XXh XXh
00A6h			XXh
00A7h			XXh
00A8h			XXh
00A9h	CAN0 Message Box 4: Data Field		XXh
00AAh	S. T. B. Mossago Box II. Bala Flora		XXh
00ABh			XXh XXh
00ACh 00ADh			XXn XXh
00ADh 00AEh			XXh
00AFh	CAN0 Message Box 4: Time Stamp		XXh
00B0h			XXh
00B1h			XXh
00B2h	CAN0 Message Box 5: Identifier / DLC		XXh
00B3h	-		XXh XXh
00B4h 00B5h			XXh
00B6h			XXh
00B7h			XXh
00B8h			XXh
00B9h	CAN0 Message Box 5: Data Field		XXh
00BAh			XXh
00BBh			XXh XXh
00BCh 00BDh			XXn XXh
00BDh			XXh
00BFh	CAN0 Message Box 5: Time Stamp		XXh
V: Undofin		•	•

X: Undefined

Table 4.4 SFR Information (4)

Address	Register	Symbol	After Reset
00C0h			XXh
00C1h			XXh
00C2h	CAN0 Message Box 6: Identifier / DLC		XXh
00C3h	5		XXh
00C4h			XXh XXh
00C5h 00C6h			XXh
00C7h			XXh
00C8h			XXh
00C9h	CAN0 Message Box 6: Data Field		XXh
00CAh	CANO MESSAGE DOX 0. Data Fleid		XXh
00CBh			XXh
00CCh			XXh
00CDh			XXh XXh
00CEh	CAN0 Message Box 6: Time Stamp		XXn XXh
00CFh 00D0h			XXh
00D0h			XXh
00D2h	OANO Marcara Bruzz Island'Star (DLO		XXh
00D3h	CAN0 Message Box 7: Identifier / DLC		XXh
00D4h			XXh
00D5h			XXh
00D6h			XXh
00D7h			XXh
00D8h			XXh XXh
00D9h 00DAh	CAN0 Message Box 7: Data Field		XXh
00DAn 00DBh			XXh
00DDh			XXh
00DDh			XXh
00DEh	CAN0 Message Box 7: Time Stamp		XXh
00DFh			XXh
00E0h			XXh
00E1h			XXh
00E2h	CAN0 Message Box 8: Identifier / DLC		XXh XXh
00E3h 00E4h			XXh
00E5h			XXh
00E6h			XXh
00E7h			XXh
00E8h			XXh
00E9h	CAN0 Message Box 8: Data Field		XXh
00EAh	or the message box of bala rich		XXh
00EBh			XXh
00ECh			XXh
00EDh 00EEh			XXh XXh
00EEh	CAN0 Message Box 8: Time Stamp		XXh
00E111			XXh
00F1h			XXh
00F2h	CANO Mossago Box 9: Identifier / DLC		XXh
00F3h	CAN0 Message Box 9: Identifier / DLC		XXh
00F4h			XXh
00F5h			XXh
00F6h			XXh
00F7h			XXh XXh
00F8h 00F9h			XXn XXh
00F9n 00FAh	CAN0 Message Box 9: Data Field		XXh
00FBh			XXh
00FCh			XXh
00FDh			XXh
00FEh	CAN0 Message Box 9: Time Stamp		XXh
00FFh	Univ messaye bux 3. Time stamp		XXh
V: Undofin			

X: Undefined

Table 4.5 SFR Information (5)

Address	Register	Symbol	After Reset
0100h	~	-	XXh
0101h			XXh
0102h	CAN0 Message Box 10: Identifier / DLC		XXh
0103h	~		XXh XXh
0104h 0105h			XXh
0105h			XXh
0100h			XXh
0108h			XXh
0109h	CAN0 Message Box 10: Data Field		XXh
010Ah	CANO Message Dox 10. Data Field		XXh
010Bh			XXh
010Ch			XXh XXh
010Dh 010Eh			XXh
010En	CAN0 Message Box 10: Time Stamp		XXh
0110h			XXh
0111h			XXh
0112h	CAN0 Message Box 11: Identifier / DLC		XXh
0113h	OANO Message box 11. Identifier / DEO		XXh
0114h			XXh
0115h			XXh
0116h			XXh XXh
0117h 0118h			XXh
0119h			XXh
011Ah	CAN0 Message Box 11: Data Field		XXh
011Bh			XXh
011Ch			XXh
011Dh			XXh
011Eh	CAN0 Message Box 11: Time Stamp		XXh
011Fh 0120h			XXh XXh
0120h 0121h			XXh
0121h			XXh
0123h	CAN0 Message Box 12: Identifier / DLC		XXh
0124h			XXh
0125h			XXh
0126h			XXh
0127h			XXh
0128h			XXh XXh
0129h 012Ah	CAN0 Message Box 12: Data Field		XXh
012Bh			XXh
012Ch			XXh
012Dh			XXh
012Eh	CAN0 Message Box 12: Time Stamp		XXh
012Fh			XXh
0130h			XXh
0131h 0132h			XXh XXh
0132h 0133h	CAN0 Message Box 13: Identifier / DLC		XXn XXh
0133h			XXh
0135h			XXh
0136h			XXh
0137h			XXh
0138h			XXh
0139h	CAN0 Message Box 13: Data Field		XXh
013Ah	~		XXh
013Bh 013Ch			XXh XXh
013Ch 013Dh			XXn XXh
013Eh			XXh
013Fh	CAN0 Message Box 13: Time Stamp		XXh
X. I Indefin			

Table 4.6 SFR Information (6)

Address	Register	Symbol	After Reset
0140h			XXh
0141h			XXh
0142h	CAN0 Message Box 14: Identifier /DLC		XXh
0143h 0144h			XXh XXh
0144n 0145h			XXh
0146h			XXh
0147h			XXh
0148h			XXh
0149h	CAN0 Message Box 14: Data Field		XXh
014Ah			XXh
014Bh			XXh
014Ch 014Dh			XXh XXh
014Dh 014Eh			XXh
014Eh	CAN0 Message Box 14: Time Stamp		XXh
0150h			XXh
0151h			XXh
0152h	CAN0 Message Box 15: Identifier /DLC		XXh
0153h	er in er		XXh
0154h			XXh
0155h			XXh XXh
0156h 0157h			XXn XXh
0158h			XXh
0159h	OANO MARKAR DATE DATE Field		XXh
015Ah	CAN0 Message Box 15: Data Field		XXh
015Bh			XXh
015Ch			XXh
015Dh			XXh
015Eh	CAN0 Message Box 15: Time Stamp		XXh XXh
015Fh 0160h			XXh
0161h			XXh
0162h	CANO Clabel Meets Deviator		XXh
0163h	CAN0 Global Mask Register	COGMR	XXh
0164h			XXh
0165h			XXh
0166h			XXh XXh
0167h 0168h			XXII XXh
0169h	CAN0 Local Mask A Register	COLMAR	XXh
016Ah			XXh
016Bh			XXh
016Ch			XXh
016Dh			XXh
016Eh	CAN0 Local Mask B Register	COLMBR	XXh
016Fh 0170h		1	XXh XXh
0170n 0171h			XXh
0171h		1	
0173h			
0174h			
0175h			
0176h			
0177h			
0178h 0179h		1	
0179n 017Ah		1	
017Bh			
017Ch			
017Dh			
017Eh		ļ	
017Fh			

X: Undefined

NOTE:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.7 SFR Information (7)

Address	Register	Symbol	After Reset
0180h	Ŭ		
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h 018Ah			
018Bh			
018Ch			
018Dh			
018Eh			
018Fh			
0190h			
0191h			
0192h			
0193h			
0194h			
0195h			
0196h			
0197h			
0198h 0199h			
019911 019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h 01A7h			
01A7h 01A8h			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h			
01B3h			
01B4h 01B5h	Flash Memory Control Register 1 (1)	FMR1	0X00XX0Xb
01B5h			
01B01	Flash Memory Control Register 0 ⁽¹⁾	FMR0	0000001b
01B8h			00h
01B9h	Address Match Interrupt Register 2	RMAD2	00h
01BAh			X0h
01BBh	Address Match Interrupt Enable Register 2	AIER2	XXXXXX00b
01BCh			00h
01BDh	Address Match Interrupt Register 3	RMAD3	00h
01BEh			X0h
01BFh			
X · I Indefind			

X: Undefined

NOTES:

These registers are included in the flash memory version. Cannot be accessed by users in the mask ROM version.
 The blank areas are reserved and cannot be accessed by users.

Table 4.8 SFR Information (8)

Address	Register	Symbol	After Reset
01C0h	Timer B3, B4, B5 Count Start Flag	TBSR	000XXXXXb
01C1h			
01C2h	Timer A1 1 Desister	TA11	XXh
01C3h	Timer A1-1 Register	IATI	XXh
01C4h	Timer 40.1 Desister	TA21	XXh
01C5h	Timer A2-1 Register	TA21	XXh
01C6h	Timer A4 1 Decistor	TA 41	XXh
01C7h	Timer A4-1 Register	TA41	XXh
01C8h	Three-Phase PWM Control Register 0	INVC0	00h
01C9h	Three-Phase PWM Control Register 1	INVC1	00h
01CAh	Three-Phase Output Buffer Register 0	IDB0	00h
01CBh	Three-Phase Output Buffer Register 1	IDB1	00h
01CCh	Dead Time Timer	DTT	XXh
01CDh	Timer B2 Interrupt Occurrence Frequency Set Counter	ICTB2	XXh
01CEh			
01CFh			
01D0h	Timer B2 Degister	TDO	XXh
01D1h	Timer B3 Register	ТВ3	XXh
01D2h	Timer D4 Desister	TD4	XXh
01D3h	Timer B4 Register	TB4	XXh
01D4h	Timer DC Desister	TDC	XXh
01D5h	Timer B5 Register	ТВ5	XXh
01D6h			
01D7h			
01D8h			
01D9h			
01DAh			
01DBh	Timer B3 Mode Register	TB3MR	00XX0000b
01DCh	Timer B4 Mode Register	TB4MR	00XX0000b
01DDh	Timer B5 Mode Register	TB5MR	00XX0000b
01DEh	Interrupt Cause Select Register 0	IFSR0	00XXX000b
01DEh	Interrupt Cause Select Register 1	IFSR1	00h
01E0h	SI/O3 Transmit/Receive Register	S3TRR	XXh
01E01		351111	
01E1h	SI/O3 Control Register	S3C	0100000b
01E3h	SI/O3 Bit Rate Generator	S3BRG	XXh
01E3h		335110	
01E411			
01E5h			
01E01			
01E8h			
01E9h			
01EAh			
01EBh	LIADTO Cressial Made Destinter 4		0.01-
01ECh	UARTO Special Mode Register 4	U0SMR4	00h
01EDh	UARTO Special Mode Register 3	U0SMR3	000X0X0Xb
01EEh	UARTO Special Mode Register 2	U0SMR2	X000000b
01EFh	UARTO Special Mode Register	U0SMR	X000000b
01F0h	UART1 Special Mode Register 4	U1SMR4	00h
01F1h	UART1 Special Mode Register 3	U1SMR3	000X0X0Xb
01F2h	UART1 Special Mode Register 2	U1SMR2	X000000b
01F3h	UART1 Special Mode Register	UISMR	X000000b
01F4h	UART2 Special Mode Register 4	U2SMR4	00h
01F5h	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
01F6h	UART2 Special Mode Register 2	U2SMR2	X000000b
01F7h	UART2 Special Mode Register	U2SMR	X000000b
01F8h	UART2 Transmit/Receive Mode Register	U2MR	00h
01F9h	UART2 Bit Rate Generator	U2BRG	XXh
01FAh	UART2 Transmit Buffer Register	U2TB	XXh
01FBh	OANTZ HAIISHIIL DUILEI NEYISLEI	UZIB	XXh
01FCh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
		11004	00000010b
01FDh	UART2 Transmit/Receive Control Register 1	U2C1	d010000
	UART2 Transmit/Receive Control Register 1 UART2 Receive Buffer Register	U2C1	XXh

X: Undefined

NOTE:

1. The blank areas are reserved and cannot be accessed by users.

M16C/6N Group (M16C/6N4)

Table 4.9 SFR Information (9)

Address	Register	Symbol	After Reset
0200h	CAN0 Message Control Register 0	COMCTLO	00h
0200h	CANO Message Control Register 0	COMCTL1	00h
0201h	CANO Message Control Register 2	COMCTL2	00h
0202h	CAN0 Message Control Register 3	COMCTL3	00h
0204h	CAN0 Message Control Register 4	C0MCTL4	00h
0205h	CAN0 Message Control Register 5	COMCTL5	00h
0206h	CAN0 Message Control Register 6	COMCTL6	00h
0200h	CAN0 Message Control Register 7	COMCTL7	00h
0208h	CAN0 Message Control Register 8	COMCTL8	00h
0209h	CAN0 Message Control Register 9	COMCTL9	00h
0200h	CAN0 Message Control Register 10	C0MCTL10	00h
0207th	CAN0 Message Control Register 11	C0MCTL11	00h
020Ch	CANO Message Control Register 12	COMCTL12	00h
020Dh	CANO Message Control Register 13	COMCTL13	00h
020Eh	CANO Message Control Register 14	COMCTL14	00h
020Eh	CANO Message Control Register 15	COMCTL15	00h
0210h			X000001b
0210h	CAN0 Control Register	COCTLR	XX0X0000b
0211h			00h
021211 0213h	CAN0 Status Register	COSTR	X000001b
0213h			00h
021411 0215h	CAN0 Slot Status Register	COSSTR	00h
0215h			00h
0210h	CAN0 Interrupt Control Register	COICR	00h
0217h			00h
0219h	CAN0 Extended ID Register	COIDR	00h
021Ah			XXh
0217th	CAN0 Configuration Register	COCONR	XXh
021Ch	CAN0 Receive Error Count Register	CORECR	00h
021Dh	CAN0 Transmit Error Count Register	COTECR	00h
021Eh	Ŭ		00h
021Fh	CAN0 Time Stamp Register	COTSR	00h
0220h	CAN1 Message Control Register 0	C1MCTL0	00h
0221h	CAN1 Message Control Register 1	C1MCTL1	00h
0222h	CAN1 Message Control Register 2	C1MCTL2	00h
0223h	CAN1 Message Control Register 3	C1MCTL3	00h
0224h	CAN1 Message Control Register 4	C1MCTL4	00h
0225h	CAN1 Message Control Register 5	C1MCTL5	00h
0226h	CAN1 Message Control Register 6	C1MCTL6	00h
0227h	CAN1 Message Control Register 7	C1MCTL7	00h
0228h	CAN1 Message Control Register 8	C1MCTL8	00h
0229h	CAN1 Message Control Register 9	C1MCTL9	00h
022Ah	CAN1 Message Control Register 10	C1MCTL10	00h
022Bh	CAN1 Message Control Register 11	C1MCTL11	00h
022Ch	CAN1 Message Control Register 12	C1MCTL12	00h
022Dh	CAN1 Message Control Register 13	C1MCTL13	00h
022Eh	CAN1 Message Control Register 14	C1MCTL14	00h
022Fh	CAN1 Message Control Register 15	C1MCTL15	00h
0230h	ž ž		X000001b
0231h	CAN1 Control Register	C1CTLR	XX0X0000b
0232h			00h
0233h	CAN1 Status Register	C1STR	X000001b
0233h			00h
0235h	CAN1 Slot Status Register	C1SSTR	00h
0236h			00h
0237h	CAN1 Interrupt Control Register	C1ICR	00h
0238h		<i>a</i> ···= -	00h
0239h	CAN1 Extended ID Register	C1IDR	00h
020011			XXh
023Ah	CAN1 Configuration Register	C1CONR	XXh
023Ah 023Bh	OANT Configuration negister		
023Bh	5 5	C1BECB	
023Bh 023Ch	CAN1 Receive Error Count Register	C1RECR C1TECB	00h
023Bh	5 5	C1RECR C1TECR C1TSR	

Table 4.10 SFR Information (10)

Address	Register	Symbol	After Reset
0240h			
0241h			
0242h		00450	XXh
0243h	CAN0 Acceptance Filter Support Register	COAFS	XXh
0244h	OANH Assessment Filler Ossessed Deviation	01450	XXh
0245h	CAN1 Acceptance Filter Support Register	C1AFS -	XXh
0246h			
0247h			
0248h			
0249h			
024Ah			
024Bh			
024Ch			
024Dh			
024Eh			
024Fh			
0250h			
0251h			
0252h			
0253h		\downarrow	
0254h		-	
0255h		├ ─── ├	
0256h			
0257h		├ ─── ├	
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh	Devinheral Cleak Calent Degister		OOh
025Eh	Peripheral Clock Select Register CAN0/1 Clock Select Register	PCLKR	00h 00h
025Fh	CANU/ I Clock Select Register	CCLKR	
0260h			XXh XXh
0261h		Ⅰ ⊢	XXh
0262h	CAN1 Message Box 0: Identifier / DLC		XXh
0263h 0264h			XXh
0265h			XXh
0266h			XXh
0267h			XXh
0268h			XXh
0269h			XXh
026Ah	CAN1 Message Box 0: Data Field		XXh
026Bh			XXh
026Ch			XXh
026Dh			XXh
026Eh	CANIT Massage Day OTHER Channel		XXh
026Fh	CAN1 Message Box 0:Time Stamp		XXh
0270h			XXh
0271h			XXh
0272h	CAN1 Message Box 1: Identifier / DLC		XXh
0273h	of the mostage box 1. Identifier / DEO		XXh
0274h			XXh
0275h			XXh
0276h			XXh
0277h			XXh
0278h			XXh
0279h	CAN1 Message Box 1: Data Field		XXh
027Ah	Statt moodage box 1. Bala i loid		XXh
027Bh			XXh
027Ch			XXh
027Dh		↓ ↓	XXh
027Eh	CAN1 Message Box 1:Time Stamp		XXh
027Fh			XXh
X: Undefin	ed		

X: Undefined

NOTE:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.11 SFR Information (11)

Address	Register	Symbol	After Reset
0280h			XXh
0281h			XXh
0282h	CAN1 Message Box 2: Identifier / DLC		XXh
0283h	OANT Message Dox 2. Identifier / DEO		XXh
0284h			XXh
0285h			XXh
0286h			XXh
0287h			XXh
0288h			XXh
0289h	CAN1 Message Box 2: Data Field		XXh
028Ah	5		XXh
028Bh			XXh
028Ch			XXh
028Dh			XXh
028Eh	CAN1 Message Box 2: Time Stamp		XXh
028Fh			XXh
0290h			XXh XXh
0291h			XXh
0292h	CAN1 Message Box 3: Identifier / DLC		XXh
0293h			XXh
0294h			XXh
0295h 0296h			XXh
0296h 0297h			XXh
0297h 0298h			XXh
0298h			XXh
0299h	CAN1 Message Box 3: Data Field		XXh
029An			XXh
029Dh			XXh
029Dh			XXh
029Eh			XXh
029Fh	CAN1 Message Box 3: Time Stamp		XXh
02A0h			XXh
02A1h			XXh
02A2h			XXh
02A3h	CAN1 Message Box 4: Identifier / DLC		XXh
02A4h			XXh
02A5h			XXh
02A6h			XXh
02A7h			XXh
02A8h			XXh
02A9h	CAN1 Message Box 4: Data Field		XXh
02AAh	CANT Message Dox 4. Data Fleid		XXh
02ABh			XXh
02ACh			XXh
02ADh			XXh
02AEh	CAN1 Message Box 4: Time Stamp		XXh
02AFh			XXh
02B0h			XXh
02B1h			XXh
02B2h	CAN1 Message Box 5: Identifier / DLC		XXh
02B3h			XXh
02B4h			XXh
02B5h			XXh
02B6h			XXh XXh
02B7h			XXh
02B8h			XXh
02B9h	CAN1 Message Box 5: Data Field		XXh
02BAh 02BBh			XXh
02BBh 02BCh			XXh
02BCh 02BDh			XXh
02BDh			XXh
02BEh	CAN1 Message Box 5: Time Stamp		XXh
V: Undofin	· · ·	I	77741

Table 4.12 SFR Information (12)

Address	Register	Symbol	After Reset
02C0h		Gynibol	XXh
02C1h			XXh
02C2h	CAN1 Message Box 6: Identifier / DLC		XXh
02C3h	Oniver Message Box 6. Identifier / BEO		XXh
02C4h			XXh
02C5h			XXh
02C6h			XXh XXh
02C7h 02C8h			XXh
02C8h			XXh
02CAh	CAN1 Message Box 6: Data Field		XXh
02CBh			XXh
02CCh			XXh
02CDh			XXh
02CEh	CAN1 Message Box 6: Time Stamp		XXh
02CFh			XXh
02D0h			XXh
02D1h			XXh XXh
02D2h	CAN1 Message Box 7: Identifier / DLC		XXh
02D3h 02D4h		1	XXh
02D411 02D5h		1	XXh
02D6h			XXh
02D7h			XXh
02D8h			XXh
02D9h	CAN1 Message Box 7: Data Field		XXh
02DAh			XXh
02DBh			XXh
02DCh 02DDh			XXh XXh
02DDh 02DEh			XXh
02DEh	CAN1 Message Box 7: Time Stamp		XXh
02E0h			XXh
02E1h			XXh
02E2h	CAN1 Message Box 8: Identifier / DLC		XXh
02E3h	or an moodage box of normality bee		XXh
02E4h			XXh
02E5h			XXh XXh
02E6h 02E7h			XXh
02E8h			XXh
02E9h			XXh
02EAh	CAN1 Message Box 8: Data Field		XXh
02EBh			XXh
02ECh			XXh
02EDh			XXh
02EEh	CAN1 Message Box 8: Time Stamp		XXh
02EFh	• ·		XXh
02F0h 02F1h			XXh XXh
02F111 02F2h			XXh
02F3h	CAN1 Message Box 9: Identifier / DLC	1	XXh
02F4h			XXh
02F5h			XXh
02F6h			XXh
02F7h		1	XXh
02F8h			XXh
02F9h	CAN1 Message Box 9: Data Field	1	XXh
02FAh 02FBh			XXh XXh
02FBN 02FCh		1	XXh
02FDh			XXh
02FEh	CANIT Macagan Day Or Time Stomp		XXh
02FFh	CAN1 Message Box 9: Time Stamp		XXh
X: Undofin			

Table 4.13 SFR Information (13)

Address	Register	Symbol	After Reset
0300h			XXh
0301h			XXh
0302h	CAN1 Message Box 10: Identifier / DLC		XXh
0303h			XXh
0304h			XXh
0305h			XXh XXh
0306h 0307h			XXh
0308h			XXh
0309h	OANIA MANANA DALA E'ALA		XXh
030Ah	CAN1 Message Box 10: Data Field		XXh
030Bh			XXh
030Ch			XXh
030Dh			XXh
030Eh	CAN1 Message Box 10: Time Stamp		XXh XXh
030Fh 0310h			XXh
0310h			XXh
0312h			XXh
0313h	CAN1 Message Box 11: Identifier / DLC		XXh
0314h			XXh
0315h			XXh
0316h			XXh
0317h			XXh
0318h			XXh XXh
0319h 031Ah	CAN1 Message Box 11: Data Field		XXh
031Bh			XXh
031Ch			XXh
031Dh			XXh
031Eh	CAN1 Message Box 11: Time Stamp		XXh
031Fh			XXh
0320h			XXh
0321h			XXh XXh
0322h 0323h	CAN1 Message Box 12: Identifier / DLC		XXh
0324h			XXh
0325h			XXh
0326h			XXh
0327h			XXh
0328h			XXh
0329h	CAN1 Message Box 12: Data Field		XXh
032Ah	-		XXh XXh
032Bh 032Ch			XXn XXh
032Ch			XXh
032Eh	CANIT Magazara Day 10: Time Otome		XXh
032Fh	CAN1 Message Box 12: Time Stamp		XXh
0330h			XXh
0331h			XXh
0332h	CAN1 Message Box 13: Identifier / DLC		XXh
0333h	J		XXh
0334h			XXh XXh
0335h 0336h			XXn XXh
0337h			XXh
0338h			XXh
0339h	CAN1 Magagan Pay 12: Data Field		XXh
033Ah	CAN1 Message Box 13: Data Field		XXh
033Bh			XXh
033Ch			XXh
033Dh			XXh
033Eh 033Fh	CAN1 Message Box 13: Time Stamp		XXh XXh
U33FN V: Undofin		1	

Table 4.14 SFR Information (14)

Address	Register	Symbol	After Reset
0340h			XXh
0341h			XXh
0342h	CAN1 Message Box 14: Identifier / DLC		XXh
0343h			XXh
0344h			XXh
0345h			XXh
0346h			XXh XXh
0347h 0348h			XXh
0349h			XXh
034Ah	CAN1 Message Box 14: Data Field		XXh
034Bh			XXh
034Ch			XXh
034Dh			XXh
034Eh	CAN1 Message Box 14: Time Stamp		XXh
034Fh			XXh
0350h			XXh
0351h			XXh XXh
0352h	CAN1 Message Box 15: Identifier / DLC		XXh
0353h 0354h			XXh
0355h			XXh
0356h			XXh
0357h			XXh
0358h			XXh
0359h	CAN1 Message Box 15: Data Field		XXh
035Ah	on the mood go box to. Bata the		XXh
035Bh			XXh
035Ch 035Dh			XXh XXh
035Eh			XXh
035Fh	CAN1 Message Box 15: Time Stamp		XXh
0360h			XXh
0361h		C1GMR	XXh
0362h	CAN1 Global Mask Register		XXh
0363h			XXh
0364h			XXh
0365h			XXh XXh
0366h 0367h			XXh
0368h			XXh
0369h	CAN1 Local Mask A Register	C1LMAR	XXh
036Ah			XXh
036Bh			XXh
036Ch			XXh
036Dh			XXh
036Eh	CAN1 Local Mask B Register	C1LMBR	XXh
036Fh			XXh
0370h 0371h			XXh XXh
0371h 0372h			
0372h		1	
0374h			
0375h			
0376h			
0377h			
0378h			
0379h			
037Ah 037Bh		1	
037Bh 037Ch			
037Dh		1	
037Eh			
037Fh			
-		•	

X: Undefined

NOTE:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.15 SFR Information (15)

Address	Register	Symbol	After Reset
0380h	Count Start Flag	TABSR	00h
0381h	Clock Prescaler Reset Flag	CPSRF	0XXXXXXb
0382h	One-Shot Start Flag	ONSF	00h
0383h	Trigger Select Register	TRGSR	00h
0384h	Up/Down Flag	UDF	00h (1)
0385h			
0386h			XXh
0387h	Timer A0 Register	TAO	XXh
0388h			XXh
0389h	Timer A1 Register	TA1	XXh
038Ah			XXh
038Bh	Timer A2 Register	TA2	XXh
038Ch			XXh
038Dh	Timer A3 Register	TA3	XXh
038Eh			XXh
038Eh	Timer A4 Register	TA4	XXh
0390h			XXh
	Timer B0 Register	ТВО	XXh
0391h			XXh
0392h	Timer B1 Register	TB1	XXh
0393h			XXh
0394h	Timer B2 Register	TB2	
0395h	-		XXh
0396h	Timer A0 Mode Register	TAOMR	00h
0397h	Timer A1 Mode Register	TA1MR	00h
0398h	Timer A2 Mode Register	TA2MR	00h
0399h	Timer A3 Mode Register	TA3MR	00h
039Ah	Timer A4 Mode Register	TA4MR	00h
039Bh	Timer B0 Mode Register	TB0MR	00XX0000b
039Ch	Timer B1 Mode Register	TB1MR	00XX0000b
039Dh	Timer B2 Mode Register	TB2MR	00XX0000b
039Eh	Timer B2 Special Mode Register	TB2SC	XXXXXX00b
039Fh			
03A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
03A1h	UART0 Bit Rate Generator	U0BRG	XXh
03A2h			XXh
03A3h	UART0 Transmit Buffer Register	U0TB	XXh
03A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
03A5h	UART0 Transmit/Receive Control Register 1	U0C1	00XX0010b
03A6h			XXh
03A7h	UART0 Receive Buffer Register	U0RB —	XXh
03A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
03A9h	UART1 Bit Rate Generator	U1BRG	XXh
	OANT I DIL Hale Generalor		XXh
03AAh	UART1 Transmit Buffer Register	U1TB —	XXh
03ABh	LIADT1 Transmit/Passive Control Degister 0	11100	
03ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
03ADh	UART1 Transmit/Receive Control Register 1	U1C1	00XX0010b
03AEh	UART1 Receive Buffer Register	U1RB	XXh
03AFh	6		XXh
03B0h	UART Transmit/Receive Control Register 2	UCON	X000000b
03B1h			
03B2h			
03B3h			
03B4h			
03B5h			
03B6h			
03B7h			
03B8h	DMA0 Request Cause Select Register	DM0SL	00h
03B9h	DMA1 Request Cause Select Register	DM1SL	00h
03B9h 03BAh			
03BAh 03BBh			XXh
03BAh 03BBh 03BCh	CRC Data Register	CRCD	
03BAh 03BBh 03BCh 03BDh	CRC Data Register		XXh
03BAh 03BBh 03BCh		CRCD CRCIN	

X: Undefined

NOTES:

The TA2P to TA4P bits in the UDF register are set to "0" after reset. However, the contents in these bits are indeterminate when read.
 The blank areas are reserved and cannot be accessed by users.

Table 4.16 SFR Information (16)

	(
Address	Register	Symbol	After Reset
03C0h			XXh
	A/D Register 0	AD0	XXh
03C1h			
03C2h	A/D Degister 1	AD1	XXh
03C3h	A/D Register 1	ADT	XXh
03C4h			XXh
	A/D Register 2	AD2	
03C5h			XXh
03C6h			XXh
03C7h	A/D Register 3	AD3	XXh
03C8h	A/D Register 4	AD4	XXh
03C9h			XXh
03CAh			XXh
	A/D Register 5	AD5	XXh
03CBh			
03CCh			XXh
03CDh	A/D Register 6	AD6	XXh
			XXh
03CEh	A/D Register 7	AD7	
03CFh		1101	XXh
03D0h			
03D1h			
03D2h			
03D3h			
	A/D Control Register 2	ADCON2	00h
03D4h		ADOUNZ	0011
03D5h			
03D6h	A/D Control Register 0	ADCON0	00000XXXb
	A/D Control Register 1	ADCON1	00h
03D7h			
03D8h	D/A Register 0	DA0	00h
03D9h			
	D/A Register 1	DA1	00h
03DAh	D/A negister 1	DAT	0011
03DBh			
03DCh	D/A Control Register	DACON	00h
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
		DO	
03E4h	Port P2 Register	P2	XXh
	Port P2 Register Port P3 Register	P2 P3	XXh XXh
03E4h 03E5h	Port P3 Register	P3	XXh
03E4h 03E5h 03E6h	Port P3 Register Port P2 Direction Register	P3 PD2	XXh 00h
03E4h 03E5h 03E6h 03E7h	Port P3 Register Port P2 Direction Register Port P3 Direction Register	P3 PD2 PD3	XXh 00h 00h
03E4h 03E5h 03E6h	Port P3 Register Port P2 Direction Register	P3 PD2	XXh 00h
03E4h 03E5h 03E6h 03E7h 03E8h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register	P3 PD2 PD3 P4	XXh 00h 00h XXh
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register	P3 PD2 PD3 P4 P5	XXh 00h 00h XXh XXh
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register	P3 PD2 PD3 P4 P5 PD4	XXh 00h 00h XXh XXh XXh 00h
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register	P3 PD2 PD3 P4 P5 PD4 PD5	XXh 00h 00h XXh XXh 00h 00h
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register	P3 PD2 PD3 P4 P5 PD4 PD5	XXh 00h 00h XXh XXh 00h 00h
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Register	P3 PD2 PD3 P4 P5 PD4 PD5 PD5 P6	XXh 00h 00h XXh XXh 00h 00h XXh
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03EDh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Register Port P7 Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7	XXh 00h 00h XXh XXh 00h 00h XXh XXh
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P5 Direction Register Port P6 Register Port P7 Register Port P7 Register Port P6 Direction Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6	XXh 00h 00h XXh XXh 00h 00h XXh XXh XXh
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03EDh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Register Port P7 Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7	XXh 00h 00h XXh XXh 00h 00h XXh XXh
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03EDh 03EEh 03EFh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P5 Register Port P5 Register Port P5 Direction Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Register Port P6 Direction Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7	XXh 00h 00h XXh XXh 00h 00h XXh XXh XXh
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03EDh 03EEh 03EFh 03F0h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Direction Register Port P7 Register Port P6 Direction Register Port P7 Direction Register Port P7 Negister Port P8 Register	P3 PD2 PD3 P4 P5 PD4 P05 P6 P7 PD6 PD7 P8	XXh 00h 00h XXh XXh 00h 00h XXh XXh XXh
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03EDh 03EEh 03EFh 03F0h 03F1h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Direction Register Port P7 Direction Register Port P8 Direction Register Port P9 Direction Register Port P8 Register Port P9 Register	P3 PD2 PD3 P4 P5 PD4 P05 P07 PD6 PD7 P8 P9	XXh 00h 00h XXh XXh 00h 00h XXh XXh XXh
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03EDh 03EEh 03EFh 03F0h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Direction Register Port P7 Register Port P6 Direction Register Port P7 Direction Register Port P7 Negister Port P8 Register	P3 PD2 PD3 P4 P5 PD4 P05 P6 P7 PD6 PD7 P8	XXh 00h 00h XXh XXh 00h 00h XXh XXh XXh
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03ECh 03ECh 03EFh 03F0h 03F1h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Register Port P6 Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Port P8 Register Port P8 Register Port P9 Register Port P9 Register Port P8 Register Port P9 Register Port P9 Register Port P8 Direction Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 PD8	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03ECh 03ECh 03EFh 03F1h 03F2h 03F3h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Register Port P6 Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Port P8 Register Port P8 Register Port P9 Direction Register Port P9 Direction Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 P9 PD8 PD9	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03ECh 03ECh 03ECh 03ECh 03ECh 03F0h 03F0h 03F1h 03F2h 03F4h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Register Port P6 Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Port P8 Register Port P8 Register Port P9 Register Port P9 Register Port P8 Register Port P9 Register Port P9 Register Port P8 Direction Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 PD8	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03ECh 03ECh 03EFh 03F1h 03F2h 03F3h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Register Port P6 Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Port P8 Register Port P8 Register Port P9 Direction Register Port P9 Direction Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 P9 PD8 PD9	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03ECh 03ECh 03ECh 03ECh 03ECh 03E7h 03F1h 03F2h 03F4h 03F5h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P6 Register Port P6 Register Port P7 Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Register Port P7 Register Port P8 Direction Register Port P8 Register Port P8 Register Port P8 Register Port P9 Register Port P8 Direction Register Port P9 Direction Register Port P9 Direction Register Port P9 Direction Register Port P10 Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 PD8 PD9 P10	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03ECh 03ECh 03ECh 03ECh 03F0h 03F1h 03F2h 03F3h 03F3h 03F5h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P4 Direction Register Port P5 Direction Register Port P6 Register Port P6 Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Port P8 Register Port P8 Register Port P9 Direction Register Port P9 Direction Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 P9 PD8 PD9	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03EDh 03ECh 03F0h 03F1h 03F2h 03F3h 03F3h 03F4h 03F5h 03F6h 03F7h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P6 Register Port P6 Register Port P7 Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Register Port P7 Register Port P8 Direction Register Port P8 Register Port P8 Register Port P8 Register Port P9 Register Port P8 Direction Register Port P9 Direction Register Port P9 Direction Register Port P9 Direction Register Port P10 Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 PD8 PD9 P10	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03ECh 03ECh 03ECh 03ECh 03F0h 03F1h 03F2h 03F3h 03F3h 03F5h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P6 Register Port P6 Register Port P7 Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Register Port P7 Register Port P8 Direction Register Port P8 Register Port P8 Register Port P8 Register Port P9 Register Port P8 Direction Register Port P9 Direction Register Port P9 Direction Register Port P9 Direction Register Port P10 Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 PD8 PD9 P10	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03ECh 03ECh 03ECh 03F2h 03F1h 03F2h 03F3h 03F3h 03F3h 03F5h 03F7h 03F8h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P6 Register Port P6 Register Port P7 Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Register Port P7 Register Port P8 Direction Register Port P8 Register Port P8 Register Port P8 Register Port P9 Register Port P8 Direction Register Port P9 Direction Register Port P9 Direction Register Port P9 Direction Register Port P10 Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 PD8 PD9 P10	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03ECh 03ECh 03F2h 03F1h 03F2h 03F3h 03F3h 03F4h 03F5h 03F6h 03F7h 03F8h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P6 Register Port P6 Register Port P7 Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Register Port P7 Register Port P8 Direction Register Port P8 Register Port P8 Register Port P8 Register Port P9 Register Port P8 Direction Register Port P9 Direction Register Port P9 Direction Register Port P9 Direction Register Port P10 Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 PD8 PD9 P10	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03ECh 03ECh 03ECh 03F0h 03F1h 03F2h 03F3h 03F4h 03F6h 03F6h 03F7h 03F8h 03F8h 03FAh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P6 Register Port P6 Register Port P7 Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Register Port P7 Register Port P8 Direction Register Port P8 Register Port P8 Register Port P8 Register Port P9 Register Port P8 Direction Register Port P9 Direction Register Port P9 Direction Register Port P9 Direction Register Port P10 Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 PD8 PD9 P10	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03ECh 03ECh 03ECh 03ECh 03ECh 03E7h 03F1h 03F2h 03F3h 03F3h 03F6h 03F6h 03F7h 03F8h 03F8h 03F9h 03FAh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P4 Register Port P5 Direction Register Port P5 Direction Register Port P6 Register Port P7 Register Port P7 Direction Register Port P8 Register Port P9 Register Port P9 Direction Register Port P10 Direction Register Port P10 Direction Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 P10 P10 P10 P10	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03ECh 03ECh 03ECh 03ECh 03ECh 03E7h 03F1h 03F2h 03F3h 03F3h 03F6h 03F6h 03F7h 03F8h 03F8h 03F9h 03FAh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P6 Register Port P6 Register Port P7 Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Register Port P7 Register Port P8 Direction Register Port P8 Register Port P8 Register Port P8 Register Port P9 Register Port P8 Direction Register Port P9 Direction Register Port P9 Direction Register Port P9 Direction Register Port P10 Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 PD8 PD9 P10	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03ECh 03EFh 03F2h 03F3h 03F4h 03F3h 03F4h 03F6h 03F6h 03F6h 03F9h 03F8h 03F8h 03F8h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P5 Direction Register Port P6 Register Port P6 Direction Register Port P7 Direction Register Port P8 Register Port P9 Register Port P9 Direction Register Port P10 Direction Register Port P10 Direction Register Port P10 Direction Register Pull-up Control Register 0	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 P07 P8 P9 PD8 P09 P10 P010 P010 PUR0	XXh 00h 00h XXh XXh 00h 00h XXh XX
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03ECh 03ECh 03ECh 03ECh 03ECh 03E7h 03F1h 03F2h 03F3h 03F3h 03F6h 03F6h 03F7h 03F8h 03F8h 03F9h 03FAh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P4 Register Port P5 Direction Register Port P5 Direction Register Port P6 Register Port P7 Register Port P7 Direction Register Port P8 Register Port P9 Register Port P9 Direction Register Port P10 Direction Register Port P10 Direction Register	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 P10 P10 P10 P10	XXh 00h 00h XXh XXh XXh 00h 00h
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03ECh 03ECh 03ECh 03F1h 03F2h 03F3h 03F3h 03F3h 03F6h 03F6h 03F6h 03F9h 03F9h 03F8h 03FBh 03FCh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P5 Direction Register Port P6 Register Port P7 Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Register Port P7 Register Port P7 Direction Register Port P7 Direction Register Port P8 Register Port P9 Register Port P9 Register Port P10 Direction Register 0 Pull-up Control Register 1	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 P07 P8 P9 PD8 PD9 P10 P00 P10 P010 P010	XXh 00h 00h XXh XXh XXh 00h 00h
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03ECh 03EFh 03F2h 03F3h 03F4h 03F3h 03F4h 03F6h 03F6h 03F6h 03F9h 03F8h 03F8h 03F8h	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P5 Direction Register Port P6 Register Port P6 Direction Register Port P7 Direction Register Port P8 Register Port P9 Register Port P9 Direction Register Port P10 Direction Register Port P10 Direction Register Port P10 Direction Register Pull-up Control Register 0	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 P07 P8 P9 PD8 P09 P10 P010 P010 PUR0	XXh 00h 00h XXh XXh XXh 00h 00h
03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03ECh 03ECh 03ECh 03F1h 03F2h 03F3h 03F3h 03F3h 03F6h 03F6h 03F6h 03F9h 03F9h 03F8h 03FBh 03FCh	Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register Port P5 Register Port P5 Direction Register Port P5 Direction Register Port P6 Register Port P7 Register Port P6 Register Port P7 Register Port P6 Direction Register Port P7 Register Port P7 Register Port P7 Direction Register Port P7 Direction Register Port P8 Register Port P9 Register Port P9 Register Port P10 Direction Register 0 Pull-up Control Register 1	P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 P07 P8 P9 PD8 PD9 P10 P00 P10 P010 P010	XXh 00h 00h XXh XXh XXh 00h 00h

X: Undefined

NOTES:

1. At hardware reset, the register is as follows:

"0000000b" where "L" is input to the CNVSS pin
"00000010b" where "H" is input to the CNVSS pin

At software reset, watchdog timer reset and oscillation stop detection reset, the register is as follows:

"00000000b" where the PM01 to PM00 bits in the PM0 register are "00b" (single-chip mode)
 "00000010b" where the PM01 to PM00 bits in the PM0 register are "01b" (memory expansion mode) or "11b" (microprocessor mode)

2. The blank areas are reserved and cannot be accessed by users.

5. Reset

5. Reset

Hardware reset, software reset, watchdog timer reset and oscillation stop detection reset are available to reset the microcomputer.

5.1 Hardware Reset

The microcomputer resets pins, the CPU and SFR by setting the RESET pin. If the supply voltage meets the recommended operating conditions, the microcomputer resets all pins when an "L" signal is applied to the RESET pin (see **Table 5.1 Pin Status When RESET Pin Level is** "L"). The oscillation circuit is also reset and the main clock starts oscillation. The microcomputer resets the CPU and SFR when the signal applied to the RESET pin changes low ("L") to high ("H"). The microcomputer executes the program in an address indicated by the reset vector. The internal RAM is not reset. When an "L" signal is applied to the RESET pin while writing data to the internal RAM, the internal RAM is in an indeterminate state. Figure 5.1 shows an example of the reset circuit. Figure 5.2 shows a reset sequence. Table 5.1 lists pin

Figure 5.1 shows an example of the reset circuit. Figure 5.2 shows a reset sequence. Table 5.1 lists pir states while the $\overline{\text{RESET}}$ pin is held low ("L").

5.1.1 Reset on a Stable Supply Voltage

- (1) Apply "L" to the RESET pin
- (2) Apply 20 or more clock cycles to the XIN pin
- (3) Apply "H" to the RESET pin

5.1.2 Power-on Reset

- (1) Apply "L" to the RESET pin
- (2) Raise the supply voltage to the recommended operating level
- (3) Insert td(P-R) ms as wait time for the internal voltage to stabilize
- (4) Apply 20 or more clock cycles to the XIN pin
- (5) Apply "H" to the $\overline{\text{RESET}}$ pin

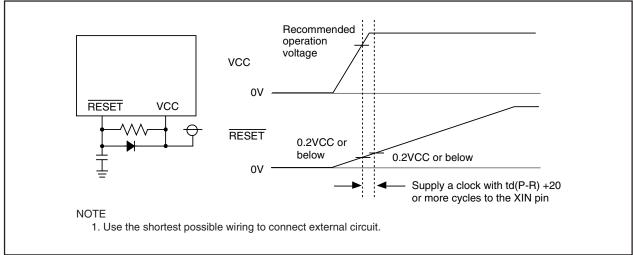


Figure 5.1 Example Reset Circuit

XIN]00000000000000000000000000000000000000
t	d(P-R) More than 20 cycles					
	are needed					
RESET		BCLK 28cycles				
DOEN						
Microprocessor mode BYTE = H					C	ontent of reset vector
Address]		FFFFCh	FFFDh (FFFFEh	
Auurooo				<u> </u>		Λ
RD						
WR						
CS0						(
Microprocessor mode BYTE = L]				Content of rese	et vector
Address			FFFFCh	FFFEh		χ
RD						
WR						
CS0						
Single-chip mode			FFFFCh	Content of reset v	ector	
Address				FEh (

Figure 5.2 Reset Sequence

Table 5.1	Pin Status	When	RESET	Pin	Level is	"L"

	Status				
Pin Name		$CNVSS = VCC^{(1)}$			
	CNVSS = VSS	BYTE = VSS	BYTE = VCC		
P0	Input port	Data input	Data input		
P1	Input port	Data input	Input port		
P2, P3, P4_0 to P4_3	Input port	Address output (undefined)	Address output (undefined)		
P4_4	Input port	CS0 output ("H" is output)	CS0 output ("H" is output)		
P4_5 to P4_7	Input port	Input port (Pulled high)	Input port (Pulled high)		
P5_0	Input port	WR output ("H" is output)	WR output ("H" is output)		
P5_1	Input port	BHE output (undefined)	BHE output (undefined)		
P5_2	Input port	RD output ("H" is output)	RD output ("H" is output)		
P5_3	Input port	BCLK output	BCLK output		
P5_4	Input port	HLDA output	HLDA output		
		(The output value depends on	(The output value depends on		
		the input to the HOLD pin)	the input to the \overline{HOLD} pin)		
P5_5	Input port	HOLD input	HOLD input		
P5_6	Input port	ALE output ("L" is output)	ALE output ("L" is output)		
P5_7	Input port	RDY input	RDY input		
P6, P7, P8_0 to P8_4,	Input port	Input port	Input port		
P8_6, P8_7, P9, P10					

NOTE:

1. Shown here is the valid pin state when the internal power supply voltage has stabilized after power-on. When CNVSS = VCC, the pin state is indeterminate until the internal power supply voltage stabilizes.

5.2 Software Reset

The microcomputer resets pins, the CPU and SFR when the PM03 bit in the PM0 register is set to "1" (microcomputer reset). Then the microcomputer executes the program in an address determined by the reset vector. Set the PM03 bit to "1" while the main clock is selected as the CPU clock and the main clock oscillation is stable. In the software reset, the microcomputer does not reset a part of the SFR. Refer to **4. Special Function Register (SFR)** for details.

Processor mode remains unchanged since the PM01 to PM00 bits in the PM0 register are not reset.

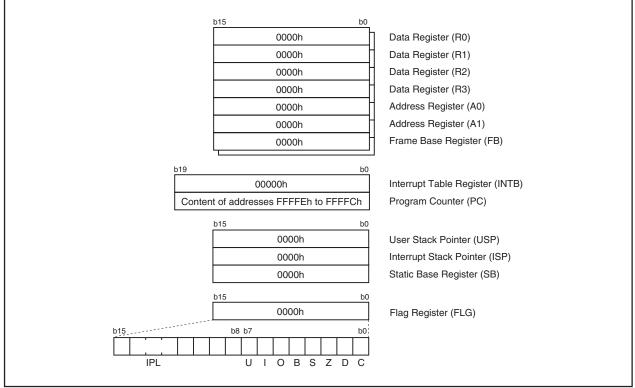
5.3 Watchdog Timer Reset

The microcomputer resets pins, the CPU and SFR when the PM12 bit in the PM1 register is set to "1" (reset when watchdog timer underflows) and the watchdog timer underflows. Then the microcomputer executes the program in an address determined by the reset vector.

In the watchdog timer reset, the microcomputer does not reset a part of the SFR. Refer to **4. Special Function Register (SFR)** for details.

Processor mode remains unchanged since the PM01 to PM00 bits in the PM0 register are not reset.

5.4 Oscillation Stop Detection Reset


The microcomputer resets and stops pins, the CPU and SFR when the CM27 bit in the CM2 register is "0" (reset at oscillation stop, re-oscillation detection), if it detects main clock oscillation circuit stop. Refer to **8.5 Oscillation Stop and Re-Oscillation Detection Function** for details.

In the oscillation stop detection reset, the microcomputer does not reset a part of the SFR. Refer to **4. Special Function Register (SFR)** for details.

Processor mode remains unchanged since the PM01 to PM00 bits in the PM0 register are not reset.

5.5 Internal Space

Figure 5.3 shows CPU register status after reset. Refer to **4. Special Function Register (SFR)** for SFR states after reset.

6. Processor Mode

6.1 Types of Processor Mode

Three processor modes are available to choose from: single-chip mode, memory expansion mode, and microprocessor mode. Table 6.1 shows the features of these processor modes.

Table 6.1	Features	of Processor	Modes

Processor Mode	Access Space	Pins Which are Assigned I/O Ports
Single-chip Mode	SFR, internal RAM, internal ROM	All pins are I/O ports or
		peripheral function I/O pins
Memory Expansion Mode	SFR, internal RAM, internal ROM,	Some pins serve as bus control pins (1)
	external area (1)	
Microprocessor Mode	SFR, internal RAM, external area (1)	Some pins serve as bus control pins (1)
NOTE		

NOTE:

1. Refer to 7. Bus.

6.2 Setting Processor Modes

Processor mode is set by using the CNVSS pin and the PM01 to PM00 bits in the PM0 register. Table 6.2 shows the processor mode after hardware reset. Table 6.3 shows the PM01 to PM00 bits set values and processor modes.

Table 6.2 Processor Mode After Hardware Reset

CNVSS Pin Input Level	Processor Mode	
VSS	Single-chip mode	
VCC ^{(1) (2)}	Microprocessor mode	

NOTES:

1. If the microcomputer is reset in hardware by applying VCC to the CNVSS pin, the internal ROM cannot be accessed regardless of PM01 to PM00 bits.

2. The multiplexed bus cannot be assigned to the entire \overline{CS} space.

PM01 to PM 00 Bits	Processor Mode			
00b	Single-chip mode			
01b	Memory expansion mode			
10b	Do not set a value			
11b	Microprocessor mode			

Table 6.3 PM01 to PM00 Bits Set Values and Processor Modes

Rewriting the PM01 to PM00 bits places the microcomputer in the corresponding processor mode regardless of whether the input level on the CNVSS pin is "H" or "L". Note, however, that the PM01 to PM00 bits cannot be rewritten to "01b" (memory expansion mode) or "11b" (microprocessor mode) at the same time the PM07 to PM02 bits are rewritten. Note also that these bits cannot be rewritten to enter microprocessor mode in the internal ROM, nor can they be rewritten to exit microprocessor mode in areas overlapping the internal ROM.

If the microcomputer is reset in hardware by applying VCC to the CNVSS pin (hardware reset), the internal ROM cannot be accessed regardless of PM01 to PM00 bits.

Figures 6.1 and 6.2 show the processor mode related registers. Figure 6.3 shows the memory map in single-chip mode. Figures 6.4 to 6.7 show the memory map and \overline{CS} area in memory expansion mode and microprocessor mode.

b6 b5 b	04 b3	b2 b1 b0	Symbol PM0		After reset ⁽²⁾ 00000000b (CNVSS pin = L) 00000011b (CNVSS pin = H)	
			Bit symbol	Bit name	Function	RW
		-	PM00	Processor Mode Bit ⁽²⁾	0 0 : Single-chip mode 0 1 : Memory expansion mode	RW
		¦	PM01		1 0 : Do not set a value 1 1 : Microprocessor mode	RW
		¦	PM02	R/W Mode Select Bit (3)	0 : <u>RD</u> , <u>BHE</u> , <u>WR</u> 1 : RD, WRH, WRL	RW
			PM03	Software Reset Bit	Setting this bit to "1" resets the microcomputer. When read, its content is "0"	RW
			PM04	Multiplexed Bus Space	0 0 : Multiplexed bus is unused (Separate bus in the entire CS space)	RW
			PM05	Select Bit ⁽³⁾	0 1 : Allocated to $\overline{CS2}$ space 1 0 : Allocated to $\overline{CS1}$ space 1 1 : Allocated to the entire \overline{CS} space ⁽⁴⁾	RW
			PM06	Port P4_0 to P4_3 Function Select Bit $^{(3)}$	0 : Address output 1 : Port function (Address is not output)	RW
			PM07	BCLK Output Disable Bit ⁽³⁾	0 : BCLK is output 1 : BCLK is not output (Pin is left high-impedance)	RW

1. Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enable).

2. The PM01 to PM00 bits do not change at software reset, watchdog timer reset and oscillation stop detection reset.

3. Effective when the PM01 to PM00 bits are set to "01b" (memory expansion mode) or "11b" (microprocessor mode). 4. To set the PM01 to PM00 bits are "01b" and the PM05 to PM04 bits are "11b" (multiplexed bus assigned to the entire CS space), apply an "H" signal to the BYTE pin (external data bus is 8-bit width).

While the CNVSS pin is held "H" (VCC), do not rewrite the PM05 to PM04 bits to "11b" after reset. If the PM05 to PM04 bits are set to "11b" during memory expansion mode, P3_1 to P3_7 and P4_0 to P4_3

become I/O ports, in which case the accessible area for each \overline{CS} is 256 bytes.

Figure 6.1 PM0 Register

Processor Mode Regi	ister 1 ⁽¹⁾			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol PM1	Address 0005h	After reset 00001000b	
	Bit symbol	Bit name	Function	RW
	PM10	CS2 Area Switch Bit (Data Block Enable Bit) ⁽²⁾	0 : 08000h to 26FFFh (Block A disable) 1 : 10000h to 26FFFh (Block A enable)	RW
	PM11	Port P3_7 to P3_4 Function Select Bit ⁽³⁾	0 : Address output 1 : Port function	RW
	PM12	Watchdog Timer Function Select Bit	0 : Watchdog timer interrupt 1 : Watchdog timer reset ⁽⁴⁾	RW
	PM13	Internal Reserved Area Expansion Bit ⁽⁵⁾	Internal ROM area is: 0 : 192 Kbytes or smaller 1 : Expanded over 192 Kbytes	RW
	– (b6-b4)	Reserved Bit	Set to "0"	RW
	PM17	Wait Bit ⁽⁶⁾	0 : No wait state 1 : With wait state (1 wait)	RW

NOTES:

1. Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enable).

2. For the mask ROM version, this bit must be set to "0".

For the flash memory version, the PM10 bit also controls block A by enabling or disabling it. When the PM10 bit is set to "1", 0F000h to 0FFFFh (block A) can be used as internal ROM area.

In addition, the PM10 bit is automatically set to "1" when the FMR01 bit in the FMR0 register is "1" (CPU rewrite mode).

3. Effective when the PM01 to PM00 bits are set to "01b" (memory expansion mode) or "11b" (microprocessor mode).

4. The PM12 bit is set to "1" by writing a "1" in a program. (Writing a "0" has no effect.)

5. Be sure to set this bit to "0" except for products with internal ROM area over 192 Kbytes.

The PM13 bit is automatically set to "1" when the FMR01 bit in the FMR0 register is "1" (CPU rewrite mode). 6. When the PM17 bit is set to "1" (with wait state), one wait state is inserted when accessing the internal RAM or internal ROM.

When the PM17 bit is set to "1" and accesses an external area, set the CSiW bit (i = 0 to 3) in the CSR register to "0" (with wait state).

Figure 6.2 PM1 Register

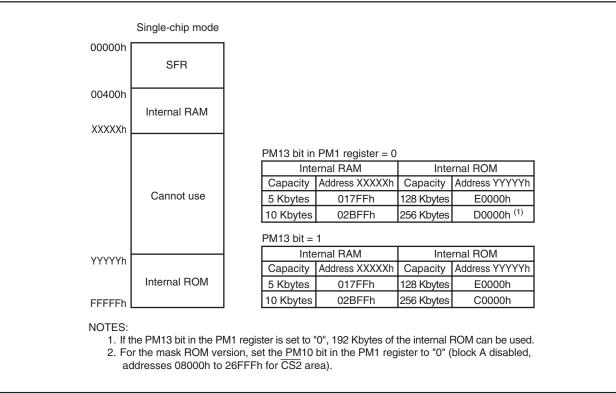


Figure 6.3 Memory Map in Single-chip Mode

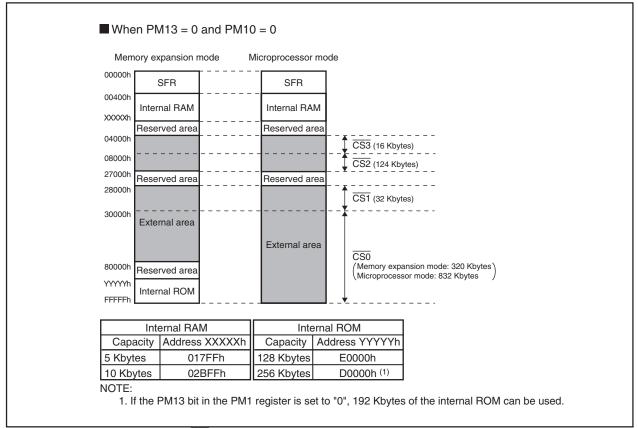


Figure 6.4 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (1)

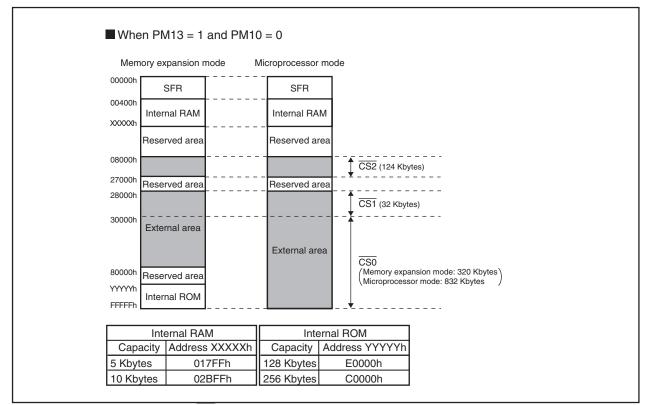


Figure 6.5 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (2)

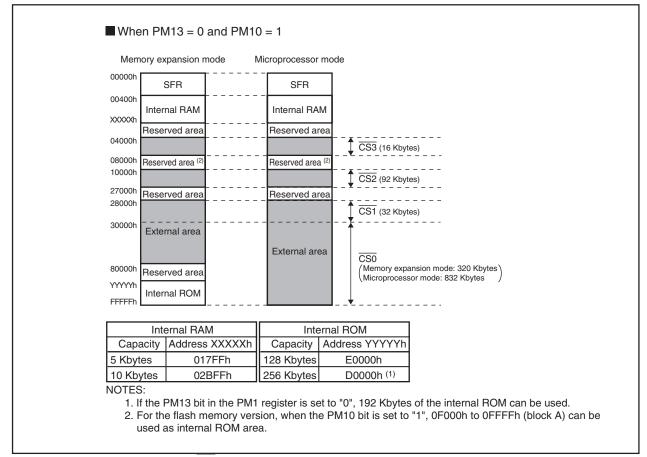


Figure 6.6 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (3)

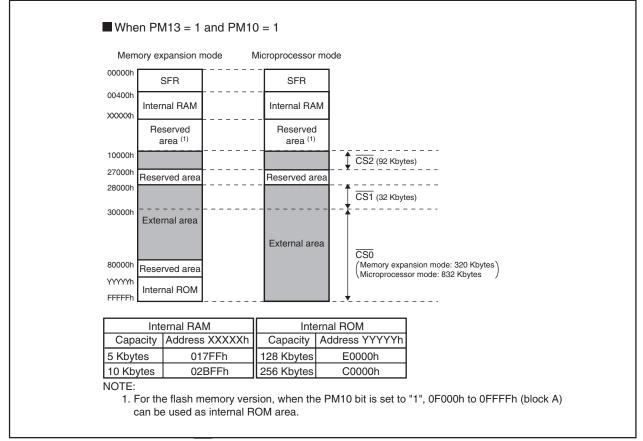


Figure 6.7 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (4)

RENESAS

7. Bus

During memory expansion or microprocessor mode, some pins serve as the bus control pins to perform data input/output to and from external devices. These bus control pins include A0 to A19, D0 to D15, $\overline{CS0}$ to $\overline{CS3}$, \overline{RD} , $\overline{WRL}/\overline{WR}$, $\overline{WRH}/\overline{BHE}$, ALE, \overline{RDY} , \overline{HOLD} , \overline{HLDA} and BCLK.

7.1 Bus Mode

The bus mode, either multiplexed or separate, can be selected using the PM05 to PM04 bits in the PM0 register.

7.1.1 Separate Bus

In this bus mode, data and address are separate.

7.1.2 Multiplexed Bus

In this bus mode, data and address are multiplexed.

7.1.2.1 When the input level on BYTE pin is high (8-bit data bus)

D0 to D7 and A0 to A7 are multiplexed.

7.1.2.2 When the input level on BYTE pin is low (16-bit data bus)

D0 to D7 and A1 to A8 are multiplexed. D8 to D15 are not multiplexed. Do not use D8 to D15. External devices connecting to a multiplexed bus are allocated to only the even addresses of the microcomputer. Odd addresses cannot be accessed.

Table 7.1 shows the difference between a separate bus and multiplexed bus.

Table 7.1	Difference	between	Separate	Bus	and Multi	plexed Bus
14010 111	Billorolloo	501110011	ooparato	Duo.	and man	pionoa bao

Pin Name ⁽¹⁾	Separate Bus	Multiple	xed Bus
Fill Name		BYTE = H	BYTE = L
P0_0 to P0_7/D0 to D7	X D0 to D7	(NOTE 2)	(NOTE 2)
P1_0 to P1_7/D8 to D15	D8 to D15	I/O Port P1_0 to P1_7	(NOTE 2)
P2_0/A0(/D0/-)	X A0 X	X A0 X D0 X	X A0 X
P2_1 to P2_7/A1 to A7 (/D1 to D7/D0 to D6)	A1 to A7	A1 to A7 D1 to D7	XA1 to A7 D0 to D6
P3_0/A8(/-/D7)	X A8 X	XA8X	X A8 D7 X

NOTES :

- 1. See Table 7.6 Pin Functions for Each Processor Mode for bus control signals other than the above.
- 2. It changes with a setup of PM05 to PM04, and area to access. See **Table 7.6 Pin Functions for Each Processor Mode** for details.

7.2 Bus Control

The following describes the signals needed for accessing external devices and the functionality of software wait.

7.2.1 Address Bus

The address bus consists of 20 lines, A0 to A19. The address bus width can be chosen to be 12, 16 or 20 bits by using the PM06 bit in the PM0 register and the PM11 bit in the PM1 register. Table 7.2 shows the PM06 and PM11 bits set values and address bus widths.

When processor mode is changed from single-chip mode to memory expansion mode, the address bus is indeterminate until any external area is accessed.

Table 7.2 PM06 and PM11 Bits Set Value and Address Bus Width

Set Value (1)	Pin Function	Address Bus Width
PM11 = 1	P3_4 to P3_7	12 bits
PM06 = 1	P4_0 to P4_3	
PM11 = 0	A12 to A15	16 bits
PM06 = 1	P4_0 to P4_3	
PM11 = 0	A12 to A15	20 bits
PM06 = 0	A16 to A19	
NOTE		

NOTE:

1. No values other than those shown above can be set.

7.2.2 Data Bus

When input on the BYTE pin is high (data bus is an 8-bit width), 8 lines D0 to D7 comprise the data bus; when input on the BYTE pin is low (data bus is a 16-bit width), 16 lines D0 to D15 comprise the data bus. Do not change the input level on the BYTE pin while in operation.

7.2.3 Chip Select Signal

The chip select (hereafter referred to as the \overline{CS}) signals are output from the \overline{CSi} (i = 0 to 3) pins. These pins can be chosen to function as I/O ports or as \overline{CS} by using the CSi bit in the CSR register.

Figure 7.1 shows the CSR register.

During 1 Mbyte mode, the external area can be separated into up to 4 by the \overline{CSi} signal which is output from the \overline{CSi} pin.

Figure 7.2 shows the example of address bus and \overline{CSi} signal output.

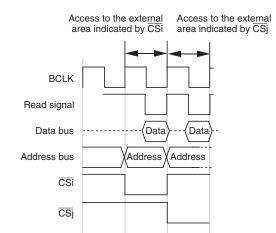
07 b6 b	5 b4 b3 b2 b1 b	o Symbol CSR	Address 0008h	After Reset 00000001b	
		Bit Symbol	Bit Name	Function	RW
		CS0	CS0 Output Enable Bit	0 : Chip select output disabled	RW
		CS1	CS1 Output Enable Bit	(functions as I/O port)	RW
		- CS2	CS2 Output Enable Bit	1 : Chip select output enabled	RW
		CS3	CS3 Output Enable Bit		RW
		CS0W	CS0 Wait Bit	0 : With wait state	RW
		- CS1W	CS1 Wait Bit	1 : Without wait state $^{(1)}(2)(3)$	RW
		- CS2W	CS2 Wait Bit		RW
CS3W		- CS3W	CS3 Wait Bit	7	RW

1. Where the RDY signal is used in the area indicated by CSi (i = 0 to 3) or the multiplexed bus is used, set the CSiW bit to "0" (Wait state).

2. If the PM17 bit in the PM1 register is set to "1" (with wait state), set the CSiW bit to "0" (with wait state).

3. When the CSiW bit = 0 (with wait state), the number of wait states (in terms of clock cycles) can be selected using the CSEi1W to CSEi0W bits in the CSE register.

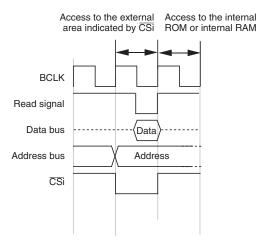
Figure 7.1 CSR Register


RENESAS

M16C/6N Group (M16C/6N4)

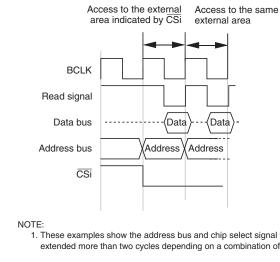
Example 1

To access the external area indicated by $\overline{\text{CSj}}$ in the next cycle after accessing the external area indicated by $\overline{\text{CSi}}$.


The address bus and the chip select signal both change state between these two cycles.

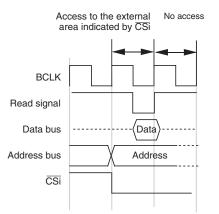
Example 2

To access the internal ROM or internal RAM in the next cycle after accessing the external area indicated by $\overline{\text{CSi}}$.


The chip select signal changes state but the address bus does not change state.

Example 3

To access the external area indicated by \overline{CSi} in the next cycle after accessing the external area indicated by the same \overline{CSi} .


The address bus changes state but the chip select signal does not change state.

Example 4

Not to access any area (nor instruction prefetch generated) in the next cycle after accessing the external area indicated by $\overline{\text{CSi.}}$

Neither the address bus nor the chip select signal changes state between these two cycles.

1. These examples show the address bus and chip select signal when accessing areas in two successive cycles. The chip select bus cycle may be extended more than two cycles depending on a combination of these examples.

Shown above is the case where separate bus is selected and the area is accessed for read without wait states. i = 0 to 3, j = 0 to 3 (not including i, however)

Figure 7.2 Example of Address Bus and CSi Signal Output

7.2.4 Read and Write Signals

When the data bus is 16-bit width, the read and write signals can be chosen to be a combination of \overline{RD} , \overline{WR} and \overline{BHE} or a combination of \overline{RD} , \overline{WRL} and \overline{WRH} by using the PM02 bit in the PM0 register. When the data bus is 8-bit width, use a combination of \overline{RD} , \overline{WR} and \overline{BHE} .

Table 7.3 shows the operation of RD, WRL, and WRH signals. Table 7.4 shows the operation of RD, WR, and BHE signals.

	,		<u> </u>	
Data Bus Width	RD	WRL	WRH	Status of External Data Bus
16 Bits	L	Н	Н	Read data
(BYTE pin	Н	L	Н	Write 1 byte of data to an even address
input = L)	Н	Н	L	Write 1 byte of data to an odd address
	Н	L	L	Write data to both even and odd addresses

Table 7.3 Operation of RD, WRL and WRH Signals

Table 7.4 Operation of RD, WR and BHE Signals

		,	<u> </u>		
Data Bus Width	RD	WR	BHE	A0	Status of External Data Bus
16 Bits	Н	L	L	Н	Write 1 byte of data to an odd address
(BYTE pin	L	Н	L	Н	Read 1 byte of data from an odd address
input = L)	Н	L	Н	L	Write 1 byte of data to an even address
	L	Н	Н	L	Read 1 byte of data from an even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
8 Bits	Н	L	Not used	H to L	Write 1 byte of data
(BYTE pin input = H)	L	Н	Not used	H to L	Read 1 byte of data

7.2.5 ALE Signal

The ALE signal latches the address when accessing the multiplexed bus space. Latch the address when the ALE signal falls. Figure 7.3 shows the ALE signal, address bus and data bus.

When BYTE pin input = H	When BYTE pin input = L
ALE	ALE
A0/D0 to A7/D7 Address Data	A0 Address
A8 to A19 Address ⁽¹⁾	A1/D0 to A8/D7 Address Data
	A9 to A19
NOTE: 1. If the entire CS space is assigned a multiplexed bus	s, these pins function as I/O ports.

Figure 7.3 ALE Signal, Address Bus, Data Bus

7.2.6 RDY Signal

This signal is provided for accessing external devices which need to be accessed at low speed. If input on the $\overline{\text{RDY}}$ pin is asserted low at the last falling edge of BCLK of the bus cycle, one wait state is inserted in the bus cycle. While in a wait state, the following signals retain the state in which they were when the $\overline{\text{RDY}}$ signal was acknowledged.

A0 to A19, D0 to D15, CS0 to CS3, RD, WRL, WRH, WR, BHE, ALE, HLDA

Then, when the input on the $\overline{\text{RDY}}$ pin is detected high at the falling edge of BCLK, the remaining bus cycle is executed. Figure 7.4 shows example in which the wait state was inserted into the read cycle by the $\overline{\text{RDY}}$ signal. To use the $\overline{\text{RDY}}$ signal, set the corresponding bit (CS3W to CS0W bits) in the CSR register to "0" (with wait state). When not using the $\overline{\text{RDY}}$ signal, the $\overline{\text{RDY}}$ pin must be pulled-up.

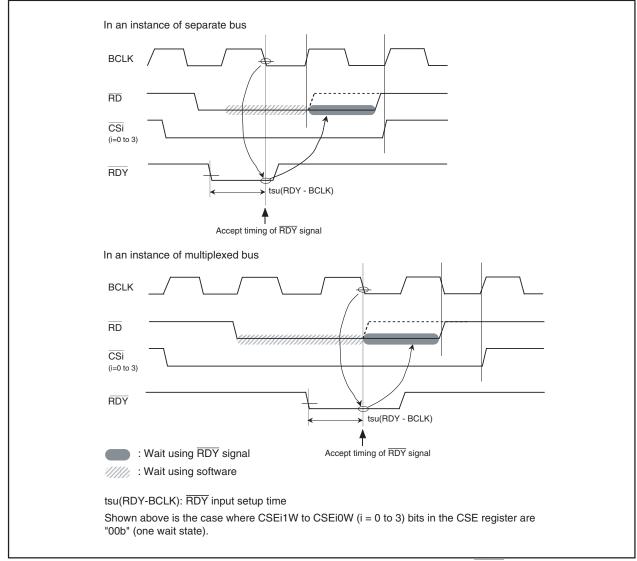


Figure 7.4 Example in which Wait State was Inserted into Read Cycle by RDY Signal

7.2.7 HOLD Signal

This signal is used to transfer control of the bus from CPU or DMAC to an external circuit. When the input on \overline{HOLD} pin is pulled low, the microcomputer is placed in a hold state after the bus access then in process finishes. The microcomputer remains in a hold state while the \overline{HOLD} pin is held low, during which time the \overline{HLDA} pin outputs a low-level signal.

Table 7.5 shows the microcomputer status in the hold state.

Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence (see **Figure 7.5 Bus-using Priorities**). However, if the CPU is accessing an odd address in word units, the DMAC cannot gain control of the bus during two separate accesses.

\overline{HOLD} > DMAC > CPU

Figure 7.5 Bus-using Priorities

Table 7.5 Microcomputer Status in Hold State

	Item	Status		
BCLK		Output		
A0 to A19, D0 to D15, CS0	to CS3, RD, WRL, WRH,	High-impedance		
WR, BHE				
I/O Ports	P0, P1, P3, P4 ⁽¹⁾	High-impedance		
	P6 to P10	Maintains status when hold signal is received		
HLDA		Output "L"		
Internal Peripheral Circuits		ON (but watchdog timer stops ⁽²⁾)		
ALE Signal		Undefined		

NOTES:

- 1. When I/O port function is selected.
- 2. The watchdog timer does not stop when the PM22 bit in the PM2 register is set to "1" (the count source for the watchdog timer is the on-chip oscillator clock).

7.2.8 BCLK Output

If the PM07 bit in the PM0 register is set to "0" (output enable), a clock with the same frequency as that of the CPU clock is output as BCLK from the BCLK pin. Refer to **8.2 CPU Clock and Peripheral Function Clock**.

Table 7.6 shows the pin functions for each processor mode.

Process	or Mode	Memory E	xpansion Mode	or Microproces	sor Mode	Memory Expansion Mode		
PM05 to P	PM05 to PM04 Bits				 01b (CS2 is for multiplexed bus and others are for separate bus) 10b (CS1 is for multiplexed bus and others are for separate bus) 			
Data Bus	Width	8 bits	16 bits	8 bits	16 bits	8 bits		
BYTE Pin		"H"	"L"	"H"	"L"	"H"		
P0_0 to P0	0_7	D0 to D7		D0 to D7 ⁽⁴⁾		I/O ports		
P1_0 to P	1_7	I/O ports	D8 to D15	I/O ports	D8 to D15 (4)	I/O ports		
P2_0		A0	I	A0/D0 ⁽²⁾	A0	A0/D0		
P2_1 to P2	2_7	A1 to A7		A1 to A7	A1 to A7	A1 to A7/D1 to D7		
				/D1 to D7 (2)	/D0 to D6 (2)			
P3_0		A8			A8/D7 ⁽²⁾	A8		
P3_1 to P3	3_3	A9 to A11				I/O ports		
P3_4	PM11 = 0	A12 to A15				I/O ports		
to P3_7	PM11 = 1	I/O ports						
P4_0	PM06 = 0	A16 to A19				I/O ports		
to P4_3	PM06 = 1	I/O ports						
P4_4	CS0 = 0	I/O ports						
	CS0 = 1	CS0						
P4_5	CS1 = 0	I/O ports						
	CS1 = 1	CS1						
P4_6	CS2 = 0	I/O ports						
	CS2 = 1	CS2						
P4_7	CS3 = 0	I/O ports						
	CS3 = 1	CS3						
P5_0	PM02 = 0	WR						
	PM02 = 1	- ⁽³⁾	WRL	- ⁽³⁾	WRL	- (3)		
P5_1	PM02 = 0	BHE			·	·		
	PM02 = 1	- ⁽³⁾	WRH	– ⁽³⁾	WRH	_ ⁽³⁾		
P5_2		RD						
P5_3		BCLK						
P5_4		HLDA						
P5_5		HOLD						
P5_6		ALE						
P5_7		RDY						

Table 7.6 Pin Functions for Each Processor Mode

I/O ports: Function as I/O ports or peripheral function I/O pins.

NOTES:

- 1. For setting the PM01 to PM00 bits to "01b" (memory expansion mode) and the PM05 to PM04 bits to "11b" (multiplexed bus assigned to the entire CS space), apply "H" to the BYTE pin (external data bus is an 8-bit width). While the CNVSS pin is held "H" (VCC), do not rewrite the PM05 to PM04 bits to "11b" after reset. If the PM05 to PM04 bits are set to "11b" during memory expansion mode, P3_1 to P3_7 and P4_0 to P4_3 become I/O ports, in which case the accessible area for each \overline{CS} is 256 bytes.
- 2. In separate bus mode, these pins serve as the address bus.
- 3. If the data bus is 8-bit width, make sure the PM02 bit is set to "0" (RD, BHE, WR).
- 4. When accessing the area that uses a multiplexed bus, these pins output an indeterminate value during a write.

RENESAS

7.2.9 External Bus Status When Internal Area Accessed

Table 7.7 shows the external bus status when the internal area is accessed.

Item		SFR Accessed	Internal ROM, Internal RAM Accessed	
A0 to A19		Address output	Maintain status before accessed address	
			of external area or SFR	
D0 to D15	When read	High-impedance	High-impedance	
	When write	Output data	Undefined	
RD, WR, W	RL, WRH	RD, WR, WRL, WRH output	Output "H"	
BHE		BHE output	Maintain status before accessed status o	
			external area or SFR	
CS0 to CS3	3	Output "H"	Output "H"	
ALE		Output "L"	Output "L"	

Table 7.7 External Bus Status When Internal Area Accessed

7.2.10 Software Wait

Software wait states can be inserted by using the PM17 bit in the PM1 register, the CS0W to CS3W bits in the CSR register, and the CSE register. The SFR area is unaffected by these control bits. This area is always accessed in 2 BCLK or 3 BCLK cycles as determined by the PM20 bit in the PM2 register. See **Table 7.8 Bit and Bus Cycle Related to Software Wait** for details.

To use the RDY signal, set the corresponding CS3W to CS0W bit to "0" (with wait state). Figure 7.6 shows the CSE register. Table 7.8 shows the software wait related bits and bus cycles. Figures 7.7 and 7.8 show the typical bus timings using software wait.

b7 b6 b5 b4 b3 b2 b1 b0	Symbol CSE	Address Af 001Bh	ter Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	CSE00W	CCO Weit Expansion Bit (1)	0 0 : 1 wait 0 1 : 2 waits	RW
	CSE01W		1 0 : 3 waits 1 1 : Do not set a value	RW
	CSE10W		^{b3 b2} 0 0 : 1 wait 0 1 : 2 waits	RW
	CSE11W	CS1 Wait Expansion Bit ⁽¹⁾	1 0 : 3 waits 1 1 : Do not set a value	RW
	CS20WE		^{b5 b4} 00:1 wait 01:2 waits	RW
	CSE21W	CS2 Wait Expansion Bit ⁽¹⁾	1 0 : 3 waits 1 1 : Do not set a value	RW
	CSE30W		^{b7 b6} 0 0 : 1 wait 0 1 : 2 waits	RW
	CS3 Wait Expansion Bit ⁽¹⁾		1 0 : 3 waits 1 1 : Do not set a value	RW

I. Set the CSiW bit (i = 0 to 3) in the CSR register to "0" (with wait state) before writing to the CSEi1W to CSEi0W bits. If the CSiW bit needs to be set to "1" (without wait state), set the CSEi1W to CSEi0W bits to "00b" before setting it.

Figure 7.6 CSE Register

Table 7.0 Software wait fielated bits and bus cycles							
Area	Bus Mode	PM2 Register PM20 Bit	PM1 Register PM17 Bit ⁽⁵⁾	CSR Register CS3W Bit ⁽¹⁾ CS2W Bit ⁽¹⁾ CS1W Bit ⁽¹⁾ CS0W Bit ⁽¹⁾	CSE Register CS31W to CS30W Bits CS21W to CS20W Bits CS11W to CS10W Bits CS01W to CS00W Bits	Wait	Bus Cycle
SFR	-	0	-	_	-	-	3 BCLK cycles (4)
	-	1	-	—	-	-	2 BCLK cycles (4)
Internal	-	_	0	-	-	No wait	1 BCLK cycle (3)
ROM, RAM	-	_	1	-	-	1 wait	2 BCLK cycles
External	Separate	_	0	1	00b	No wait	1 BCLK cycle (read)
Area	Bus						2 BCLK cycles (write)
		_	_	0	00b	1 wait	2 BCLK cycles (3)
		_	_	0	01b	2 waits	3 BCLK cycles
		_	-	0	10b	3 waits	4 BCLK cycles
		_	1	0	00b	1 wait	2 BCLK cycles
	Multiplexed	_	_	0	00b	1 wait	3 BCLK cycles
	Bus ⁽²⁾	_	_	0	01b	2 waits	3 BCLK cycles
		_	-	0	10b	3 waits	4 BCLK cycles
		_	1	0	00b	1 wait	3 BCLK cycles

Table 7.8 Software Wait Related Bits and Bus Cycles

NOTES:

- 1. To use the RDY signal, set this bit to "0".
- 2. To access in multiplexed bus mode, set the corresponding bit of CS0W to CS3W to "0" (with wait state).
- 3. After reset, the PM17 bit is set to "0" (without wait state), all of the CS0W to CS3W bits are set to "0" (with wait state), and the CSE register is set to "00h" (one wait state for CS0 to CS3). Therefore, the internal RAM and internal ROM are accessed with no wait state, and all external areas are accessed with one wait state.
- 4. When the selected CPU clock source is the PLL clock, the number of wait cycles can be altered by the PM20 bit in the PM2 register. When using PLL clock over 16 MHz, be sure to set the PM20 bit to "0" (2 wait cycles).
- 5. When the PM17 bit is set to "1" and access an external area, set the CSiW bits (i = 0 to 3) to "0" (with wait sate).

Under development This document is under development and its contents are subject to change.

M16C/6N Group (M16C/6N4)

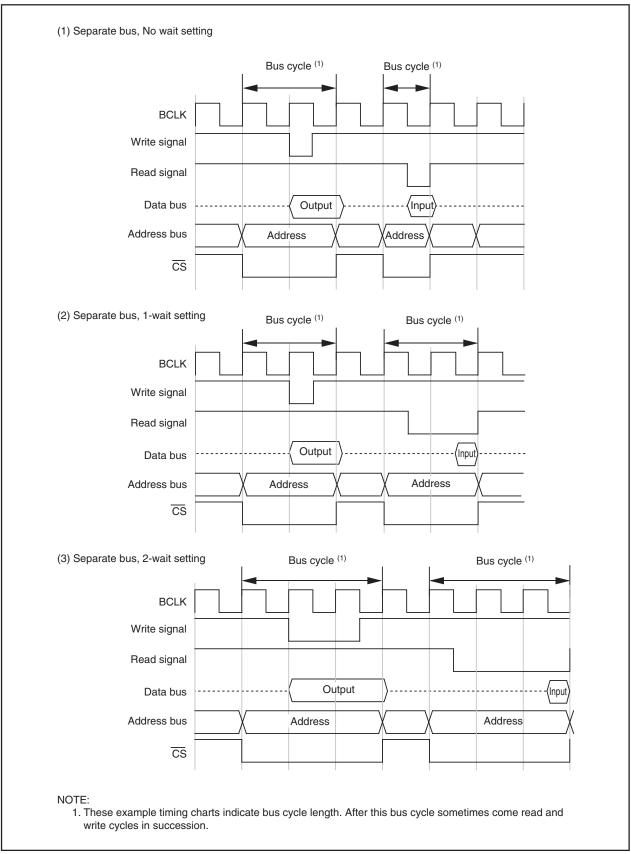


Figure 7.7 Typical Bus Timings Using Software Wait (1)

M16C/6N Group (M16C/6N4)

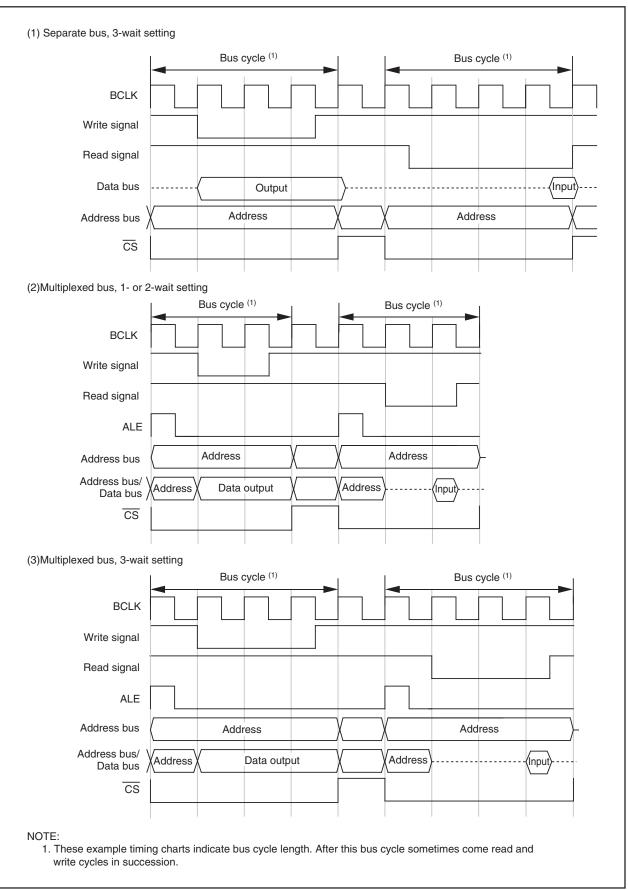


Figure 7.8 Typical Bus Timings Using Software Wait (2)

RENESAS

8. Clock Generating Circuit

8.1 Types of Clock Generating Circuit

Four circuits are incorporated to generate the system clock signal:

- Main clock oscillation circuit
- Sub clock oscillation circuit
- On-chip oscillator
- PLL frequency synthesizer

Table 8.1 lists the clock generating circuit specifications. Figure 8.1 shows the clock generating circuit. Figures 8.2 to 8.8 show the clock-related registers.

Item	Main Clock Oscillation Circuit	Sub Clock Oscillation Circuit	On-chip Oscillator	PLL Frequency Synthesizer
Use of Clock	 CPU clock source Peripheral function clock source 	 CPU clock source Clock source of Timer A, B 	 CPU clock source Peripheral function clock source CPU and peripheral function clock sources when the main clock stops oscillating 	 CPU clock source Peripheral function clock source
Clock	0 to 16 MHz	32.768 kHz	About 1 MHz	16 MHz, 20 MHz,
Frequency				24 MHz ⁽¹⁾
Usable	 Ceramic oscillator 	 Crystal oscillator 	-	-
Oscillator	 Crystal oscillator 			
Pins to Connect	XIN, XOUT	XCIN, XCOUT	-	-
Oscillator				
Oscillation Stop and Re-Oscillation Detection Function	Available	Available	Available	Available
Oscillation Status After Reset	Oscillating	Stopped	Stopped	Stopped
Other	Externally derived clo	ock can be input	-	-

Table 8.1 Clock Generating Circuit Specifications

NOTE:

1.24 MHz is available Normal-ver. only.

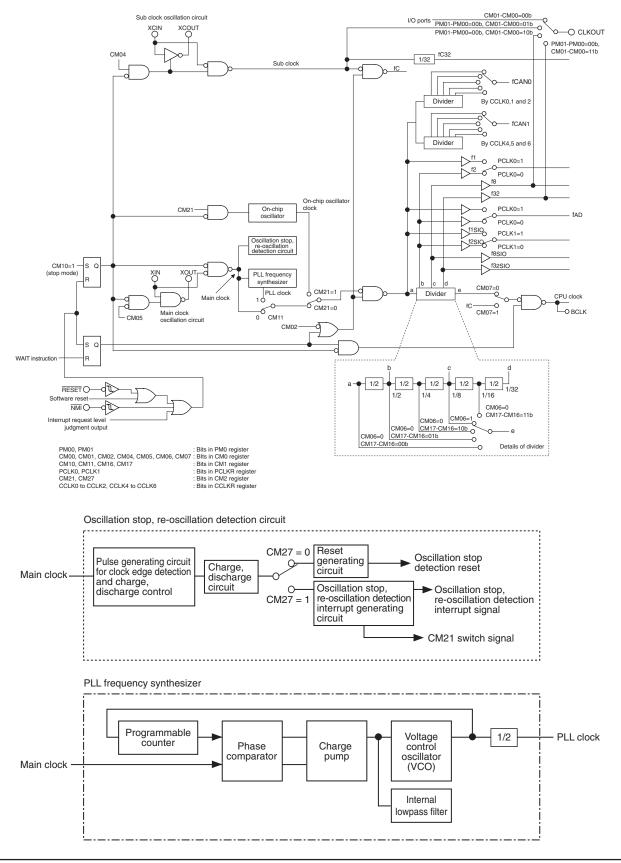


Figure 8.1 Clock Generating Circuit

RENESAS

7 b6 b5 b4 b3 b2 b1 b0	Symbol CM0	Address 0006h	After Reset 01001000b	
	Bit Symbol	Bit Name	Function	RW
	CM00	Clock Output Function Select Bit	0 0 : I/O port P5_7 0 1 : fC output	RW
	CM01	(Valid only in single-chip mode)	1 0 : f8 output 1 1 : f32 output	RW
	CM02	WAIT Mode Peripheral Function Clock Stop Bit	 0 : Do not stop peripheral function clock in wait mode 1 : Stop peripheral function clock in wait mode ⁽²⁾ 	RW
	CM03	XCIN-XCOUT Drive Capacity Select Bit ⁽³⁾	0 : LOW 1 : HIGH	RW
	CM04	Port XC Select Bit (3)	0 : I/O port P8_6, P8_7 1 : XCIN-XCOUT generation function ⁽⁴⁾	RW
	CM05	Main Clock Stop Bit (5) (6) (7)	0 : On 1 : Off ⁽⁸⁾ ⁽⁹⁾	RW
	CM06	Main Clock Division Select Bit 0 (7) (10) (12)	0 : CM16 and CM17 valid 1 : Divide-by-8 mode	RW
	CM07	System Clock Select Bit ⁽⁶⁾ (11)	0 : Main clock, PLL clock, or on-chip oscillator clock 1 : Sub clock	RW

NOTES:

1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).

- 2. The fC32 clock does not stop. During low-speed or low power dissipation mode, do not set this bit to "1" (peripheral clock turned off when in wait mode).
- 3. The CM03 bit is set to "1" (high) while the CM04 bit is set to "0" (I/O port) or when entered to stop mode.
- 4. To use a sub clock, set this bit to "1". Also make sure ports P8_6 and P8_7 are directed for input, with no pull-ups.
- 5. This bit is provided to stop the main clock when the low power dissipation mode or on-chip oscillator low power dissipation mode is selected. This bit cannot be used for detection as to whether the main clock stopped or not. To stop the main clock, set bits in the following order.
 - (1) Set the CM07 bit to "1" (sub clock select) or the CM21 bit in the CM2 register to "1" (on-chip oscillator select) with the sub clock stably oscillating.
 - (2) Set the CM20 bit in the CM2 register to "0" (oscillation stop, re-oscillation detection function disabled).
 (3) Set the CM05 bit to "1" (stop).
- 6. To use the main clock as the clock source for the CPU clock, set bits in the following order.
 - (1) Set the CM05 bit to "0" (oscillate)
 - (2) Wait until the main clock oscillation stabilizes.
 - (3) Set the CM11, CM21 and CM07 bits all to "0".
- When the CM21 bit = 0 (on-chip oscillator turned off) and the CM05 bit = 1 (main clock turned off), the CM06 bit is fixed to "1" (divide-by-8 mode) and the CM15 bit is fixed to "1" (drive capability High).
- 8. During external clock input, set the CM05 bit to "0" (oscillate).
- 9. When the CM05 bit is set to "1", the XOUT pin goes "H". Furthermore, because the internal feedback resistor remains connected, the XIN pin is pulled "H" to the same level as XOUT via the feedback resistor.
- 10. When entering stop mode from high- or medium-speed mode, on-chip oscillator mode or on-chip oscillator low power dissipation mode, the CM06 bit is set to "1" (divide-by-8 mode).
- 11. After setting the CM04 bit to "1" (XCIN-XCOUT oscillator function), wait until the sub clock oscillates stably before switching the CM07 bit from "0" to "1" (sub clock).
- 12. To return from on-chip oscillator mode to high-speed or medium-speed mode, set the CM06 and CM15 bits both to "1".

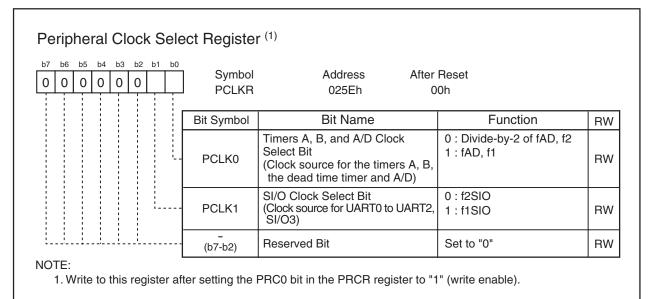
Figure 8.2 CM0 Register

b6 b5 b4 b3 b2 b1 b0 I 0 0 0 I I	Symbol CM1	Address 0007h	After Reset 00100000b	
	Bit Symbol	Bit Name	Function	RW
· · · · · · · · · · · · · · · · · · ·	CM10	All Clock Stop Control Bit ^{(2) (3)}	0 : Clock on 1 : All clocks off (stop mode)	RW
	CM11	System Clock Select Bit 1 (4)	0 : Main clock 1 : PLL clock ⁽⁵⁾	RW
	- (b4-b2)	Reserved Bit	Set to "0"	RW
	CM15	XIN-XOUT Drive Capacity Select Bit ⁽⁶⁾	0 : LOW 1 : HIGH	RW
	CM16	Main Clock Division	0 0 : No division mode 0 1 : Divide-by-2 mode	RW
	CM17	Select Bit 1 ⁽⁷⁾	1 0 : Divide-by-4 mode 1 1 : Divide-by-16 mode	RW

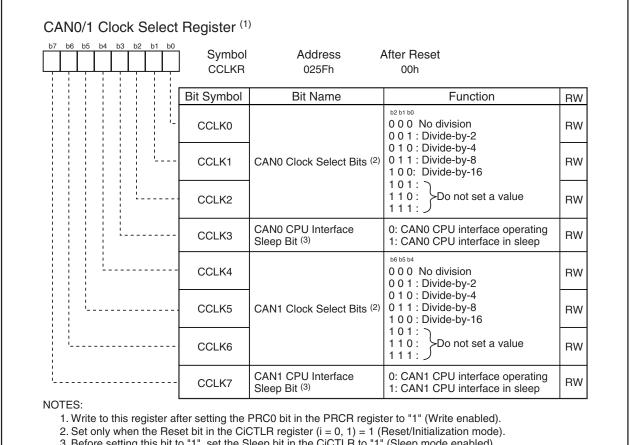
- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable)
- 2. If the CM10 bit is "1" (stop mode), XOUT goes "H" and the internal feedback resistor is disconnected. The XCIN and XCOUT pins are placed in the high-impedance state. When the CM11 bit is set to "1" (PLL clock), or the CM20 bit in the CM2 register is set to "1" (oscillation stop, re-oscillation detection function enabled), do not set the CM10 bit to "1".
- 3. When the PM22 bit in the PM2 register is set to "1" (watchdog timer count source is on-chip oscillator clock), writing to the CM10 bit has no effect.
- 4. Effective when the CM07 bit is "0" and the CM21 bit is "0".
- 5. After setting the PLC07 bit in the PLC0 register to "1" (PLL operation), wait until tsu(PLL) elapses before setting the CM11 bit to "1" (PLL clock).
- 6. When entering stop mode from high- or medium-speed mode, or when the CM05 bit is set to "1" (main clock turned off) in low-speed mode, the CM15 bit is set to "1" (drive capability high).
- 7. Effective when the CM06 bit is "0" (CM16 and CM17 bits enabled).

Figure 8.3 CM1 Register

Oscillation Stop Detection Register (1)						
b7 b6 b5 b4 b3 b2 b1 b0	Symbol CM2	Address 000Ch	After Reset 0X000000b ⁽²⁾			
	Bit Symbol	Bit Name	Function	RW		
	CM20	Oscillation Stop, Re-Oscillation Detection Enable Bit ^{(2) (3) (4)}	 0 : Oscillation stop, re-oscillation detection function disabled 1 : Oscillation stop, re-oscillation detection function enabled 	RW		
	CM21	System Clock Select Bit 2 (2) (5) (6) (7) (8) (11)	0 : Main clock or PLL clock 1 : On-chip oscillator clock (On-chip oscillator oscillating)	RW		
	CM22	Oscillation Stop, Re-Oscillation Detection Flag ⁽⁹⁾	 0 : Main clock stop, re-oscillation not detected 1 : Main clock stop, re-oscillation detected 	RW		
	CM23	XIN Monitor Flag (10)	0 : Main clock oscillating 1 : Main clock turned off	RO		
	_ (b5-b4)	Reserved Bit	Set to "0"	RW		
	– (b6)	Nothing is assigned. When write, set to "0". When read, its content is indeterminate.		-		
	CM27	Operation Select Bit (behavior if oscillation stop, re-oscillation is detected) ⁽²⁾	0 : Oscillation stop detection reset1 : Oscillation stop, re-oscillation detection interrupt	RW		


NOTES:

- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- 2. The CM20, CM21 and CM27 bits do not change at oscillation stop detection reset.
- 3. Set the CM20 bit to "0" (disable) before entering stop mode. After exiting stop mode, set the CM20 bit back to "1" (enable).
- 4. Set the CM20 bit to "0" (disable) before setting the CM05 bit in the CM0 register.
- 5. When the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), and the CPU clock source is the main clock, the CM21 bit is set to "1" (on-chip oscillator clock) if the main clock stop is detected.
- 6. If the CM20 bit is "1" and the CM23 bit is "1" (main clock turned off), do not set the CM21 bit to "0".
- 7. Effective when the CM07 bit in the CM0 register is "0".
- 8. Where the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), and the CM11 bit is "1" (the CPU clock source is PLL clock), the CM21 bit remains unchanged even when main clock stop is detected. If the CM22 bit is "0" under these conditions, an oscillation stop, re-oscillation detection interrupt request is generated at main clock stop detection; it is, therefore, necessary to set the CM21 bit to "1" (on-chip oscillator clock) inside the interrupt routine.
- 9. This bit is set to "1" when the main clock is detected to have stopped and when the main clock is detected to have restarted oscillating. When this bit changes state from "0" to "1", an oscillation stop and re-oscillation detection interrupt request is generated. Use this bit in an interrupt routine to discriminate the causes of interrupts between the oscillation stop and re-oscillation detection interrupt and the watchdog timer interrupt. This bit is set to "0" by writing "0" in a program. (Writing "1" has no effect. Nor is it set to "0" by an oscillation stop and re-oscillation stop and re-oscillation detection.


If an oscillation stop or a re-oscillation is detected when the CM22 bit = 1, no oscillation stop and re-oscillation detection interrupt requests are generated.

- 10. Read the CM23 bit in an oscillation stop and re-oscillation detection interrupt handling routine to determine the main clock status.
- 11. When the CM21 bit = 0 (on-chip oscillator turned off) and the CM05 bit = 1 (main clock turned off), the CM06 bit is fixed to "1" (divide-by-8 mode) and the CM15 bit is fixed to "1" (drive capability High).

Figure 8.4 CM2 Register

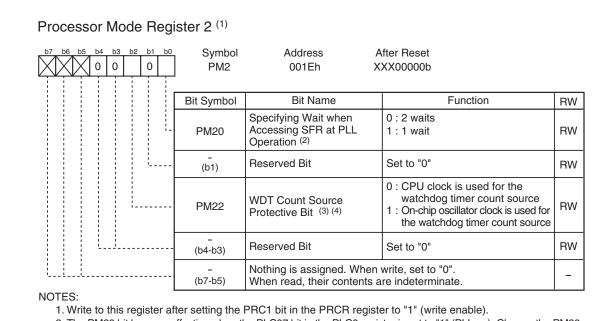


Figure 8.5 PCLKR Register

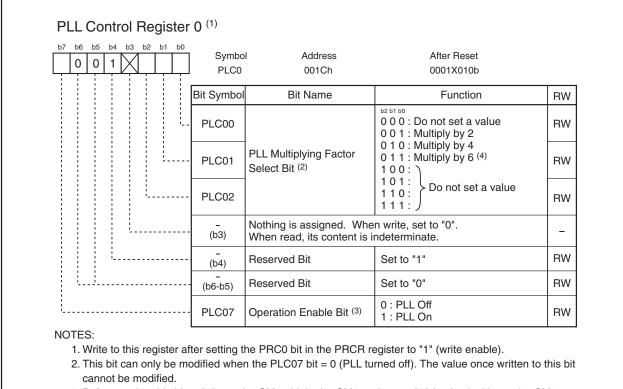

3. Before setting this bit to "1", set the Sleep bit in the CiCTLR to "1" (Sleep mode enabled).

Figure 8.6 CCLKR Register

- 2. The PM20 bit become effective when the PLC07 bit in the PLC0 register is set to "1" (PLL on). Change the PM20 bit when the PLC07 bit is set to "0" (PLL off). Set the PM20 bit t "0" (2 waits) when PLL clock > 16MHz.
- 3. Once this bit is set to "1", it cannot be set to "0" in a program.
- 4. Setting the PM22 bit to "1" results in the following conditions:
- The on-chip oscillator starts oscillating, and the on-chip oscillator clock becomes the watchdog timer count source.
- The CM10 bit in the CM1 register is disabled against write. (Writing a "1" has no effect, nor is stop mode entered.)
- The watchdog timer does not stop when in wait mode or hold state.

- 3. Before setting this bit to "1", set the CM07 bit in the CM0 register to "0" (main clock), set the CM17 to CM16 bits in the CM1 register to "00b" (main clock undivided mode), and set the CM06 bit in the CM0 register to "0" (CM16 and CM17 bits enable).
- 4. Multiply by 6 is available Normal-ver. only.

Figure 8.8 PLC0 Register

The following describes the clocks generated by the clock generating circuit.

8.1.1 Main Clock

The main clock is generated by the main clock oscillation circuit. This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillator circuit is configured by connecting a resonator between the XIN and XOUT pins. The main clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The main clock oscillator circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 8.9 shows the examples of main clock connection circuit. After reset, the main clock divided by 8 is selected for the CPU clock.

The power consumption in the chip can be reduced by setting the CM05 bit in the CM0 register to "1" (main clock oscillator circuit turned off) after switching the clock source for the CPU clock to a sub clock or on-chip oscillator clock. In this case, XOUT goes "H". Furthermore, because the internal feedback resistor remains on, XIN is pulled "H" to XOUT via the feedback resistor. Note, that if an externally generated clock is fed into the XIN pin, the main clock cannot be turned off by setting the CM05 bit to "1" unless the sub clock is selected as a CPU clock. If necessary, use an external circuit to turn off the clock. During stop mode, all clocks including the main clock are turned off. Refer to **8.4 Power Control**.

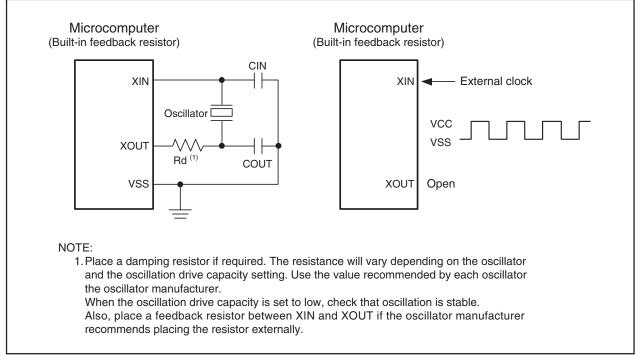


Figure 8.9 Examples of Main Clock Connection Circuit

8.1.2 Sub Clock

The sub clock is generated by the sub clock oscillation circuit. This clock is used as the clock source for the CPU clock, as well as the timer A and timer B count sources. In addition, an fC clock with the same frequency as that of the sub clock can be output from the CLKOUT pin.

The sub clock oscillator circuit is configured by connecting a crystal resonator between the XCIN and XCOUT pins. The sub clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The sub clock oscillator circuit may also be configured by feeding an externally generated clock to the XCIN pin. Figure 8.10 shows the examples of sub clock connection circuit.

After reset, the sub clock is turned off. At this time, the feedback resistor is disconnected from the oscillator circuit.

To use the sub clock for the CPU clock, set the CM07 bit in the CM0 register to "1 " (sub clock) after the sub clock becomes oscillating stably.

During stop mode, all clocks including the sub clock are turned off. Refer to 8.4 Power Control.

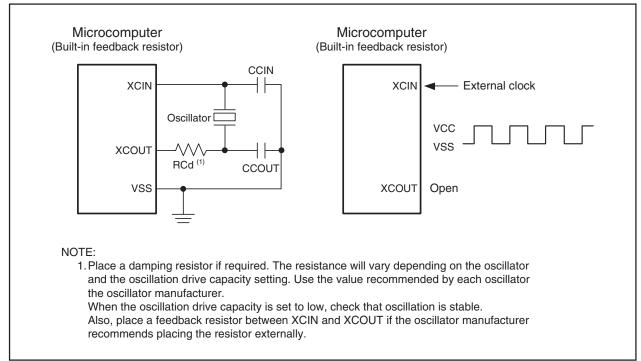


Figure 8.10 Examples of Sub Clock Connection Circuit

8.1.3 On-chip Oscillator Clock

This clock, approximately 1 MHz, is supplied by a on-chip oscillator. This clock is used as the clock source for the CPU and peripheral function clocks. In addition, if the PM22 bit in the PM2 register is "1" (on-chip oscillator clock for the watchdog timer count source), this clock is used as the count source for the watchdog timer (refer to **11.1 Count Source Protective Mode**).

After reset, the on-chip oscillator is turned off. It is turned on by setting the CM21 bit in the CM2 register to "1" (on-chip oscillator clock), and is used as the clock source for the CPU and peripheral function clocks, in place of the main clock. If the main clock stops oscillating when the CM20 bit in the CM2 register is "1" (oscillation stop, re-oscillation detection function enabled) and the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), the on-chip oscillator automatically starts operating, supplying the necessary clock for the microcomputer.

8.1.4 PLL Clock

The PLL clock is generated by a PLL frequency synthesizer. This clock is used as the clock source for the CPU and peripheral function clocks. After reset, the PLL clock is turned off. The PLL frequency synthesizer is activated by setting the PLC07 bit to "1" (PLL operation). When the PLL clock is used as the clock source for the CPU clock, wait a fixed period of tsu(PLL) for the PLL clock to be stable, and then set the CM11 bit in the CM1 register to "1".

Before entering wait mode or stop mode, be sure to set the CM11 bit to "0" (CPU clock source is the main clock). Furthermore, before entering stop mode, be sure to set the PLC07 bit in the PLC0 register to "0" (PLL stops). Figure 8.11 shows the procedure for using the PLL clock as the clock source for the CPU. The PLL clock frequency is determined by the equation below. When the PLL clock frequency is 16 MHz or more, set the PM20 bit in the PM2 register to "0" (2 waits).

PLL clock frequency = $f(XIN) \times (multiplying factor set by the PLC02 to PLC00 bits in the PLC0 register)$ (However, PLL clock frequency = 16 MHz, 20 MHz or 24 MHz⁽¹⁾)

NOTE:

1.24 MHz is available Normal-ver. only.

The PLC02 to PLC00 bits can be set only once after reset. Table 8.2 shows the example for setting PLL clock frequencies.

XIN (MHz)	PLC02	PLC01	PLC00	Multiply Factor	PLL Clock (MHz) ⁽¹⁾			
8	0	0	1	2	16			
4	0	1	0	4	10			
10	0	0	1	2	00			
5	0	1	0	4	20			
12	0	0	1	2				
6	0	1	0	4	24 (2)			
4	0	1	1	6 ⁽³⁾				
NOTEO								

Table 8.2 Example for Setting PLL Clock Frequencies

NOTES:

- 1. PLL clock frequency = 16 MHz, 20 MHz or 24 MHz
- 2. 24 MHz is available Normal-ver. only.
- 3. Multiply by 6 is available Normal-ver. only.

M16C/6N Group (M16C/6N4)

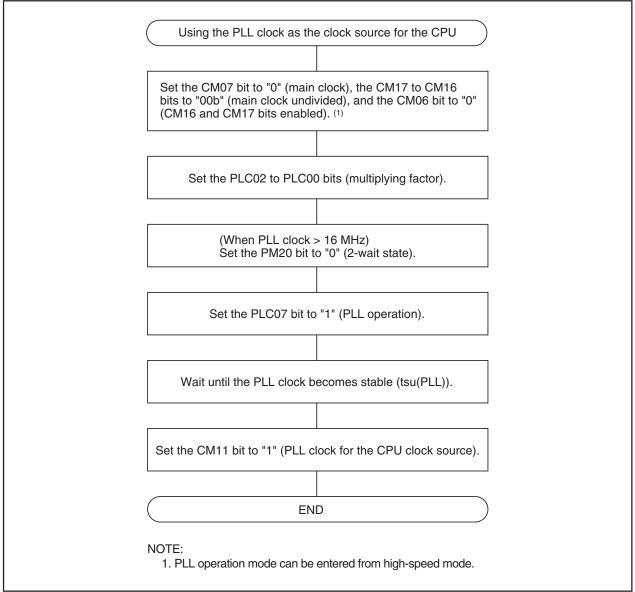


Figure 8.11 Procedure to Use PLL Clock as CPU Clock Source

8.2 CPU Clock and Peripheral Function Clock

Two type clocks: CPU clock to operate the CPU and peripheral function clocks to operate the peripheral functions.

8.2.1 CPU Clock and BCLK

These are operating clocks for the CPU and watchdog timer.

The clock source for the CPU clock can be chosen to be the main clock, sub clock, on-chip oscillator clock or the PLL clock.

If the main clock or on-chip oscillator clock is selected as the clock source for the CPU clock, the selected clock source can be divided by 1 (undivided), 2, 4, 8 or 16 to produce the CPU clock. Use the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register to select the divide-by-n value.

When the PLL clock is selected as the clock source for the CPU clock, the CM06 bit should be set to "0" and the CM17 to CM16 bits to "00b" (undivided).

After reset, the main clock divided by 8 provides the CPU clock.

During memory expansion or microprocessor mode, a BCLK signal with the same frequency as the CPU clock can be output from the BCLK pin by setting the PM07 bit of PM0 register to "0" (output enabled).

Note that when entering stop mode from high- or medium-speed mode, on-chip oscillator mode or on-chip oscillator low power dissipation mode, or when the CM05 bit in the CM0 register is set to "1" (main clock turned off) in low-speed mode, the CM06 bit in the CM0 register is set to "1" (divide-by-8 mode).

8.2.2 Peripheral Function Clock (f1, f2, f8, f32, f1SIO, f2SIO, f8SIO, f32SIO, fAD, fCAN0, fCAN1, fC32)

These are operating clocks for the peripheral functions.

Two of these, fi (i = 1, 2, 8, 32) and fiSIO are derived from the main clock, PLL clock or on-chip oscillator clock by dividing them by i. The clock fi is used for timers A and B, and fiSIO is used for serial interface. The f8 and f32 clocks can be output from the CLKOUT pin.

The fAD clock is produced from the main clock, PLL clock or on-chip oscillator clock, and is used for the A/D converter.

The fCANi (i =0, 1) clock is derived from the main clock, PLL clock or on-chip oscillator clock by dividing them by 1 (undivided), 2, 4, 8 or 16, and is used for the CAN module.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to "1" (peripheral function clock turned off during wait mode), or when the microcomputer is in low power dissipation mode, the fi, fiSIO, fAD, fCAN0 and fCAN1 clocks are turned off ⁽¹⁾.

The fC32 clock is derived from the sub clock, and is used for timers A and B. This clock can be used when the sub clock is activated.

NOTE:

1. fCAN0 and fCAN1 clocks stop at "H" in CAN0, 1 sleep mode.

8.3 Clock Output Function

During single-chip mode, the f8, f32 or fC clock can be output from the CLKOUT pin. Use the CM01 to CM00 bits in the CM0 register to select.

8.4 Power Control

Normal operation mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operation mode in this document.

8.4.1 Normal Operation Mode

Normal operation mode is further classified into seven sub modes.

In normal operation mode, because the CPU clock and the peripheral function clocks both are on, the CPU and the peripheral functions are operating. Power control is exercised by controlling the CPU clock frequency. The higher the CPU clock frequency, the greater the processing capability. The lower the CPU clock frequency, the smaller the power consumption in the chip. If the unnecessary oscillator circuits are turned off, the power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source to which switched must be oscillating stably. If the new clock source is the main clock, sub clock or PLL clock, allow a sufficient wait time in a program until it becomes oscillating stably.

Note that operation modes cannot be changed directly from low speed or low power dissipation mode to on-chip oscillator or on-chip oscillator low power dissipation mode. Nor can operation modes be changed directly from on-chip oscillator or on-chip oscillator low power dissipation mode to low-speed or low power dissipation mode. Where the CPU clock source is changed from the on-chip oscillator to the main clock, change the operation mode to the medium-speed mode (divide-by-8 mode) after the clock was divided by 8 (the CM06 bit in the CM0 register was set to "1") in the on-chip oscillator mode.

8.4.1.1 High-speed Mode

The main clock divided by 1 provides the CPU clock. If the sub clock is activated, fC32 can be used as the count source for timers A and B.

8.4.1.2 PLL Operation Mode

The main clock multiplied by 2, 4 or 6 ⁽¹⁾ provides the PLL clock, and this PLL clock serves as the CPU clock. If the sub clock is activated, fC32 can be used as the count source for timers A and B. PLL operation mode can be entered from high speed mode. If PLL operation mode is to be changed to wait or stop mode, first go to high speed mode before changing.

NOTE:

1. The main clock multiplied by 6 is available Normal-ver. only.

8.4.1.3 Medium-speed Mode

The main clock divided by 2, 4, 8 or 16 provides the CPU clock. If the sub clock is activated, fC32 can be used as the count source for timers A and B.

8.4.1.4 Low-speed Mode

The sub clock provides the CPU clock. The main clock is used as the clock source for the peripheral function clock when the CM21 bit in the CM2 register is set to "0" (on-chip oscillator turned off), and the on-chip oscillator clock is used when the CM21 bit is set to "1" (on-chip oscillator oscillating). The fC32 clock can be used as the count source for timers A and B.

8.4.1.5 Low Power Dissipation Mode

In this mode, the main clock is turned off after being placed in low speed mode. The sub clock provides the CPU clock. The fC32 clock can be used as the count source for timers A and B.

Simultaneously when this mode is selected, the CM06 bit in the CM0 register becomes "1" (divide-by-8 mode). In the low power dissipation mode, do not change the CM06 bit. Consequently, the medium speed (divide-by-8) mode is to be selected when the main clock is operated next.

8.4.1.6 On-chip Oscillator Mode

The on-chip oscillator clock divided by 1 (undivided), 2, 4, 8 or 16 provides the CPU clock. The on-chip oscillator clock is also the clock source for the peripheral function clocks. If the sub clock is activated, fC32 can be used as the count source for timers A and B. When the operation mode is returned to the high- and medium-speed modes, set the CM06 bit in the CM0 register to "1" (divide-by-8 mode).

8.4.1.7 On-chip Oscillator Low Power Dissipation Mode

The main clock is turned off after being placed in on-chip oscillator mode. The CPU clock can be selected like in the on-chip oscillator mode. The on-chip oscillator clock is the clock source for the peripheral function clocks. If the sub clock is activated, fC32 can be used as the count source for timers A and B.

Table 8.3 lists the setting clock related bit and modes.

Modes ——		CM2 Register	CM1 R	legister	CM0 Register			
		CM21	CM11	CM17, CM16	CM07	CM06	CM05	CM04
PLL Oper	ation Mode	0	1	00b	0	0	0	-
High-Spe	ed Mode	0	0	00b	0	0	0	-
Medium-	divided by 2	0	0	01b	0	0	0	-
Speed	divided by 4	0	0	10b	0	0	0	-
Mode	divided by 8	0	0	-	0	1	0	-
	divided by 16	0	0	11b	0	0	0	-
Low-Spe	ed Mode	-	0	-	1	-	0	1
Low Pow	/er	0	0	-	1	1 ⁽¹⁾	1 ⁽¹⁾	1
Dissipati	on Mode							
On-chip	divided by 1	1	0	00b	0	0	0	-
Oscillator	divided by 2	1	0	01b	0	0	0	-
Mode	divided by 4	1	0	10b	0	0	0	-
	divided by 8	1	0	-	0	1	0	-
	divided by 16	1	0	11b	0	0	0	-
On-chip Low power Mode	Oscillator Dissipation	1	0	(NOTE 2)	0	(NOTE 2)	1	-

Table 8.3 Setting Clock Related Bit and Modes

-: "0" or "1"

NOTES:

1. When the CM05 bit is set to "1" (main clock turned off) in low-speed mode, the mode goes to low power dissipation mode and the CM06 bit is set to "1" (divide-by-8 mode) simultaneously.

2. The divide-by-n value can be selected the same way as in on-chip oscillator mode.

8.4.2 Wait Mode

In wait mode, the CPU clock is turned off, so are the CPU (because operated by the CPU clock) and the watchdog timer. However, if the PM22 bit in the PM2 register is "1" (on-chip oscillator clock for the watchdog timer count source), the watchdog timer remains active. Because the main clock, sub clock and on-chip oscillator clock all are on, the peripheral functions using these clocks keep operating.

8.4.2.1 Peripheral Function Clock Stop Function

If the CM02 bit in the CM0 register is "1" (peripheral function clocks turned off during wait mode), the f1, f2, f8, f32, f1SIO, f8SIO, f32SIO, fAD, fCAN0 and fCAN1 clocks are turned off when in wait mode, with the power consumption reduced that much. However, fC32 remains on.

8.4.2.2 Entering Wait Mode

The microcomputer is placed into wait mode by executing the WAIT instruction.

When the CM11 bit = 1 (CPU clock source is the PLL clock), be sure to set the CM11 bit in the CM1 register to "0" (CPU clock source is the main clock) before going to wait mode. The power consumption of the chip can be reduced by setting the PLC07 bit in the PLC0 register to "0" (PLL stops).

8.4.2.3 Pin Status During Wait Mode

Table 8.4 lists the pin status during wait mode.

B	-			
Pin	Memory Expansion Mode Microprocessor Mode	Single-chip Mode		
A0 to A19, D0 to D15,	Retains status before wait mode	Does not become a bus control pin		
CS0 to CS3, BHE				
RD, WR, WRL, WRH	"Н"			
HLDA, BCLK	"Н"	-		
ALE	"L"			
I/O ports	Retains status before wait mode	Retains status before wait mode		
CLKOUT When fC selected	Does not become a CLKOUT pin	Does not stop		
When f8, f32		•CM02 bit = 0: Does not stop		
selected		•CM02 bit = 1: Retains status before		
		wait mode		

Table 8.4 Pin Status During Wait Mode

8.4.2.4 Exiting Wait Mode

The microcomputer is moved out of wait mode by a hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupt.

If the microcomputer is to be moved out of wait mode by a hardware reset or NMI interrupt, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "000b" (interrupt disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. If the CM02 bit is "0" (peripheral function clocks not turned off during wait mode), peripheral function interrupts can be used to exit wait mode. If the CM02 bit is "1" (peripheral function clocks turned off during wait mode), the peripheral functions using the peripheral function clocks stop operating, so that only the peripheral functions clocked by external signals can be used to exit wait mode.

Table 8.5 lists the interrupts to exit wait mode and use conditions.

Interrupt	CM02 Bit = 0	CM02 Bit = 1
NMI Interrupt	Can be used	Can be used
Serial Interface Interrupt	Can be used when operating with	Can be used when operating with
	internal or external clock	external clock
Key Input Interrupt	Can be used	Can be used
A/D Conversion Interrupt	Can be used in one-shot mode or	- (Do not use)
	single sweep mode	
Timer A Interrupt	Can be used in all modes	Can be used in event counter mode
Timer B interrupt		or when the count source is fc32
INT Interrupt	Can be used	Can be used
CAN0/1 Wake-up Interrupt	Can be used in CAN sleep mode	Can be used in CAN sleep mode

If the microcomputer is to be moved out of wait mode by a peripheral function interrupt, set up the following before executing the WAIT instruction.

(1) Set the ILVL2 to ILVL0 bits in the interrupt control register, for peripheral function interrupts used to exit wait mode.

The ILVL2 to ILVL0 bits in all other interrupt control registers, for peripheral function interrupts not used to exit wait mode, are set to "000b" (interrupt disable).

- (2) Set the I flag to "1".
- (3) Start operating the peripheral functions used to exit wait mode.

When the peripheral function interrupt is used, an interrupt routine is performed as soon as an interrupt request is acknowledged and the CPU clock is supplied again.

When the microcomputer exits wait mode by the peripheral function interrupt, the CPU clock is the same clock as the CPU clock executing the WAIT instruction.

8.4.3 Stop Mode

In stop mode, all oscillator circuits are turned off, so are the CPU clock and the peripheral function clocks. Therefore, the CPU and the peripheral functions clocked by these clocks stop operating. The least amount of power is consumed in this mode. If the voltage applied to VCC is VRAM or more, the internal RAM is retained.

However, the peripheral functions clocked by external signals keep operating.

Table 8.6 lists the interrupts to stop mode and use conditions.

Table 8.6	Interrupts to	o Stop	Mode and	I Use Conditions
-----------	---------------	--------	----------	------------------

Interrupt	Condition			
NMI Interrupt	Can be used			
Key Input Interrupt	Can be used			
INT Interrupt	Can be used			
Timer A Interrupt	Can be used			
Timer B interrupt	(when counting external pulses in event counter mode)			
Serial Interface Interrupt	Can be used (when external clock is selected)			
CAN0/1 Wake-up Interrupt	Can be used (when CAN sleep mode is selected)			

8.4.3.1 Entering Stop Mode

The microcomputer is placed into stop mode by setting the CM10 bit in the CM1 register to "1" (all clocks turned off). At the same time, the CM06 bit in the CM0 register is set to "1" (divide-by-8 mode) and the CM15 bit in the CM1 register is set to "1" (main clock oscillator circuit drive capability high).

Before entering stop mode, set the CM20 bit in the CM2 register to "0" (oscillation stop, re-oscillation detection function disabled).

Also, if the CM11 bit in the CM1 register is "1" (PLL clock for the CPU clock source), set the CM11 bit to "0" (main clock for the CPU clock source) and the PLC07 bit in the PLC0 register to "0" (PLL turned off) before entering stop mode.

8.4.3.2 Pin Status in Stop Mode

Table 8.7 lists the pin status in stop mode.

	Pin	Memory Expansion Mode Microprocessor Mode	Single-chip Mode	
A0 to A19	9, D0 to D15,	Retains status before stop mode	Does not become a bus control pin	
CS0 to C	S3, BHE			
RD, WR,	WRL, WRH	"H"		
HLDA, B	CLK	"H"		
ALE		indeterminate		
I/O ports		Retains status before stop mode	Retains status before stop mode	
CLKOUT	When fC selected	Does not become a CLKOUT pin	"H"	
	When f8, f32		Retains status before stop mode	
	selected			

Table 8.7 Pin Status in Stop Mode

8.4.3.3 Exiting Stop Mode

Stop mode is exited by a hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupt.

When the hardware reset or $\overline{\text{NMI}}$ interrupt is used to exit wait mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to "000b" (interrupt disabled) before setting the CM10 bit in the CM1 register to "1".

When the peripheral function interrupt is used to exit stop mode, set the CM10 bit to "1" after the following settings are completed.

(1) The ILVL2 to ILVL0 bits in the interrupt control registers, for the peripheral function interrupt used to exit stop mode, must have larger value than that of the RLVL2 to RLVL0 bits.

The ILVL2 to ILVL0 bits in all other interrupt control registers, for the peripheral function interrupts which are not used to exit stop mode, must be set to "000b" (interrupt disabled).

- (2) Set the I flag to "1".
- (3) Start operation of peripheral function being used to exit wait mode.

When exiting stop mode by the peripheral function interrupt, the interrupt routine is performed when an interrupt request is generated and the CPU clock is supplied again.

When stop mode is exited by the peripheral function interrupt or $\overline{\text{NMI}}$ interrupt, the CPU clock source is as follows, in accordance with the CPU clock source setting before the microcomputer had entered stop mode.

- When the sub clock is the CPU clock before entering stop mode:
 Sub clock
- When the main clock is the CPU clock source before entering stop mode: Main clock divided by 8
- When the on-chip oscillator clock is the CPU clock source before entering stop mode:

On-chip oscillator clock divided by 8

Figure 8.12 shows the state transition from normal operation mode to stop mode and wait mode. Figure 8.13 shows the state transition in normal operation mode.

Table 8.8 shows a state transition matrix describing allowed transition and setting. The vertical line shows current state and horizontal line show state after transition.

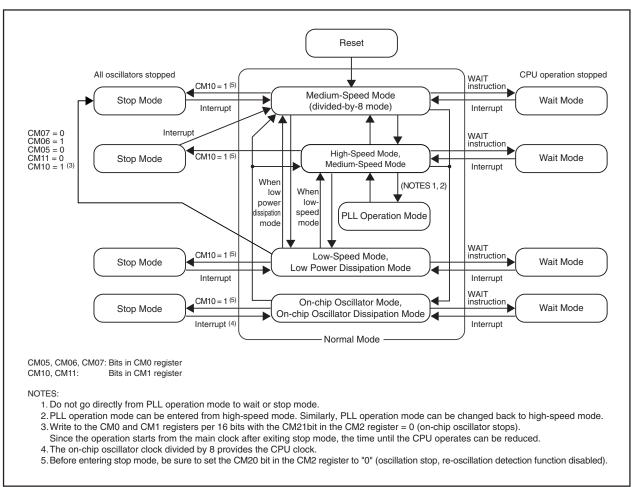


Figure 8.12 State Transition to Stop Mode and Wait Mode

M16C/6N Group (M16C/6N4)

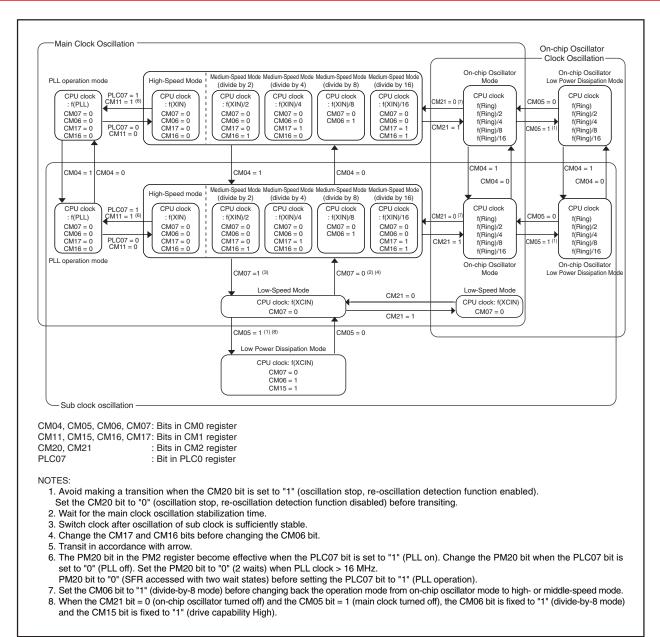


Figure 8.13 State Transition in Normal Operation Mode

Table 8.8 Allowed Transition and Setting ⁽⁹⁾

		State after transition							
		High-Speed Mode, Medium-Speed Mode		Low Power Dissipation Mode	-	On-chip Oscillator Mode	On-chip Oscillator Low Power Dissipation Mode	Stop Mode	Wait Mode
	High-Speed Mode, Medium-Speed Mode	(NOTE 8)	(9) ⁽⁷⁾	-	(13) ⁽³⁾	(15)	-	(16) ⁽¹⁾	(17)
	Low-Speed Mode ⁽²⁾	(8)		(11) (1) (6)	-	-	-	(16) (1)	(17)
	Low Power Dissipation Mode	-	(10)		-	-	-	(16) (1)	(17)
it state	PLL Operation Mode ⁽²⁾	(12) (3)	-	-		-	-	-	-
Current state	On-chip Oscillator Mode	(14) (4)	-	-	-	(NOTE 8)	(11) (1)	(16) (1)	(17)
	On-chip Oscillator Low Power Dissipation Mode	-	-	-	-	(10)	(NOTE 8)	(16) (1)	(17)
	Stop Mode	(18) (5)	(18)	(18)	-	(18) (5)	(18) (5)		-
	Wait Mode	(18)	(18)	(18)	-	(18)	(18)	-	

-: Cannot transit

NOTES:

- 1. Avoid making a transition when the CM20 bit = 1 (oscillation stop, reoscillation detection function enabled). Set the CM20 bit to "0" (oscillation stop, re-oscillation detection function disabled) before transiting.
- 2. On-chip oscillator clock oscillates and stops in low-speed mode. In this mode, the on-chip oscillator can be used as peripheral function clock. Sub clock oscillates and stops in PLL operation mode. In this mode, sub clock can be used as peripheral function clock.
- 3. PLL operation mode can only be entered from and changed to high-speed mode.
- 4. Set the CM06 bit to "1" (divide-by-8 mode) before transiting from on-chip oscillator mode to high- or medium-speed mode.
- 5. When exiting stop mode, the CM06 bit is set to "1" (divide-by-8 mode).
- 6. If the CM05 bit is set to "1" (main clock stop), then the CM06 bit is set to "1" (divide-by-8 mode).
- 7. A transition can be made only when sub clock is oscillating.
- 8. State transitions within the same mode (divide-by-n values changed or sub clock oscillation turned on or off) are shown in the table below.

	Sub Clock Oscillating			Sub Clock Turned Off							
		No Division	Divide- by-2	Divide- by-4		Divide- by-16	No Division	Divide- by-2	Divide- by-4		Divide- by-16
ting	No Division	\smallsetminus	(4)	(5)	(7)	(6)	(1)	-	-	-	-
Sub Clock Oscillating	Divide-by-2	(3)	\smallsetminus	(5)	(7)	(6)	-	(1)	-	-	-
о З	Divide-by-4	(3)	(4)		(7)	(6)	-	-	(1)	-	-
Clo	Divide-by-8	(3)	(4)	(5)		(6)	-	-	-	(1)	-
Sub	Divide-by-16	(3)	(4)	(5)	(7)	\square	-	-	-	-	(1)
Off	No Division	(2)	-	-	-	-		(4)	(5)	(7)	(6)
rned	Divide-by-2	-	(2)	-	-	-	(3)	$\overline{}$	(5)	(7)	(6)
<u>-</u>	Divide-by-4	-	-	(2)	-	-	(3)	(4)		(7)	(6)
Sub Clock Turned	Divide-by-8	-	-	-	(2)	-	(3)	(4)	(5)		(6)
Sub	Divide-by-16	-	-	-	-	(2)	(3)	(4)	(5)	(7)	

9. ():setting method. See right table.

	Catting	Onexetien						
	Setting	Operation						
(1)	CM04=0	Sub clock turned off						
(2)	CM04=1	Sub clock oscillating						
(3)	CM06=0	CPU clock no division						
	CM17=0	mode						
<u> </u>	CM16=0							
(4)	CM06=0	CPU clock divide-by-2						
	CM17=0	mode						
	CM16=1							
(5)	CM06=0	CPU clock divide-by-4						
	CM17=1	mode						
	CM16=0							
(6)	CM06=0	CPU clock divide-by-16						
	CM17=1	mode						
	CM16=1							
(7)	CM06=1	CPU clock divide-by-8 mode						
(8)	CM07=0	Main clock, PLL clock						
		or on-chip oscillator						
		clock selected						
(9)	CM07=1	Sub clock selected						
(10)	CM05=0	Main clock oscillating						
	CM05=1	Main clock turned off						
(12)	PLC07=0	Main clock selected						
	CM11=0							
(13)	PLC07=1	PLL clock selected						
	CM11=1							
(14)	CM21=0	Main clock or						
		PLL clock selected						
(15)	CM21=1	On-chip oscillator clock						
		selected						
	CM10=1	Transition to stop mode						
(17)	WAIT	Transition to wait mode						
	instruction							
(18)	Hardware	Exit stop mode or wait						
	interrupt	mode						
	CM04, CM05, CM06, CM07: Bits in CM0 register							
		, CM17: Bits in CM1 register						
	20, CM21	: Bits in CM2 register						
PLC	07	: Bit in PLC0 register						

8.5 Oscillation Stop and Re-oscillation Detection Function

The oscillation stop and re-oscillation detection function is such that main clock oscillation circuit stop and re-oscillation are detected. At oscillation stop, re-oscillation detection, reset or oscillation stop, re-oscillation detection interrupt request are generated. Which one is to be generated can be selected using the CM27 bit in the CM2 register.

The oscillation stop and re-oscillation detection function can be enabled or disabled using the CM20 bit in the CM2 register.

Table 8.9 lists a specification overview of the oscillation stop and re-oscillation detection function.

Table 8.9 Specification Overview of Oscillation Stop and Re-oscillation Detection Function

Item	Specification
Oscillation Stop Detectable Clock and	$f(XIN) \ge 2 MHz$
Frequency Bandwidth	
Enabling Condition for Oscillation Stop	Set CM20 bit to "1" (enable)
and Re-oscillation Detection Function	
Operation at Oscillation Stop,	•Reset occurs (when CM27 bit = 0)
Re-oscillation Detection	•Oscillation stop, re-oscillation detection interrupt occurs (when the CM27 bit =1)

8.5.1 Operation When CM27 Bit = 0 (Oscillation Stop Detection Reset)

Where main clock stop is detected when the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the microcomputer is initialized, coming to a halt (oscillation stop reset; refer to **4. Special Function Register (SFR)**, **5. Reset**).

This status is reset with hardware reset. Also, even when re-oscillation is detected, the microcomputer can be initialized and stopped; it is, however, necessary to avoid such usage (During main clock stop, do not set the CM20 bit to "1" and the CM27 bit to "0").

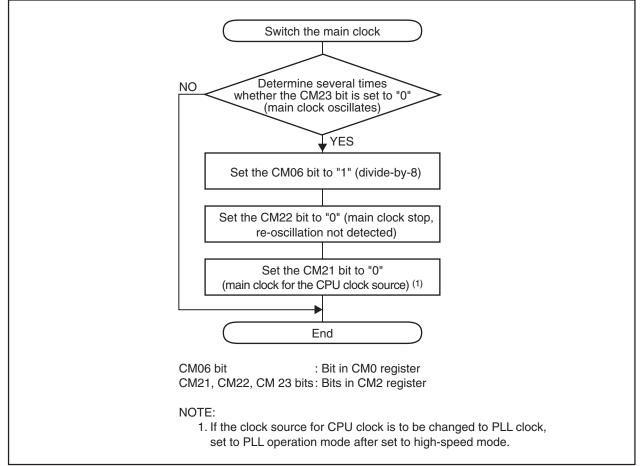
8.5.2 Operation When CM27 Bit = 1 (Oscillation Stop, Re-oscillation Detection Interrupt)

Where the main clock corresponds to the CPU clock source and the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the system is placed in the following state if the main clock comes to a halt:

Oscillation stop, re-oscillation detection interrupt request is generated.

- The on-chip oscillator starts oscillation, and the on-chip oscillator clock becomes the clock source for CPU clock and peripheral functions in place of the main clock.
- CM21 bit = 1 (on-chip oscillator clock is the clock source for CPU clock)
- CM22 bit = 1 (main clock stop detected)
- CM23 bit = 1 (main clock stopped)

Where the PLL clock corresponds to the CPU clock source and the CM20 bit is "1", the system is placed in the following state if the main clock comes to a halt: Since the CM21 bit remains unchanged, set it to "1" (on-chip oscillator clock) inside the interrupt routine.


- Oscillation stop, re-oscillation detection interrupt request is generated.
- CM22 bit = 1 (main clock stop detected)
- CM23 bit = 1 (main clock stopped)
- CM21 bit remains unchanged

Where the CM20 bit is "1", the system is placed in the following state if the main clock re-oscillates from the stop condition:

- Oscillation stop, re-oscillation detection interrupt request is generated.
- CM22 bit = 1 (main clock re-oscillation detected)
- CM23 bit = 0 (main clock oscillation)
- CM21 bit remains unchanged

8.5.3 How to Use Oscillation Stop and Re-oscillation Detection Function

- The oscillation stop, re-oscillation detection interrupt shares the vector with the watchdog timer interrupt. If the oscillation stop, re-oscillation detection and watchdog timer interrupts both are used, read the CM22 bit in an interrupt routine to determine which interrupt source is requesting the interrupt.
- Where the main clock re-oscillated after oscillation stop, the clock source for CPU clock and peripheral function must be switched to the main clock in the program. Figure 8.14 shows the procedure to switch the clock source from the on-chip oscillator to the main clock.
- Simultaneously with oscillation stop, re-oscillation detection interrupt request occurrence, the CM22 bit becomes "1". When the CM22 bit is set at "1", oscillation stop, re-oscillation detection interrupt are disabled. By setting the CM22 bit to "0" in the program, oscillation stop, re-oscillation detection interrupt are enabled.
- If the main clock stops during low speed mode where the CM20 bit is "1", an oscillation stop, re-oscillation
 detection interrupt request is generated. At the same time, the on-chip oscillator starts oscillating. In this
 case, although the CPU clock is derived from the sub clock as it was before the interrupt occurred, the
 peripheral function clocks now are derived from the on-chip oscillator clock.
- To enter wait mode while using the oscillation stop and re-oscillation detection function, set the CM02 bit to "0" (peripheral function clocks not turned off during wait mode).
- Since the oscillation stop and re-oscillation detection function is provided in preparation for main clock stop due to external factors, set the CM20 bit to "0" (oscillation stop, re-oscillation detection function disabled) where the main clock is stopped or oscillated in the program, that is where the stop mode is selected or the CM05 bit is altered.

• This function cannot be used if the main clock frequency is 2 MHz or less. In that case, set the CM20 bit to "0".

Figure 8.14 Procedure to Switch Clock Source from On-chip Oscillator to Main Clock

RENESAS

9. Protection

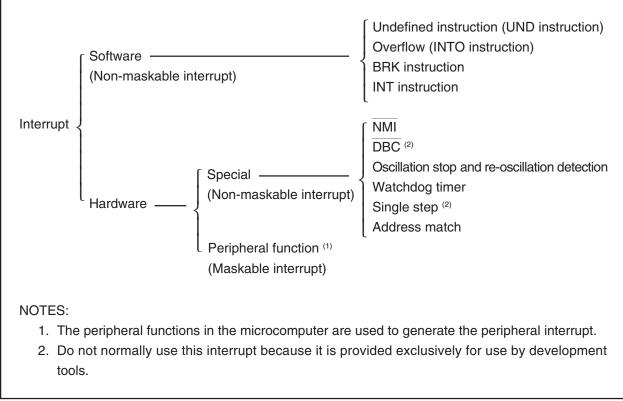
In the event that a program runs out of control, this function protects the important registers so that they will not be rewritten easily. Figure 9.1 shows the PRCR register. The following lists the registers protected by the PRCR register.

- The PRC0 bit protects the CM0, CM1, CM2, PLC0, PCLKR and CCLKR registers;
- The PRC1 bit protects the PM0, PM1, PM2, TB2SC, INVC0 and INVC1 registers;
- The PRC2 bit protects the PD7, PD9 and S3C registers.

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be set to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction. The PRC0 and PRC1 bits are not automatically set to "0" by writing to any address. They can only be set to "0" in a program.

	Symbol PRCR	Address 000Ah	After Reset XX000000b	
	Bit Symbol	Bit Name	Function	RW
	PRC0	Protect Bit 0	Enable write to CM0, CM1, CM2, PLC0, PCLKR, CCLKR registers 0 : Write protected 1 : Write enabled	RW
	PRC1	Protect Bit 1	Enable write to PM0, PM1, PM2, TB2SC, INVC0, INVC1 registers 0 : Write protected 1 : Write enabled	RW
	PRC2	Protect Bit 2	Enable write to PD7, PD9, S3C registers 0 : Write protected 1 : Write enabled ⁽¹⁾	RW
	_ (b5-b3)	Reserved Bit	Set to "0"	RW
(b7-b6)		Nothing is assigned. When When read, their contents		_

1. The PRC2 bit is set to "0" by writing to any address after setting it to "1". Other bits are not set to "0" by writing to any address, and must therefore be set in a program.


Figure 9.1 PRCR Register

10. Interrupt

10.1 Type of Interrupts

Figure 10.1 shows the types of interrupts.

Figure 10.1 Interrupts

- Maskable Interrupt: An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority **can be changed** by priority level.
- Non-Maskable Interrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority **cannot be changed** by priority level.

10.2 Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

10.2.1 Undefined Instruction Interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

10.2.2 Overflow Interrupt

An overflow interrupt occurs when executing the INTO instruction with the O flag in the FLG register set to "1" (the operation resulted in an overflow). The following are instructions whose O flag changes by arithmetic: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

10.2.3 BRK Interrupt

A BRK interrupt occurs when executing the BRK instruction.

10.2.4 INT Instruction Interrupt

An INT instruction interrupt occurs when executing the INT instruction. Software interrupt Nos. 0 to 63 can be specified for the INT instruction. Because software interrupt Nos. 1 to 31 are assigned to peripheral function interrupts, the same interrupt routine as for peripheral function interrupts can be executed by executing the INT instruction.

In software interrupt Nos. 0 to 31, the U flag is saved to the stack during instruction execution and is set to "0" (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. In software interrupt Nos. 32 to 63, the U flag does not change state during instruction execution, and the SP then selected is used.

10.3 Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral function interrupts.

10.3.1 Special Interrupts

Special interrupts are non-maskable interrupts.

10.3.1.1 NMI Interrupt

An NMI interrupt is generated when input on the NMI pin changes state from high to low. For details, refer to **10.7** NMI Interrupt.

10.3.1.2 DBC Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development tools.

10.3.1.3 Watchdog Timer Interrupt

Generated by the watchdog timer. Once a watchdog timer interrupt is generated, be sure to initialize the watchdog timer. For details about the watchdog timer, refer to **11. Watchdog Timer**.

10.3.1.4 Oscillation Stop and Re-oscillation Detection Interrupt

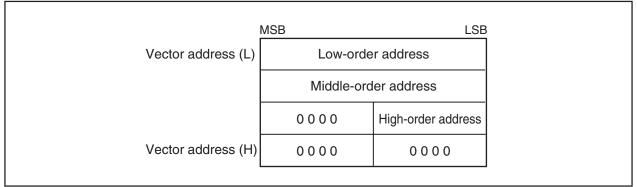
Generated by the oscillation stop and re-oscillation detection function. For details about the oscillation stop and re-oscillation detection function, refer to **8. Clock Generating Circuit**.

10.3.1.5 Single-Step Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development tools.

10.3.1.6 Address Match Interrupt

An address match interrupt is generated immediately before executing the instruction at the address indicated by the RMAD0 to RMAD3 registers that corresponds to one of the AIER0 or AIER1 bit in the AIER register or the AIER20 or AIER21 bit in the AIER2 register which is "1" (address match interrupt enabled). For details, refer to **10.10 Address Match Interrupt**.


10.3.2 Peripheral Function Interrupts

The peripheral function interrupt occurs when a request from the peripheral functions in the microcomputer is acknowledged. The peripheral function interrupt is a maskable interrupt. See **Table 10.2 Relocatable Vector Tables** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

10.4 Interrupts and Interrupt Vector

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 10.2 shows the interrupt vector.

Figure 10.2 Interrupt Vector

10.4.1 Fixed Vector Tables

The fixed vector tables are allocated to the addresses from FFFDCh to FFFFFh. Table 10.1 lists the fixed vector tables. In the flash memory version of microcomputer, the vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to **21.2 Functions to Prevent Flash Memory from Rewriting**.

Table 10.1 Fixed Vector Tables

Interrupt Source	Vector table Addresses Address (L) to Address (H)	Reference
Undefined Instruction (UND instruction)	FFFDChto FFFDFh	M16C/60, M16C/20, M16C/Tiny
Overflow (INTO instruction)	FFFE0h to FFFE3h	Series Software Manual
BRK Instruction (2)	FFFE4h to FFFE7h	
Address Match	FFFE8h to FFFEBh	10.10 Address Match Interrupt
Single Step (1)	FFFECh to FFFEFh	
Oscillation Stop and Re-oscillation Detection,	FFFF0h to FFFF3h	8. Clock Generating Circuit
Watchdog Timer		11. Watchdog Timer
	FFFF4h to FFFF7h	
NMI	FFFF8h to FFFFBh	10.7 NMI Interrupt
Reset	FFFFCh to FFFFFh	5. Reset

NOTES:

1. Do not normally use this interrupt because it is provided exclusively for use by development tools.

2. If the contents of address FFFE7h is FFh, program execution starts from the address shown by the vector in the relocatable vector table.

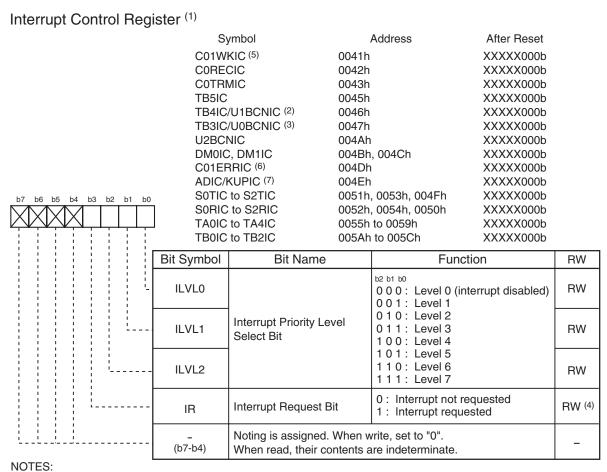
10.4.2 Relocatable Vector Tables

The 256 bytes beginning with the start address set in the INTB register comprise a relocatable vector table area. Table 10.2 lists the relocatable vector tables. Setting an even address in the INTB register results in the interrupt sequence being executed faster than in the case of odd addresses.

Interrupt Source	Vector Address ⁽¹⁾ Address (L) to Address (H)	Software Interrupt Number	Reference
BRK Instruction ⁽²⁾	+0 to +3 (0000h to 0003h)	0	M16C/60, M16C/20, M16C/Tiny Series Software Manual
CAN0/1 Wake-up (10)	+4 to +7 (0004h to 0007h)	1	19. CAN Module
CAN0 Successful Reception	+8 to +11 (0008h to 000Bh)	2	
CAN0 Successful Transmission	+12 to +15 (000Ch to 000Fh)	3	
ĪNT3	+16 to +19 (0010h to 0013h)	4	10.6 INT Interrupt
Timer B5	+20 to +23 (0014h to 0017h)	5	13. Timers
Timer B4, UART1 Bus Collision Detection (3) (9)	+24 to +27 (0018h to 001Bh)	6	13. Timers
Timer B3, UART0 Bus Collision Detection (4) (9)	+28 to +31 (001Ch to 001Fh)	7	15. Serial Interface
CAN1 Successful Reception, INT5 (5)	+32 to +35 (0020h to 0023h)	8	19. CAN Module, 10.6 INT Interrupt
SIO3, CAN1 Successful Transmission, INT4 (6)	+36 to +39 (0024h to 0027h)	9	15. Serial Interface, 19. CAN Module, 10.6 INT Interrupt
UART2 Bus Collision Detection ⁽⁹⁾	+40 to +43 (0028h to 002Bh)	10	15. Serial Interface
DMA0	+44 to +47 (002Ch to 002Fh)	11	12. DMAC
DMA1	+48 to +51 (0030h to 0033h)	12	
CAN0/1 Error (11)	+52 to +55 (0034h to 0037h)	13	19. CAN Module
A/D, Key Input ⁽⁷⁾	+56 to +59 (0038h to 003Bh)	14	16. A/D Convertor, 10.8 Key Input Interrupt
UART2 Transmission, NACK2 ⁽⁸⁾	+60 to +63 (003Ch to 003Fh)	15	15. Serial Interface
UART2 Reception, ACK2 ⁽⁸⁾	+64 to +67 (0040h to 0043h)	16	-
UART0 Transmission, NACK0 ⁽⁸⁾	+68 to +71 (0044h to 0047h)	17	
UART0 Reception, ACK0 ⁽⁸⁾	+72 to +75 (0048h to 004Bh)	18	
UART1 Transmission, NACK1 ⁽⁸⁾	+76 to +79 (004Ch to 004Fh)	19	
UART1 Reception, ACK1 ⁽⁸⁾	+80 to +83 (0050h to 0053h)	20	-
Timer A0	+84 to +87 (0054h to 0057h)	21	13. Timers
Timer A1	+88 to +91 (0058h to 005Bh)	22	
Timer A2	+92 to +95 (005Ch to 005Fh)	23	
Timer A3	+96 to +99 (0060h to 0063h)	24	-
Timer A4	+100 to +103 (0064h to 0067h)	25	-
Timer B0	+104 to +107 (0068h to 006Bh)	26	
Timer B1	+108 to +111 (006Ch to 006Fh)	27	
Timer B2	+112 to +115 (0070h to 0073h)	28	-
INTO	+116 to +119 (0074h to 0077h)	29	10.6 INT Interrupt
INT1	+120 to +123 (0078h to 007Bh)	30	
INT2	+124 to +127 (007Ch to 007Fh)	31	
INT Instruction Interrupt (2)	+128 to +131 (0080h to 0083h)	32	M16C/60, M16C/20, M16C/Tiny
	to	to	Series Software Manual
	+252 to + 255 (00FCh to 00FFh)	63	

NOTES:

- 1. Address relative to address in INTB.
- 2. These interrupts cannot be disabled using the I flag.
- 3. Use the IFSR07 bit in the IFSR0 register to select.
- 4. Use the IFSR06 bit in the IFSR0 register to select.
- 5. Use the IFSR17 bit in the IFSR1 register to select.
- 6. Use the IFSR16 bit in the IFSR1 register to select.
- Furthermore, use the IFSR00 bit in the IFSR0 register to select, when selecting SI/O3 or CAN1 successful transmission. 7. Use the IFSR01 bit in the IFSR0 register to select.
- 8. During I²C mode, NACK and ACK interrupts comprise the interrupt source.
- 9. Bus collision detection: During IE mode, this bus collision detection constitutes the cause of an interrupt.
- During I²C mode, a start condition or a stop condition detection constitutes the cause of an interrupt. 10. Use the IFSR02 bit in the IFSR0 register to select. When the IFSR02 bit = 0, CAN0/1 wake-up is selected. When the IFSR02 bit = 1, CAN0 wake-up/error is selected.
- 11. Use the IFSR02 bit in the IFSR0 register to select. When the IFSR02 bit = 0, CAN0/1 error is selected. When the IFSR02 bit = 1, CAN1 wake-up/error is selected.



10.5 Interrupt Control

The following describes how to enable/disable the maskable interrupts, and how to set the priority in which order they are accepted. What is explained here does not apply to non-maskable interrupts.

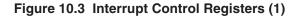
Use the I flag in the FLG register, IPL, and the ILVL2 to ILVL0 bits in the each interrupt control register to enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in the each interrupt control register.

Figures 10.3 and 10.4 show the interrupt control registers.

1. To rewrite the interrupt control registers, do so at a point that does not generate the interrupt request for that register. For details, refer to **23.5 Interrupt**.

2. Use the IFSR07 bit in the IFSR0 register to select.

3. Use the IFSR06 bit in the IFSR0 register to select.


4. This bit can only be reset by writing "0" (Do not write "1").

5. When the IFSR02 bit in the IFSR0 register = 0 (CAN0/1 wake-up or error), CAN0/1 wake-up is selected.

When the IFSR02 bit = 1 (CAN0 wake-up/error or CAN1 wake-up/error), CAN0 wake-up/error is selected.

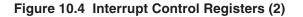
6. When the IFSR02 bit = 0, CAN0/1 error is selected. When the IFSR02 bit = 1, CAN1 wake-up/error is selected.

7. Use the IFSR01 bit in the IFSR0 register to select.

-	Symbol C ⁽²⁾ ECIC/INT5IC ^{(2) (6)}		Address	After Reset	
C1RE	-	00/			
••••	MIC/S3IC/INT4IC (2) (7)	004 004	19h	XX00X000b XX00X000b XX00X000b XX00X000b	
Bit Symbol	Bit Name		Funct	ion	RW
ILVL0				errupt disabled)	RW
ILVL1	Interrupt Priority Level Select Bit		010: Level 2 011: Level 3 100: Level 4	RW	
ILVL2			1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7		RW
IR	Interrupt Request Bit				RW ⁽³⁾
POL	Polarity Select Bit				RW
_ (b5)	Reserved Bit		Set to "0"		RW
(b7-b6)					_
	INTOI Bit Symbol ILVL0 ILVL1 ILVL2 IR POL (b5) -	ILVL0 Interrupt Priority Level Select Bit ILVL1 Interrupt Priority Level Select Bit ILVL2 IR IR Interrupt Request Bit POL Polarity Select Bit (b5) Reserved Bit IR Nothing is assigned. Wh	INTOIC to INT2IC 000 Bit Symbol Bit Name ILVL0 Interrupt Priority Level Select Bit ILVL1 Interrupt Request Bit IR Interrupt Request Bit POL Polarity Select Bit (b5) Reserved Bit Nothing is assigned. When you have been been been been been been been be	INTOIC to INT2IC005Dh to 005FhBit SymbolBit NameFunctionILVL0Interrupt Priority Level0 0 0 : Level 0 (into 0 0 1 : Level 1 0 0 0 1 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4 1 0 1 0 : Level 4 1 0 1 : Level 4 1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 6 1 1 1 : Level 7ILVL2Interrupt Request Bit0 : Interrupt not reconsistency of the select sel	INTOIC to INT2IC005Dh to 005FhXX00X000bBit SymbolBit NameFunctionILVL0Interrupt Priority Level0 0 0 : Level 0 (interrupt disabled) 0 0 1 : Level 1 0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4 1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7ILVL2Interrupt Request Bit0 : Interrupt not requested 1 : Interrupt requested 1 : Interrupt requested 1 : Interrupt requestedPOLPolarity Select Bit0 : Selects falling edge (4) (5) 1 : Selects rising edge(b5)Reserved BitSet to "0"

NOTES:

1. To rewrite the interrupt control registers, do so at a point that does not generate the interrupt request for that register. For details, refer to **23.5 Interrupt**.


2. When the BYTE pin is low and the processor mode is memory expansion or microprocessor mode, set the ILVL2 to ILVL0 bits in the INT5IC to INT3IC registers to "000b" (interrupt disabled).

3. This bit can only be reset by writing "0" (Do not write "1").

4. If the IFSR10 to IFSR15 bits in the IFSR1 register are "1" (both edges), set the POL bit in the INT0IC to INT5IC register to "0" (falling edge).

5. Set the POL bit in the S3IC register to "0" (falling edge) when the IFSR00 bit in the IFSR0 register = 1 and the IFSR16 bit in the IFSR1 register = 0 (SI/O3 selected).

- 6. Use the IFSR17 bit in the IFSR1 register to select.
- 7. Use the IFSR16 bit in the IFSR1 register and the IFSR00 bit in the IFSR0 register to select.

10.5.1 | Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to "1" (enabled) enables the maskable interrupt. Setting the I flag to "0" (disabled) disables all maskable interrupts.

10.5.2 IR Bit

The IR bit is set to "1" (interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is set to "0" (interrupt not requested).

The IR bit can be set to "0" in a program. Note that do not write "1" to this bit.

10.5.3 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using the ILVL2 to ILVL0 bits.

Table 10.3 shows the settings of interrupt priority levels and Table 10.4 shows the interrupt priority levels enabled by the IPL.

The following are conditions under which an interrupt is accepted:

- \cdot I flag = 1
- \cdot IR bit = 1
- · interrupt priority level > IPL

The I flag, IR bit, ILVL2 to ILVL0 bits and IPL are independent of each other. In no case do they affect one another.

Table 10.3 Settings of Interrupt Priority Levels

ILVL2 to ILVL0 Bits	Interrupt Priority Level	Priority Order
000b	Level 0 (Interrupt disabled)	-
001b	Level 1	Low
010b	Level 2	
011b	Level 3	
100b	Level 4	
101b	Level 5	
110b	Level 6	▼
111b	Level 7	High

Table 10.4 Interrupt Priority Levels Enabled by IPL

IPL	Enabled Interrupt Priority Levels
000b	Interrupt levels 1 and above are enabled
001b	Interrupt levels 2 and above are enabled
010b	Interrupt levels 3 and above are enabled
011b	Interrupt levels 5 and above are enabled
100b	Interrupt levels 5 and above are enabled
101b	Interrupt levels 6 and above are enabled
110b	Interrupt levels 7 and above are enabled
111b	All maskable interrupts are disabled

10.5.4 Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt request is generated during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt request is generated during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

The CPU behavior during the interrupt sequence is described below. Figure 10.5 shows time required for executing the interrupt sequence.

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 000000h. Then, the IR bit applicable to the interrupt information is set to "0" (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register ⁽¹⁾ within the CPU.
- (3) The I, D and U flags in the FLG register become as follows:
 - The I flag is set to "0" (interrupt disabled)
 - The D flag is set to "0" (single-step interrupt disabled)
 - The U flag is set to "0" (ISP selected)

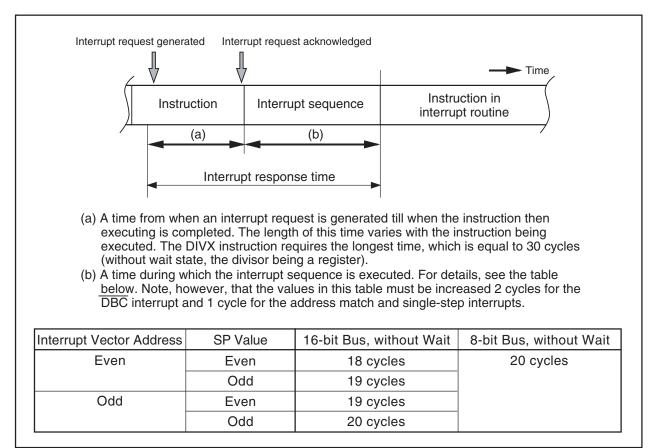
However, the U flag does not change state if an INT instruction for software interrupt Nos. 32 to 63 is executed.

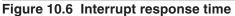
- (4) The temporary register within the CPU is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the acknowledged interrupt in IPL is set.
- (7) The start address of the relevant interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt routine.

NOTE:

1. Temporary register cannot be modified by users.


CPU clock	
Address bus	Address Indeterminate (1) SP-2 SP-4 vec vec+2 PC
Data bus	Interrupt Indeterminate (1) SP-2 SP-4 vec vec+2 contents
RD	Indeterminate (1)
WR ⁽²⁾	
A read cy	erminate state depends on the instruction queue buffer. cle occurs when the instruction queue buffer is ready to accept instructions. signal timing shown here is for the case where the stack is located in the internal RAM.


Figure 10.5 Time Required for Executing Interrupt Sequence

RENESAS

10.5.5 Interrupt Response Time

Figure 10.6 shows the interrupt response time. The interrupt response or interrupt acknowledge time denotes a time from when an interrupt request is generated till when the first instruction in the interrupt routine is executed. Specifically, it consists of a time from when an interrupt request is generated till when the instruction then executing is completed ((a) on Figure 10.6) and a time during which the interrupt sequence is executed ((b) on Figure 10.6).

10.5.6 Variation of IPL when Interrupt Request is Accepted

When a maskable interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.

When a software interrupt or special interrupt request is accepted, one of the interrupt priority levels listed in Table 10.5 is set in the IPL. Table 10.5 shows the IPL values of software and special interrupts when they are accepted.

Table 10.5 IPL Level that is Set to IPL When A Software or Special Interrupt is Ac	cepted
Tuble 10.0 If E Eevel that is bet to if E when A boltware of opeolar interrupt is At	ocpica

Interrupt Sources	Value that is Set to IPL
Oscillation Stop and Re-oscillation Detection, Watchdog Timer, NMI	7
Software, Address Match, DBC, Single-Step	Not changed

10.5.7 Saving Registers

In the interrupt sequence, the FLG register and PC are saved to the stack.

At this time, the 4 high-order bits of the PC and the 4 high-order (IPL) and 8 low-order bits in the FLG register, 16 bits in total, are saved to the stack first. Next, the 16 low-order bits of the PC are saved. Figure 10.7 shows the stack status before and after an interrupt request is accepted.

The other necessary registers must be saved in a program at the beginning of the interrupt routine. Use the PUSHM instruction, and all registers except SP can be saved with a single instruction.

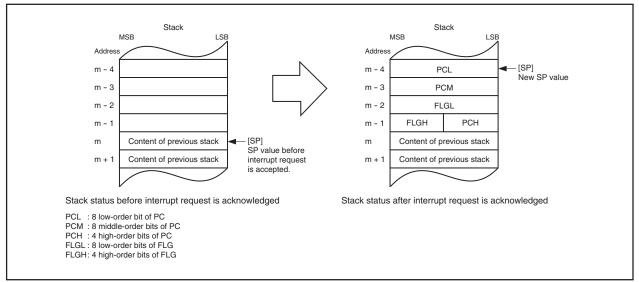


Figure 10.7 Stack Status Before and After Acceptance of Interrupt Request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the SP⁽¹⁾, at the time of acceptance of an interrupt request, is even or odd. If the SP (Note) is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. Figure 10.8 shows the operation of the saving registers.

NOTE:

1. When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

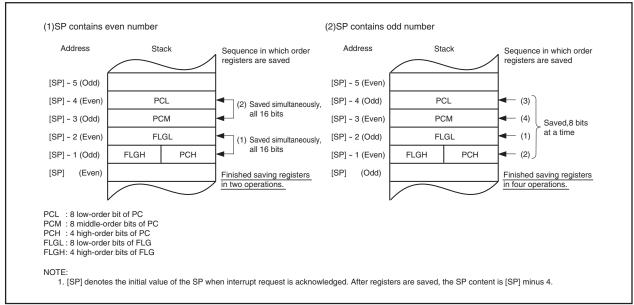


Figure 10.8 Operation of Saving Registers

10.5.8 Returning from an Interrupt Routine

The FLG register and PC in the state in which they were immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine. Thereafter the CPU returns to the program which was being executed before accepting the interrupt request.

Return the other registers saved by a program within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

Register bank is switched back to the bank used prior to the interrupt sequence by the REIT instruction.

10.5.9 Interrupt Priority

If two or more interrupt requests are sampled at the same sampling points (a timing to detect whether an interrupt request is generated or not), the interrupt request that has the highest priority is accepted.

For maskable interrupts (peripheral functions interrupt), any desired priority level can be selected using the ILVL2 to ILVL0 bits. However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the highest priority interrupt accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware. Figure 10.9 shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

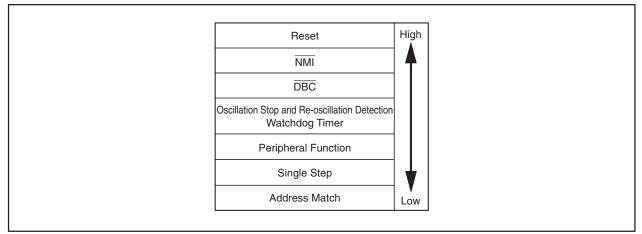


Figure 10.9 Hardware Interrupt Priority

10.5.10 Interrupt Priority Resolution Circuit

The interrupt priority level select circuit selects the highest priority interrupt when two or more interrupt requests are sampled at the same sampling point.

Figure 10.10 shows the circuit that judges the interrupt priority level.

M16C/6N Group (M16C/6N4)

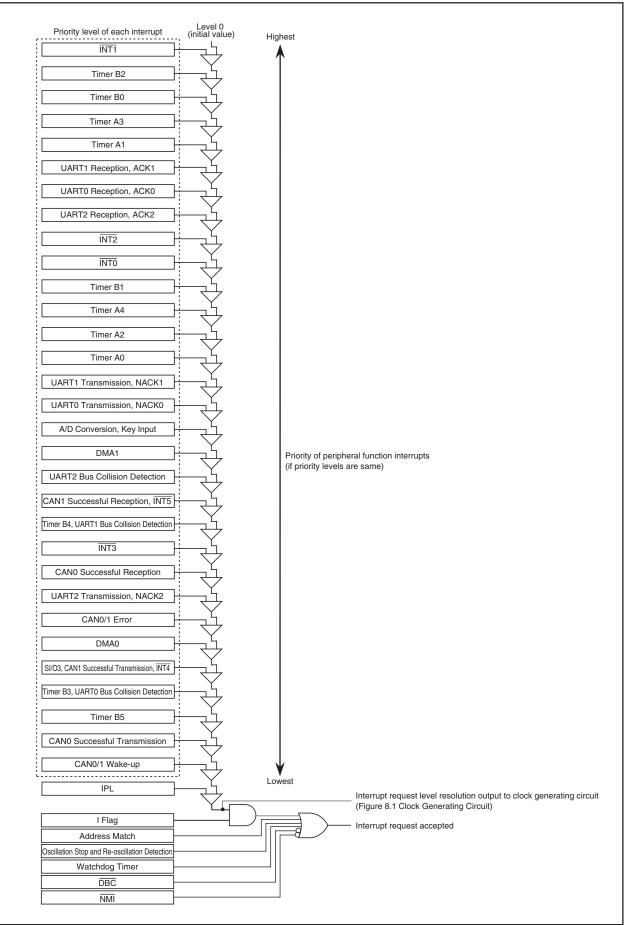


Figure 10.10 Interrupts Priority Select Circuit

10.6 INT Interrupt

INTi interrupt (i = 0 to 5) is triggered by the edges of external inputs. The edge polarity is selected using the IFSR10 to IFSR15 bits in the IFSR1 register.

INT4 share the interrupt vector and interrupt control register with CAN1 successful transmission and SI/O3. INT5 share the interrupt vector and interrupt control register with CAN1 successful reception. To use the INT4 interrupt, set the IFSR16 bit of the IFSR1 register to "1" (INT4). To use the INT5 interrupt, set the IFSR17 bit of the IFSR1 register to "1" (INT5).

After modifying the IFSR16 or IFSR17 bit, set the corresponding IR bit to "0" (interrupt not requested) before enabling the interrupt.

Figure 10.11 shows the IFSR0 and IFSR1 registers.

Interrupt Request Cause Select Register 0							
b7 b6 b5 b4 b3 b2 b1 b0	Symb IFSR		After Reset 00XXX000h				
	Bit Symbol	Bit Name	Function	RW			
	IFSR00	Interrupt Request Cause Select Bit	0 : CAN1 successful transission 1 : SI/O3	RW			
	IFSR01	Interrupt Request Cause Select Bit	0 : A/D conversion 1 : Key input	RW			
· · · · · · · · · · · · · · · · · · ·	IFSR02	Interrupt Request Cause Select Bit ⁽³⁾	0 : CAN0/1 wake-up or error 1 : CAN0 wake-up/error or CAN1 wake-up/error	RW			
	- (b5-b3)	Nothing is assigned. When write, When read, their contents are ind	-				
	IFSR06	Interrupt Request Cause Select Bit ⁽¹⁾	0 : Timer B3 1 : UART0 bus collision detection	RW			
	IFSR07	Interrupt Request Cause Select Bit ⁽²⁾	0 : Timer B4 1 : UART1 bus collision detection	RW			

NOTES:

- 1. Timer B3 and UART0 bus collision detection share the vector and interrupt control register. When using the timer B3 interrupt, set the IFSR06 bit to "0" (Tmer B3).
- When using UART0 bus collision detection, set the IFSR06 bit to "1" (UART0 bus collision detection). 2. Timer B4 and UART1 bus collision detection share the vector and interrupt control register.
 - When using the timer B4 interrupt, set the IFSR07 bit to "0" (Timer B4).
- When using UART1 bus collision detection, set the IFSR07 bit to "1" (UART1 bus collision detection). 3. If this bit is set to "0", the software interrupt number 1 is selected CAN0/1 wake-up and the interrupt number 13 is selected CAN0/1 error. If this bit is set to "1", the interrupt number 1 is selected CAN0 wake-up/error and the interrupt number 13 is selected CAN1 wake-up/error.

Interrupt Request Cause Select Register 1

b7 b6	b5 b4 b3 b2 b1 b0	Symb IFSR		After Reset 00h	
		Bit Symbol	Bit Name	Function	RW
		IFSR10	INT0 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR11	INT1 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR12	INT2 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR13	INT3 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR14	INT4 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR15	INT5 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR16	Interrupt Request Cause Select Bit ⁽²⁾	0 : SI/O3/CAN1 successful transmission (3) 1 : INT4	RW
		IFSR17	Interrupt Request Cause Select Bit ⁽²⁾	0 : CAN1 successful reception 1 : INT5	RW
NOTES	2.				

NOTES:

1. When setting this bit to "1" (both edges), make sure the POL bit in the INT0IC to INT5IC register is set to "0" (falling edge).

2. During memory expansion and microprocessor modes, when the data bus is 16-bit width (BYTE pin is "L"), set this bit to "0".

3. When setting this bit to "0" (SI/O3, CAN1 successful transmission), make sure the IFSR00 bit in the IFSR0 register is set to "0" (CAN1 successful transmission) or "1" (SI/O3).

And, make sure the POL bit in the S3IC and C1TRMIC registers are set to "0" (falling edge).

Figure 10.11 IFSR0, IFSR1 Registers

RENESAS

10.7 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt request is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt.

The input level of this $\overline{\text{NMI}}$ interrupt input pin can be read by accessing the P8_5 bit in the P8 register. This pin cannot be used as an input port.

10.8 Key Input Interrupt

Of P10_4 to P10_7, a key input interrupt request is generated when input on any of the P10_4 to P10_7 pins which has had the PD10_4 to PD10_7 bits in the PD10 register set to "0" (input) goes low. Key input interrupts can be used as a key-on wake up function, the function which gets the microcomputer out of wait or stop mode. However, if you intend to use the key input interrupt, do not use P10_4 to P10_7 as analog input ports. Figure 10.12 shows the block diagram of the key input interrupt. Note, however, that while input on any pin which has had the PD10_4 to PD10_7 bits set to "0" (input mode) is pulled low, inputs on all other pins of the port are not detected as interrupts.

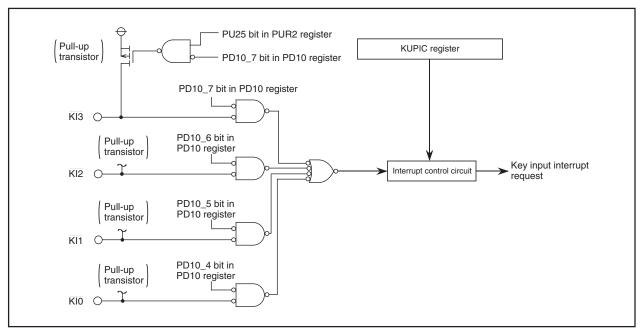


Figure 10.12 Key Input Interrupt Block Diagram

10.9 CAN0/1 Wake-up Interrupt

CAN0/1 wake-up interrupt request is generated when a falling edge is input to CRX0 or CRX1. One interrupt is allocated to CAN0/1. The CAN0/1 wake-up interrupt is enabled only when the PortEn bit = 1 (CTX/CRX function) and Sleep bit = 1 (Sleep mode enabled) in the CiCTLR register (i = 0, 1). Figure 10.13 shows the block diagram of the CAN0/1 wake-up interrupt. Please note that the wake-up message will be lost.

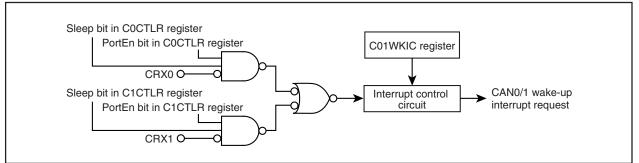


Figure 10.13 CAN0/1 Wake-up Interrupt Block Diagram

10.10 Address Match Interrupt

An address match interrupt request is generated immediately before executing the instruction at the address indicated by the RMADi register (i = 0 to 3). Set the start address of any instruction in the RMADi register. Use the AIER0 and AIER1 bits in the AIER register and the AIER20 and AIER21 bits in the AIER2 register to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL. For address match interrupts, the value of the PC that is saved to the stack area varies depending on the instruction being executed (refer to **10.5.7 Saving Registers**). (The value of the PC that is saved to the stack area is not the correct return address.) Therefore, follow one of the methods described below to return from the address match interrupt.

- Rewrite the content of the stack and then use the REIT instruction to return.
- Restore the stack to its previous state before the interrupt request was accepted by using the POP or similar other instruction and then use a jump instruction to return.

Table 10.6 shows the value of the PC that is saved to the stack area when an address match interrupt request is accepted. Table 10.7 shows the relationship between address match interrupt sources and associated registers.

Note that when using the external bus in 8-bit width, no address match interrupts can be used for external areas.

Figure 10.14 shows the AIER, AIER2, and RMAD0 to RMAD3 registers.

		nut io ouvo			laal ooo mato	in interrupt negacet ie /teeeptee
Ins	truction at A	Value of PC that is Saved to Stack Area				
16-bit operation code						Address indicated by RMADi
Instruction shown below among 8-bit operation code instructions					register + 2	
ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest	
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ.B:S	#IMM8,dest	
STNZ.B:S	#IMM8,dest	STZX.B:S	#IMM81,#IMN	/I82,dest		
CMP.B:S	#IMM8,dest	PUSHM	src	POPM des	st	
JMPS	#IMM8	JSRS	#IMM8			
MOV.B:S	#IMM,dest (H	owever, dest	= A0 or A1)			
Instructions	s other than	the above				Address indicated by RMADi
						register + 1

Table 10.6 Value of PC That is Saved to Stack Area When Address Match Interrupt Request is Accepted

Value of PC that is saved to stack area: Refer to **10.5.7 Saving Registers**.

Table 10.7 Relationship Between Address Match Interrupt Sources and Associated Registers

Address Match Interrupt Sources	Address Match Interrupt Enable Bit	Address Match Interrupt Register
Address Match Interrupt 0	AIER0	RMAD0
Address Match Interrupt 1	AIER1	RMAD1
Address Match Interrupt 2	AIER20	RMAD2
Address Match Interrupt 3	AIER21	RMAD3

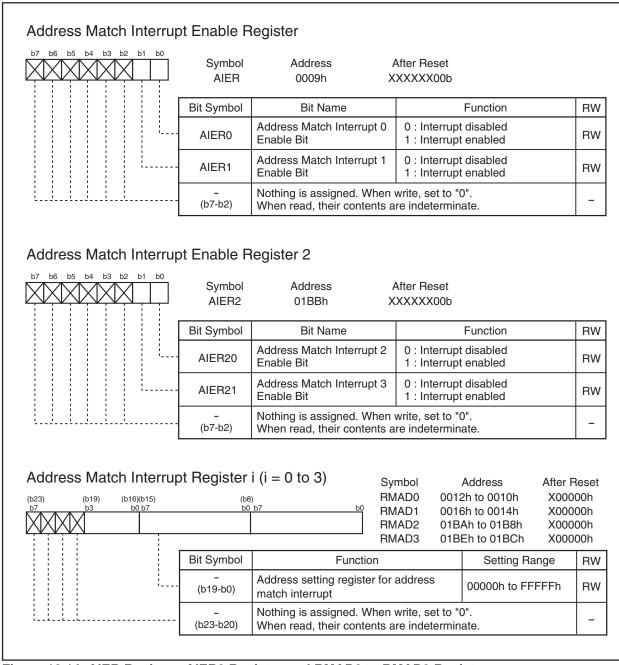


Figure 10.14 AIER Register, AIER2 Register and RMAD0 to RMAD3 Registers

11. Watchdog Timer

The watchdog timer is the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer contains a 15-bit counter which counts down the clock derived by dividing the CPU clock using the prescaler. Whether to generate a watchdog timer interrupt request or apply a watchdog timer reset as an operation to be performed when the watchdog timer underflows after reaching the terminal count can be selected using the PM12 bit in the PM1 register. The PM12 bit can only be set to "1" (watchdog timer reset). Once this bit is set to "1", it cannot be set to "0" (watchdog timer interrupt) in a program. Refer to **5.3 Watchdog Timer Reset** for details about watchdog timer reset.

When the main clock, on-chip oscillator clock or PLL clock is selected for CPU clock, the divide-by-n value for the prescaler can be selected to be 16 or 128. If a sub clock is selected for CPU clock, the divide-by-n value for the prescaler is always 2 no matter how the WDC7 bit is set. The period of watchdog timer can be calculated as given below. The period of watchdog timer is, however, subject to an error due to the prescaler.

With main clock, on-chip oscillator clock or PLL clock selected for CPU clock

Watchdog timer period = Prescaler dividing (16 or 128) × Watchdog timer count (32768) CPU clock

With sub clock selected for CPU clock

Watchdog timer period = Prescaler dividing (2) × Watchdog timer count (32768) CPU clock

For example, when CPU clock = 16 MHz and the divide-by-n value for the prescaler = 16, the watchdog timer period is approx. 32.8 ms.

The watchdog timer is initialized by writing to the WDTS register. The prescaler is initialized after reset. Note that the watchdog timer and the prescaler both are inactive after reset, so that the watchdog timer is activated to start counting by writing to the WDTS register.

In stop mode, wait mode and hold state, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released.

Figure 11.1 shows the block diagram of the watchdog timer. Figure 11.2 shows the watchdog timer-related registers.

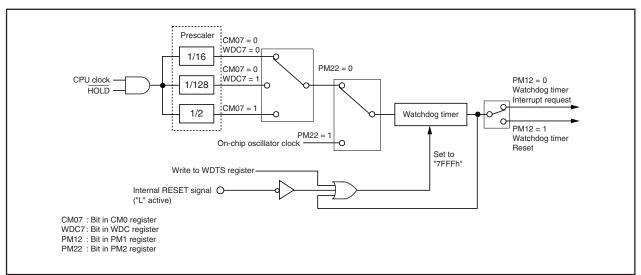


Figure 11.1 Watchdog Timer Block Diagram

b7 b6 b5 b4 b3 b2 b1 b0	Symbol WDC	Address 000Fh	After Reset 00XXXXXb	
	Bit Symbol	Bit Name	Function	RW
	_ (b4-b0)	High-order Bit of Watchc	dog Timer	RO
	_ (b6-b5)	Reserved Bit	Set to "0"	RW
	WDC7	Prescaler Select Bit	0 : Divided by 16 1 : Divided by 128	RW
Watchdog Timer Start	Register ⁽ Symbol WDTS	1) Address 000Eh	After Reset Indeterminate	
		Func	tion	RW
· · · · · · · · · · · · · · · · · · ·	The watchdog timer is initialized and starts counting after a write instruction to this register. The watchdog timer value is always initialized to "7FFFh" regardless of whatever value is written.			

Figure 11.2 WDC Register and WDTS Register

11.1 Count Source Protective Mode

In this mode, a on-chip oscillator clock is used for the watchdog timer count source. The watchdog timer can be kept being clocked even when CPU clock stops as a result of runaway.

Before this mode can be used, the following register settings are required:

- (1) Set the PRC1 bit in the PRCR register to "1" (enable writes to the PM1 and PM2 registers).
- (2) Set the PM12 bit in the PM1 register to "1" (reset when the watchdog timer underflows).
- (3) Set the PM22 bit in the PM2 register to "1" (on-chip oscillator clock used for the watchdog timer count source).
- (4) Set the PRC1 bit in the PRCR register to "0" (disable writes to the PM1 and PM2 registers).
- (5) Write to the WDTS register (watchdog timer starts counting).

Setting the PM22 bit to "1" results in the following conditions:

• The on-chip oscillator starts oscillating, and the on-chip oscillator clock becomes the watchdog timer count source.

Watchdog timor poriod –	Watchdog timer count (32768)
Watchdog timer period =	on-chip oscillator clock

- The CM10 bit in the CM1 register is disabled against write. (Writing a "1" has no effect, nor is stop mode entered.)
- The watchdog timer does not stop when in wait mode or hold state.

12. DMAC

The DMAC (Direct Memory Access Controller) allows data to be transferred without the CPU intervention. Two DMAC channels are included. Each time a DMA request occurs, the DMAC transfers one (8- or 16-bit) data from the source address to the destination address. The DMAC uses the same data bus as used by the CPU. Because the DMAC has higher priority of bus control than the CPU and because it makes use of a cycle steal method, it can transfer one word (16 bits) or one byte (8 bits) of data within a very short time after a DMA request is generated. Figure 12.1 shows the block diagram of the DMAC. Table 12.1 shows the DMAC specifications. Figures 12.2 to 12.4 show the DMAC related-registers.

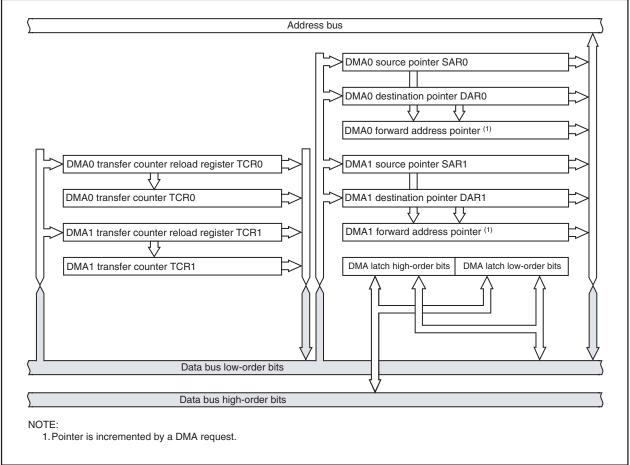


Figure 12.1 DMAC Block Diagram

A DMA request is generated by a write to the DSR bit in the DMiSL register (i = 0, 1), as well as by an interrupt request which is generated by any function specified by the DMS and DSEL3 to DSEL0 bits in the DMiSL register. However, unlike in the case of interrupt requests, DMA requests are not affected by the I flag and the interrupt control register, so that even when interrupt requests are disabled and no interrupt request can be accepted, DMA requests are always accepted. Furthermore, because the DMAC does not affect interrupts, the IR bit in the interrupt control register does not change state due to a DMA transfer.

A data transfer is initiated each time a DMA request is generated when the DMAE bit in the DMiCON register = 1 (DMA enabled). However, if the cycle in which a DMA request is generated is faster than the DMA transfer cycle, the number of transfer requests generated and the number of times data is transferred may not match. For details, refer to **12.4 DMA Request**.

Ite	em	Specification				
No. of Channels	S	2 (cycle steal method)				
Transfer Memo	ry Space	 From any address in the 1-Mbyte space to a fixed address 				
		 From a fixed address to any address in the 1-Mbyte space 				
		 From a fixed address to a fixed address 				
Maximum No. of	Bytes Transferred	128 Kbytes (with 16-bit transfer) or 64 Kbytes (with 8-bit transfer)				
DMA Request F	actors (1) (2)	Falling edge of INT0 or INT1				
		Both edge of INT0 or INT1				
		Timer A0 to timer A4 interrupt requests				
		Timer B0 to timer B5 interrupt requests				
		UART0 transfer, UART0 reception interrupt requests				
		UART1 transfer, UART1 reception interrupt requests				
		UART2 transfer, UART2 reception interrupt requests				
		SI/O3 interrupt request				
		A/D conversion interrupt requests				
		Software triggers				
Channel Priority	V	DMA0 > DMA1 (DMA0 takes precedence)				
Transfer Unit		8 bits or 16 bits				
Transfer Address Direction		forward or fixed (The source and destination addresses cannot both be				
		in the forward direction.)				
Transfer Mode	Single Transfer	Transfer is completed when the DMAi transfer counter underflows				
	J. J	after reaching the terminal count.				
-	Repeat Transfer	When the DMAi transfer counter underflows, it is reloaded with the value				
		of the DMAi transfer counter reload register and a DMA transfer is				
		continued with it.				
DMA Interrupt F	Request	When the DMAi transfer counter underflowed				
Generation Tim						
DMA Start Up	_	Data transfer is initiated each time a DMA request is generated when the				
		The DMAE bit in the DMAiCON register = 1 (enabled).				
DMA Shutdown	Single Transfer	When the DMAE bit is set to "0" (disabled)				
		 After the DMAi transfer counter underflows 				
-	Repeat Transfer	When the DMAE bit is set to "0" (disabled)				
Reload Timing	for Forward	When a data transfer is started after setting the DMAE bit to "1" (enabled),				
Address Pointe	r and Transfer	the forward address pointer is reloaded with the value of the SARi or the				
Counter		DARi pointer whichever is specified to be in the forward direction and the				
		DMAi transfer counter is reloaded with the value of the DMAi transfer				
		counter reload register.				
		counter reload register. Minimum 3 cycles between SFR and internal RAM				

i = 0, 1

NOTES:

- 1. DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the I flag nor by the interrupt control register.
- 2. The selectable causes of DMA requests differ with each channel.
- 3. Make sure that no DMAC-related registers (addresses 0020h to 003Fh) are accessed by the DMAC.

DMA0 Req		e Select R	egister				
b7 b6 b5 b4	b3 b2 b1 b0	Symbol DM0SL		ddress 03B8h	After Reset 00h		
		Bit Symbol	Bit N	lame	Functio	n	RW
		DSEL0					RW
		DSEL1					RW
			DMA Requ	est Gause	See NOTE 1		
	/	DSEL2					RW
	·	DSEL3					RW
· · · · · · · · · · · · · · · · · · ·		_ (b5-b4)	Nothing is assigned. When write, set to "0". When read, their contents are "0".			_	
		DMS	DMA Requ Expansion		0 : Basic cause of requ 1 : Extended cause of		RW
		DSR	Software DMA Request Bit		A DMA request is generated by setting this bit to "1" when the DMS bit is "0" (basic cause) and the DSEL3 to DSEL0 bits are "0001b" (software trigger). The value of this bit when read is "0".		RW
in the ma	nner describe	d below.			ion of the DMS bit and the	he DSEL3 to DSE	L0 bits
DSEL3 to DSEL0 Bi 0000b) (basic cause of e of INTO pin	request)		tended cause of request)		
0001b	Software tri			_			
0010b	Timer A0			_			
0011b	Timer A1						
	Timer A2			_			
0100b	Time A O						
0100b 0101b	Timer A3			—			
0100b 0101b 0110b	Timer A4			— Two edges	of INTO pin		
0100b 0101b 0110b 0111b	Timer A4 Timer B0			Timer B3	of INTO pin		
0100b 0101b 0110b 0111b 1000b	Timer A4 Timer B0 Timer B1			Timer B3 Timer B4	of INTO pin		
0100b 0101b 0110b 0111b	Timer A4 Timer B0 Timer B1 Timer B2	smit		Timer B3	of INTO pin		
0100b 0101b 0110b 0111b 1000b 1001b	Timer A4 Timer B0 Timer B1			Timer B3 Timer B4	of INTO pin		
0100b 0101b 0110b 0111b 1000b 1001b 1001b	Timer A4 Timer B0 Timer B1 Timer B2 UART0 tran	eive		Timer B3 Timer B4 Timer B5 —	of INTO pin		
0100b 0101b 0110b 0111b 1000b 1001b 1010b 1011b	Timer A4 Timer B0 Timer B1 Timer B2 UART0 tran UART0 rece	eive Ismit		Timer B3 Timer B4 Timer B5 —	of INTO pin		
0100b 0101b 0110b 0111b 1000b 1001b 1010b 1011b 1100b	Timer A4 Timer B0 Timer B1 Timer B2 UART0 tran UART0 rece UART2 tran	eive Ismit eive sion		Timer B3 Timer B4 Timer B5 — — —	of INTO pin		

Figure 12.2 DM0SL Register

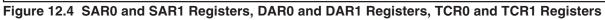
DMA1 Requ	est Caus	e Select Re	egister		
b7 b6 b5 b4 b3	3 b2 b1 b0	Symbol DM1SL	Address 03BAh	After Reset 00h	
		Bit Symbol	Bit Name	Function	RW
		DSEL0			RW
	·····	DSEL1 DMA Request Cause	See NOTE 1		
		DSEL2	Select Bit		
		DSEL3			
		_ (b5-b4)	Nothing is assigned. When write, set to "0". When read, their contents are "0".		
		DMS	DMA Request Cause Expansion Select Bit	0 : Basic cause of request 1 : Extended cause of request	RW
		DSR	Software DMA Request Bit	A DMA request is generated by setting this bit to "1" when the DMS bit is "0" (basic cause) and the DSEL3 to DSEL0 bits are "0001b" (software trigger). The value of this bit when read is "0".	RW

NOTE:

1. The causes of DMA1 requests can be selected by a combination of the DMS bit and the DSEL3 to DSEL0 bits in the manner described below.

DSEL3 to DSEL0 Bits	DMS = 0 (basic cause of request)	DMS = 1 (extended cause of request)
0000b	Falling edge of INT1 pin	—
0001b	Software trigger	—
0010b	Timer A0	—
0011b	Timer A1	—
0100b	Timer A2	—
0101b	Timer A3	SI/O3
0110b	Timer A4	—
0111b	Timer B0	Two edges of INT1 pin
1000b	Timer B1	_
1001b	Timer B2	—
1010b	UART0 transmit	—
1011b	UART0 receive/ACK0	—
1100b	UART2 transmit	—
1101b	UART2 receive/ACK2	—
1110b	A/D conversion	—
1111b	UART1 transmit/ACK1	—

DMAi Control Register (i = 0, 1)


•	,			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol DM0CON DM1CON		After Reset 00000X00b 00000X00b	
	Bit Symbol	Bit Name	Function	RW
	DMBIT	Transfer Unit Bit Select Bit	0 : 16 bits 1 : 8 bits	RW
· · · · · · · · · · · · · · · · · · ·	DMASL	Repeat Transfer Mode Select Bit	0 : Single transfer 1 : Repeat transfer	RW
· · · · · · · · · · · · · · · · · · ·	DMAS	DMA Request Bit	0 : DMA not requested 1 : DMA requested	RW (1)
	DMAE	DMA Enable Bit	0 : Disabled 1 : Enabled	RW
	DSD	Source Address Direction Select Bit ⁽²⁾	0 : Fixed 1 : Forward	RW
	DAD	Destination Address Direction Select Bit ⁽²⁾	0 : Fixed 1 : Forward	RW
	_ (b7-b6)	Nothing is assigned. When When read, their contents a		-
NOTES		•		

NOTES:

1. The DMAS bit can be set to "0" by writing "0" in a program. (This bit remains unchanged even if "1" is written.) 2. At least one of the DAD and DSD bits must be "0" (address direction fixed).

Figure 12.3 DM1SL Register, DM0CON and DM1CON Registers

DMAi Source Pointer (i	i = 0, 1) ⁽¹⁾						
(b23) (b19) (b16)(b15) b7 b3 b0 b7	(b8) b0 b7	b0	Symbol SAR0 SAR1	0022	ddress h to 0020h h to 0030h	After F Indetern Indetern	ninate
	Function				Setting F	Range	RW
	Set the source address of transf	er			00000h to F	FFFFh	RW
	Nothing is assigned. When write When read, their contents are "(to "0".				-
DMiCON register is "0" (If the DSD bit is "1" (forw If the DSD bit is "1" and t this register. Otherwise	vard direction), this register can be he DMAE bit is "1" (DMA enabled e, the value written to it can be	e writt), the	en to at any DMAi forwa	/ time.			
DMAi Destination Point (b23) (b19) (b16)(b15) b7 b3 b0 b7 (b10) b7	ter (I = 0, 1) (1) $\frac{(b8)}{b0 \ b7}$	b0	Symbol DAR0 DAR1	0026	ddress h to 0024h h to 0034h	After F Indetern Indetern	ninate
	Function				Setting F	Range	RW
····	Set the destination address of tr	ansfe	r		00000h to F	FFFFh	RW
	Nothing is assigned. When write When read, their contents are "(to "0".				-
DMiCON register is "0" (If the DAD bit is "1" (forw If the DAD bit is "1" and t	vard direction), this register can be he DMAE bit is "1" (DMA enabled e, the value written to it can be r ($i = 0, 1$)	e writt), the	en to at any DMAi forwa d. Symbol	/ time. rd add A	ress pointer o ddress	can be read After F	d from Reset
			TCR0 TCR1		9h, 0028h 9h, 0038h	Indetern Indetern	
	Function				Setting F	Range	RW
	Set the transfer count minus 1. The written value is stored in the reload register, and when the DM register is set to "1" (DMA enable counter underflows when the DM register is "1" (repeat transfer), transfer counter reload register is transfer counter. When read, the DMAi transfer co	IAE b d) or t ASL b the va transfe	it in the DMi the DMAi tra- bit in the DM alue of the erred to the	CON Insfer iCON DMAi	0000h to FF	FFh	RW

12.1 Transfer Cycle

The transfer cycle consists of a memory or SFR read (source read) bus cycle and a write (destination write) bus cycle. The number of read and write bus cycles is affected by the source and destination addresses of transfer. During memory expansion and microprocessor modes, it is also affected by the BYTE pin level. Furthermore, the bus cycle itself is extended by a software wait or RDY signal.

12.1.1 Effect of Source and Destination Addresses

If the transfer unit and data bus both are 16 bits and the source address of transfer begins with an odd address, the source read cycle consists of one more bus cycle than when the source address of transfer begins with an even address.

Similarly, if the transfer unit and data bus both are 16 bits and the destination address of transfer begins with an odd address, the destination write cycle consists of one more bus cycle than when the destination address of transfer begins with an even address.

12.1.2 Effect of BYTE Pin Level

During memory expansion and microprocessor modes, if 16 bits of data are to be transferred on an 8-bit data bus (input on the BYTE pin = high), the operation is accomplished by transferring 8 bits of data twice. Therefore, this operation requires two bus cycles to read data and two bus cycles to write data. Furthermore, if the DMAC is to access the internal area (internal ROM, internal RAM, or SFR), unlike in the case of the CPU, the DMAC does it through the data bus width selected by the BYTE pin.

12.1.3 Effect of Software Wait

For memory or SFR accesses in which one or more software wait states are inserted, the number of bus cycles required for that access increases by an amount equal to software wait states.

Figure 12.5 shows the example of the transfer cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating transfer cycles, take into consideration each condition for the source read and the destination write cycle, respectively. For example, when data is transferred in 16-bit unit using an 8-bit bus ((2) on Figure 12.5), two source read bus cycles and two destination write bus cycles are required.

12.1.4 Effect of RDY Signal

During memory expansion and microprocessor modes, DMA transfers to and from an external area are affected by the $\overline{\text{RDY}}$ signal. Refer to **7.2.6** $\overline{\text{RDY}}$ Signal.

BCLK					
Address bus	CPU use	Source	n Dummy cycle	CPU use	
RD signal					
WR signal					
Data bus	CPU use	Source Des	tination Dum		
transfer u	transfer unit is 16 nit is 16 bits and	b bits and the source a an 8-bit bus is used	address of trans	sfer is an odd add	lress, or when the
BCLK					
Address bus	CPU use	Source Source + 1	Destination	Dummy cycle C	PU use
RD signal					
WR signal					
Data bus	CPU use	Source Source +	Destination	Dummy cycle	PU use
BCLK Address	CPU use	e under condition (1) h	Destination		PU use
bus RD signal	/				
WR signal					
Data	CPU use	Source	Destination	Dummy C	PU use
_	source read cycle	e under condition (2) ł	nas one wait sta		
BCLK					
Address bus	CPU use	Source	Source + 1	Destination	Dummy cycle CPU use
RD signal					
WR signal					
WR signal Data bus	CPU use	Source	Source + 1	Destination	n <u>CPU</u>

12.2 DMA Transfer Cycles

Any combination of even or odd transfer read and write addresses is possible.

Table 12.2 shows the number of DMA transfer cycles. Table 12.3 shows the coefficient j, k.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles \times j + No. of write cycles \times k

Table 12.2 DMA Transfer Cycles

Transfer Unit	Bus Width	Access Address	Single-cl	nip Mode	Memory Expansion Mode Microprocessor Mode		
	Bus Wiath		No. of Read Cycles	No. of Write Cycles	No. of Read Cycles	No. of Write Cycles	
	16 bits	Even	1	1	1	1	
8-bit Transfer	(BYTE = L)	Odd	1	1	1	1	
(DMBIT =1)	8 bits	Even	-	-	1	1	
	(BYTE= H)	Odd	-	-	1	1	
	16 bits	Even	1	1	1	1	
16-bit Transfer	(BYTE =L)	Odd	2	2	2	2	
(DMBIT = 0)	8 bits	Even	-	-	2	2	
	(BYTE = H)	Odd	-	-	2	2	

-: This condition does not exist.

Table 12.3 Coefficient j, k

	Internal Area				External Area							
	Internal ROM, RAM SFR				Separate Bus			Multiplexed Bus				
			No Wait With Wait				V	/ith Wait	(2)	V	Vith Wait	(2)
	NO Wait	vvili i vvail	I Wall	2 Waits	NO Wall	1 Wait	2 Waits	3 Waits	1 Wait	2 Waits	3 Waits	
j	1	2	2	3	1	2	3	4	3	3	4	
k	1	2	2	3	2	2	3	4	3	3	4	

NOTES:

1. Depends on the set value of the PM20 bit in the PM2 register.

2. Depends on the set value of the CSE register.

12.3 DMA Enable

When a data transfer starts after setting the DMAE bit in the DMiCON register (i = 0, 1) to "1" (enabled), the DMAC operates as follows:

- (1) Reload the forward address pointer with the SARi register value when the DSD bit in the DMiCON register is "1" (forward) or the DARi register value when the DAD bit in the DMiCON register is "1" (forward).
- (2) Reload the DMAi transfer counter with the DMAi transfer counter reload register value.

If the DMAE bit is set to "1" again while it remains set, the DMAC performs the above operation. However, if a DMA request may occur simultaneously when the DMAE bit is being written, follow the steps below.

Step 1: Write "1" to the DMAE bit and DMAS bit in the DMiCON register simultaneously.

Step 2: Make sure that the DMAi is in an initial state as described above (1) and (2) in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

12.4 DMA Request

The DMAC can generate a DMA request as triggered by the cause of request that is selected with the DMS and DSEL3 to DSEL0 bits in the DMiSL register (i = 0, 1) on either channel. Table 12.4 shows the timing at which the DMAS bit changes state.

Whenever a DMA request is generated, the DMAS bit is set to "1" (DMA requested) regardless of whether or not the DMAE bit is set. If the DMAE bit was set to "1" (enabled) when this occurred, the DMAS bit is set to "0" (DMA not requested) immediately before a data transfer starts. This bit cannot be set to "1" in a program (it can only be set to "0").

The DMAS bit may be set to "1" when the DMS or the DSEL3 to DSEL0 bits change state. Therefore, always be sure to set the DMAS bit to "0" after changing the DMS or the DSEL3 to DSEL0 bits.

Because if the DMAE bit is "1", a data transfer starts immediately after a DMA request is generated, the DMAS bit in almost all cases is "0" when read in a program. Read the DMAE bit to determine whether the DMAC is enabled.

	DMAS Bit in DM	AiCON Register		
DMA Factor	Timing at which the bit is set to "1"	Timing at which the bit is set to "0"		
Software Trigger	When the DSR bit in the DMiSL register	Immediately before a data transfer starts		
	is set to "1"	• When set by writing "0" in a program		
Peripheral Function	When the interrupt control register for			
	the peripheral function that is selected			
	by the DSEL3 to DSEL0 and DMS bits			
	in the DMiSL register has its IR bit set to "1".			

Table 12.4	Timing at Which	DMAS bit Changes State	4
	i initing at trinoit	Binno bit onungoo otato	·

i = 0, 1

12.5 Channel Priority and DMA Transfer Timing

If both DMA0 and DMA1 are enabled and DMA transfer request signals from DMA0 and DMA1 are detected active in the same sampling period (one period from a falling edge to the next falling edge of BCLK), the DMAS bit on each channel is set to "1" (DMA requested) at the same time. In this case, the DMA requests are arbitrated according to the channel priority, DMA0 > DMA1.

The following describes DMAC operation when DMA0 and DMA1 requests are detected active in the same sampling period.

Figure 12.6 shows an example of DMA transfer effected by external factors.

In Figure 12.6, DMA0 request having priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, a bus arbitration is returned to the CPU. When the CPU has completed one bus access, a DMA1 transfer starts. After one DMA1 transfer is completed, the bus arbitration is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DMAS bit. Therefore, when DMA requests, as DMA1 in Figure 12.6, occurs more than one time, the DMAS bit is set to "0" as soon as getting the bus arbitration. The bus arbitration is returned to the CPU when one transfer is completed. Refer to **7.2.7 HOLD Signal** for details about bus arbitration between the CPU and DMA.

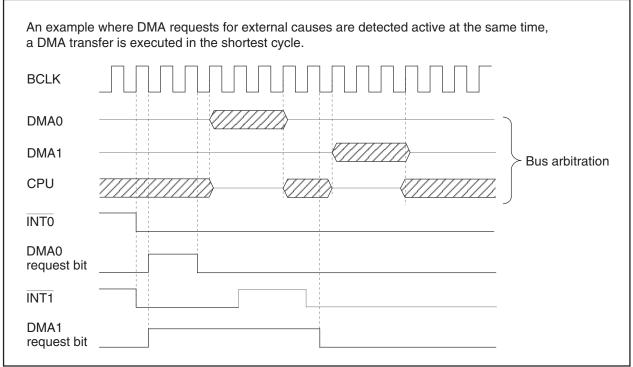


Figure 12.6 DMA Transfer by External Factors

13. Timers

Eleven 16-bit timers, each capable of operating independently of the others, can be classified by function as either timer A (five) and timer B (six). The count source for each timer acts as a clock, to control such timer operations as counting, reloading, etc.

Figures 13.1 and 13.2 show block diagrams of Timer A and Timer B configuration, respectively.

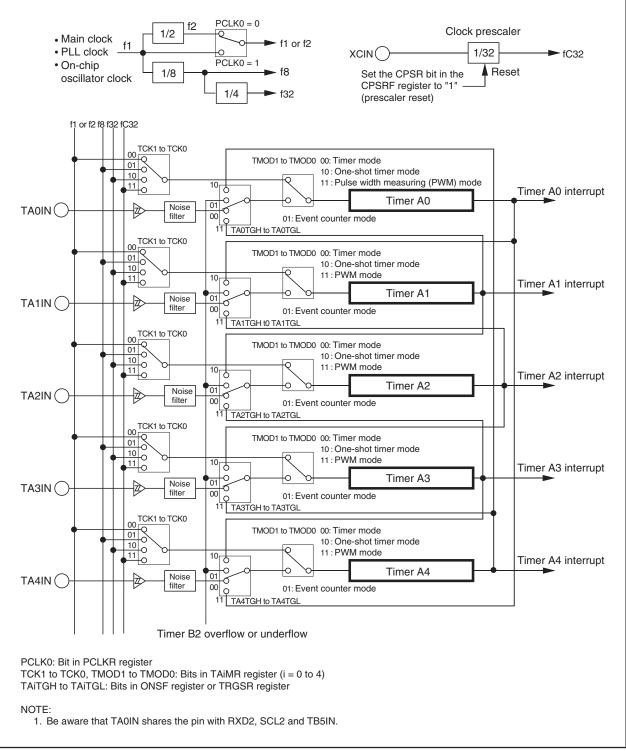


Figure 13.1 Timer A Configuration

M16C/6N Group (M16C/6N4)

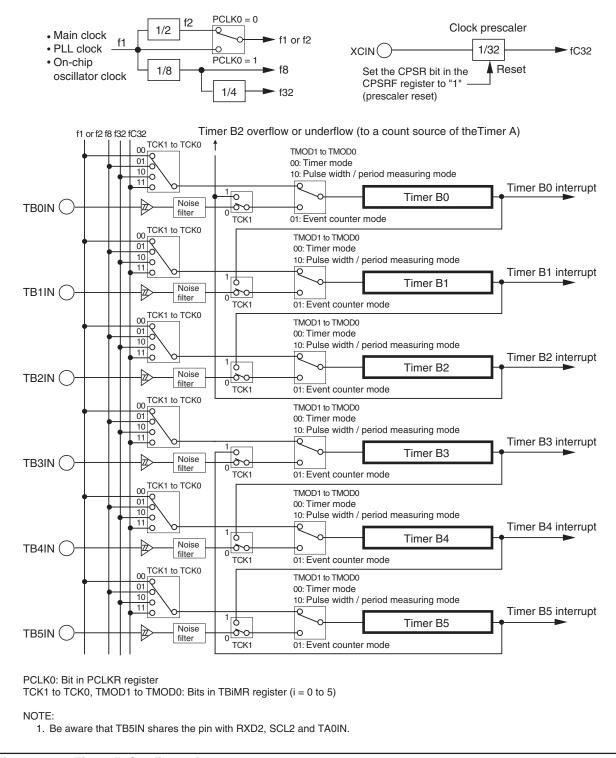


Figure 13.2 Timer B Configuration

13.1 Timer A

Figure 13.3 shows a block diagram of the timer A. Figures 13.4 to 13.6 show the timer A-related registers. The timer A supports the following four modes. Except in event counter mode, timers A0 to A4 all have the same function. Use the TMOD1 to TMOD0 bits in the TAIMR register (i = 0 to 4) to select the desired mode.

- Timer mode:
- The timer counts an internal count source. • Event counter mode: The timer counts pulses from an external device or overflows and
- underflows of other timers.
- One-shot timer mode: The timer outputs a pulse only once before it reaches the minimum count "0000h."
- Pulse width modulation (PWM) mode: The timer outputs pulses in a given width successively.

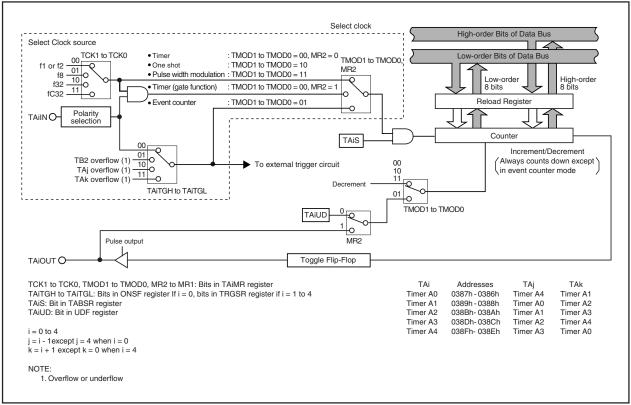
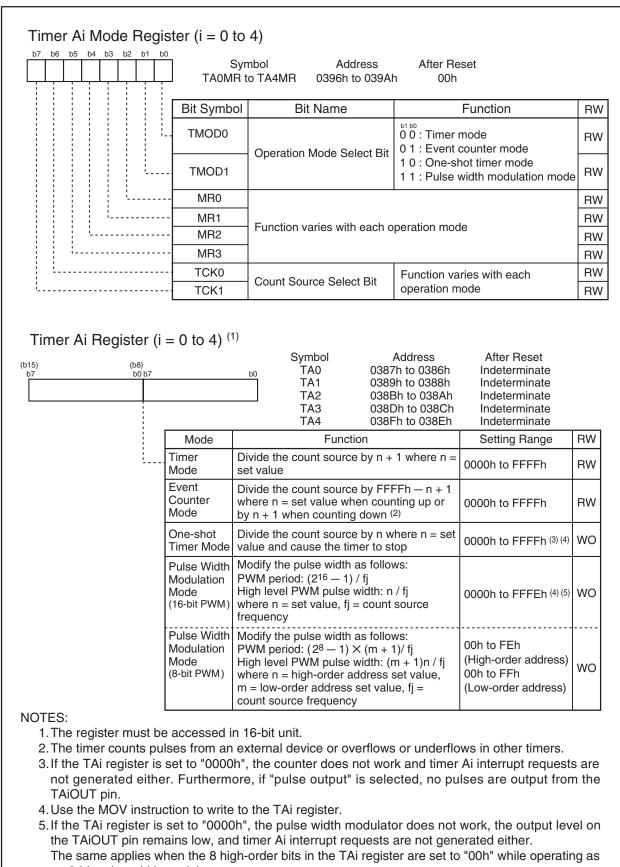



Figure 13.3 Timer A Block Diagram

an 8-bit pulse width modulator.

Figure 13.4 TA0MR to TA4MR Registers and TA0 to TA4 Registers

Count Start Flag b3 b7 b6 b5 b4 b2 b1 b0 After Reset Symbol Address TABSR 0380h 00h Bit Symbol Bit Name Function RW TA0S Timer A0 Count Start Flag 0: Stops counting RW 1 : Starts counting TA1S Timer A1 Count Start Flag RW TA2S Timer A2 Count Start Flag RW TA3S Timer A3 Count Start Flag RW TA4S Timer A4 Count Start Flag RW TB0S Timer B0 Count Start Flag RW TB1S Timer B1 Count Start Flag RW TB2S Timer B2 Count Start Flag RW Up/Down Flag⁽¹⁾ b6 b5 b4 b2 b1 Symbol Address After Reset ÚDF 0384h 00h Bit Symbol Bit Name Function RW **TA0UD** Timer A0 Up/Down Flag 0 : Down count RW 1: Up count RW TA1UD Timer A1 Up/Down Flag RW TA2UD Timer A2 Up/Down Flag Enabled by setting the MR2 bit in the TAiMR register to "0" **TA3UD** RW Timer A3 Up/Down Flag (= switching source in UDF register) during event counter mode. TA4UD Timer A4 Up/Down Flag RW 0 : Two-phase pulse signal Timer A2 Two-Phase Pulse TA2P WO processing disabled Signal Processing Select Bit 1 : Two-phase pulse signal Timer A3 Two-Phase Pulse processing enabled (2) (3) TA3P WO Signal Processing Select Bit Timer A4 Two-Phase Pulse TA4P WO Signal Processing Select Bit NOTES

1. Use the MOV instruction to write to this register.

2. Make sure the port direction bits for the TA2IN to TA4IN and TA2OUT to TA4OUT pins are set to "0" (input mode).

3. When not using the two-phase pulse signal processing function, set the corresponding bit to timer A2 to timer A4 to "0".

Figure 13.5 TABSR Register and UDF Register

One-Shot Start Flag				
b7 b6 b5 b4 b3 b2 b1 b0	Symbo ONSF		After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	TA0OS	Timer A0 One-Shot Start Flag	The timer starts counting by setting	RW
	TA1OS	Timer A1 One-Shot Start Flag	this bit to "1" while the TMOD1 to TMOD0 bits in the TAiMR register (i =	RW
	TA2OS	Timer A2 One-Shot Start Flag	0 to 4) = 10b (one-shot timer mode)	RW
	TA3OS	Timer A3 One-Shot Start Flag	and the MR2 bit in the TAiMR register = 0 (TAiOS bit enabled).	RW
	TA4OS	Timer A4 One-Shot Start Flag	When read, its content is "0".	RW
	TAZIE	Z-phase Input Enable Bit	0 : Z-phase input disabled 1 : Z-phase input enabled	RW
	TA0TGL	Timer A0 Event/Trigger	b7 b6 0 0 : Input on TA0IN is selected (1)	RW
	TA0TGH	Select Bit	0 1 : TB2 is selected ⁽²⁾ 1 0 : TA4 is selected ⁽²⁾ 1 1 : TA1 is selected ⁽²⁾	RW

NOTES:

1. Make sure the PD7_1 bit in the PD7 register is set to "0" (input mode).

2. Over flow or under flow.

Trigger Select Register

					•					
b7	b6 b5	b4	b3	b2	b1 I	b0	Symbol TRGSR	Address 0383h	After Reset 00h	
						[Bit Symbol	Bit Name	Function	RW
							TA1TGL	Timer A1 Event/Trigger	0 0 : Input on TA1IN is selected ⁽¹⁾ 0 1 : TB2 is selected ⁽²⁾	RW
					l		TA1TGH	Select Bit	1 0 : TA0 is selected ⁽²⁾ 1 1 : TA2 is selected ⁽²⁾	RW
				L		[TA2TGL	Timer A2 Event/Trigger	b3 b2 0 0 : Input on TA2IN is selected ⁽¹⁾ 0 1 : TB2 is selected ⁽²⁾	RW
			ļ				TA2TGH	Select Bit	1 0 : TA1 is selected ⁽²⁾ 1 1 : TA3 is selected ⁽²⁾	RW
							TA3TGL	Timer A3 Event/Trigger	0 0 : Input on TA3IN is selected ⁽¹⁾ 0 1 : TB2 is selected ⁽²⁾	RW
	.					[TA3TGH	Select Bit	1 0 : TA2 is selected ⁽²⁾ 1 1 : TA4 is selected ⁽²⁾	RW
							TA4TGL	Timer A4 Event/Trigger	^{b7 b6} 0 0 : Input on TA4IN is selected ⁽¹⁾ 0 1 : TB2 is selected ⁽²⁾	RW
						[TA4TGH	Select Bit	1 0 : TA3 is selected ⁽²⁾ 1 1 : TA0 is selected ⁽²⁾	RW

NOTES:

1. Make sure the port direction bits for the TA1IN to TA4IN pins are set to "0" (input mode). 2. Over flow or under flow.

Clock Prescaler Reset Flag

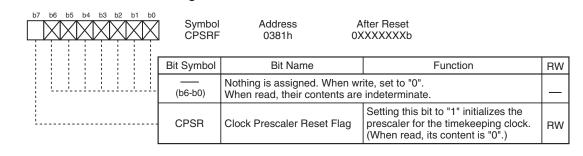


Figure 13.6 ONSF Register, TRGSR Register and CPSRF Register

13.1.1 Timer Mode

In timer mode, the timer counts a count source generated internally. Table 13.1 lists specifications in timer mode. Figure 13.7 shows TAiMR register in timer mode.

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count
	• When the timer underflows, it reloads the reload register contents and continues counting
Divide Ratio	1/(n+1) n: set value of the TAi register 0000h to FFFFh
Count Start Condition	Set the TAiS bit in the TABSR register to "1" (start counting)
Count Stop Condition	Set the TAiS bit to "0" (stop counting)
Interrupt Request Generation Timing	Timer underflow
TAiIN Pin Function	I/O port or gate input
TAiOUT Pin Function	I/O port or pulse output
Read from Timer	Count value can be read by reading the TAi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select Function	Gate function
	Counting can be started and stopped by an input signal to TAiIN pin
	Pulse output function
	Whenever the timer underflows, the output polarity of TAiOUT pin is inverted.
	When TAiS bit is set to "0 " (stop counting), the pin outputs a low.

Table 13.1	Specifications in Timer Mode

i = 0 to 4

7 b6 b5 b4 b3 b2 b1 b0 0<		nbol Address o TA4MR 0396h to 039	After Reset 9Ah 00h	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operation Mode	b1 b0	RW
	TMOD1	Select Bit	0 0 : Timer mode	RW
	MR0	Pulse Output Function Select Bit	0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (TAiOUT pin is a pulse output pin)	RW
	MR1		 b4 b3 0 0 : 1 Gate function not available 0 1 : 1 (TAilN pin functions as I/O port) 1 0 : Counts while input on the TAilN pin 	RW
	MR2	Gate Function Select Bit	 1 1 : Counts while input on the TAilN pin is high ⁽¹⁾ 	RW
	MR3	Set to "0" in timer mode		RW
	TCK0	Count Source Select Bit	0 0 : f1 or f2 0 1 : f8	RW
	TCK1		1 0 : f32 1 1 : fC32	RW

Figure 13.7 TA0MR to TA4MR Registers in Timer Mode

13.1.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timers A2, A3 and A4 can count two-phase external signals. Table 13.2 lists specifications in event counter mode (when not processing two-phase pulse signal). Figure 13.8 shows TAiMR register in event counter mode (when not processing two-phase pulse signal). Table 13.3 lists specifications in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4). Figure 13.9 shows TA2MR to TA4MR registers in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4).

Item	Specification
Count Source	• External signals input to TAiIN pin (effective edge can be selected in program)
	Timer B2 overflows or underflows,
	Timer Aj overflows or underflows,
	Timer Ak overflows or underflows
Count Operation	• Up-count or down-count can be selected by external signal or program
	• When the timer overflows or underflows, it reloads the reload register
	contents and continues counting. When operating in free-running mode,
	the timer continues counting without reloading.
Divided Ratio	1/ (FFFFh - n + 1) for up-count
	1/ (n + 1) for down-count n : set value of the TAi register 0000h to FFFFh
Count Start Condition	Set the TAiS bit in the TABSR register to "1" (start counting)
Count Stop Condition	Set the TAiS bit to "0" (stop counting)
Interrupt Request Generation Timing	Timer overflow or underflow
TAiIN Pin Function	I/O port or count source input
TAiOUT Pin Function	I/O port, pulse output, or up/down-count select input
Read from Timer	Count value can be read by reading the TAi register
Write to Timer	When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select Function	Free-run count function
	Even when the timer overflows or underflows, the reload register content
	is not reloaded to it
	Pulse output function
	Whenever the timer underflows or underflows, the output polarity of
	TAiOUT pin is inverted.
	When TAiS bit is set to "0" (stop counting), the pin outputs a low.
= 0 to 4	

Table 13.2	Specifications in Event 0	Counter Mode (when	not processing two	phase pulse signal)
			not proceeding the	

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

b6 b5 b	b4 b3 b2 b1 b0	TAC	Symbol Addr DMR to TA4MR 0396h to		
		Bit Symbol	Bit Name	Function	RW
		TMOD0	Operation Mode Select Bit	b1 b0	RW
		TMOD1		0 1 : Event counter mode ⁽¹⁾	RW
		MR0	Pulse Output Function Select Bit	0 : Pulse is not output (TAiOUT pin functions as I/O port) 1 : Pulse is output (TAiOUT pin functions as pulse output pin)	RW
		MR1	Count Polarity Select Bit (2)	0 : Counts falling edge of external signal 1 : Counts rising edge of external signal	RW
		MR2	Up/Down Switching Cause Select Bit	0 : UDF register 1 : Input signal to TAiOUT pin ⁽³⁾	RW
ļ	[MR3	Set to "0" in event counter r	node	RW
		TCK0	Count Operation Type Select Bit	0 : Reload type 1 : Free-run type	RW
		TCK1	Can be "0" or "1" when not	using two-phase pulse signal processing.	RW

2. Effective when the TAiTGH and TAiTGL bits in the ONSF or TRGSR register are "00b" (TAiIN pin input). 3. Count down when input on TAiOUT pin is low or count up when input on that pin is high. The port direction bit for TAiOUT pin is set to "0" (input mode).

Figure 13.8 TA0MR to TA4MR Registers in Event Counter Mode (when not using two-phase pulse signal processing)

Item	Specification
Count Source	• Two-phase pulse signals input to TAiIN or TAiOUT pins
Count Operation	• Up-count or down-count can be selected by two-phase pulse signal
	• When the timer overflows or underflows, it reloads the reload register
	contents and continues counting. When operating in free-running mode,
	the timer continues counting without reloading.
Divide Ratio	1/ (FFFFh - n + 1) for up-count
	1/ (n + 1) for down-count n : set value of the TAi register 0000h to FFFF
Count Start Condition	Set the TAiS bit in the TABSR register to "1" (start counting)
Count Stop Condition	Set the TAiS bit to "0" (stop counting)
Interrupt Request Generation Timing	Timer overflow or underflow
TAiIN Pin Function	Two-phase pulse input
TAiOUT Pin Function	Two-phase pulse input
Read from Timer	Count value can be read by reading the TAi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counte
	When counting (after 1st count source input)
	Value written to TAi register is written to reload register
	(Transferred to counter when reloaded next)
Select Function (1)	Normal processing operation (timer A2 and timer A3)
	The timer counts up rising edges or counts down falling edges on TAjIN
	pin when input signals on TAjOUT pin is "H".
	Up- Up- Up- Down- Down- count count count count count
	• Multiply-by-4 processing operation (timer A3 and timer A4)
	If the phase relationship is such that TAkIN pin goes "H" when the input
	signal on TAkOUT pin is "H", the timer counts up rising and falling edges
	on TAkOUT and TAkIN pins. If the phase relationship is such that TAkIN
	pin goes "L" when the input signal on TAkOUT pin is "H", the timer counts
	down rising and falling edges on TAkOUT and TAkIN pins.
	Count up all edges Count down all edges
	Count up all edges Count down all edges
	Counter initialization by Z-phase input (timer A3)
	The timer count value is initialized to "0" by Z-phase input.

NOTE:

1. Only timer A3 is selectable. Timer A2 is fixed to normal processing operation, and timer A4 is fixed to multiply-by-4 processing operation.

Г

b6 b5 b4 b3 b2 b1 b0 0 1 0 0 0 1	Syml TA2MR 1	bol Address to TA4MR 0398h to 039	After Reset Ah 00h	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operation Mode Select Bit	b1 b0	RW
	TMOD1	Operation wode Select Bit	0 1 : Event counter mode	RW
	MR0	To use two-phase pulse sic	nal processing, set this bit to "0".	RW
	MR1			RW
	MR2	To use two-phase pulse sig	nal processing, set this bit to "1".	RW
	MR3	To use two-phase pulse sig	nal processing, set this bit to "0".	RW
	TCK0	Count Operation Type Select Bit	0 : Reload type 1 : Free-run type	RW
	TCK1	Two-Phase Pulse Signal Processing Operation Select Bit ^{(1) (2)}	0 : Normal processing operation 1 : Multiply-by-4 processing operation	RW
NOTES:			•	
 The TCK1 bit is valid fo processing mode and x 		0	is set, timers A2 and A4 always operate in	norma

• Set the port direction bits for TAIIN and TAIOUT to "0" (input mode).

Figure 13.9 TA2MR to TA4MR Registers in Event Counter Mode (when using two-phase pulse signal processing with timer A2, A3 or A4)

13.1.2.1 Counter Initialization by Two-Phase Pulse Signal Processing

This function initializes the timer count value to "0" by Z-phase (counter initialization) input during twophase pulse signal processing.

This function can only be used in timer A3 event counter mode during two-phase pulse signal processing, free-running type, x4 processing, with Z-phase entered from the ZP pin.

Counter initialization by Z-phase input is enabled by writing "0000h" to the TA3 register and setting the TAZIE bit in the ONSF register to "1" (Z-phase input enabled).

Counter initialization is accomplished by detecting Z-phase input edge. The active edge can be selected to be the rising or falling edge by using the POL bit in the INT2IC register. The Z-phase pulse width applied to the INT2 pin must be equal to or greater than one clock cycle of the timer A3 count source.

The counter is initialized at the next count timing after recognizing Z-phase input. Figure 13.10 shows the relationship between the two-phase pulse (A phase and B phase) and the Z-phase.

If timer A3 overflow or underflow coincides with the counter initialization by Z-phase input, a timer A3 interrupt request is generated twice in succession. Do not use the timer A3 interrupt when using this function.

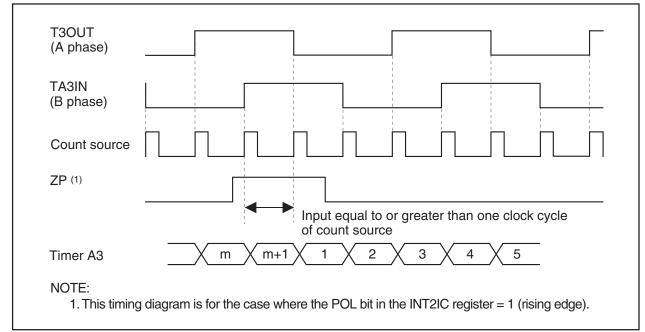


Figure 13.10 Two-phase Pulse (A phase and B phase) and Z Phase

13.1.3 One-shot Timer Mode

In one-shot timer mode, the timer is activated only once by one trigger. When the trigger occurs, the timer starts up and continues operating for a given period. Table 13.4 lists specifications in one-shot timer mode. Figure 13.11 shows the TAiMR register in the one-shot timer mode.

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count
	• When the counter reaches 0000h, it stops counting after reloading a new value
	• If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide Ratio	1/n n : set value of the TAi register 0000h to FFFFh
	However, the counter does not work if the divide-by-n value is set to 0000h.
Count Start Condition	The TAiS bit in the TABSR register = 1 (start counting) and one of the following
	triggers occurs.
	 External trigger input from the TAiIN pin
	Timer B2 overflow or underflow,
	Timer Aj overflow or underflow,
	Timer Ak overflow or underflow
	• The TAiOS bit in the ONSF register is set to "1" (timer starts)
Count Stop Condition	When the counter is reloaded after reaching "0000h"
	 TAiS bit is set to "0" (stop counting)
Interrupt Request Generation Timing	When the counter reaches "0000h"
TAiIN Pin Function	I/O port or trigger input
TAiOUT Pin Function	I/O port or pulse output
Read from Timer	An indeterminate value is read by reading the TAi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select Function	Pulse output function
	The timer outputs a low when not counting and a high when counting.

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

b6 b5 b4 b3 b2	b1 b0		nbol Address o TA4MR 0396h to 039	After Reset IAh 00h	
		Bit Symbol	Bit Name	Function	RW
	F	TMOD0	Operation Made Calent Dit	b1 b0	RW
	·	TMOD1	Operation Mode Select Bit	1 0 : One-shot timer mode	RW
		MR0	Pulse Output Function Select Bit	0 : Pulse is not output (TAio∪⊤ pin functions as I/O port) 1 : Pulse is output (TAio∪⊤ pin functions as a pulse output pin)	RW
· · · · · · · · · · · · · · · · · · ·		MR1	External Trigger Select Bit ⁽¹⁾	0 : Falling edge of input signal to TAiIN pin ⁽²⁾ 1 : Rising edge of input signal to TAiIN pin ⁽²⁾	RW
		MR2	Trigger Select Bit	0 : TAiOS bit is enabled 1 : Selected by TAiTGH to TAiTGL bits	RW
		MR3	Set to "0" in one-shot time	r mode	RW
		TCK0	Count Source Select Bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
		TCK1	Count Source Select Bit	1 0 : f32 1 1 : fC32	RW

2. The port direction bit for the TAiIN pin is set to "0" (input mode).

13.1.4 Pulse Width Modulation (PWM) Mode

In pulse width modulation mode, the timer outputs pulses of a given width in succession. The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator.

Table 13.5 lists specifications in PWM mode. Figure 13.12 shows TAiMR register in PWM mode.

Figures 13.13 and 13.14 show examples of how a 16-bit pulse width modulator operates and how an 8-bit pulse width modulator operates, respectively.

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	• Down-count (operating as an 8-bit or a 16-bit pulse width modulator)
	• The timer reloads a new value at a rising edge of PWM pulse and continues counting
	 The timer is not affected by a trigger that occurs during counting
16-bit PWM	• High level width n / fj n : set value of the TAi register
	• Cycle time (2 ¹⁶ -1) / fj fixed fj : count source frequency (f1, f2, f8, f32, fC32)
8-bit PWM	• High level width $n \times (m+1) / f_j$ n : set value of the TAi register high-order address
	• Cycle time (2 ⁸ -1) \times (m+1) / fj m : set value of the TAi register low-order address
Count Start Condition	• The TAiS bit in the TABSR register is set to "1" (start counting)
	 The TAiS bit = 1 and external trigger input from the TAiIN pin
	 The TAiS bit = 1 and one of the following external triggers occurs
	Timer B2 overflow or underflow,
	Timer Aj overflow or underflow,
	Timer Ak overflow or underflow
Count Stop Condition	The TAiS bit is set to "0" (stop counting)
Interrupt Request Generation Timing	On the falling edge of the PWM pulse
TAiIN Pin Function	I/O port or trigger input
TAiOUT Pin Function	Pulse output
Read from Timer	An indeterminate value is read by reading the TAi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)

Table	13.5	Specifications	in	PWM	Mode
i abio	1010	opoonnoationio			mouo

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

b6 b5 b4 b3 b2	2 b1 b0 1 1 i i		ymbol Addres R to TA4MR 0396h to 0		
		Bit Symbol	Bit Name	Function	RW
		TMOD0 TMOD1	Operation Mode Select Bit	1 1 : PWM mode	RW RW
		MR0	Pulse Output Function Select Bit ⁽³⁾	0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (TAiOUT pin is a pulse output pin)	RW
		MR1	External Trigger Select Bit ⁽¹⁾	0 : Falling edge of input signal to TAiIN pin ⁽²⁾ 1 : Rising edge of input signal to TAiIN pin ⁽²⁾	RW
		MR2	Trigger Select Bit	0 : Write "1" to TAiS bit in the TABSR register 1 : Selected by TAITGH to TAITGL bits	RW
		MR3	16/8-Bit PWM Mode Select Bit	0 : Functions as a 16-bit pulse width modulator 1 : Functions as an 8-bit pulse width modulator	RW
	[TCK0	Count Source Select Bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
		TCK1		1 0 : f32 1 1 : fC32	RW

1. Effective when the TAiTGH and TAiTGL bits in the ONSF or TRGSR register are "00b" (TAiIN pin input).

2. The port direction bit for the TAiIN pin is set to "0" (input mode).

3. Set to "1" (pulse is output), PWM pulse is output.

Figure 13.12 TA0MR to TA4MR Registers in PWM Mode

M16C/6N Group (M16C/6N4)

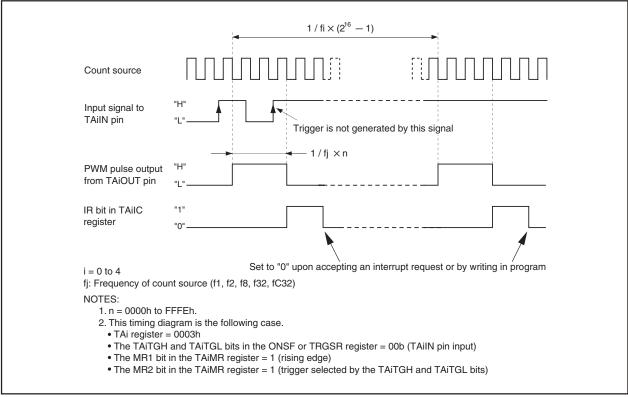


Figure 13.13 Example of 16-bit Pulse Width Modulator Operation

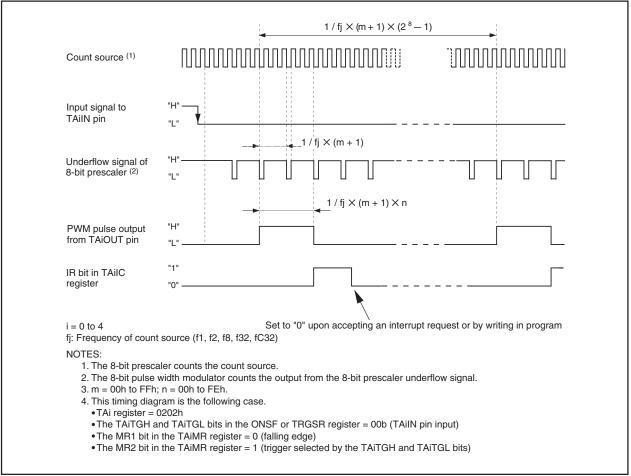


Figure 13.14 Example of 8-bit Pulse Width Modulator Operation

13.2 Timer B

Figure 13.15 shows a block diagram of the timer B. Figures 13.16 and 13.17 show the timer B-related registers.

Timer B supports the following three modes. Use the TMOD1 and TMOD0 bits in the TBiMR register (i = 0 to 5) to select the desired mode.

- Timer mode
- Event counter mode

- : The timer counts an internal count source.
- : The timer counts pulses from an external device or over flows or underflows of other timers.
- Pulse period/pulse width measuring mode : The timer measures pulse period or pulse width of an external signal.

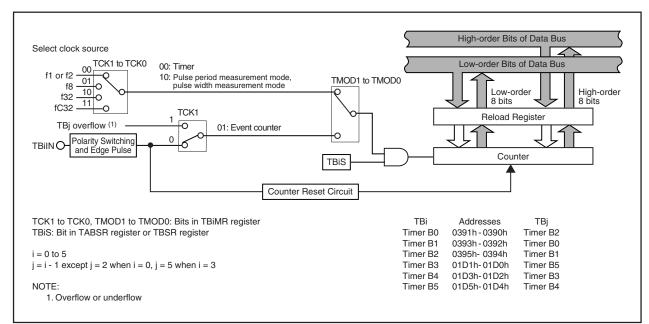
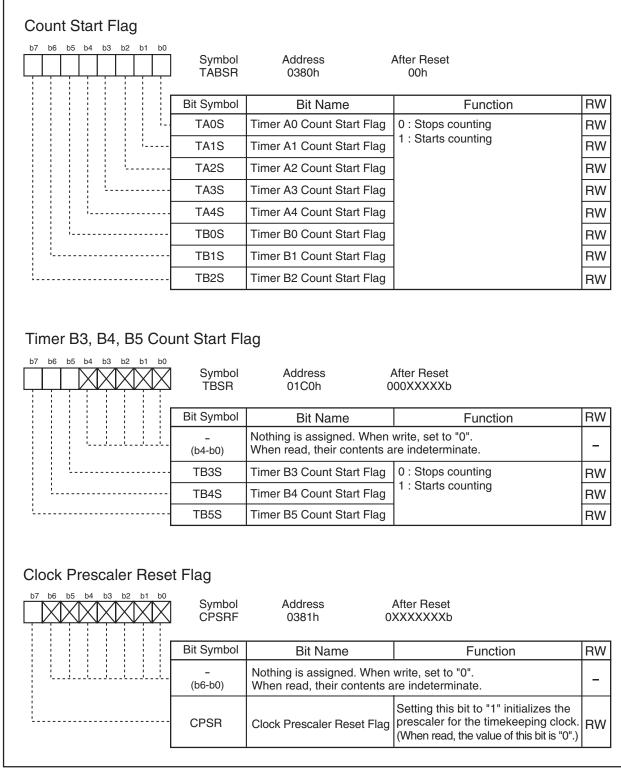


Figure 13.15 Timer B Block Diagram



b6 b5 b4 b3 b2 b1 b0	Syn TB0MR to TB3MR to					
	Bit Symbol		Bit Name	Func	tion	R
	TMOD0	0.000.00	tion Mode Colort Dit	0 0 : Timer mode 0 1 : Event counter r		R
	TMOD1	Opera	pulse		Ilse period measurement mode, Ise width measurement mode o not set a value	
	MR0			•		R
	MR1					R
	MR2	Functi	on varies with each c	operation mode	-	RV
		-			-	-
	MR3			1		R
ES: I. Timer B0, timer B3. 2. Timer B1, timer B2, tir	TCK0 TCK1 ner B4, timer B		Source Select Bit	Function varies with mode	each operation	
. Timer B0, timer B3.	TCK1	5.	Symbol	Mode	After Reset	
. Timer B0, timer B3. 2. Timer B1, timer B2, tin	TCK1	5.		mode		
1. Timer B0, timer B3. 2. Timer B1, timer B2, tim ner Bi Register (TCK1	5. 1) 	Symbol TB0 TB1 TB2 TB3 TB4 TB5	Address 0391h, 0390h 0393h, 0392h 0395h, 0394h 01D1h, 01D0h 01D3h, 01D2h	After Reset Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate	R
1. Timer B0, timer B3. 2. Timer B1, timer B2, tim ner Bi Register (TCK1 ner B4, timer B4,	5. 1)	Symbol TB0 TB1 TB2 TB3 TB4 TB5	Address 0391h, 0390h 0393h, 0392h 0395h, 0394h 01D1h, 01D0h 01D3h, 01D2h 01D5h, 01D4h ction purce by n + 1	After Reset Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate	R' R' R
1. Timer B0, timer B3. 2. Timer B1, timer B2, tim ner Bi Register (TCK1 ner B4, timer B4 i = 0 to 5) (5. 1) 	Symbol TB0 TB1 TB2 TB3 TB4 TB5 Fun Divide the count sc	Address 0391h, 0390h 0393h, 0392h 0395h, 0394h 01D1h, 01D0h 01D3h, 01D2h 01D5h, 01D4h ction purce by n + 1 e	After Reset Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate Setting Range	R

2. The timer counts pulses from an external device or overflows or underflows of other timers.

Figure 13.16 TB0MR to TB5MR Registers and TB0 to TB5 Registers

13.2.1 Timer Mode

In timer mode, the timer counts a count source generated internally.

Table 13.6 lists specifications in timer mode. Figure 13.18 shows TBiMR register in timer mode.

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count
	• When the timer underflows, it reloads the reload register contents and
	continues counting
Divide Ratio	1/(n+1) n: set value of the TBi register 0000h to FFFFh
Count Start Condition	Set the TBiS bit ⁽¹⁾ to "1" (start counting)
Count Stop Condition	Set the TBiS bit to "0" (stop counting)
Interrupt Request Generation Timing	Timer underflow
TBiIN Pin Function	I/O port
Read from Timer	Count value can be read by reading the TBi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to the TBi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TBi register is written to only reload register
	(Transferred to counter when reloaded next)

Table 13.6	Specifications	in	Timer Mode
	opounioanono		

i = 0 to 5

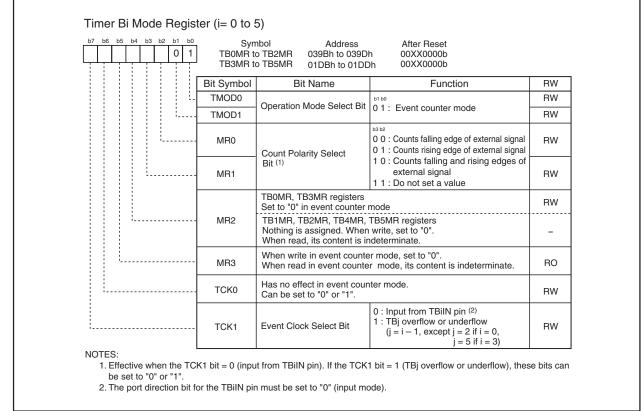
NOTE:

1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register, and the TB3S to TB5S bits are assigned to the bit 5 to bit 7 in the TBSR register.

b7 b6 b5 b	4 b3 b2 b1 b0	TB0MŘ t	nbol Address o TB2MR 039Bh to 039D o TB5MR 01DBh to 01DI		
		Bit Symbol	Bit Name	Function	RW
		TMOD0	Operation Mode Select Bit	0 0 : Timer mode	RW
		TMOD1	Operation Mode Select Dit		RW
		MR0	Has no effect in timer mode)	RW
		MR1	Can be set to "0" or "1"		RW
		MR2	TB0MR, TB3MR registers Set to "0" in timer mode TB1MR, TB2MR, TB4MR, Nothing is assigned. When		RW
			When read, its content is in		
		MR3	When write in timer mode, set to "0". When read in timer mode, its content is indeterminate.		RO
		TCK0	Count Source Select Bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
		TCK1		1 0 : f32 1 1 : fC32	RW

13.2.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Table 13.7 lists specifications in event counter mode. Figure 13.19 shows TBiMR register in event counter mode.


Item	Specification
Count Source	• External signals input to TBiIN pin (effective edge can be selected in program)
	Timer Bj overflow or underflow
Count Operation	Down-count
	• When the timer underflows, it reloads the reload register contents and
	continues counting
Divide Ratio	1/(n+1) n: set value of the TBi register 0000h to FFFFh
Count Start Condition	Set TBiS bit ⁽¹⁾ to "1" (start counting)
Count Stop Condition	Set TBiS bit to "0" (stop counting)
Interrupt Request Generation Timing	Timer underflow
TBiIN Pin Function	Count source input
Read from Timer	Count value can be read by reading the TBi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to the TBi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TBi register is written to only reload register
	(Transferred to counter when reloaded next)

i = 0 to 5

j = i - 1, except j = 2 if i = 0, j = 5 if i = 3

NOTE:

1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register, and the TB3S to TB5S bits are assigned to the bit 5 to bit 7 in the TBSR register.

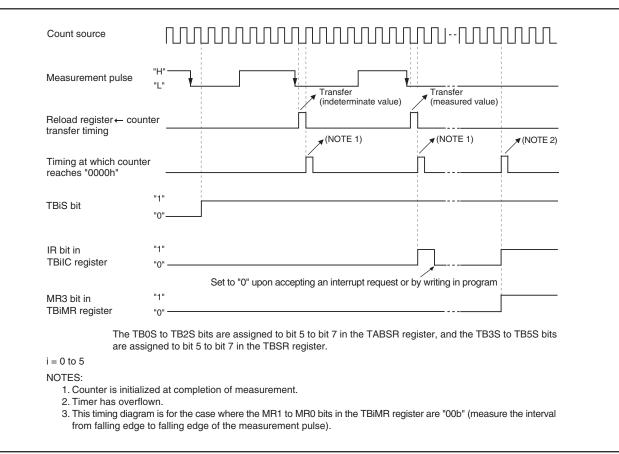
13.2.3 Pulse Period and Pulse Width Measurement Mode

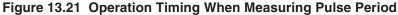
In pulse period and pulse width measurement mode, the timer measures pulse period or pulse width of an external signal. Table 13.8 lists specifications in pulse period and pulse width measurement mode. Figure 13.20 shows TBiMR register in pulse period and pulse width measurement mode. Figure 13.21 shows the operation timing when measuring a pulse period. Figure 13.22 shows the operation timing when measuring a pulse period.

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	• Up-count
	• Counter value is transferred to reload register at an effective edge of
	measurement pulse. The counter value is set to "0000h" to continue counting.
Count Start Condition	Set the TBiS bit ⁽¹⁾ to "1" (start counting)
Count Stop Condition	Set the TBiS bit to "0" (stop counting)
Interrupt Request Generation Timing	When an effective edge of measurement pulse is input ⁽²⁾
	• Timer overflow. When an overflow occurs, the MR3 bit in the TBiMR
	register is set to "1" (overflow) simultaneously. The MR3 bit is set to "0"
	(no overflow) by writing to the TBiMR register at the next count timing or
	later after the MR3 bit was set to "1". At this time, make sure the TBiS bit
	is set to "1" (start counting).
TBiIN Pin Function	Measurement pulse input
Read from Timer	Contents of the reload register (measurement result) can be read by reading
	TBi register ⁽³⁾
Write to Timer	Value written to the TBi register is written to neither reload register nor counter

Table 13.8	Specifications	in Pulse	e Period and	l Pulse	Width	Measurement N	lode
------------	----------------	----------	--------------	---------	-------	---------------	------

i = 0 to 5


- 1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register, and the TB3S to TB5S bits are assigned to the bit 5 to bit 7 in the TBSR register.
- 2. Interrupt request is not generated when the first effective edge is input after the timer started counting.
- 3. Value read from the TBi register is indeterminate until the second valid edge is input after the timer starts counting.



b6 b5	b4 b3 b2 b1 b0	TBOMF	to TB2MR 039Bh to	Iress After Reset o 039Dh 00XX0000b o 01DDh 00XX0000b	
		Bit Symbol	Bit Name	Function	RV
		TMOD0	Operation Mode	1 0 : Pulse period / pulse width	RV
		TMOD1	Select Bit	measurement mode	RV
		MR0	Measurement Mode	 b3 b2 0 0 : Pulse period measurement (Measurement between a falling edge and the next falling edge of measured pulse) 0 1 : Pulse period measurement (Measurement between a rising edge and the next 	RV
		MR1	Select Bit	rising edge of measured pulse) 1 0 : Pulse width measurement (Measurement between a falling edge and the next rising edge of measured pulse and between a rising edge and the next falling edge) 1 1 : Do not set a value	RV
			TB0MR and TB3MR re Set to "0" in pulse peri	egisters od and pulse width measurement mode	RV
	·	MR2	TB1MR, TB2MR, TB4 Nothing is assigned. V When read, its conten		-
		MR3	Timer Bi Overflow Flag ⁽¹⁾	0 : Timer did not overflow 1 : Timer has overflown	RC
		TCK0	Count Source	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RV
		TCK1	Select Bit	1 0 : f32 1 1 : fC32	RV
TBiM	IR register at the	next count timi	ng or later after the MF	start counting), the MR3 bit is set to "0" (no overflow) by writ R3 bit was set to "1" (overflow). The MR3 bit cannot be set bit 7 in the TABSR register, and the TB3S to TB5S bits are	to "1" i

Figure 13.20 TB0MR to TB5MR Registers in Pulse Period and Pulse Width Measurement Mode

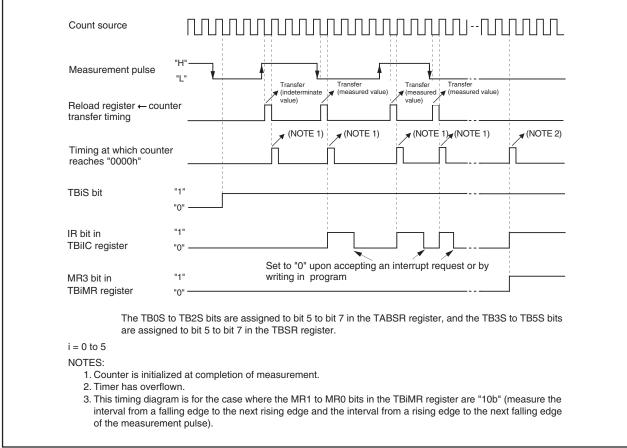


Figure 13.22 Operation Timing When Measuring Pulse Width

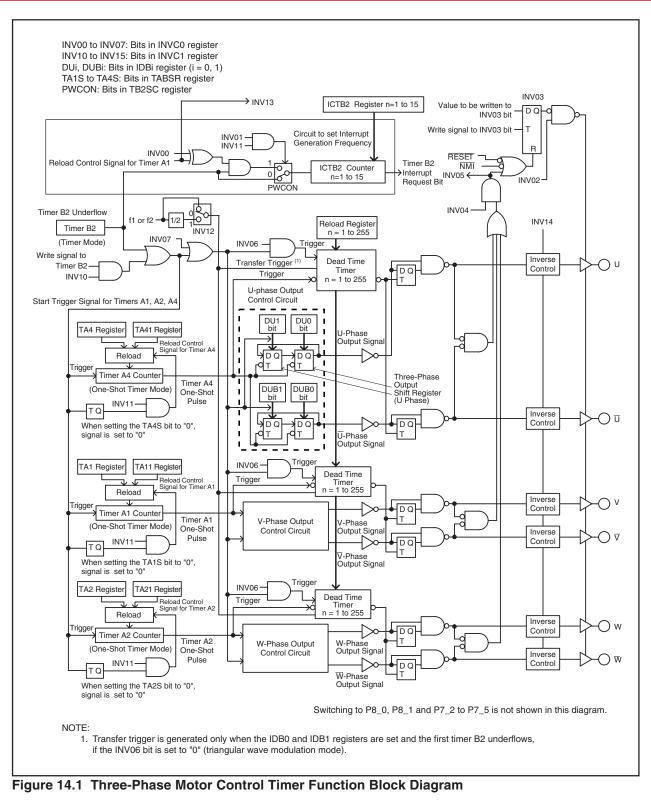
14. Three-Phase Motor Control Timer Function

Timers A1, A2, A4 and B2 can be used to output three-phase motor drive waveforms. Table 14.1 lists the specifications of the three-phase motor control timer function. Figure 14.1 shows the block diagram for three-phase motor control timer function. Also, the related registers are shown on Figures 14.2 to 14.8.

Item	Specification
Three-Phase Waveform Output Pin	Six pins (U, \overline{U} , V, \overline{V} , W, \overline{W})
Forced Cutoff Input (1)	Input "L" to NMI pin
Used Timers	Timer A4, A1, A2 (used in the one-shot timer mode)
	 Timer A4: U- and U-phase waveform control
	 Timer A1: V- and V-phase waveform control
	 Timer A2: W- and W-phase waveform control
	Timer B2 (used in the timer mode)
	 Carrier wave cycle control
	Dead time timer (3 eight-bit timer and shared reload register)
	Dead time control
Output Waveform	Triangular wave modulation, Sawtooth wave modification
	 Enable to output "H" or "L" for one cycle
	• Enable to set positive-phase level and negative-phase level respectively
Carrier Wave Cycle	Triangular wave modulation: count source \times (m+1) \times 2
	Sawtooth wave modulation: count source \times (m+1)
	m: Setting value of the TB2 register, 0000h to FFFFh
	Count source: f1, f2, f8, f32, fC32
Three-Phase PWM Output Width	Triangular wave modulation: count source \times n \times 2
	Sawtooth wave modulation: count source \times n
	n: Setting value of the TA4, TA1 and TA2 registers (of the TA4,
	TA41, TA1, TA11, TA2 and TA21 registers when setting the
	INV11 bit to "1"), 0001h to FFFFh
	Count source: f1, f2, f8, f32, fC32
Dead Time	Count source \times p, or no dead time
	p: Setting value of the DTT register, 01h to FFh
	Count source: f1, f2, f1 divided by 2, f2 divided by 2
Active Level	Enable to select "H" or "L"
Positive and Negative-Phase Concurrent	
Active Disable Function	Positive and negative-phases concurrent active detect function
Interrupt Frequency	For Timer B2 interrupt, select a carrier wave cycle-to-cycle basis
	through 15 times carrier wave cycle-to-cycle basis

Table 14.1 Three-Phase Motor Control Timer Function Specifications

NOTE:


1. Forced cutoff with $\overline{\text{NMI}}$ input is effective when the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by $\overline{\text{NMI}}$ input enabled). If an "L" signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit is "1", the related pins go to a high-impedance state regardless of which functions of those pins are being used.

Related pins: • P7_2/CLK2/TA1OUT/V

- P7_3/CTS2/RTS2/TA1IN/V
- P7_4/TA2OUT/W
- P7_5/TA2IN/W
- P8_0/TA4OUT/U
- P8_1/TA4IN/U

M16C/6N Group (M16C/6N4)

7 b6 b5	b4 b3 b2	b1 b0	,	hbol Address /C0 01C8h	After Reset 00h	
			Bit Symbol	Bit Name	Function	RW
			INV00	Interrupt Enable Output Polarity Select Bit	0: The ICTB2 counter is incremented by one on the rising edge of the timer A1 reload control signal 1: The ICTB2 counter is incremented by one on the falling edge of the timer A1 reload control signal ⁽²⁾	RW
			INV01	Interrupt Enable Output Specification Bit ⁽³⁾	0: ICTB2 counter is incremented by one when timer B2 underflows 1: Selected by the INV00 bit ⁽²⁾	RW
			INV02	Mode Select Bit ⁽⁴⁾	0: No three-phase control timer functions 1: Three-phase control timer function ⁽⁵⁾	RW
			INV03	Output Control Bit	0: Disables three-phase control timer output (5) 1: Enables three-phase control timer output (6)	RW
			INV04	Positive and Negative- Phases Concurrent Active Disable Function Enable Bit	0: Enables concurrent active output 1: Disables concurrent active output	RW
			INV05	Positive and Negative- Phases Concurrent Active Output Detect Flag	0: Not detected 1: Detected (7)	RW
			INV06	Modulation Mode Select ⁽⁸⁾	0: Triangular wave modulation mode 1: Sawtooth wave modulation mode ⁽⁹⁾	RW
			INV07	Software Trigger Select Bit	Transfer trigger is generated when the INV07 bit is set to "1". Trigger to the dead time timer is also generated when setting the INV06 bit to "1". Its value is "0" when read.	RW

1. Set the INVC0 register after the PRC1 bit in the PRCR register is set to "1" (write enable). Rewrite the INV00 to INV02 and INV06 bits when the timers A1, A2, A4 and B2 stop.

2. The INV00 and INV01 bits are enabled only when the INV11 bit is set to "1" (three-phase mode 1). The ICTB2 counter is incremented by one every time the timer B2 underflows, regardless of INV00 and INV01 bit settings, when the INV11 bit is set to "0" (three-phase mode 0).

When setting the INV01 bit to "1", set the timer A1 count start flag before the first timer B2 underflow.

When the INV00 bit is set to "1", the first interrupt is generated when the timer B2 underflows *n*-1 times, if *n* is the value set in the ICTB2 counter. Subsequent interrupts are generated every *n* times the timer B2 underflows. 3. Set the INV01 bit to "1" after setting the ICTB2 register.

4. Set the INV02 bit to "1" to operate the dead time timer, U-, V-and W-phase output control circuits and ICTB2 counter.

5. When the INV03 bit is set to "1", the pins applied to U/V/W output three-phase PWM.

The U, \overline{U} , V, \overline{V} , W and \overline{W} pins, including pins shared with other output functions, are all placed in high-impedance states when the following conditions are all met.

- The INV02 bit is set to "1" (three-phase control timer function)
- The INV03 bit to "0" (three-phase control timer output disabled)
- Direction registers of each port are set to "0" (input mode)

6. The INV03 bit is set to "0" when the following conditions are all met.

Reset

• A concurrent active state occurs while INV04 bit is set to "1"

• The INV03 bit is set to "0" by program

• A signal applied to the $\overline{\text{NMI}}$ pin changes "H" to "L"

When both the INV04 and INV05 bits are set to "1", the INV03 bit is set to "0".

The INV05 bit cannot be set to "1" by program. Set the INV04 bit to "0", as well, when setting the INV05 bit to "0".
 The following table describes how the INV06 bit works.

Item	INV06 = 0	INV06 = 1
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode
and IDB1 Registers to Three-	Transferred once by generating a transfer trigger after setting the IDB0 and IDB1 registers	Transferred every time a transfer trigger is generated
Timing to Trigger the Dead Time Timer when the INV16 Bit=0	On the falling edge of a one-shot pulse of the timer A1, A2 or A4	By a transfer trigger, or the falling edge of a one-shot pulse of the timer A1, A2 or A4
INV13 Bit	Enabled when the INV11 bit=1 and the INV06 bit=0	Disabled

Transfer trigger : Timer B2 underflows and write to the INV07 bit, or write to the TB2 register when INV10 = 1

9. When the INV06 bit is set to "1", set the INV11 bit to "0" (three-phase mode 0) and the PWCON bit in the TB2SC register to "0" (reload timer B2 with timer B2 underflow).

Figure 14.2 INVC0 Register

7 b6 b5 b4 b3 b2 b1 b0	Symt		After Reset	
	INVO	C1 01C9h	00h	
	Bit Symbol	Bit Name	Function	RW
	INV10	Timer A1, A2 and A4 Start Trigger Select Bit	0: Timer B2 underflow 1: Timer B2 underflow and write to the timer B2	RW
	INV11	Timer A1-1, A2-1, A4-1 Control Bit ⁽²⁾	0: Three-phase mode 0 ⁽³⁾ 1: Three-phase mode 1	RW
	INV12	Dead Time Timer Count Source Select Bit	0 : f1 or f2 1 : f1 divided-by-2 or f2 divided-by-2	RW
	INV13	Carrier Wave Detect Flag ⁽⁴⁾	0: Timer A1 reload control signal is "0" 1: Timer A1 reload control signal is "1"	RC
	INV14	Output Polarity Control Bit	0 : Active "L" of an output waveform 1 : Active "H" of an output waveform	RW
<u>.</u>	INV15	Dead Time Disable Bit	0: Enables dead time 1: Disables dead time	RW
	INV16	Dead Time Timer Trigger Select Bit	 0: Falling edge of a one-shot pulse of the timer A1, A2, A4 ⁽⁵⁾ 1: Rising edge of the three-phase output shift register (U-, V-, W-phase) 	RW
	– (b7)	Reserved Bit	Set to "0"	RW

NOTES:

1. Rewrite the INVC1 register after the PRC1 bit in the PRCR register is set to "1" (write enable).

The timers A1, A2, A4, and B2 must be stopped during rewrite.

2. The following table lists how the INV11 bit works.

		-
Item	INV11 = 0	INV11 = 1
Mode	Three-phase mode 0	Three-phase mode 1
TA11, TA21 and TA41 Registers	Not used	Used
	Disabled. The ICTB2 counter is incremented whenever the timer B2 underflows	Enabled
INV13 Bit	Disabled	Enabled when INV11=1 and INV06=0

3. When the INV06 bit is set to "1" (sawtooth wave modulation mode), set the INV11 bit to "0" (three-phase mode 0). Also, when the INV11 bit is set to "0", set the PWCON bit in the TB2SC register to "0" (timer B2 is reloaded when the timer B2 underflows).

4. The INV13 bit is enabled only when the INV06 bit is set to "0" (Triangular wave modulation mode) and the INV11 bit to "1" (three-phase mode 1).

5. If the following conditions are all met, set the INV16 bit to "1" (rising edge of the three-phase output shift register).

• The INV15 bit is set to "0" (dead time timer enabled)

• The Dij bit (i=U, V or W, j=0, 1) and DiBj bit always have different values when the INV03 bit is set to "1". (The positive-phase and negative-phase always output opposite level signals.) If above conditions are not met, set the INV16 bit to "0" (falling edge of a one-shot pulse of the timer A1, A2, A4).

Figure 14.3 INVC1 Register

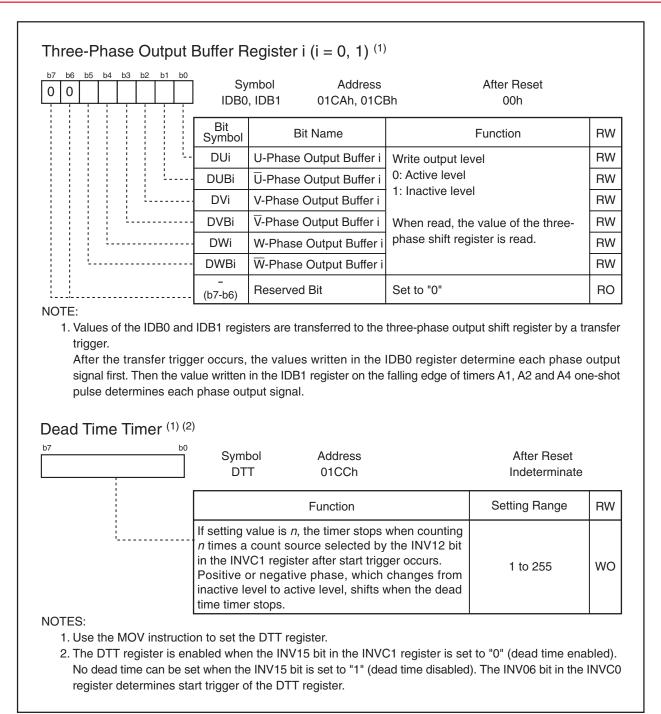


Figure 14.4 IDB0 and IDB1 Registers and DTT Register

Timer Ai, Ai-1 Registe	Symbol TA1, TA2, TA4 TA11, TA21, TA41 ⁽⁷⁾	Address 0389h - 0388h, 038Bh - 03	88Ah, 038F		minate
		Function		Setting Range	RW
	source is counted a Positive phase char	the timer stops when the nt fter a start trigger is generate nges to negative phase, and ners A1, A2 and A4 stop.	ed.	0000h to FFFFh	wo
NOTES: 1. Use a 16-bit data for re	L	· · · · ·	· · · · ·		
 Use the MOV instructi When the INV15 bit ir inactive level to an act When the INV11 bit in 	on to set the TAi and the INVC1 register ive level when the do the INVC1 register is	r is set to "0" (dead timer ead time timer stops. s set to "0" (three-phase m	enabled)	, phase switches fr	om an
the reload register by a	set to "1" (three-phas a timer Ai start trigge ne TAi1 and TAi regis egisters when the tir below to set the TAi1 TAi1 register, count source cycle, a	se mode 1), the value of th rr. Then, the value of the TA sters are transferred alterna mer B2 underflows. I register.	Ai register	r is transferred by th	ne next
 When the INV11 bit is the reload register by a trigger. The values of th timer Ai start trigger. 6. Do not write to these r 7. Follow the procedure I (a) Write value to the (b) Wait one timer Ai content of the timer Ai content of timer Ai content of the timer Ai content of timer	set to "1" (three-phas a timer Ai start trigge ne TAi1 and TAi regis egisters when the tir below to set the TAi1 TAi1 register, count source cycle, a	se mode 1), the value of th rr. Then, the value of the TA sters are transferred alterna mer B2 underflows. I register.	Ai register	r is transferred by th	ne next
 When the INV11 bit is the reload register by a trigger. The values of th timer Ai start trigger. 6. Do not write to these r 7. Follow the procedure I (a) Write value to the (b) Wait one timer Ai o (c) Write the same value 	set to "1" (three-phas a timer Ai start trigge ne TAi1 and TAi regis egisters when the tir below to set the TAi1 TAi1 register, count source cycle, a	se mode 1), the value of th rr. Then, the value of the TA sters are transferred alterna mer B2 underflows. I register.	Ai register tely to the	r is transferred by th	ne next
When the INV11 bit is the reload register by a trigger. The values of th timer Ai start trigger. 6. Do not write to these r 7. Follow the procedure b (a) Write value to the (b) Wait one timer Ai o (c) Write the same value Timer B2 Register ⁽¹⁾	set to "1" (three-phase a timer Ai start trigge ne TAi1 and TAi regis egisters when the tir below to set the TAi1 TAi1 register, count source cycle, a lue as (a) to the TAi1 Symbol	se mode 1), the value of th r. Then, the value of the TA ters are transferred alterna mer B2 underflows. I register. and I register. Address	Ai register tely to the	r is transferred by the reload register with	ne next

Figure 14.5 TA1, TA2, TA4, TA11, TA21 and TA41 Registers, and TB2 Register

	Sym ICT			fter Reset determinate	
		Function		Setting Range	RW
	(the ICT underflow is gener When th count tim <i>n</i> , the tir timer B2	e INV01 bit in the INVC0 B2 counter increments will s) and the setting value is mated every <i>n</i> th time timer e INV01 bit is set to "1" (thing of the ICTB2 counter) ner B2 interrupt is gener underflow meeting the c 0 bit occurs.	henever the timer B2 b, the timer B2 interrupt B2 underflow occurs. he INV00 bit selects and setting value is ated every <i>n</i> th time	1 to 15	wo
	Nothing	is assigned. When write,	set to "0".		_
If the INV01 bit is set when the timer B2 un 3. If the INV00 bit is set t	o "1", set the to "0" and th derflows. o "1", the fir B2 counter.	e ICTB2 register when the he TB2S bit to "1" (timer E st interrupt is generated w Subsequent interrupts are ster ⁽¹⁾	32 counter start), do n hen the timer B2 unde generated every <i>n</i> time	ot set the ICTB2 re erflows <i>n-1</i> times, <i>n</i> s the timer B2 unde	egiste bein
	Sym Sym			fter Reset	
		50 003En	X.	XXXXX00b	
	Bit Symbol	Bit Name	Func	XXXXX00b	RW
	Bit Symbol - PWCON		Func	XXXXX00b iion ow	
	Symbol	Bit Name Timer B2 Reload Timing	Funct 0 : Timer B2 underfi 1 : Timer A output a occurrences ⁽²⁾ 0 : Three-phase out by NMI input (hig	XXXXX00b tion ow it odd-numbered put forcible cutoff gh-impedance) put forcible cutoff	
NOTES:	- PWCON	Bit Name Timer B2 Reload Timing Switching Bit Three-Phase Output Port	Funct 0 : Timer B2 underfi 1 : Timer A output a occurrences ⁽²⁾ 0 : Three-phase out by NMI input (hig disabled 1 : Three-phase out by NMI input (hig enabled nen write, set to "0".	XXXXX00b tion ow it odd-numbered put forcible cutoff gh-impedance) put forcible cutoff	RW

b6 b5 b4 b3 b2 b1 b0	Sym TRG		After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	TA1TGL	Timer A1 Event/Trigger	Set to "01b" (TB2 underflow) before	RW
	TA1TGH	Select Bit	using a V-phase output control circuit	RW
	TA2TGL	Timer A2 Event/Trigger	Set to "01b" (TB2 underflow) before	RW
	TA2TGH	Select Bit	using a W-phase output control circuit	RW
	TA3TGL	Timer A3 Event/Trigger	 b5 b4 0 0: Selects an input to the TA3IN pin ⁽¹⁾ 0 1: Selects TB2 ⁽²⁾ 	RW
	тазтан	Select Bit	1 0: Selects TA2 ⁽²⁾ 1 1: Selects TA4 ⁽²⁾	RW
i	TA4TGL	Timer A4 Event/Trigger	Set to "01b" (TB2 underflow) before	RW
	TATOL	Select Bit		
TES: 1. Set the corresponding 2. Overflow or underflow.	TA4TGH	ion bit to "0" (input mode).	using a U-phase output control circuit	RW
1. Set the corresponding		ion bit to "0" (input mode). bol Address		RW
1. Set the corresponding 2. Overflow or underflow. ount Start Flag	port direct	ion bit to "0" (input mode). bol Address	After Reset	RW
1. Set the corresponding 2. Overflow or underflow. unt Start Flag	port direct Sym TABS	ion bit to "0" (input mode). bol Address SR 0380h	After Reset 00h	1
1. Set the corresponding 2. Overflow or underflow. ount Start Flag	port direct Sym TABS Bit Symbol	ion bit to "0" (input mode). bol Address SR 0380h Bit Name	After Reset 00h Function	RW
1. Set the corresponding 2. Overflow or underflow. ount Start Flag	port direct Sym TABS Bit Symbol TA0S	ion bit to "0" (input mode). bol Address SR 0380h Bit Name Timer A0 Count Start Flag	After Reset 00h Function 0 : Stops counting	RW
1. Set the corresponding 2. Overflow or underflow. ount Start Flag	Sym TABS Bit Symbol TA0S TA1S	ion bit to "0" (input mode). bol Address SR 0380h Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag	After Reset 00h Function 0 : Stops counting	RW RW
1. Set the corresponding 2. Overflow or underflow. ount Start Flag	Sym TABS Bit Symbol TA0S TA1S TA2S	ion bit to "0" (input mode). bol Address SR 0380h Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag	After Reset 00h Function 0 : Stops counting	RW RW RW RW
1. Set the corresponding 2. Overflow or underflow. ount Start Flag	Sym TABS Bit Symbol TA0S TA1S TA2S TA3S	ion bit to "0" (input mode). bol Address SR 0380h Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag Timer A3 Count Start Flag	After Reset 00h Function 0 : Stops counting	RW RW RW
1. Set the corresponding 2. Overflow or underflow. ount Start Flag	Sym TABS Bit Symbol TA0S TA1S TA2S TA2S TA3S TA4S	ion bit to "0" (input mode). bol Address SR 0380h Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag Timer A3 Count Start Flag Timer A4 Count Start Flag	After Reset 00h Function 0 : Stops counting	RW RW RW RW

Figure 14.7 TRGSR Register and TRBSR Register

b6 b5 b4 b3 b2 b1 b0 0 1 0 0 1 0	TA1	Symbol MR, TA2MR, TA4MR	Address After Reset 0397h, 0398h, 039Ah 00h	
	Bit Symbol	Bit Name	Function	RV
	TMOD0	Operation Mode	Set to "10b" (one-shot timer mode)	RW
	TMOD1	Select Bit	with the three-phase motor control timer function	RV
· · · · · · · · · · · · · · · · · · ·	MR0	Pulse Output Function Select Bit	Set to "0" with the three-phase motor control timer function	R۷
	MR1	External Trigger Select Bit	Set to "0" with the three-phase motor control timer function	R۷
·	MR2	Trigger Select Bit	Set to "1" (selected by the TRGSR register) with the three-phase motor control timer function	RV
	MR3	Set to "0" with the three-p	phase motor control timer function	RW
	тско	Count Source Select Bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RV
		Courie Source Select Bit	1 0 : f32	
ner B2 Mode Regis	TCK1		1 1 : fC32	RV
ner B2 Mode Regis				RV
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N		1 1 : fC32 After Reset	
b6 b5 b4 b3 b2 b1 b0	ster Symt TB2N	/IR 039Dh Bit Name	1 1 : fC32 After Reset 00XX0000b Function Set to "00b" (timer mode) when using	RW
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N Bit Symbol	/IR 039Dh	1 1 : fC32 After Reset 00XX0000b Function	RW
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N Bit Symbol TMOD0	IR 039Dh Bit Name Operation Mode Select Bit Disabled when using the th	1 1 : fC32 After Reset 00XX0000b Function Set to "00b" (timer mode) when using the three-phase motor control timer	RW RW
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N Bit Symbol TMOD0 TMOD1	IR 039Dh Bit Name Operation Mode Select Bit	After Reset 00XX0000b Function Set to "00b" (timer mode) when using the three-phase motor control timer function pree-phase motor control timer function.	RW RW RW
b6 b5 b4 b3 b2 b1 b0	ster Symt TB2N Bit Symbol TMOD0 TMOD1 MR0	IR 039Dh Bit Name Operation Mode Select Bit Disabled when using the th When write, set to "0". When read, its content is	After Reset 00XX0000b Function Set to "00b" (timer mode) when using the three-phase motor control timer function pree-phase motor control timer function.	RW RW RW RW
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N Bit Symbol TMOD0 TMOD1 MR0 MR1	IR 039Dh Bit Name Operation Mode Select Bit Disabled when using the th When write, set to "0". When read, its content is Set to "0" when using thr When write in three-phase	After Reset 00XX0000b Function Set to "00b" (timer mode) when using the three-phase motor control timer function nree-phase motor control timer function. indeterminate. ee-phase motor control timer function motor control timer function, set to "0". e motor control timer function, te.	RW RW RW RW RW
b6 b5 b4 b3 b2 b1 b0	ster Symbol TMOD0 TMOD1 MR0 MR1 MR2	IR 039Dh Bit Name Operation Mode Select Bit Disabled when using the th When write, set to "0". When read, its content is Set to "0" when using thr When write in three-phase When read in three-phase	After Reset 00XX0000b Function Set to "00b" (timer mode) when using the three-phase motor control timer function nree-phase motor control timer function. indeterminate. ee-phase motor control timer function motor control timer function, set to "0". e motor control timer function,	RW RW RW RW RW RW RW

Figure 14.8 TA1MR, TA2MR and TA4MR Registers, and TB2MR Register

The three-phase motor control timer function is enabled by setting the INV02 bit in the INVC0 register to "1". When this function is selected, timer B2 is used to control the carrier wave, and timers A4, A1 and A2 are used to control three-phase PWM outputs (U, \overline{U} , V, \overline{V} , W and \overline{W}). The dead time is controlled by a dedicated dead-time timer. Figure 14.9 shows the example of triangular modulation waveform and Figure 14.10 shows the example of sawtooth modulation waveform.

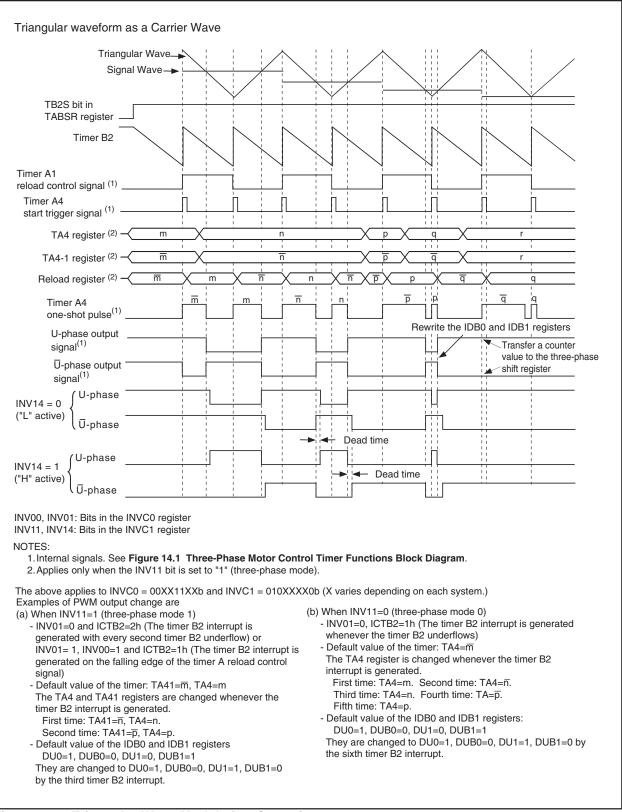


Figure 14.9 Triangular Wave Modulation Operation

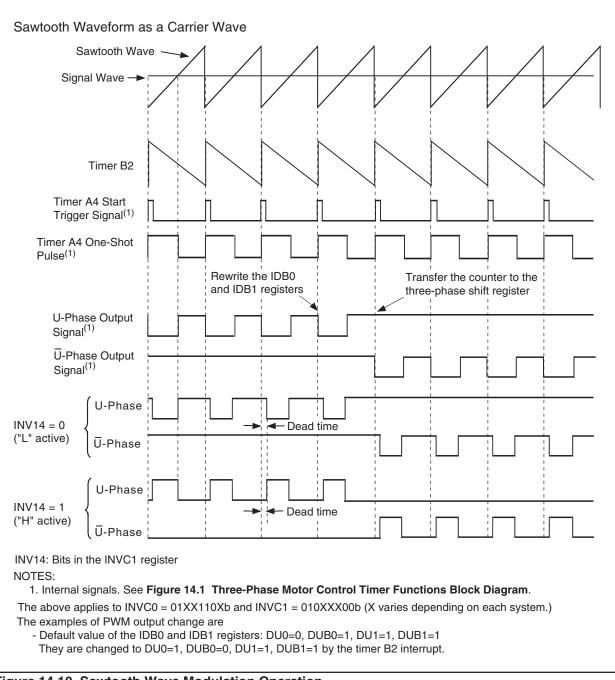


Figure 14.10 Sawtooth Wave Modulation Operation

15. Serial Interface

Serial interface is configured with 4 channels: UART0 to UART2 and SI/O3.

15.1 UARTi (i = 0 to 2)

UARTi each have an exclusive timer to generate a transfer clock, so they operate independently of each other. Figures 15.1 to 15.3 show the block diagram of UARTi. Figure 15.4 shows the block diagram of the UARTi transmit/receive.

UARTi has the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode).
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Bus collision detection function, IE mode)
- Special mode 4 (SIM mode) : UART2

Figures 15.5 to 15.10 show the UARTi-related registers. Refer to tables listing each mode for register setting.

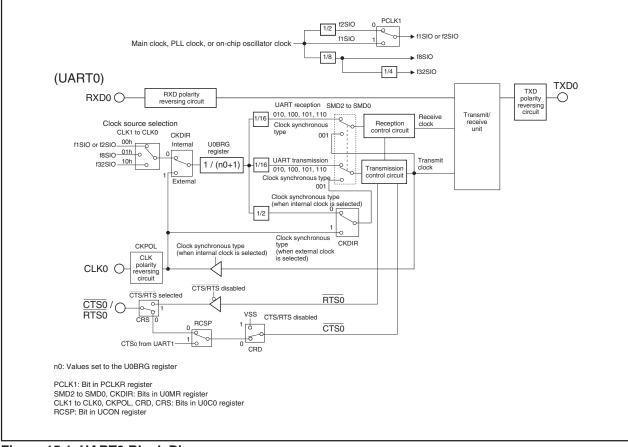


Figure 15.1 UART0 Block Diagram

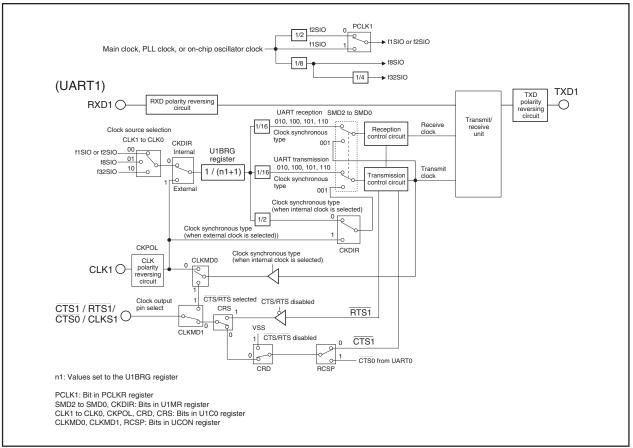


Figure 15.2 UART1 Block Diagram

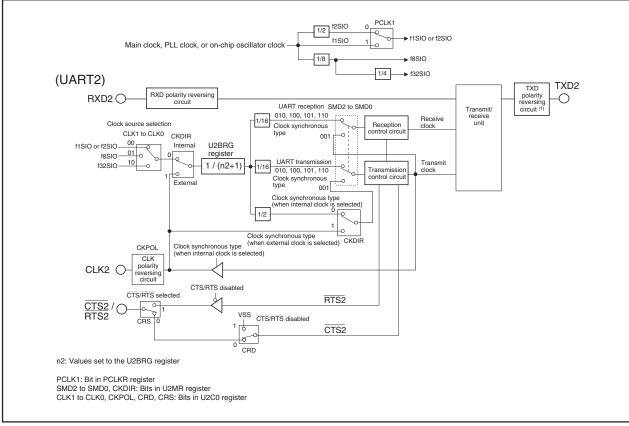
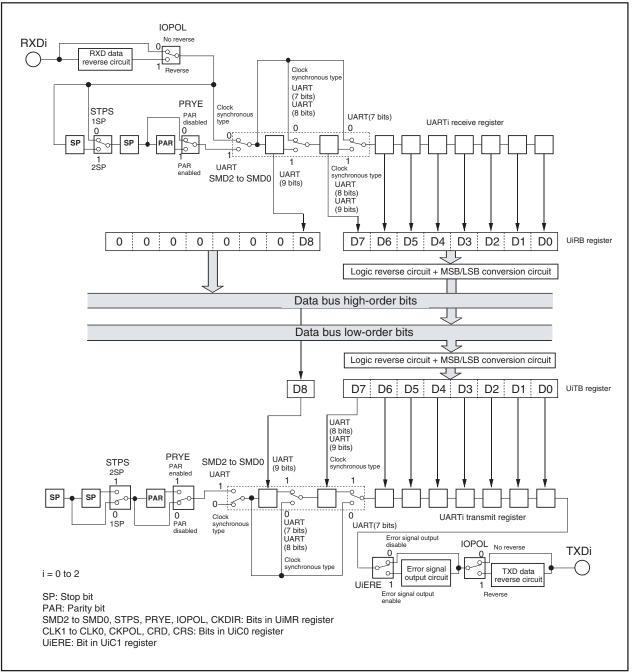



Figure 15.3 UART2 Block Diagram

M16C/6N Group (M16C/6N4)

15. Serial Interface

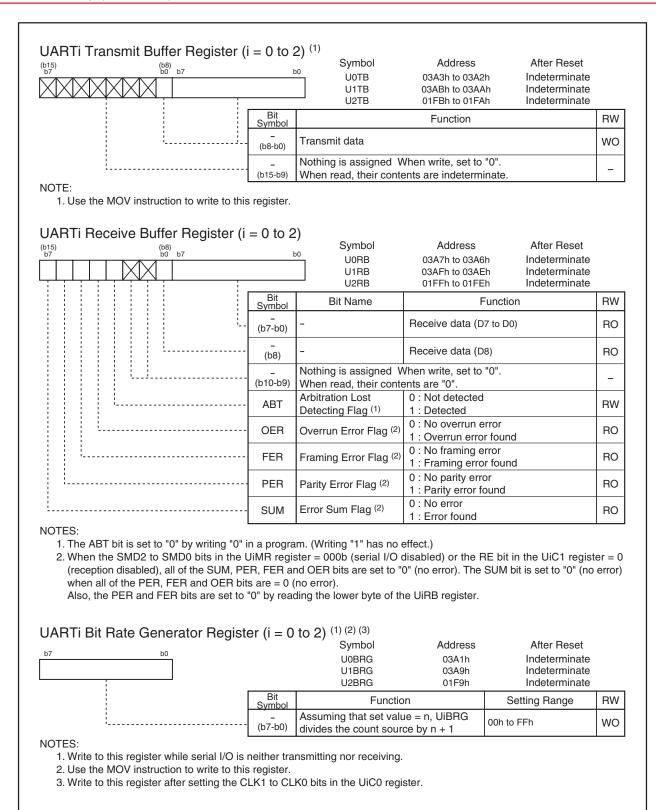


Figure 15.5 U0TB to U2TB Registers, U0RB to U2RB Registers, and U0BRG to U2BRG Registers

UARTi Transmit/Receive Mode Register (i = 0 to 2)

			5 (/	
b7 b6 b5 b4 b3 b2	b1 b0		ymbol R to U2MR 03A	Address After Reset A0h, 03A8h, 01F8h 00h	
			Bit Name	Function	RW
				0 0 0 : Serial interface disabled 0 0 1 : Clock synchronous serial I/O mode	
	·	SMD1	Serial Interface Mode Select Bit ⁽¹⁾	0 1 0 : I ² C mode ⁽²⁾ 1 0 0 : UART mode transfer data 7-bit long 1 0 1 : UART mode transfer data 8-bit long	RW
		SMD2		1 1 0 : UART mode transfer data 9-bit long Do not set a value except above	
		CKDIR	Internal/External Clock Select Bit	0 : Internal clock 1 : External clock ⁽³⁾	RW
		STPS	Stop Bit Length Select Bit	0 : 1 stop bit 1 : 2 stop bits	RW
			Odd/Even Parity Select Bit	Effective when the PRYE bit = 1 0 : Odd parity 1 : Even parity	RW
· · · · · · · · · · · · · · · · · · ·			Parity Enable Bit	0 : Parity disabled 1 : Parity enabled	RW
		IOPOL	TXD, RXD I/O Polarity Reverse Bit	0 : No reverse 1 : Reverse	RW

NOTES:

1. To receive data, set the corresponding port direction bit for each RXDi pin to "0" (input mode).

2. Set the corresponding port direction bit for SCL and SDA pins to "0" (input mode).

3. Set the corresponding port direction bit for each CLKi pin to "0" (input mode).

UARTi Transmit/Receive Control Register 0 (i = 0 to 2)

b7 b6 b5 b4 b3 b2 b1 b0	ר פ	Symbol 0 to U2C0 03A	Address A4h, 03ACh, 01FCh	After Reset 00001000b	
	Bit Symbol	Bit Name	Functi	on	RV
	CLK0	BRG Count Source	0 0 : f1SIO or f2SIO is 0 1 : f8SIO is selected		R١
	CLK1	Select Bit ⁽⁵⁾	1 0 : f32SIO is selecte 1 1 : Do not set a valu	ed	R۱
	CRS	CTS/RTS Function Select Bit ⁽¹⁾	Effective when CRD = 0 : CTS function is se 1 : RTS function is se	lected (2)	R۱
	TXEPT	Transmit Register Empty Flag	0 : Data present in tra (during transmissio 1 : No data present in (transmission com	n) transmit register	R
	CRD	CTS/RTS Disable Bit	0 : <u>CTS/RTS</u> function 1 : CTS/RTS function (P6_0, P6_4, P7_3 cal	disabled	R١
	- NCH	Data Output Select Bit ⁽³⁾	0 : TXDi/SDAi and SCLi p 1 : TXDi/SDAi and SC N channel open-di	Li pins are	R۱
	CKPOL	CLK Polarity Select Bit	input at rising edg 1 : Transmit data is ou	nd receive data is e itput at rising edge nd receive data is	R\
	- UFORM	Transfer Format Select Bit ⁽⁴⁾	0 : LSB first 1 : MSB first		R١

- 1. CTS1/RTS1 can be used when the CLKMD1 bit in the UCON register = 0 (only CLK1 output) and the RCSP bit in the UCON register = 0 (CTS0/RTS0 not separated).
- 2. Set the corresponding port direction bit for each CTSi pin to "0" (input mode)
- 3. SCL2/P7_1 is N channel open-drain output. The NCH bit in the U2C0 register is N channel open-drain output regardless of the NCH bit.
- 4. The UFORM bit is enabled when the SMD2 to SMD0 bits in the UiMR register are set to "001b" (clock synchronous serial I/O mode), or "101b" (UART mode, 8-bit transfer data).
- Set this bit to "1" when the SMD2 to SMD0 bits are set to "010b" (I²C mode), and to "0" when the SMD2 to SMD0 bits are set to "100b" (UART mode, 7-bit transfer data) or "110b" (UART mode, 9-bit transfer data). 5. When changing the CLK1 to CLK0 bits, set the UiBRG register.

Figure 15.6 U0MR to U2MR Registers and U0C0 to U2C0 Registers

UARTj Transmit/Receive Control Register 1 (j = 0, 1)

,		0	, ,		
b7 b6 b5 b4 b3 b2 b1 b0		Symbol C1, U1C1	Address 03A5h, 03ADh	After Reset 00XX0010b	
	Bit Symbol	Bit Name	Fund	ction	RW
	TE	Transmit Enable Bit	0 : Transmission dis 1 : Transmission er		RW
	TI	Transmit Buffer Empty Flag	0 : Data present in 1 1 : No data present	he UjTB register in the UjTB register	RO
	RE	Receive Enable Bit	0 : Reception disab 1 : Reception enabl		RW
	RI	Receive Complete Flag	0 : No data present 1 : Data present in	in the UjRB register he UjRB register	RO
	_ (b5-b4)	Nothing is assigned. V When read, their conte			-
	UjLCH	Data Logic Select Bit ⁽¹⁾	0 : No reverse 1 : Reverse		RW
l	UjERE	Error Signal Output Enable Bit	0 : Output disabled 1 : Output enabled		RW

NOTE:

1. The UjLCH bit is enabled when the SMD2 to SMD0 bits in the UjMR register are set to "001b" (clock synchronous serial I/O mode), "100b" (UART mode, 7-bit transfer data) or "101b" (UART mode, 8-bit transfer data).

Set this bit to "0" when the SMD2 to SMD0 bits are set to "010b" (I²C mode) or "110b" (UART mode, 9-bit transfer data).

UART2 Transmit/Receive Control Register 1

b7	b6	b5	b4	b3	b2	b1	b0		symbol U2C1	Address 01FDh	After Reset 00000010b	
								Bit Symbol	Bit Name	Fund	ction	RW
								TE	Transmit Enable Bit	0 : Transmission dis 1 : Transmission en		RW
								ΤI	Transmit Buffer Empty Flag	0 : Data present in 1 : No data present		RO
					Ļ			RE	Receive Enable Bit	0 : Reception disab 1 : Reception enabl		RW
								RI	Receive Complete Flag	0 : No data present 1 : Data present in		RO
								U2IRS	UART2 Transmit Interrupt Cause Select Bit	0 : Transmit buffer e 1 : Transmit is com	empty (TI bit = 1) oleted (TXEPT bit = 1)	RW
		<u> </u>						U2RRM	UART2 Continuous Receive Mode Enable Bit	0 : Continuous rece 1 : Continuous rece		RW
								U2LCH	Data Logic Select Bit ⁽¹⁾	0 : No reverse 1 : Reverse		RW
								U2ERE	Error Signal Output Enable Bit	0 : Output disabled 1 : Output enabled		RW
NO	TE:							-	•			·

1. The U2LCH bit is enabled when the SMD2 to SMD0 bits in the U2MR register are set to "001b" (clock synchronous serial I/O mode), "100b" (UART mode, 7-bit transfer data) or "101b" (UART mode, 8-bit transfer data).

Set this bit to "0" when the SMD2 to SMD0 bits are set to "010b" (I²C mode) or "110b" (UART mode, 9-bit transfer data).

o7 b6 b5 b4 b3 b2 b1 b0					
	S	ymbol	Address	After Reset	
	ι	JCON	03B0h	X000000b	
	Bit Symbol	Bit Name	Fund	ction	RW
· · · ·	U0IRS	UART0 Transmit Interrupt Cause Select Bit		empty (TI bit = 1) pleted (TXEPT bit = 1)	RW
	U1IRS	UART1 Transmit Interrupt Cause Select Bit		empty (TI bit = 1) pleted (TXEPT bit = 1)	RW
	U0RRM	UART0 Continuous Receive Mode Enable Bit	0 : Continuous rece 1 : Continuous rece		RW
	U1RRM	UART1 Continuous Receive Mode Enable Bit	0 : Continuous rece 1 : Continuous rece		RW
	CLKMD0	UART1 CLK/CLKS Select Bit 0	Effective when the 0 : Clock output from 1 :	n CLK1	RW
	CLKMD1	UART1 CLK/CLKS Select Bit 1 ⁽¹⁾	0 : CLK output is or 1 : Transfer clock o pins function sel	utput from multiple	RW
RCSP		Separate UART0 CTS/RTS Bit	0 : CTS/RTS shared 1 : CTS/RTS separa (CTS0 supplied		RW
	_ (b7)	Nothing is assigned. W When read, its content			_

NOTE:

1. When using multiple transfer clock output pins, make sure the following conditions are met:

• The CKDIR bit in the U1MR register = 0 (internal clock)

	•		•	(, , , , , , , , , , , , , , , , , , ,			
b7 b6 b5	b4 b3	b2 b1 b0		Symbol R to U2SMR 01E	Address EFh, 01F3h, 01F7h	After Reset X0000000b	
			Bit Symbol	Bit Name	Functio	on	RW
			IICM	I ² C Mode Select Bit	0 : Other than I ² C mod 1 : I ² C mode	de	RW
			ABC	Arbitration Lost Detecting Flag Control Bit	0 : Update per bit 1 : Update per byte		RW
			BBS	Bus Busy Flag	0 : STOP condition de 1 : START condition d		RW (1)
			_ (b3)	Reserved Bit	Set to "0"		RW
			ABSCS	Bus Collision Detect Sampling Clock Select Bit	0 : Rising edge of tran 1 : Underflow signal o		RW
_			ACSE	Auto Clear Function Select Bit of Transmit Enable Bit	0 : No auto clear funct 1 : Auto clear at occur collision		RW
			SSS	Transmit Start Condition Select Bit	0 : Not synchronized t 1 : Synchronized to R		RW
			_ (b7)	Nothing is assigned. W When read, its content			_
NOTES		I	()	When read, its content			

UARTi Special Mode Register (i = 0 to 2)

NOTES:

1. The BBS bit is set to "0" by writing "0" in a program. (Writing "1" has no effect.).

2. Underflow signal of timer A3 in UART0, underflow signal of timer A4 in UART1, underflow signal of timer A0 in UART2.


3. When a transfer begins, the SSS bit is set to "0" (not synchronized to RXDi).

Figure 15.8 UCON Register and U0SMR to U2SMR Registers

Bit Symbol Bit Name Function F IICM2 I²C Mode Select Bit 2 See Table 15.12 I²C Mode Functions F IICM2 I²C Mode Select Bit 2 See Table 15.12 I²C Mode Functions F SWC Clock-Synchronous Bit 0 : Disabled 1 : Enabled F SWC SCL Wait Output Bit 0 : Disabled 1 : Enabled F SWC SCL Wait Output Bit 0 : Disabled 1 : Enabled F SWC SCL Wait Output Stop Bit 0 : Disabled 1 : Enabled F STAC UARTi Initialization Bit 0 : Disabled 1 : Enabled F SWC2 SCL Wait Output Bit 0 : Disabled 1 : Enabled F SDHI SDA Output Disable Bit 0 : Disabled 1 : Disabled F SDHI SDA Output Disable Bit 0 : Enabled F SDHI SDA Output Disable Bit 0 : Enabled F SDHI SDA Output Disable Bit 0 : Enabled F SDHI SDA Output Disable 0 : Enabled F SDHI SDA Output Disable 0 : Enabled F SDHI SDA Output Disable 0 : Enabled F
Symbol Dir Name Punction IICM2 I2C Mode Select Bit 2 See Table 15.12 I2C Mode Functions F CSC Clock-Synchronous Bit 0 : Disabled 1 : Enabled F SWC SCL Wait Output Bit 0 : Disabled 1 : Enabled F ALS SDA Output Stop Bit 0 : Disabled 1 : Enabled F STAC UARTi Initialization Bit 0 : Disabled 1 : Enabled F SWC2 SCL Wait Output Bit 2 0 : Disabled 1 : Enabled F SDHI SDA Output Disable Bit 0 : Disabled 1 : Enabled F
CSC Clock-Synchronous Bit 0 : Disabled 1 : Enabled F SWC SCL Wait Output Bit 0 : Disabled 1 : Enabled F ALS SDA Output Stop Bit 0 : Disabled 1 : Enabled F STAC UARTi Initialization Bit 0 : Disabled 1 : Enabled F SWC2 SCL Wait Output Bit 0 : Disabled 1 : Enabled F SWC2 SCL Wait Output Bit 0 : Disabled 1 : Enabled F SUC2 SCL Wait Output Bit 0 : Disabled 1 : Enabled F SDHI SDA Output Disable Bit 0 : Enabled 1 : Disabled (high-impedance) F
CSC Bit 1 : Enabled F SWC SCL Wait Output Bit 0 : Disabled F ALS SDA Output Stop Bit 0 : Disabled F STAC UARTi Initialization 0 : Disabled F SWC2 SCL Wait Output 0 : Disabled F SWC2 SCL Wait Output 0 : Disabled F SWC2 SCL Wait Output 0 : Transfer clock F SDHI SDA Output Disable 0 : Enabled F
ALS SDA Output Stop Bit 1 : Enabled F ALS SDA Output Stop Bit 0 : Disabled F STAC UARTi Initialization Bit 0 : Disabled F SWC2 SCL Wait Output 0 : Disabled F SWC2 SCL Wait Output 0 : Disabled F SUC2 SCL Wait Output 0 : Transfer clock F SDHI SDA Output Disable 0 : Enabled F
' ALS SDA Output Stop Bit 1 : Enabled F STAC UARTi Initialization Bit 0 : Disabled 1 : Enabled F SWC2 SCL Wait Output Bit 2 0: Transfer clock 1: "L" output F SDHI SDA Output Disable Bit 0: Enabled 1: Disabled (high-impedance) F
STAC Bit 1 : Enabled F SWC2 SCL Wait Output Bit 2 0: Transfer clock 1: "L" output F SDHI SDA Output Disable Bit 0: Enabled 1: Disabled (high-impedance) F
SWC2 Bit 2 1: "L" output F SDHI SDA Output Disable Bit 0: Enabled 1: Disabled (high-impedance) F
Bit 1: Disabled (high-impedance)
- Nothing is assigned. When write, set to "0".
(b7) When read, its content is indeterminate.
Bit Symbol Bit Name Function F
(b0) When read, its content is indeterminate.
(b0) When read, its content is indeterminate. CKPH Clock Phase Set Bit 0 : Without clock delay 1 : With clock delay F
CICPU Clock Phase Set Bit 0: Without clock delay
CKPH Clock Phase Set Bit 0 : Without clock delay - Nothing is assigned. When write, set to "0".
CKPH Clock Phase Set Bit 0 : Without clock delay 1 : With clock delay F - Nothing is assigned. When write, set to "0". (b2) When read, its content is indeterminate. F - NODC Clock Output Select Bit 0 : CLKi is CMOS output 1 : CLKi is N channel open-drain output F - Nothing is assigned. When write, set to "0". (b4) Nothing is assigned. When write, set to "0". When read, its content is indeterminate.
CKPH Clock Phase Set Bit 0 : Without clock delay 1 : With clock delay 1 : With clock delay F - Nothing is assigned. When write, set to "0". (b2) When read, its content is indeterminate. F - NODC Clock Output Select Bit 0 : CLKi is CMOS output 1 : CLKi is N channel open-drain output 1 : CLKi is N channel open-drain output F - Nothing is assigned. When write, set to "0". (b4) When read, its content is indeterminate. F DL0 DL0 D1 = 10 2 cycle(s) of UiBRG count source F
CKPH Clock Phase Set Bit 0 : Without clock delay 1 : With clock delay 1 : With clock delay F - Nothing is assigned. When write, set to "0". (b2) When read, its content is indeterminate. 0 - NODC Clock Output Select Bit 0 : CLKi is CMOS output 1 : CLKi is N channel open-drain output 1 : CLKi is N channel open-drain output F - Nothing is assigned. When write, set to "0". (b4) When read, its content is indeterminate. F

Figure 15.9 U0SMR2 to U2SMR2 Registers and U0SMR3 to U2SMR3 Registers

b6 b5 b4 b3 b2 b1 b0		ymbol 4 to U2SMR4 01	Address After Reset ECh, 01F0h, 01F4h 00h	
	Bit Symbol	Bit Name	Function	RW
	STAREQ	Start Condition Generate Bit ⁽¹⁾	0 : Clear 1 : Start	RW
	RSTAREQ	Restart Condition Generate Bit ⁽¹⁾	0 : Clear 1 : Start	RW
	STPREQ	Stop Condition Generate Bit ⁽¹⁾	0 : Clear 1 : Start	RW
	STSPSEL	SCL,SDA Output Select Bit	0 : Start and stop conditions not output 1 : Start and stop conditions output	RW
	ACKD	ACK Data Bit	0 : ACK 1 : NACK	RW
	ACKC	ACK Data Output Enable Bit	0 : Serial interface data output 1 : ACK data output	RW
	SCLHI	SCL Output Stop Enable Bit	0 : Disabled 1 : Enabled	RW
	SWC9	SCL Wait Bit 3	0 : SCL "L" hold disabled 1 : SCL "L" hold enabled	RW

15.1.1 Clock Synchronous Serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 15.1 lists the specifications of the clock synchronous serial I/O mode. Table 15.2 lists the registers used in clock synchronous serial I/O mode and the register values set.

Item	Specification				
Transfer Data Format	Transfer data length: 8 bits				
Transfer Clock	The CKDIR bit in the UiMR register = 0 (internal clock) : $f/2(n+1)$				
	• fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh				
	The CKDIR bit = 1 (external clock) : Input from CLKi pin				
Transmission, Reception Control	Selectable from CTS function, RTS function or CTS/RTS function disabled				
Transmission Start Condition	Before transmission can start, the following requirements must be met ⁽¹⁾				
	 The TE bit in the UiC1 register = 1 (transmission enabled) 				
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register) 				
	• If \overline{CTS} function is selected, input on the \overline{CTS} i pin = L				
Reception Start Condition	Before reception can start, the following requirements must be met ⁽¹⁾				
	 The RE bit in the UiC1 register = 1 (reception enabled) 				
	 The TE bit in the UiC1 register = 1 (transmission enabled) 				
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register) 				
Interrupt Request	For transmission, one of the following conditions can be selected				
Generation Timing	• The UiIRS bit $^{(2)} = 0$ (transmit buffer empty): when transferring data from the				
	UiTB register to the UARTi transmit register (at start of transmission)				
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from				
	the UARTi transmit register				
	For reception				
	When transferring data from the UARTi receive register to the UiRB register (at				
	completion of reception)				
Error Detection	Overrun error ⁽³⁾				
	This error occurs if the serial I/O started receiving the next data before reading the				
	UiRB register and received the 7th bit of the next data				
Select Function	CLK polarity selection				
	Transfer data input/output can be selected to occur synchronously with the rising or				
	the falling edge of the transfer clock				
	LSB first, MSB first selection				
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7				
	can be selected				
	Continuous receive mode selection				
	Reception is enabled immediately by reading the UiRB register				
	Switching serial data logic				
	This function reverses the logic value of the transmit/receive data				
	Transfer clock output from multiple pins selection (UART1)				
	The output pin can be selected in a program from two UART1 transfer clock pins that				
	have been set				
	Separate CTS/RTS pins (UART0)				
	CTS0 and RTS0 are input/output from separate pins				
= 0 to 2					

i = 0 to 2

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising edge and the receive data taken in at the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.
- 2. The U0IRS and U1IRS bits respectively are bits 0 and 1 in the UCON register; the U2IRS bit is bit 4 in the U2C1 register.
- 3. If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.

Table 15.2 Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode

Register	Bit	Function				
UiTB ⁽¹⁾	0 to 7	Set transmission data				
UiRB ⁽¹⁾	0 to 7	Reception data can be read				
	OER	Overrun error flag				
UiBRG	0 to 7	Set a transfer rate				
UiMR ⁽¹⁾	SMD2 to SMD0	Set to "001b"				
	CKDIR	Select the internal clock or external clock				
	IOPOL	Set to "0"				
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register				
	CRS	Select CTS or RTS to use				
	TXEPT	Transmit register empty flag				
	CRD	Enable or disable the \overline{CTS} or \overline{RTS} function				
	NCH	Select TXDi pin output mode				
	CKPOL	Select the transfer clock polarity				
	UFORM	Select the LSB first or MSB first				
UiC1	TE	Set this bit to "1" to enable transmission/reception				
	ТІ	Transmit buffer empty flag				
	RE	Set this bit to "1" to enable reception				
	RI	Reception complete flag				
	U2IRS ⁽²⁾	Select the source of UART2 transmit interrupt				
	U2RRM ⁽²⁾	Set this bit to "1" to use continuous receive mode				
	UiLCH	Set this bit to "1" to use inverted data logic				
	UiERE	Set to "0"				
UiSMR	0 to 7	Set to "0"				
UiSMR2	0 to 7	Set to "0"				
UiSMR3	0 to 2	Set to "0"				
	NODC	Select clock output mode				
	4 to 7	Set to "0"				
UiSMR4	0 to 7	Set to "0"				
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt				
	U0RRM, U1RRM	Set this bit to "1" to use continuous receive mode				
	CLKMD0	Select the transfer clock output pin when the CLKMD1 bit = 1				
	CLKMD1	Set this bit to "1" to output UART1 transfer clock from two pins				
	RCSP	Set this bit to "1" to accept as input the UART0 CTS0 signal from the P6_4 pin				
	7	Set to "0"				

i = 0 to 2

- 1. Not all register bits are described above. Set those bits to "0" when writing to the registers in clock synchronous serial I/O mode.
- 2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Table 15.3 lists the functions of the input/output pins during clock synchronous serial I/O mode. Table 15.3 shows pin functions for the case where the multiple transfer clock output pin select function is deselected. Table 15.4 lists the P6_4 pin functions during clock synchronous serial I/O mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TXDi pin outputs an "H".

Figure 15.11 shows the transmit/receive timings during clock synchronous serial I/O mode.

Table 15.3 Pin Functions	When Not Select Multi	ple Transfer Clock Out	put Pin Function)

Pin Name	Function	Method of Selection
TXDi	Serial Data Output	(Outputs dummy data when performing reception only)
(P6_3, P6_7, P7_0)		
RXDi	Serial Data Input	PD6_2 and PD6_6 bits in PD6 register = 0
(P6_2, P6_6, P7_1)		PD7_1 bit in PD7 register = 0
		(Can be used as an input port when performing transmission only)
CLKi	Transfer Clock Output	CKDIR bit in UiMR register = 0
(P6_1, P6_5, P7_2)	Transfer Clock Input	CKDIR bit = 1
		PD6_1 and PD6_5 bits in PD6 register = 0
		PD7_2 bit in PD7 register = 0
CTSi/RTSi	CTS Input	CRD bit in UiC0 register = 0
(P6_0, P6_4, P7_3)		CRS bit in UiC0 register = 0
		PD6_0 and PD6_4 bits in PD6 register = 0
		PD7_3 bit in PD7 register = 0
	RTS Output	CRD bit = 0
		CRS bit = 1
	I/O Port	CRD bit = 1

i = 0 to 2

Table 15.4 P6_4 Pin Functions

	Bit set Value					
Pin Function	U1C0 Register		UCON Register			PD6 Register
	CRD bit	CRS bit	RCSP bit	CLKMD1 bit	CLKMD0 bit	PD6_4 bit
P6_4	1	-	0	0	-	Input: 0, Output: 1
CTS1	0	0	0	0	-	0
RTS1	0	1	0	0	-	-
CTS0 ⁽¹⁾	0	0	1	0	-	0
CLKS1	-	-	-	1 (2)	1	-

-: "0" or "1"

- 1. In addition to this, set the CRD bit in the U0C0 register to "0" (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to "1" (RTS0 selected).
- 2. When the CLKMD1 bit = 1 and the CLKMD0 bit = 0, the following logic levels are output:
 - High if the CLKPOL bit in the U1C0 register = 0
 - Low if the CLKPOL bit = 1

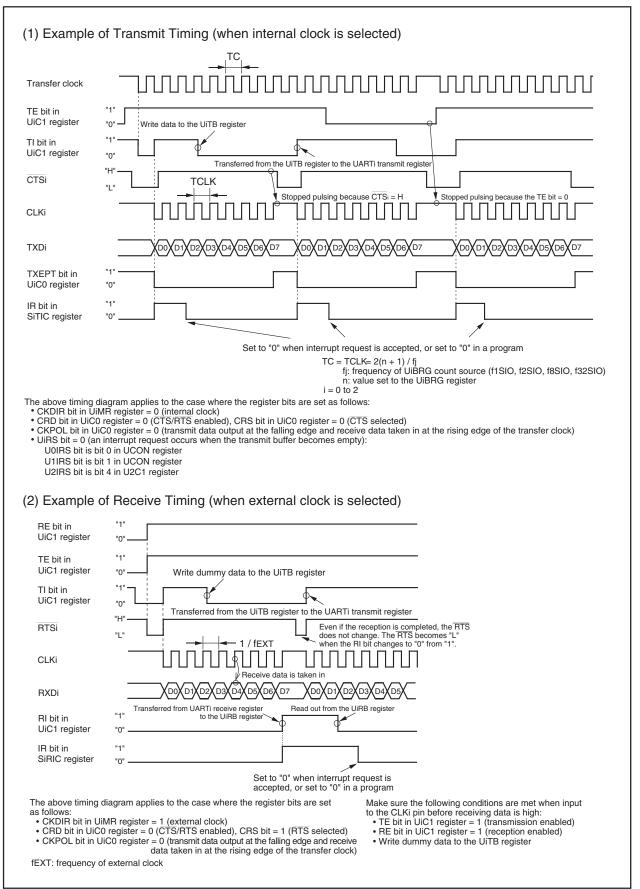


Figure 15.11 Transmit and Receive Operation

15.1.1.1 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below.

- Resetting the UiRB register (i = 0 to 2)
 - (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (serial interface disabled)
 - (3) Set the SMD2 to SMD0 bits in the UiMR register to "001b" (clock synchronous serial I/O mode)
 - (4) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i = 0 to 2)
 - (1) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (serial interface disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register to "001b" (clock synchronous serial I/O mode)
 - (3) "1" (transmission enabled) is written to the TE bit in the UiC1 register, regardless of the TE bit

15.1.1.2 CLK Polarity Select Function

Use the CKPOL bit in the UiC0 register (i = 0 to 2) to select the transfer clock polarity. Figure 15.12 shows the polarity of the transfer clock.

CLKi	
TXDi	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
RXDi	$10 \times D1 \times D2 \times D3 \times D4 \times D5 \times D6 \times D7$
	n the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising and the receive data taken in at the falling edge of the transfer clock)
CLKi	(NOTE 2)
TXDi	
RXDi	$10 \times D1 \times D2 \times D3 \times D4 \times D5 \times D6 \times D7$

Figure 15.12 Transfer Clock Polarity

15.1.1.3 LSB First/MSB First Select Function

Use the UFORM bit in the UiC0 register (i = 0 to 2) to select the transfer format. Figure 15.13 shows the transfer format.

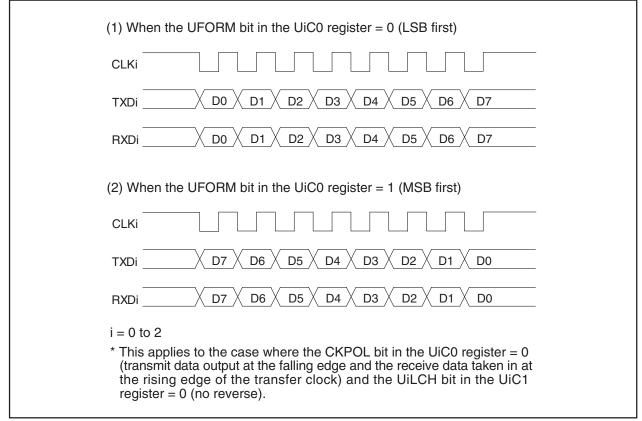


Figure 15.13 Transfer Format

15.1.1.4 Continuous Receive Mode

In continuous receive mode, receive operation becomes enable when the receive buffer register is read. It is not necessary to write dummy data into the transmit buffer register to enable receive operation in this mode. However, a dummy read of the receive buffer register is required when starting the operation mode.

When the UiRRM bit (i = 0 to 2) = 1 (continuous receive mode), the TI bit in the UiC1 register is set to "0" (data present in UiTB register) by reading the UiRB register. In this case, i.e., UiRRM bit = 1, do not write dummy data to the UiTB register in a program. The U0RRM and U1RRM bits are bit 2 and bit 3 in the UCON register, respectively, and the U2RRM bit is bit 5 in the U2C1 register.

15.1.1.5 Serial Data Logic Switching Function

When the UiLCH bit in the UiC1 register (i = 0 to 2) = 1 (reverse), the data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 15.14 shows serial data logic.

(1) When the U	liLCH bit in the UiC1 register = 0 (no reverse)
Transfer clock " ^H "L	
TXDi "∺ (no reverse) _{"L}	
(2) When the U	iLCH bit in the UiC1 register = 1 (reverse)
Transfer clock " ^H "L	
TXDi "H (reverse) _{"L}	
(transmit dat	to the case where the CKPOL bit in the UiC0 register = 0 a output at the falling edge and the receive data taken in dge of the transfer clock) and the UFORM bit = 0 (LSB first).

Figure 15.14 Serial Data Logic Switching

15.1.1.6 Transfer Clock Output From Multiple Pins (UART1)

Use the CLKMD1 to CLKMD0 bits in the UCON register to select one of the two transfer clock output pins. Figure 15.15 shows the transfer clock output from the multiple pins function usage. This function can be used when the selected transfer clock for UART1 is an internal clock.

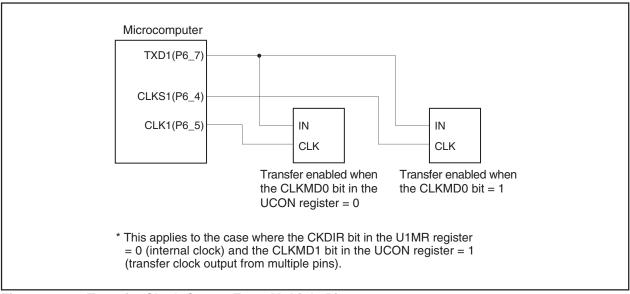


Figure 15.15 Transfer Clock Output From Multiple Pins

15.1.1.7 CTS/RTS Function

When the $\overline{\text{CTS}}$ function is used transmit and receive operation start when "L" is applied to the $\overline{\text{CTSi}/\text{RTSi}}$ (i = 0 to 2) pin. Transmit and receive operation begins when the $\overline{\text{CTSi}/\text{RTSi}}$ pin is held "L". If the "L" signal is switched to "H" during a transmit or receive operation, the operation stops before the next data. When the $\overline{\text{RTS}}$ function is used, the $\overline{\text{CTSi}/\text{RTSi}}$ pin outputs on "L" signal when the microcomputer is

ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

- CRD bit in UiC0 register = 1 (CTS/RTS function disabled) CTSi/RTSi pin is programmable I/O function
- CRD bit = 0, CRS bit in UiC0 register = 0 (CTS function is selected) CTSi/RTSi pin is CTS function
- CRD bit = 0, CRS bit = 1 (RTS function is selected) CTSi/RTSi pin is RTS function

15.1.1.8 CTS/RTS Separate Function (UART0)

This function separates CTS0/RTS0, outputs RTS0 from the P6_0 pin, and accepts as input the CTS0 from the P6_4 pin. To use this function, set the register bits as shown below.

- CRD bit in U0C0 register = 0 (enables UART0 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- CRS bit in U0C0 register = 1 (outputs UART0 RTS)
- CRD bit in U1C0 register = 0 (enables UART1 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- CRS bit in U1C0 register = 0 (inputs UART1 $\overline{\text{CTS}}$)
- RCSP bit in UCON register = 1 (inputs $\overline{\text{CTS}}$ 0 from the P6_4 pin)
- CLKMD1 bit in UCON register = 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, UART1 CTS/RTS separate function cannot be used.

Figure 15.16 shows CTS/RTS separate function usage.

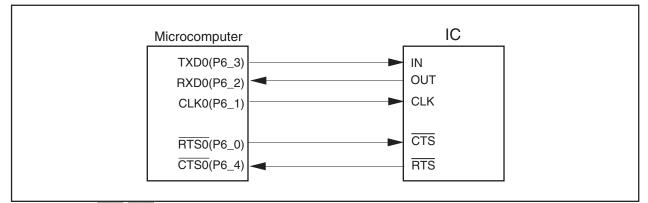


Figure 15.16 CTS/RTS Separate Function

15.1.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Table 15.5 lists the specifications of the UART mode. Table 15.6 lists the registers used in UART mode and the register values set.

Item	Specification				
Transfer Data Format	Character bit (transfer data): Selectable from 7, 8 or 9 bits				
	Start bit: 1 bit				
	Parity bit: Selectable from odd, even, or none				
	Stop bit: Selectable from 1 or 2 bits				
Transfer Clock	CKDIR bit in UiMR register = 0 (internal clock) : fj/ 16(n+1)				
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh				
	• The CKDIR bit = 1 (external clock) : fEXT/16(n+1)				
	fEXT: Input from CLKi pin. n:Setting value of the UiBRG register 00h to FFh				
Transmission, Reception Control	Selectable from CTS function, RTS function or CTS/RTS function disabled				
Transmission Start Condition	Before transmission can start, the following requirements must be met				
	• The TE bit in the UiC1 register = 1 (transmission enabled)				
	• The TI bit in the UiC1 register = 0 (data present in UiTB register)				
	• If \overline{CTS} function is selected, input on the \overline{CTSi} pin = L				
Reception Start Condition	Before reception can start, the following requirements must be met				
	• The RE bit in the UiC1 register = 1 (reception enabled)				
	Start bit detection				
Interrupt Request	For transmission, one of the following conditions can be selected				
Generation Timing	• The UiIRS bit ⁽¹⁾ = 0 (transmit buffer empty): when transferring data from the UiTB register				
5	to the UARTi transmit register (at start of transmission)				
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data				
	from the UARTi transmit register				
	For reception				
	• When transferring data from the UARTi receive register to the UiRB register				
	(at completion of reception)				
Error Detection	• Overrun error ⁽²⁾				
	This error occurs if the serial I/O started receiving the next data before reading the				
	UiRB register and received the bit one before the last stop bit of the next data				
	• Framing error ⁽³⁾				
	This error occurs when the number of stop bits set is not detected				
	• Parity error ⁽³⁾				
	This error occurs when if parity is enabled, the number of 1's in parity and character				
	bits does not match the number of 1's set				
	• Error sum flag				
	This flag is set to "1" when any of the overrun, framing, or parity errors occur				
Select Function	LSB first, MSB first selection				
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can				
	be selected				
	Serial data logic switch				
	This function reverses the logic of the transmit/receive data. The start and stop bits are not reversed.				
	• TXD, RXD I/O polarity switch				
	This function reverses the polarities of the TXD pin output and RXD pin input.				
	The logic levels of all I/O data is reversed.				
	Separate CTS/RTS pins (UART0)				
	CTS0 and RTS0 are input/output from separate pins				
i – 0 to 2					

Table 15.5	UART	Mode	Specifications
------------	------	------	----------------

i = 0 to 2

NOTES:

- 1. The U0IRS and U1IRS bits are bits 0 and 1 in the UCON register. The U2IRS bit is bit 4 in the U2C1 register.
- 2. If an overrun error occurs, the value of the UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.
- 3. The timing at which the framing error flag and the parity error flag are set is detected when data is transferred from the UARTi receive register to the UIRB register.

Table 15.6 Registers to Be Used and Settings in UART Mode

Register	Bit	Function				
UiTB	0 to 8	Set transmission data ⁽¹⁾				
UiRB	0 to 8	Reception data can be read ⁽¹⁾				
	OER,FER,PER,SUM	Error flag				
UiBRG	0 to 7	Set a transfer rate				
UiMR	SMD2 to SMD0	Set these bits to "100b" when transfer data is 7-bit long				
		Set these bits to "101b" when transfer data is 8-bit long				
		Set these bits to "110b" when transfer data is 9-bit long				
	CKDIR	Select the internal clock or external clock				
	STPS	Select the stop bit				
	PRY, PRYE	Select whether parity is included and whether odd or even				
	IOPOL	Select the TXD/RXD input/output polarity				
UiC0	CLK0, CLK1	Select the count source for the UiBRG register				
	CRS	Select CTS or RTS to use				
	TXEPT	Transmit register empty flag				
	CRD	Enable or disable the CTS or RTS function				
	NCH	Select TXDi pin output mode				
	CKPOL	Set to "0"				
	UFORM	LSB first or MSB first can be selected when transfer data is 8-bit long. Set this				
		bit to "0" when transfer data is 7- or 9-bit long.				
UiC1	TE	Set this bit to "1" to enable transmission				
	ТІ	Transmit buffer empty flag				
	RE	Set this bit to "1" to enable reception				
	RI	Reception complete flag				
	U2IRS ⁽²⁾	Select the source of UART2 transmit interrupt				
U2RRM ⁽²⁾		Set to "0"				
	UiLCH	Set this bit to "1" to use inverted data logic				
	UiERE	Set to "0"				
UiSMR	0 to 7	Set to "0"				
UiSMR2	0 to 7	Set to "0"				
UiSMR3	0 to 7	Set to "0"				
UiSMR4	0 to 7	Set to "0"				
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt				
	U0RRM, U1RRM	Set to "0"				
	CLKMD0	Invalid because the CLKMD1 bit = 0				
	CLKMD1	Set to "0"				
	RCSP	Set this bit to "1" to accept as input the UART0 CTS0 signal from the P6_4 pin				

i = 0 to 2

- 1. The bits used for transmit/receive data are as follows:
 - Bit 0 to bit 6 when transfer data is 7-bit long
 - Bit 0 to bit 7 when transfer data is 8-bit long
 - Bit 0 to bit 8 when transfer data is 9-bit long.
- 2. Set bit 4 to bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are included in the UCON register.

Table 15.7 lists the functions of the input/output pins during UART mode. Table 15.8 lists the P6_4 pin functions during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TXDi pin outputs an "H".

Figure 15.17 shows the typical transmit timings in UART mode. Figure 15.18 shows the typical receive timing in UART mode.

Pin Name	Function	Method of Selection
TXDi	Serial Data Output	(Outputs "H" when performing reception only)
(P6_3, P6_7, P7_0)		
RXDi	Serial Data Input	PD6_2 and PD6_6 bits in PD6 register = 0
(P6_2, P6_6, P7_1)		PD7_1 bit in PD7 register = 0
		(Can be used as an input port when performing transmission only)
CLKi	I/O Port	CKDIR bit in UiMR register = 0
(P6_1, P6_5, P7_2)	Transfer Clock Input	CKDIR bit in UiMR register = 1
		PD6_1 and PD6_5 bits in PD6 register = 0
		PD7_2 bit in PD7 register = 0
CTSi/RTSi	CTS Input	CRD bit in UiC0 register = 0
(P6_0, P6_4, P7_3)		CRS bit in UiC0 register = 0
		PD6_0 and PD6_4 bits in PD6 register = 0
		PD7_3 bit in PD7 register = 0
	RTS Output	CRD bit = 0
		CRS bit = 1
	I/O Port	CRD bit = 1

Table 15.7 I/O Pin Functions

i = 0 to 2

Table 15.8 P6_4 Pin Functions

	Bit set Value				
Pin Function	n U1C0 Register UCON Register		PD6 Register		
	CRD bit	CRS bit	RCSP bit	CLKMD1 bit	PD6_4 bit
P6_4	1	-	0	0	Input: 0, Output: 1
CTS1	0	0	0	0	0
RTS1	0	1	0	0	-
CTS0 ⁽¹⁾	0	0	1	0	0

-: "0" or "1"

NOTE:

1. In addition to this, set the CRD bit in the U0C0 register to "0" (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to "1" (RTS0 selected).

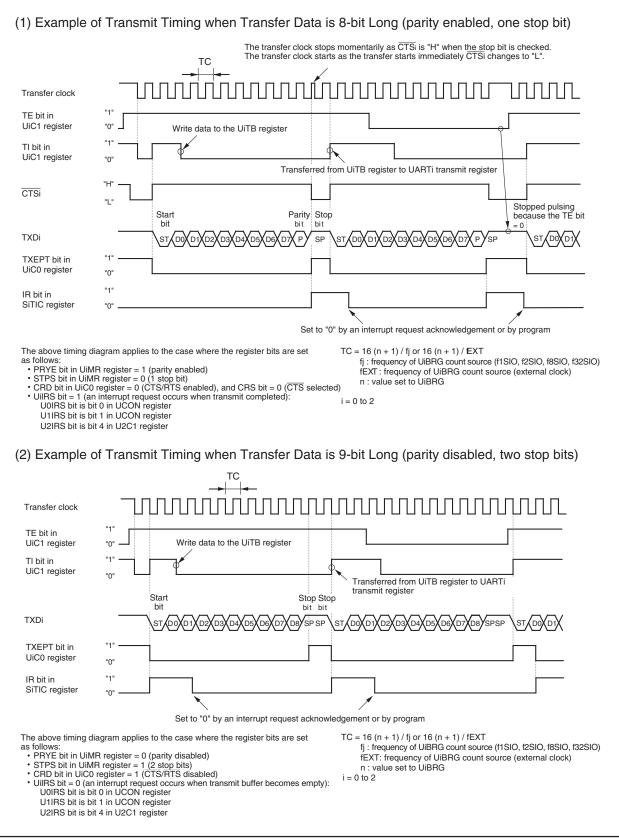


Figure 15.17 Transmit Operation

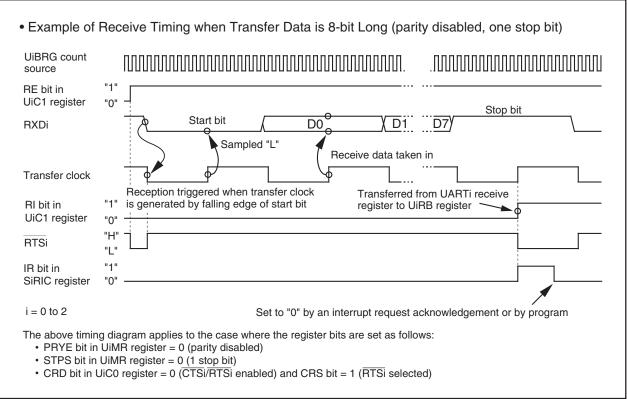


Figure 15.18 Receive Operation

15.1.2.1 Bit Rates

In UART mode, the frequency set by the UiBRG register (i = 0 to 2) divided by 16 become the bit rates. Table 15.9 lists example of bit rates and settings.

						1	(4)
Diturate				Peripheral Function Clock: 20MHz		Peripheral Function Clock: 24MHz ⁽¹⁾	
Bit-rate	Count Source of BRG	Set Value of	Actual Time	Set Value of	Actual Time	Set Value of	Actual Time
(bps)		BRG: n	(bps)	BRG: n	(bps)	BRG: n	(bps)
1200	f8	103 (67h)	1202	129 (81h)	1202	155 (9Bh)	1202
2400	f8	51 (33h)	2404	64 (40h)	2404	77 (4Dh)	2404
4800	f8	25 (19h)	4808	32 (20h)	4735	38 (26h)	4808
9600	f1	103 (67h)	9615	129 (81h)	9615	155 (9Bh)	9615
14400	f1	68 (44h)	14493	86 (56h)	14368	103 (67h)	14423
19200	f1	51 (33h)	19231	64 (40h)	19231	77 (4Dh)	19231
28800	f1	34 (22h)	28571	42 (2Ah)	29070	51 (33h)	28846
31250	f1	31 (1Fh)	31250	39 (27h)	31250	47 (2Fh)	31250
38400	f1	25 (19h)	38462	32 (20h)	37879	38 (26h)	38462
51200	f1	19 (13h)	50000	23(17h)	52083	28 (1Ch)	51724

Table 15.9 Example of Bit Rates and Settings	Table 15.9	Example	of Bit F	Rates and	Settings
--	------------	---------	----------	------------------	----------

NOTE:

1.24 MHz is available Normal-ver. only.

15.1.2.2 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in UART mode, follow the procedures below.

- Resetting the UiRB register (i = 0 to 2)
 - (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
 - (2) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i = 0 to 2)
 - (1) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (serial interface disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register to "001b", "101b", "110b"
 - (3) "1" (transmission enabled) is written to the TE bit in the UiC1 register, regardless of the TE bit

15.1.2.3 LSB First/MSB First Select Function

As shown in Figure 15.19, use the UFORM bit in the UiC0 register to select the transfer format. This function is valid when transfer data is 8-bit long.

(1) When the	UFORM bit in the UiC0 register = 0 (LSB first)
CLKi	
TXDi	ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
RXDi	ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
(2) When the	UFORM bit = 1 (MSB first)
CLKi	
TXDi	ST D7 D6 D5 D4 D3 D2 D1 D0 P SP
RXDi	ST D7 D6 D5 D4 D3 D2 D1 D0 P SP
i = 0 to 2	
ST: Start bit P: Parity bit SP: Stop bit	
 CKPC data t UiLCH STPS 	plies to the case where the register bits are set as follows: DL bit in UiC0 register = 0 (transmit data output at the falling edge and the receive aken in at the rising edge of the transfer clock) H bit in UiC1 register = 0 (no reverse) bit in UiMR register = 0 (1 stop bit) E bit in UiMR register = 1 (parity enabled)

Figure 15.19 Transfer Format

15.1.2.4 Serial Data Logic Switching Function

The data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 15.20 shows serial data logic.

(1) When the	UiLCH bit in the UiC1 register = 0 (no reverse)
Transfer clock	
TXDi (no reverse)	"H" <u>ST (D0) D1) D2) D3) D4) D5) D6) D7) P</u> SP
(2) When the	UiLCH bit = 1 (reverse)
Transfer clock	
TXDi (reverse)	"H" <u>ST (D0) D1) D2) D3) D4) D5) D6) D7) P</u> SP
i = 0 to 2 ST: Start bit P: Parity bit SP: Stop bit	
• CKPC • UFOR • STPS	blies to the case where the register bit are set as follows: DL bit in UiC0 register = 0 (transmit data output at the falling edge of the transfer clock) M bit in UiC0 register = 0 (LSB first) bit in UiMR register = 0 (1 stop bit) bit in UiMR register = 1 (parity enabled)

Figure 15.20 Serial Data Logic Switching

15.1.2.5 TXD and RXD I/O Polarity Inverse Function

This function inverses the polarities of the TXDi pin output and RXDi pin input. The logic levels of all input/output data (including the start, stop and parity bits) are inversed. Figure 15.21 shows the TXD and RXD input/output polarity inverse.

(1) When the IOPOL bit in the UiMR register = 0 (no reverse)
TXDi "H" ST (D0 (D1) D2) D3 (D4) D5 (D7) P SP (no reverse) "L"
RXDi "H" ST (D0 (D1) D2 (D3) D4 (D5) D6 (D7) P SP (no reverse) "L"
(2) When the IOPOL bit = 1 (reverse)
TXDi "H"/ ST <u>く D0 く D1 く D2 く D3 く D4 く D5 く D6 く ア く ア く SP</u>
RXDi "H" / ST V D0 V D1 V D2 V D3 V D6 V T7 V P SP (reverse)
i = 0 to 2 ST: Start bit P: Parity bit SP: Stop bit
NOTE: 1. This applies to the case where the register bits are set as follows: • UFORM bit in UiC0 register = 0 (LSB first) • STPS bit in UiMR register = 0 (1 stop bit) • PRYE bit in UiMR register = 1 (parity enabled)

Figure 15.21 TXD and RXD I/O Polarity Inverse

15.1.2.6 CTS/RTS Function

When the $\overline{\text{CTS}}$ function is used transmit operation start when "L" is applied to the $\overline{\text{CTSi}/\text{RTSi}}$ (i = 0 to 2) pin. Transmit operation begins when the $\overline{\text{CTSi}/\text{RTSi}}$ pin is held "L". If the "L" signal is switched to "H" during a transmit operation, the operation stops before the next data.

When the RTS function is used, the CTSi/RTSi pin outputs on "L" signal when the microcomputer is ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

- CRD bit in UiC0 register = 1 (disables UART0 CTS/RTS function) CTSi/RTSi pin is programmable I/O function
- CRD bit = 0, CRS bit in UiC0 register= 0 (CTS function is selected) CTSi/RTSi pin is CTS function
- CRD bit = 0, CRS bit = 1 (RTS function is selected)
 CTSi/RTSi pin is RTS function

15.1.2.7 CTS/RTS Separate Function (UART0)

This function separates CTS0/RTS0, outputs RTS0 from the P6_0 pin, and accepts as input the CTS0 from the P6_4 pin. To use this function, set the register bits as shown below.

- CRD bit in U0C0 register = 0 (enables UART0 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- CRS bit in U0C0 register = 1 (outputs UART0 RTS)
- CRD bit in U1C0 register = 0 (enables UART1 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- CRS bit in U1C0 register = 0 (inputs UART1 $\overline{\text{CTS}}$)
- RCSP bit in UCON register = 1 (inputs $\overline{\text{CTS}}$ 0 from the P6_4 pin)
- CLKMD1 bit in UCON register = 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, UART1 CTS/RTS separate function cannot be used. Figure 15.22 shows CTS/RTS separate function usage.

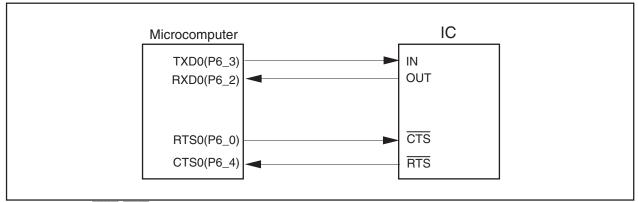


Figure 15.22 CTS/RTS Separate Function

15.1.3 Special Mode 1 (I²C Mode)

I²C mode is provided for use as a simplified I²C interface compatible mode. Table 15.10 lists the specifications of the I²C mode. Figure 15.23 shows the block diagram for I²C mode. Table 15.11 lists the registers used in the I²C mode and the register values set. Table 15.12 lists the functions in I²C mode. Figure 15.24 shows the transfer to the UiRB register and interrupt timing.

As shown in Table 15.12, the microcomputer is placed in I²C mode by setting the SMD2 to SMD0 bits to "010b" and the IICM bit to "1". Because SDAi transmit output has a delay circuit attached, SDAi output does not change state until SCLi goes low and remains stably low.

Item	Specification		
Transfer Data Format	Transfer data length: 8 bits		
Transfer Clock	During master		
	The CKDIR bit in the UiMR register = 0 (internal clock) : fj/ 2(n+1)		
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh		
	During slave		
	The CKDIR bit = 1 (external clock) : Input from SCLi pin		
Transmission Start Condition	Before transmission can start, the following requirements must be met ⁽¹⁾		
	 The TE bit in the UiC1 register = 1 (transmission enabled) 		
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register) 		
Reception Start Condition	Before reception can start, the following requirements must be met ⁽¹⁾		
	• The RE bit in the UiC1 register = 1 (reception enabled)		
	 The TE bit in the UiC1 register = 1 (transmission enabled) 		
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register) 		
Interrupt Request	When start or stop condition is detected, acknowledge undetected, and acknowledge		
Generation Timing	detected		
Error Detection	Overrun error (2)		
	This error occurs if the serial I/O started receiving the next data before reading the		
	UiRB register and received the 8th bit of the next data		
Select Function	Arbitration lost		
	Timing at which the ABT bit in the UiRB register is updated can be selected		
	• SDAi digital delay		
	No digital delay or a delay of 2 to 8 UiBRG count source clock cycles selectable		
	Clock phase setting		
	With or without clock delay selectable		
- 0 to 2			

Table 15.10 I²C Mode Specifications

i = 0 to 2

NOTES:

1. When an external clock is selected, the conditions must be met while the external clock is in the high state.

2. If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.

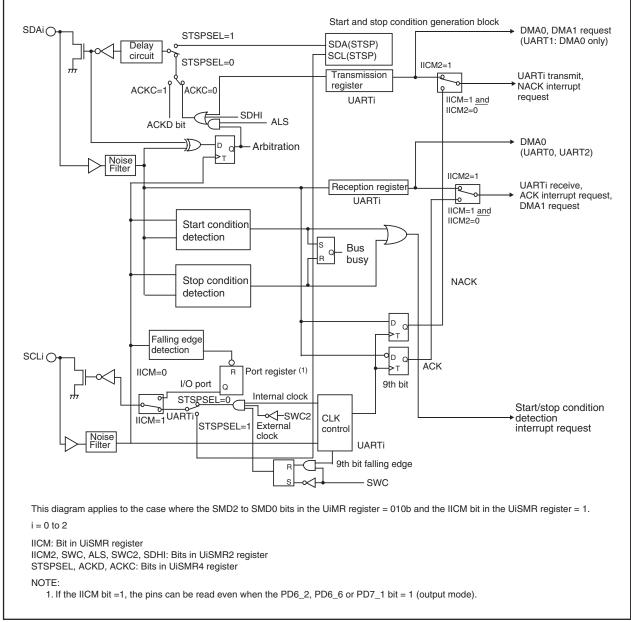


Figure 15.23 I²C Mode Block Diagram

Table 15.11 Registers to Be Used and Settings in I²C Mode

Register	Bit	Master	Inction Slave			
UiTB (1)	0 to 7		Slave			
UIB (1)			Set transmission data			
UIRB (I)	0 to 7	Reception data can be read				
	8	ACK or NACK is set in this bit				
	ABT	Arbitration lost detection flag	Invalid			
	OER	Overrun error flag	1			
JiBRG	0 to 7	Set a transfer rate	Invalid			
JiMR (1)	SMD2 to SMD0	Set to "010b"	1			
	CKDIR	Set to "0"	Set to "1"			
	IOPOL	Set to "0"				
JiC0	CLK1, CLK0	Select the count source for the UiBRG register	Invalid			
	CRS		Invalid because the CRD bit = 1			
	TXEPT	Transmit register empty flag				
	CRD	Set to "1"				
	NCH	Set to "1"				
	CKPOL	Set to "0"				
	UFORM	Set to "1"				
JiC1	TE	Set this bit to "1" to enable transmission				
	ТІ	Transmit buffer empty flag				
	RE	Set this bit to "1" to enable reception				
	BI	Reception complete flag				
	U2IRS (2)	Invalid				
	U2RRM (2),	Set to "0"				
	UILCH, UIERE					
JiSMR	IICM	Set to "1"				
UISMIN	ABC	Select the timing at which arbitration-lost	Invalid			
	ADC	is detected				
	BBS	Bus busy flag				
	3 to 7	Set to "0"				
JiSMR2	IICM2	See Table 15.12 I ² C Mode Functions				
	CSC	Set this bit to "1" to enable clock synchronization Set to "0"				
		Set this bit to "1" to enable clock synchronization Set to "0" Set this bit to "1" to have SCLi output fixed to "L" at the falling edge of the 9th bit of clock				
	SWC	Set this bit to "1" to have SDAi output lixed to L at the failing edge of the 9th bit of clock				
	ALS		Set to "0"			
	0740	stopped when arbitration-lost is detected	Set this bit to "1" to initialize UARTi at			
	STAC	Set to "0"				
		start condition detection				
	SWC2	Set this bit to "1" to have SCLi output forcibly pulled low				
	SDHI	Set this bit to "1" to disable SDAi output				
	7	Set to "0"				
JiSMR3	0, 2, 4 and NODC	Set to "0"				
	СКРН	See Table 15.12 I ² C Mode Functions				
	DL2 to DL0	Set the amount of SDAi digital delay				
JiSMR4	STAREQ	Set this bit to "1" to generate start condition	Set to "0"			
	RSTAREQ	Set this bit to "1" to generate restart condition	Set to "0"			
	STPREQ	Set this bit to "1" to generate stop condition	Set to "0"			
	STSPSEL	Set this bit to "1" to output each condition	Set to "0"			
	ACKD	Select ACK or NACK				
	ACKC	Set this bit to "1" to output ACK data				
	SCLHI	Set this bit to "1" to have SCLi output	Set to "0"			
		stopped when stop condition is detected				
		Set to "0"	Set this bit to "1" to set the SCLi to "L" hold			
	SWC9					
	SWC9					
FSR0			at the falling edge of the 9th bit of clock			
IFSR0 UCON	SWC9 IFSR06, ISFR07 U0IRS, U1IRS	Set to "1"				

i = 0 to 2

NOTES:

1. Not all register bits are described above. Set those bits to "0" when writing to the registers in I^2C mode.

2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Table 15.12 I²C Mode Functions

	Clock	I^2C Mode (SMD2 to SMD0 = 010b, IICM = 1)			= 1)	
Function	Synchronous Serial I/O Mode	IICM2 = 0 (NACK/ACK interrupt)		IICM2 = 1 (UART transmit/receive interrupt)		
(SMD2 to SMD0 = 001b, IICM = 0)		CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)	
Factor of Interrupt	-	Start condition detection or stop condition detection				
Number 6, 7 and 10 ^{(1) (5) (7)}		(See Table 15.13	STSPSEL Bit Fu	nctions)		
Factor of Interrupt	UARTi transmission	No acknowledgm	ent detection	UARTi transmission	UARTi transmission	
Number 15, 17 and 19 ^{(1) (6)}	Transmission started or completed (selected by UiIRS)	(NACK) Rising edge of SC	CLi 9th bit	Rising edge of SCLi 9th bit	Falling edge of SCLi next to the 9th bit	
Factor of Interrupt	UARTi reception	Acknowledgment	detection (ACK)	UARTi reception		
Number 16, 18 and 20 $^{(1)}$ $^{(6)}$	When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Rising edge of SC	CLi 9th bit	Falling edge of S	CLi 9th bit	
Timing for Transferring	CKPOL = 0 (rising edge)	Rising edge of SO	CLi 9th bit	Falling edge of	Falling and rising	
Data from UART	CKPOL = 1 (falling edge)			SCLi 9th bit	edges of SCLi 9th	
Reception Shift Register					bit	
to UiRB Register						
UARTi Transmission Output Delay	Not delayed	Delayed				
Functions of P6_3,	TXDi output	SDAi input/output				
P6_7 and P7_0 Pins Functions of P6_2,	DVD					
P6_6 and P7_1 Pins	RXDi input	SCLi input/output				
Functions of P6_1,	CLKi input or	- (Cannot be used	$d in l^2 C mode$			
P6_5 and P7_2 Pins						
Noise Filter Width	15 ns	200 ns				
Read RXDi and SCLi Pins Levels	Possible when the corresponding port direction bit = 0	Always possible no matter how the corresponding port direction bit is			direction bit is set	
Initial Value of TXDi and SDAi Outputs	CKPOL = 0 (H) CKPOL = 1 (L)	The value set in t	he port register be	fore setting I ² C mo	ode ⁽²⁾	
Initial and End		Н	L	Н	L	
Value of SCLi			-		-	
DMA1 Factor ⁽⁶⁾	UARTi reception	Acknowledgment detection (ACK)		UARTi reception Falling edge of SCLi 9th bit		
Store Received	1st to 8th bits of t	he received data a	re stored into bit	1st to 7th bits of the received data are stored into		
Data	7 to bit 0 in the Ui				1st to 8th bits are stored into bit 7 to bit 0 in UiRB register ⁽³⁾	
Read Received Data	The UiRB register	r status is read			Bit 6 to bit 0 in the UiRB register ⁽⁴⁾ are read as bit 7 to bit 1. Bit 8 in the UiRB register is read as bit 0.	

i = 0 to 2 NOTES:

If the source or cause of any interrupt is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). (Refer to 23.5 Interrupts.) If one of the bits shown below is changed, the interrupt source, the interrupt timing, etc. change. Therefore, always be sure to set the IR bit to "0" (interrupt not requested) after changing those bits.
SMD2 to SMD0 bits in UiMR register
IICM2 bit in UiSMR2 register
Second data transfer to the UiRB register (falling edge of SCLi 9th bit)
First data transfer to the UiRB register (falling edge of SCLi 9th bit)
See Figure 15.26 STSPSEL Bit Functions.

- 5.
- 6.

See Figure 15.26 STSPSEL Bit Functions. See Figure 15.24 Transfer to UIRB Register and Interrupt Timing. When using UART0, be sure to set the IFSR06 bit in the IFSR0 register to "1" (cause of interrupt: UART0 bus collision detection). When using UART1, be sure to set the IFSR07 bit in the IFSR0 register to "1" (cause of interrupt: UART1 bus collision detection). 7.

SCLi	
SDAi	D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0 X D8(ACK, NACK)
	↑ ACK interrupt (DMA1 request), NACK interrupt ↑
	Transfer to UiRB register
	b15 b9 b8 b7 b0 D8 D7 D6 D5 D4 D3 D2 D1 D0 UIRB register
(2) IICI SCLi	M2 = 0, CKPH = 1 (clock delay) 1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit
SDAi	D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0 X D8(ACK, NACK)
	ACK interrupt (DMA1 request), NACK interrupt
	Transfer to UiRB register
(3) IICI	M2 = 1 (UART transmit/receive interrupt), CKPH = 0
SCLi	1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit
SDAi	D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0 X D8(ACK, NACK)
	T Transmit interrupt (DMA1 request)
	Transfer to UiRB register
(4) IICI	M2 = 1, CKPH = 1
SCLi	1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit
SDAi	D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0 X D8 (ACK, NACK)
	T T Receive interrupt (DMA1 request)
	Transfer to UiRB register Transfer to UiRB register
	b15 b9 b8 b7 b0 b15 b9 b8 b7 b0 D0 - D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 00 UIRB register UIRB register
i = 0 t	D 2 UiRB register UIRB register

Figure 15.24 Transfer to UiRB Register and Interrupt Timing

15.1.3.1 Detection of Start and Stop Condition

Whether a start or a stop condition has been detected is determined.

A start condition-detected interrupt request is generated when the SDAi pin changes state from high to low while the SCLi pin is in the high state. A stop condition-detected interrupt request is generated when the SDAi pin changes state from low to high while the SCLi pin is in the high state.

Figure 15.25 shows the detection of start and stop condition.

Because the start and stop condition-detected interrupts share the interrupt control register and vector, check the BBS bit in the UiSMR register to determine which interrupt source is requesting the interrupt.

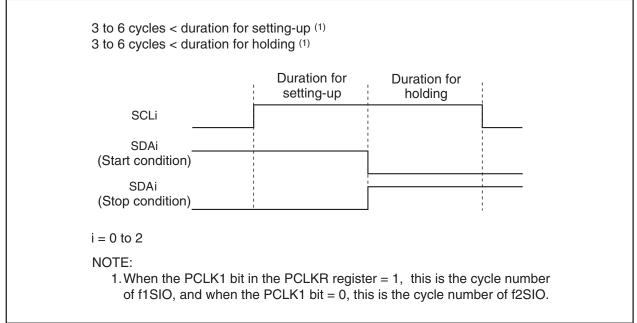


Figure 15.25 Detection of Start and Stop Condition

15.1.3.2 Output of Start and Stop Condition

- A start condition is generated by setting the STAREQ bit in the UiSMR4 register (i = 0 to 2) to "1" (start).
- A restart condition is generated by setting the RSTAREQ bit in the UiSMR4 register to "1" (start).
- A stop condition is generated by setting the STPREQ bit in the UiSMR4 register to "1" (start).
- The output procedure is described below.
- (1) Set the STAREQ bit, RSTAREQ bit or STPREQ bit to "1" (start).
- (2) Set the STSPSEL bit in the UiSMR4 register to "1" (output).

Table 15.13 and Figure 15.26 show the functions of the STSPSEL bit.

Table 15.13 STSPSEL Bit Functions

Function	STSPSEL Bit = 0	STSPSEL Bit = 1
Output of SCLi and SDAi Pins	Output of transfer clock and	Output of a start/stop condition
	data	according to the STAREQ,
	Output of start/stop condition is	RSTAREQ and STPREQ bits
	accomplished by a program	
	using ports (not automatically	
	generated in hardware)	
Start/Stop Condition Interrupt	Start/stop condition detection	Finish generating start/stop condition
Request Generation Timing		

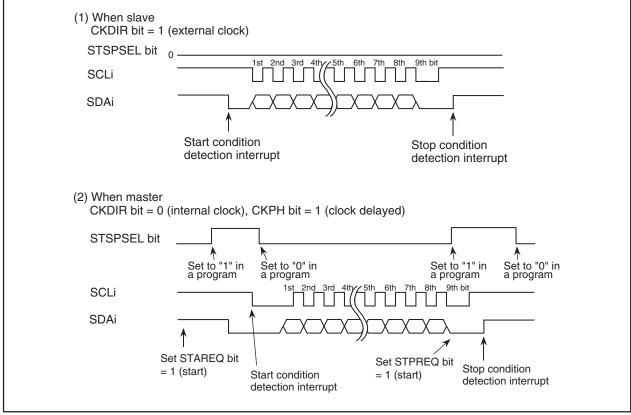


Figure 15.26 STSPSEL Bit Functions

15.1.3.3 Arbitration

Unmatching of the transmit data and SDAi pin input data is checked synchronously with the rising edge of SCLi. Use the ABC bit in the UiSMR register to select the timing at which the ABT bit in the UiRB register is updated. If the ABC bit = 0 (updated per bit), the ABT bit is set to "1" at the same time unmatching is detected during check, and is set to "0" when not detected. In cases when the ABC bit is set to "1", if unmatching is detected even once during check, the ABT bit is set to "1" (unmatching detected) at the falling edge of the clock pulse of 9th bit. If the ABT bit needs to be updated per byte, set the ABT bit to "0" (undetected) after detecting acknowledge in the first byte, before transferring the next byte.

Setting the ALS bit in the UiSMR2 register to "1" (SDA output stop enabled) causes arbitration-lost to occur, in which case the SDAi pin is placed in the high-impedance state at the same time the ABT bit is set to "1" (unmatching detected).

15.1.3.4 Transfer Clock

Data is transmitted/received using a transfer clock like the one shown in Figure 15.24.

The CSC bit in the UiSMR2 register is used to synchronize the internally generated clock (internal SCLi) and an external clock supplied to the SCLi pin. In cases when the CSC bit is set to "1" (clock synchronization enabled), if a falling edge on the SCLi pin is detected while the internal SCLi is high, the internal SCLi goes low, at which time the value of the UiBRG register is reloaded with and starts counting in the low-level interval. If the internal SCLi changes state from low to high while the SCLi pin is low, counting stops, and when the SCLi pin goes high, counting restarts.

In this way, the UARTi transfer clock is comprised of the logical product of the internal SCLi and SCLi pin signal. The transfer clock works from a half period before the falling edge of the internal SCLi 1st bit to the rising edge of the 9th bit. To use this function, select an internal clock for the transfer clock.

The SWC bit in the UiSMR2 register allows to select whether the SCLi pin should be fixed to or freed from low-level output at the falling edge of the 9th clock pulse.

If the SCLHI bit in the UiSMR4 register is set to "1" (enabled), SCLi output is turned off (placed in the high-impedance state) when a stop condition is detected.

Setting the SWC2 bit in the UiSMR2 register = 1 (0 output) makes it possible to forcibly output a lowlevel signal from the SCLi pin even while sending or receiving data. Setting the SWC2 bit to "0" (transfer clock) allows the transfer clock to be output from or supplied to the SCLi pin, instead of outputting a lowlevel signal.

If the SWC9 bit in the UiSMR4 register is set to "1" (SCL hold low enabled) when the CKPH bit in the UiSMR3 register = 1, the SCLi pin is fixed to low-level output at the falling edge of the clock pulse next to the ninth. Setting the SWC9 bit = 0 (SCL hold low disabled) frees the SCLi pin from low-level output.

15.1.3.5 SDA Output

The data written to bit 7 to bit 0 (D7 to D0) in the UiTB register is sequentially output beginning with D7. The ninth bit (D8) is ACK or NACK.

The initial value of SDAi transmit output can only be set when IICM = 1 (I²C mode) and the SMD2 to SMD0 bits in the UiMR register = 000b (serial interface disabled).

The DL2 to DL0 bits in the UiSMR3 register allow to add no delays or a delay of 2 to 8 UiBRG count source clock cycles to SDAi output.

Setting the SDHI bit in the UiSMR2 register = 1 (SDA output disabled) forcibly places the SDAi pin in the high-impedance state. Do not write to the SDHI bit synchronously with the rising edge of the UARTi transfer clock. This is because the ABT bit may inadvertently be set to "1" (detected).

15.1.3.6 SDA Input

When the IICM2 bit = 0, the 1st to 8th bits (D7 to D0) of received data are stored in the bit 7 to bit 0 in the UIRB register. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit = 1, the 1st to 7th bits (D7 to D1) of received data are stored in the bit 6 to bit 0 in the UiRB register and the 8th bit (D0) is stored in the bit 8 in the UiRB register. Even when the IICM2 bit = 1, providing the CKPH bit = 1, the same data as when the IICM2 bit = 0 can be read out by reading the UiRB register after the rising edge of the corresponding clock pulse of 9th bit.

15.1.3.7 ACK and NACK

If the STSPSEL bit in the UiSMR4 register is set to "0" (start and stop conditions not generated) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the value of the ACKD bit in the UiSMR4 register is output from the SDAi pin.

If the IICM2 bit = 0, a NACK interrupt request is generated if the SDAi pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDAi pin is low at the rising edge of the 9th bit of transmit clock pulse.

If ACKi is selected for the cause of DMA1 request, a DMA transfer can be activated by detection of an acknowledge.

15.1.3.8 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit = 1 (UARTi initialization enabled), the serial I/O operates as described below.

- The transmit shift register is initialized, and the content of the UiTB register is transferred to the transmit shift register. In this way, the serial I/O starts sending data synchronously with the next clock pulse applied. However, the UARTi output value does not change state and remains the same as when a start condition was detected until the first bit of data is output synchronously with the input clock.
- The receive shift register is initialized, and the serial I/O starts receiving data synchronously with the next clock pulse applied.
- The SWC bit is set to "1" (SCL wait output enabled). Consequently, the SCLi pin is pulled low at the falling edge of the ninth clock pulse.

Note that when UARTi transmission/reception is started using this function, the TI bit does not change state. Note also that when using this function, the selected transfer clock should be an external clock.

15.1.4 Special Mode 2

Multiple slaves can be serially communicated from one master. Transfer clock polarity and phase are selectable. Table 15.14 lists the specifications of Special Mode 2. Figure 15.27 shows communication control example for Special Mode 2. Table 15.15 lists the registers used in Special Mode 2 and the register values set.

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	Master mode
	The CKDIR bit in the UiMR register = 0 (internal clock) : $f/ 2(n+1)$
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh
	Slave mode
	The CKDIR bit = 1 (external clock selected) : Input from CLKi pin
Transmit/receive control	Controlled by input/output ports
Transmission start condition	Before transmission can start, the following requirements must be met ⁽¹⁾
	 The TE bit in the UiC1 register = 1 (transmission enabled)
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Reception start condition	Before reception can start, the following requirements must be met ⁽¹⁾
	 The RE bit in the UiC1 register = 1 (reception enabled)
	 The TE bit in the UiC1 register = 1 (transmission enabled)
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Interrupt Request	For transmission, one of the following conditions can be selected
Generation Timing	• The UiIRS bit $^{(2)} = 0$ (transmit buffer empty): when transferring data from the UiTB
	register to the UARTi transmit register (at start of transmission)
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from
	the UARTi transmit register
	For reception
	• When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error ⁽³⁾
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit of the next data
Select function	Clock phase setting
	Selectable from four combinations of transfer clock polarities and phases
- 0 to 2	

Table 15.14	Special	Mode 2	Specifications

i = 0 to 2

NOTES:

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the low state.
- 2. The U0IRS and U1IRS bits respectively are bits 0 and 1 in the UCON register ; the U2IRS bit is bit 4 in the U2C1 register.
- 3. If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in SiRIC register does not change.

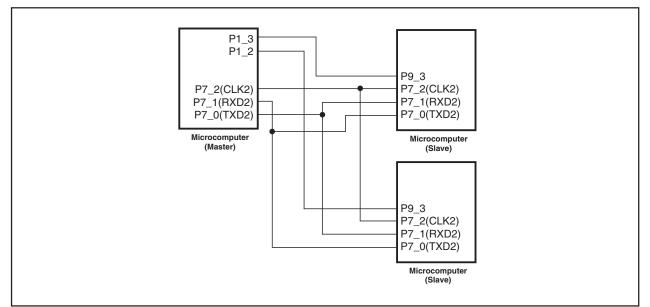


Figure 15.27 Serial Bus Communication Control Example (UART2)

Table 15.15 Registers to Be Used and Settings in Special Mode 2

UITB ⁽¹⁾ 0 to 7 Set transmission data UIRB ⁽¹⁾ 0 to 7 Reception data can be read OER Overrun error flag UIBRG 0 to 7 Set a transfer rate UIMR ⁽¹⁾ SMD2 to SMD0 Set to "001b" CKDIR Set this bit to "0" for master mode or "1" for slave mode IOPOL Set to "0" UIC0 CLK1, CLK0 Select the count source for the UiBRG register CRS Invalid because the CRD bit = 1 TXEPT Transmit register empty flag CRD Set to "1" NCH Select TXDi pin output format CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UIC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag U2IRS ⁽²⁾ Select UART2 transmit interrupt cause	
OEROverrun error flagUiBRG0 to 7Set a transfer rateUiMR ⁽¹⁾ SMD2 to SMD0Set to "001b"CKDIRSet this bit to "0" for master mode or "1" for slave modeIOPOLSet to "0"UiC0CLK1, CLK0Select the count source for the UiBRG registerCRSInvalid because the CRD bit = 1TXEPTTransmit register empty flagCRDSet to "1"NCHSelect TXDi pin output formatCKPOLClock phases can be set in combination with the CKPH bit in the UiSMR3UiC1TESet this bit to "1" to enable transmissionTITransmit buffer empty flagRESet this bit to "1" to enable receptionRIReception complete flag	
UiBRG 0 to 7 Set a transfer rate UiMR ⁽¹⁾ SMD2 to SMD0 Set to "001b" CKDIR Set this bit to "0" for master mode or "1" for slave mode IOPOL Set to "0" UiC0 CLK1, CLK0 Select the count source for the UiBRG register CRS Invalid because the CRD bit = 1 TXEPT Transmit register empty flag CRD Set to "1" NCH Select TXDi pin output format CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
UiMR ⁽¹⁾ SMD2 to SMD0 Set to "001b" CKDIR Set this bit to "0" for master mode or "1" for slave mode IOPOL Set to "0" UiC0 CLK1, CLK0 Select the count source for the UiBRG register CRS Invalid because the CRD bit = 1 TXEPT Transmit register empty flag CRD Set to "1" NCH Select TXDi pin output format CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
CKDIR Set this bit to "0" for master mode or "1" for slave mode IOPOL Set to "0" UiC0 CLK1, CLK0 Select the count source for the UiBRG register CRS Invalid because the CRD bit = 1 TXEPT Transmit register empty flag CRD Set to "1" NCH Select TXDi pin output format CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UiC1 TE RE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
IOPOL Set to "0" UiC0 CLK1, CLK0 Select the count source for the UiBRG register CRS Invalid because the CRD bit = 1 TXEPT Transmit register empty flag CRD Set to "1" NCH Select TXDi pin output format CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UiC1 TE TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
UiC0 CLK1, CLK0 Select the count source for the UiBRG register CRS Invalid because the CRD bit = 1 TXEPT Transmit register empty flag CRD Set to "1" NCH Select TXDi pin output format CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
CRS Invalid because the CRD bit = 1 TXEPT Transmit register empty flag CRD Set to "1" NCH Select TXDi pin output format CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
TXEPT Transmit register empty flag CRD Set to "1" NCH Select TXDi pin output format CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UiC1 TE TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
CRD Set to "1" NCH Select TXDi pin output format CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UiC1 TE TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
NCH Select TXDi pin output format CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
CKPOL Clock phases can be set in combination with the CKPH bit in the UiSMR3 UFORM Set to "0" UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
UFORM Set to "0" UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	
UiC1 TE Set this bit to "1" to enable transmission TI Transmit buffer empty flag RE Set this bit to "1" to enable reception RI Reception complete flag	register
TITransmit buffer empty flagRESet this bit to "1" to enable receptionRIReception complete flag	
RE Set this bit to "1" to enable reception RI Reception complete flag	
RI Reception complete flag	
U2IRS (2) Select UART2 transmit interrupt cause	
U2RRM ⁽²⁾ , Set to "0"	
UILCH, UIERE	
UiSMR 0 to 7 Set to "0"	
UiSMR2 0 to 7 Set to "0"	
UISMR3 CKPH Clock phases can be set in combination with the CKPOL bit in the UIC0	register
NODC Set to "0"	
0, 2, 4 to 7 Set to "0"	
UiSMR4 0 to 7 Set to "0"	
UCON U0IRS, U1IRS Select UART0 and UART1 transmit interrupt cause	
U0RRM, U1RRM Set to "0"	
CLKMD0 Invalid because the CLKMD1 bit = 0	
CLKMD1, RCSP, 7 Set to "0"	

i = 0 to 2

NOTES:

- 1. Not all register bits are described above. Set those bits to "0" when writing to the registers in Special Mode 2.
- 2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

15.1.4.1 Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the CKPH bit in the UiSMR3 register and the CKPOL bit in the UiC0 register.

Make sure the transfer clock polarity and phase are the same for the master and salves to be communicated. Figure 15.28 shows the transmission and reception timing in master (internal clock).

Figure 15.29 shows the transmission and reception timing (CKPH = 0) in slave (external clock).

Figure 15.30 shows the transmission and reception timing (CKPH = 1) in slave (external clock).

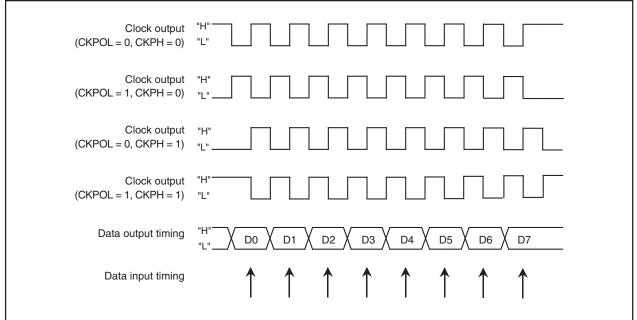


Figure 15.28 Transmission and Reception Timing in Master Mode (Internal Clock)

Under development This document is under development and its contents are subject to change. M16C/6N Group (M16C/6N4)

15. Serial Interface

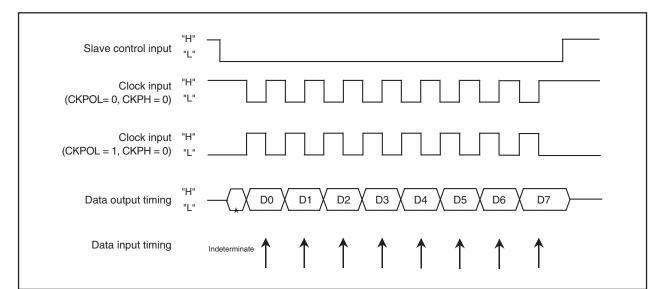


Figure 15.29 Transmission and Reception Timing (CKPH = 0) in Slave Mode (External Clock)

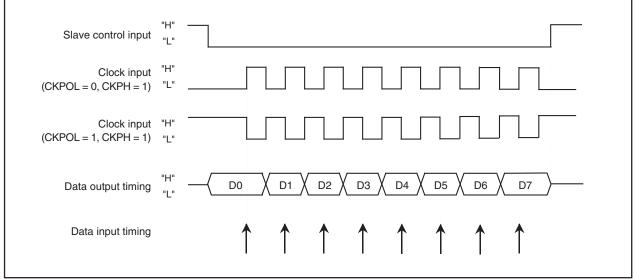


Figure 15.30 Transmission and Reception Timing (CKPH = 1) in Slave Mode (External Clock)

15.1.5 Special Mode 3 (IE Mode)

In this mode, one bit of IEBus is approximated with one byte of UART mode waveform.

Table 15.16 lists the registers used in IE mode and the register values set. Figure 15.31 shows the functions of bus collision detect function related bits.

If the TXDi pin (i = 0 to 2) output level and RXDi pin input level do not match, a UARTi bus collision detect interrupt request is generated.

Use the IFSR06 and IFSR07 bits in the IFSR0 register to enable the UART0/UART1 bus collision detect function.

Register	Bit	Function
UiTB	0 to 8	Set transmission data
UiRB (1)	0 to 8	Reception data can be read
	OER,FER,PER,SUM	Error flag
UiBRG	0 to 7	Set a transfer rate
UiMR	SMD2 to SMD0	Set to "110b"
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Invalid because the PRYE bit = 0
	PRYE	Set to "0"
	IOPOL	Select the TXD/RXD input/output polarity
UiC0	CLK1, CLK0	Select the count source for the UiBRG register
	CRS	Invalid because the CRD bit = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Select TXDi pin output mode
	CKPOL	Set to "0"
	UFORM	Set to "0"
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS ⁽²⁾	Select the source of UART2 transmit interrupt
	U2RRM ⁽²⁾ ,	Set to "0"
	UILCH, UIERE	
UiSMR	0 to 3, 7	Set to "0"
	ABSCS	Select the sampling timing at which to detect a bus collision
	ACSE	Set this bit to "1" to use the auto clear function of transmit enable bit
	SSS	Select the transmit start condition
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
IFSR0	IFSR06, IFSR07	Set to "1"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because the CLKMD1 bit = 0
	CLKMD1, RCSP, 7	Set to "0"

Table 15.16	Registers to	Be Used and	Settings in IE Mode
-------------	---------------------	-------------	---------------------

i= 0 to 2

NOTES:

- 1. Not all register bits are described above. Set those bits to "0" when writing to the registers in IE mode.
- 2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

(1) ABSCS Bit in UiS	MR Register (bus collision detect sampling clock select)
	If ABSCS bit = 0, bus collision is determined at the rising edge of the transfer clock \dot{x}
Transfer clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TXDi	
RXDi	Input to TAjIN
Timer Aj	
	If ABSCS bit = 1, bus collision is determined when timer Aj (one-shot timer mode) underflows. Timer Aj: timer A3 when UART0; timer A4 when UART1; timer A0 when UART2
	R Register (auto clear of transmit enable bit)
Transfer clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TXDi	
RXDi	
IR bit in UiBCNIC register	If the ACSE bit = 1 (automatically clear when bus collision occurs), the TE bit is set to "0"
TE bit in UiC1 register	(transmission disabled) when the IR bit in the UiBCNIC register = 1 (unmatching detected).
	Register (transmit start condition select) erial I/O starts sending data one transfer clock cycle after the transmission enable condition is met.
Transfer clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TXDi	
Transmi	ssion enable condition is met
If SSS bit = 1, the s	erial I/O starts sending data at the rising edge (1) of RXDi
CLKi	
TXDi	(NOTE 2)
RXDi	
	KDi when IOPOL bit = 0; the rising edge of RXDi when IOPOL bit = 1. In must be met before the falling edge $^{(1)}$ of RXDi.
i = 0 to 2 This diagram applies to the	e case where IOPOL bit =1 (reversed)

Figure 15.31 Bus Collision Detect Function-Related Bits

15.1.6 Special Mode 4 (SIM Mode) (UART2)

Based on UART mode, this is an SIM interface compatible mode. Direct and inverse formats can be implemented, and this mode allows to output a low from the TXD2 pin when a parity error is detected. Table 15.17 lists the specifications of SIM mode. Table 15.18 lists the registers used in the SIM mode and the register values set. Figure 15.32 shows the typical transmit/receive timing in SIM mode.

Item	Specification
Transfer data format	Direct format
	Inverse format
Transfer clock	• The CKDIR bit in the U2MR register = 0 (internal clock) : fi/ 16(n+1)
	fi = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the U2BRG register 00h to FFh
	 The CKDIR bit = 1 (external clock) : fEXT/16(n+1)
	fEXT: Input from CLK2 pin. n: Setting value of the U2BRG register 00h to FFh
Transmission start condition	Before transmission can start, the following requirements must be met
	 The TE bit in the U2C1 register = 1 (transmission enabled)
	 The TI bit in the U2C1 register = 0 (data present in the U2TB register)
Reception start condition	Before reception can start, the following requirements must be met
	 The RE bit in the U2C1 register = 1 (reception enabled)
	Start bit detection
Interrupt request	For transmission
generation timing (2)	When the serial I/O finished sending data from the U2TB transfer register (U2IRS bit = 1)
	For reception
	When transferring data from the UART2 receive register to the U2RB register (at
	completion of reception)
Error detection	• Overrun error ⁽¹⁾
	This error occurs if the serial I/O started receiving the next data before reading the
	U2RB register and received the bit one before the last stop bit of the next data
	• Framing error ⁽³⁾
	This error occurs when the number of stop bits set is not detected
	• Parity error ⁽³⁾
	During reception, if a parity error is detected, parity error signal is output from the
	TXD2 pin.
	During transmission, a parity error is detected by the level of input to the RXD2 pin
	when a transmission interrupt occurs
	• Error sum flag
	This flag is set to "1" when any of the overrun, framing, and parity errors is encountered

Table 15.17 SIM Mode Specifications

NOTES:

- 1. If an overrun error occurs, the value of the U2RB register will be indeterminate. The IR bit in the S2RIC register does not change.
- 2. A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to "1" (transmit is completed) and U2ERE bit to "1" (error signal output) after reset. Therefore, when using SIM mode, set the IR bit to "0" (interrupt not requested) after setting these bits.
- 3. The timing at which the framing error flag and the parity error flag are set is detected when data is transferred from the UARTi receive register to the UiRB register.

Table 15.18 Registers to Be Used and Settings in SIM Mode

Register	Bit	Function
U2TB ⁽¹⁾	0 to 7	Set transmission data
U2RB ⁽¹⁾	0 to 7	Reception data can be read
	OER,FER,PER,SUM	Error flag
U2BRG	0 to 7	Set a transfer rate
U2MR	SMD2 to SMD0	Set to "101b"
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Set this bit to "1" for direct format or "0" for inverse format
	PRYE	Set to "1"
	IOPOL	Set to "0"
U2C0	CLK1, CLK0	Select the count source for the U2BRG register
	CRS	Invalid because the CRD bit = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Set to "0"
	CKPOL	Set to "0"
	UFORM	Set this bit to "0" for direct format or "1" for inverse format
U2C1	TE	Set this bit to "1" to enable transmission
	ТІ	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS	Set to "1"
	U2RRM	Set to "0"
	U2LCH	Set this bit to "0" for direct format or "1" for inverse format
	U2ERE	Set to "1"
U2SMR ⁽¹⁾	0 to 3	Set to "0"
U2SMR2	0 to 7	Set to "0"
U2SMR3	0 to 7	Set to "0"
U2SMR4	0 to 7	Set to "0"

NOTE:

1. Not all register bits are described above. Set those bits to "0" when writing to the registers in SIM mode.

M16C/6N Group (M16C/6N4)

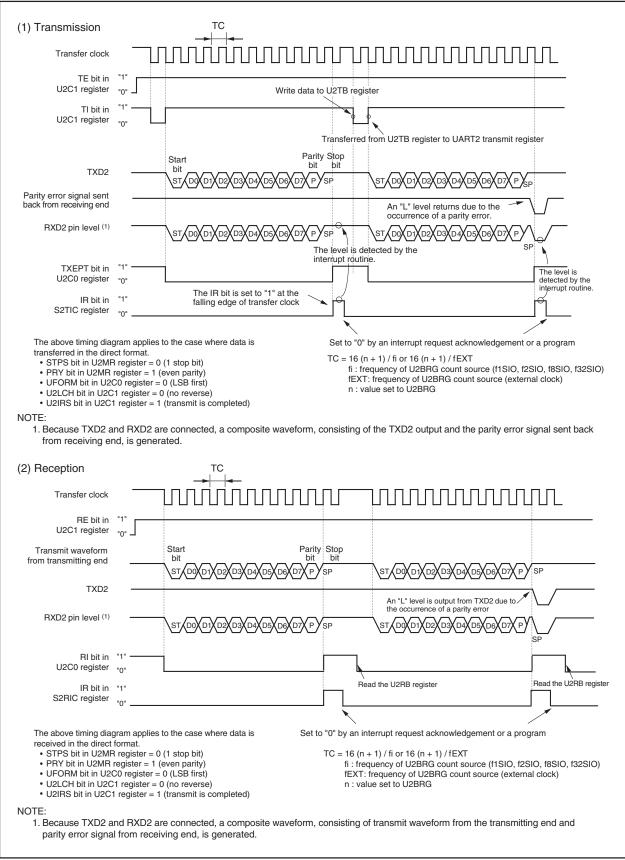


Figure 15.32 Transmit and Receive Timing in SIM Mode

Figure 15.33 shows the example of connecting the SIM interface. Connect TXD2 and RXD2 and apply pull-up.

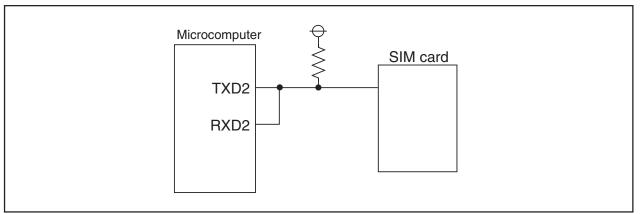


Figure 15.33 SIM Interface Connection

15.1.6.1 Parity Error Signal Output

The parity error signal is enabled by setting the U2ERE bit in the U2C1 register to "1".

The parity error signal is output when a parity error is detected while receiving data. This is achieved by pulling the TXD2 output low with the timing shown in Figure 15.32. If the R2RB register is read while outputting a parity error signal, the PER bit is set to "0" and at the same time the TXD2 output is returned high.

When transmitting, a transmission-finished interrupt request is generated at the falling edge of the transfer clock pulse that immediately follows the stop bit. Therefore, whether a parity signal has been returned can be determined by reading the port that shares the RXD2 pin in a transmission-finished interrupt service routine.

Transfer clock		
RXD2	"H"	7 P SP
TXD2	"H" (NOTE 1)	
RI bit in U2C1 register	"1" "0"	
This timing diao implemented.	ram applies to the case where the direct format is	ST: Start bit P: Even Parity
NOTE: 1: The outpu	t of microcomputer is in the high-impedance state (p	SP: Stop bit ulled up externally).

Figure 15.34 shows the output timing of the parity error signal

Figure 15.34 Parity Error Signal Output Timing

15.1.6.2 Format

When direct format, set the PRY bit in the U2MR register to "1", the UFORM bit in the U2C0 register to "0" and the U2LCH bit in the U2C1 register to "0".

When inverse format, set the PRY bit to "0", UFORM bit to "1" and U2LCH bit to "1".

Figure 15.35 shows the SIM interface format.

(1) Direct	format
Transfer clock	
TXD2	"H" (D0 (D1 (D2 (D3 (D4 (D5 (D6 (D7 (P)
	P : Even parity
(2) Inverse	e format
Transfer clock	
TXD2	"H" <u>(D7) D6) (D5) D4) (D3) (D2) (D1) (D0) P</u>
	P : Odd parity

Figure 15.35 SIM Interface Format

15.2 SI/O3

SI/O3 is exclusive clock-synchronous serial I/Os.

Figure 15.36 shows the block diagram of SI/O3, and Figure 15.37 shows the SI/O3-related registers. Table 15.19 lists the specifications of SI/O3.

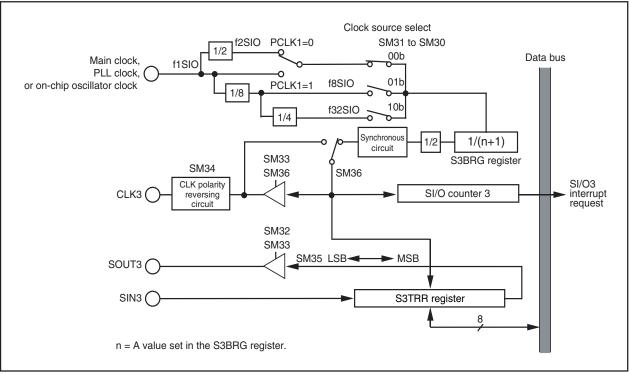
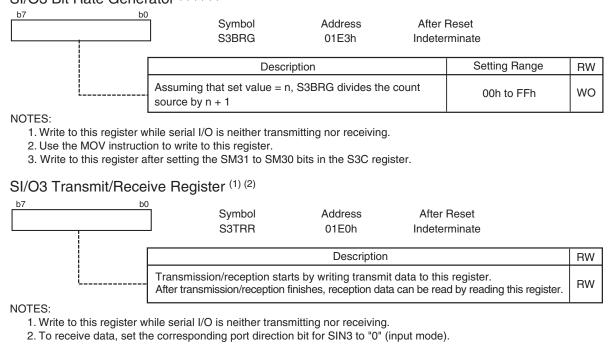


Figure 15.36 SI/O3 Block Diagram

SI/O3 Control Register ⁽¹⁾ b5 b4 b3 b2 b1 b0 b7 b6 Symbol Address After Reset S3C 01E2h 0100000b Bit Description Bit Name RW Symbol b1 b0 SM30 RW 0 0 : Selecting f1SIO or f2SIO Internal Synchronous 01: Selecting f8SIO Clock Select Bit (5) 10: Selecting f32SIO SM31 RW 11: Do not set a value SOUT3 Output Disable 0 : SOUT3 output SM32 RW 1 : SOUT3 output disabled (high-impedance) Bit (2) 0 : Input/output port SM33 SI/O3 Port Select Bit RW 1 : SOUT3 output, CLK3 function 0 : Transmit data is output at falling edge of transfer clock and receive data is input at rising edge RW SM34 **CLK Polarity Select Bit** : Transmit data is output at rising edge of 1 transfer clock and receive data is input at falling edge Transfer Direction Select 0 : LSB first SM35 RW 1: MSB first Bit Synchronous Clock 0: External clock (3) SM36 RW Select Bit 1 : Internal clock (4) Effective when the SM33 bit = 0 SOUT3 Initial Value Set Bit SM37 0 : "L" output RW 1 : "H" output

NOTES:


1. Make sure this register is written to by the next instruction after setting the PRC2 bit in the PRCR register to "1" (write enabled).

2. When the SM32 bit = 1, the corresponding pin is placed in the high-impedance state regardless of which functions of those pins are being used.

3. Set the SM33 bit to "1" (SOUT3 output, CLK3 function) and the corresponding port direction bit to "0" (input mode). 4. Set the SM33 bit to "1" (SOUT3 output, CLK3 function).

5. When changing the SM31 to SM30 bits, set the S3BRG register.

SI/O3 Bit Rate Generator ^{(1) (2) (3)}

Figure 15.37 S3C Register, S3BRG Register, and S3TRR Register

Item	Specification
Transfer Data Format	Transfer data length: 8 bits
Transfer clock	 SM36 bit in S3C register = 1 (internal clock) : fj/ 2(n+1)
	fj = f1SIO, f8SIO, f32SIO. n = Setting value of S3BRG register 00h to FFh
	• SM36 bit = 0 (external clock) : Input from CLK3 pin ⁽¹⁾
Transmission/Reception	Before transmission/reception can start, the following requirements must be met
Start Condition	Write transmit data to the S3TRR register (2) (3)
Interrupt Request	• When SM34 bit in S3C register = 0
Generation Timing	The rising edge of the last transfer clock pulse (4)
	• When SM34 bit = 1
	The falling edge of the last transfer clock pulse (4)
CLK3 Pin Function	I/O port, transfer clock input, transfer clock output
SOUT3 Pin Function	I/O port, transmit data output, high-impedance
SIN3 Pin Function	I/O port, receive data input
Select Function	LSB first or MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning
	with bit 7 can be selected
	 Function for setting an SOUT3 initial value set function
	When the SM36 bit in the S3C register = 0 (external clock), the SOUT3 pin
	output level while not transmitting can be selected.
	CLK polarity selection
	Whether transmit data is output/input timing at the rising edge or falling
	edge of transfer clock can be selected.

Table 15.19 SI/O3 Specifications

NOTES:

1. To set the SM36 bit in the S3C register to "0" (external clock), follow the procedure described below.

- If the SM34 bit in the S3C register = 0, write transmit data to the S3TRR register while input on the CLK3 pin is high. The same applies when rewriting the SM37 bit in the S3C register.
- If the SM34 bit = 1, write transmit data to the S3TRR register while input on the CLK3 pin is low. The same applies when rewriting the SM37 bit.
- Because shift operation continues as long as the transfer clock is supplied to the SI/O3 circuit, stop the transfer clock after supplying eight pulses. If the SM36 bit = 1 (internal clock), the transfer clock automatically stops.
- 2. Unlike UART0 to UART2, SI/O3 is not separated between the transfer register and buffer. Therefore, do not write the next transmit data to the S3TRR register during transmission.
- 3. When the SM36 bit = 1 (internal clock), SOUT3 retains the last data for a 1/2 transfer clock period after completion of transfer and, thereafter, goes to a high-impedance state. However, if transmit data is written to the S3TRR register during this period, SOUT3 immediately goes to a high-impedance state, with the data hold time thereby reduced.
- 4. When the SM36 bit = 1 (internal clock), the transfer clock stops in the high state if the SM34 bit = 0, or stops in the low state if the SM34 bit = 1.

15.2.1 SI/O3 Operation Timing

Figure 15.38 shows the SI/O3 operation timing.

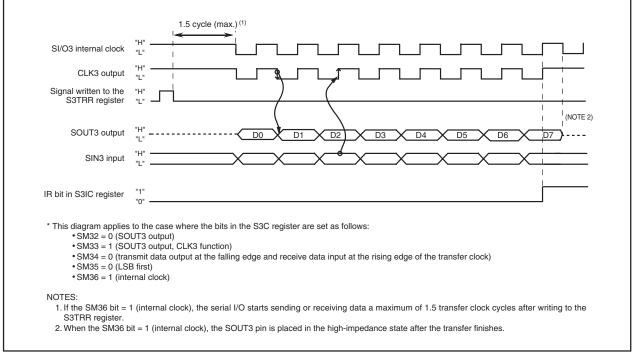


Figure 15.38 SI/O3 Operation Timing

15.2.2 CLK Polarity Selection

The SM34 bit in the S3C register allows selection of the polarity of the transfer clock. Figure 15.39 shows the polarity of the transfer clock.

(1) When SM34 bit in S3C register = 0
CLK3 (NOTE 1)
SOUT3 D0 D1 D2 D3 D4 D5 D6 D7
SIN3 D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7
(2) When SM34 bit in S3C register = 1
CLK3 (NOTE 2)
SOUT3 D0 D1 D2 D3 D4 D5 D6 D7
SIN3 D0 \ D1 \ D2 \ D3 \ D4 \ D5 \ D6 \ D7
 *This diagram applies to the case where the bits in the S3C register are set as follows: SM35 = 0 (LSB first) SM36 = 1 (internal clock)
 NOTES: 1. When the SM36 bit = 1 (internal clock), a high level is output from the CLK3 pin if not transferring data. 2. When the SM36 bit = 1 (internal clock), a low level is output from the CLK3 pin if not transferring data.

Figure 15.39 Polarity of Transfer Clock

15.2.3 Functions for Setting an SOUT3 Initial Value

If the SM36 bit in the S3C register = 0 (external clock), the SOUT3 pin output can be fixed high or low when not transferring. Figure 15.40 shows the timing chart for setting an SOUT3 initial value and how to set it.

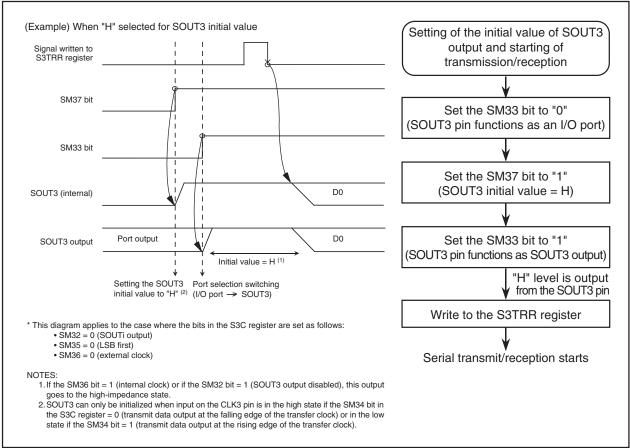


Figure 15.40 SOUT3's Initial Value Setting

16. A/D Converter

The microcomputer contains one A/D converter circuit based on 10-bit successive approximation method configured with a capacitive-coupling amplifier. The analog inputs share the pins with P10_0 to P10_7, P9_5, P9_6, P0_0 to P0_7, and P2_0 to P2_7. Similarly, ADTRG input shares the pin with P9_7. Therefore, when using these inputs, make sure the corresponding port direction bits are set to "0" (input mode). When not using the A/D converter, set the VCUT bit to "0" (VREF unconnected), so that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip. The A/D conversion result is stored in the ADI register's bits for ANI, AN0_i, and AN2_i pins (i = 0 to 7). Table 16.1 shows the performance of the A/D converter. Figure 16.1 shows the block diagram of the A/D converter, and Figures 16.2 and 16.3 show the A/D converter-related registers.

Item	Performance
Method of A/D Conversion	Successive approximation (capacitive coupling amplifier)
Analog Input Voltage (1)	0V to AVCC (VCC)
Operating Clock ϕ AD ⁽²⁾	fAD, divide-by-2 of fAD, divide-by-3 of fAD, divide-by-4 of fAD,
	divide-by-6 of fAD, divide-by-12 of fAD
Resolution	8 bits or 10 bits (selectable)
Integral Nonlinearity Error	When AVCC = VREF = 5 V
	With 8-bit resolution: ±2LSB
	With 10-bit resolution: ±3LSB
	When external operation amp connection mode is selected: ±7LSB
	When AVCC = VREF = 3.3 V
	With 8-bit resolution: ±2LSB
	With 10-bit resolution: ±5LSB
	When external operation amp connection mode is selected: ±7LSB
Operating Modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,
	and repeat sweep mode 1
Analog Input Pins	8 pins (AN0 to AN7) + 2 pins (ANEX0 and ANEX1) + 8 pins (AN0_0 to AN0_7)
	+ 8 pins (AN2_0 to AN2_7)
A/D Conversion	Software trigger
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	• External trigger (retriggerable)
	Input on the \overline{ADTRG} pin changes state from high to low after the ADST bit
	is set to "1" (A/D conversion starts)
Conversion Speed Per Pin	Without sample and hold
	8-bit resolution: 49 ϕ AD cycles, 10-bit resolution: 59 ϕ AD cycles
	With sample and hold
	8-bit resolution: 28 \u00e9AD cycles, 10-bit resolution: 33 \u00f6AD cycles

Table 16.1 A/D Converter Performance

NOTES:

1. Does not depend on use of sample and hold.

2. ¢AD frequency must be 10 MHz or less.

When sample and hold is disabled, ϕAD frequency must be 250 kHz or more.

When sample and hold is enabled, ϕAD frequency must be 1 MHz or more.

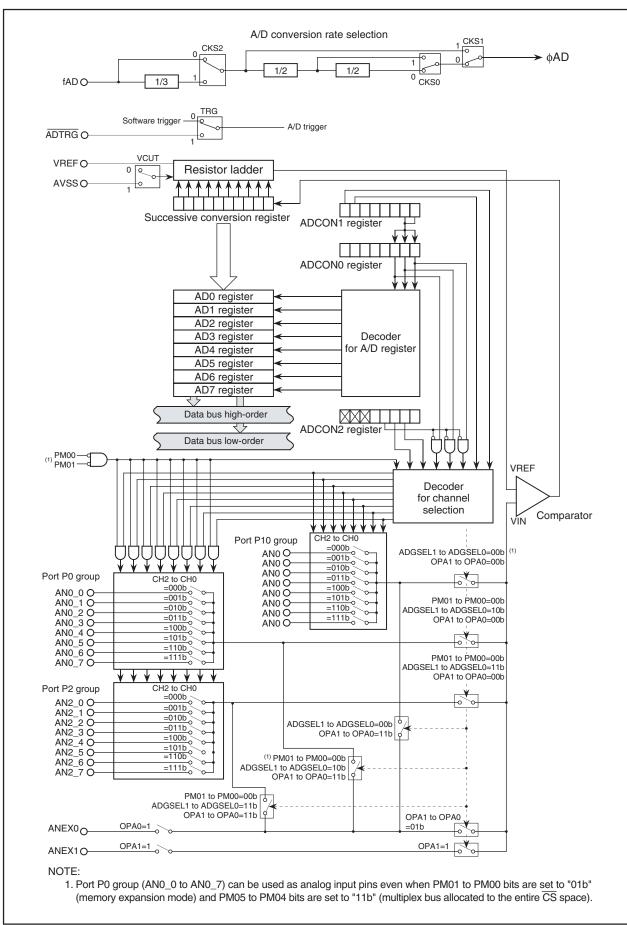


Figure 16.1 A/D Converter Block Diagram

7 b6 b5 b4 b3 b2 b1 b0	Symbol ADCONC		After Reset 00000XXXb	
Γ	Bit Symbol	Bit Name	Function	RV
-	CH0			RV
	CH1	Analog Input Pin Select Bit	Function varies with each operation mode	RV
	CH2			RV
	MD0	A/D Operation Mode	0 0 : One-shot mode 0 1 : Repeat mode 1 0 : Single sweep mode	RV
	MD1	Select Bit 0	1 1 : Repeat sweep mode 0 or Repeat sweep mode 1	RV
	TRG	Trigger Select Bit	0 : Software trigger 1 : ADTRG trigger	RV
	ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
-	01/00	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2	RV
DTE: 1. If the ADCON0 register D Control Register - 7 _ b6 _ b5 _ b4 _ b3 _ b2 _ b1 _ b0	1 (1)	uring A/D conversion, the cor	Register	
1. If the ADCON0 register	r is rewritten du	uring A/D conversion, the cor		
1. If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Symbol	uring A/D conversion, the cor	nversion result will be indeterminate	e.
1. If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1	Address 03D7h Bit name	After Reset 00h Function varies	e.
1. If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit symbol	Address 03D7h	After Reset 00h Function	e.
1. If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit symbol SCAN0	Address 03D7h Bit name	After Reset 00h Function varies	e. RV RV
1. If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit symbol SCAN0 SCAN1	Address 03D7h Bit name A/D Sweep Pin Select Bit	After Reset 00h Function Function varies with each operation mode 0 : Any mode other than repeat sweep mode 1	e.
1. If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit symbol SCAN0 SCAN1 MD2	Address 03D7h Bit name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1	After Reset 00h Function Function varies with each operation mode 0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 0 : 8-bit mode	e. RV RV RV
1. If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit	After Reset 00h Function Function Out O : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	RV RV RV RV RV
1. If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit Frequency Select Bit 1	After Reset 00h Function Function Out Out Function varies with each operation mode 0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register 0 : VREF not connected	

starting A/D conversion.

Figure 16.2 ADCON0 Register and ADCON1 Register

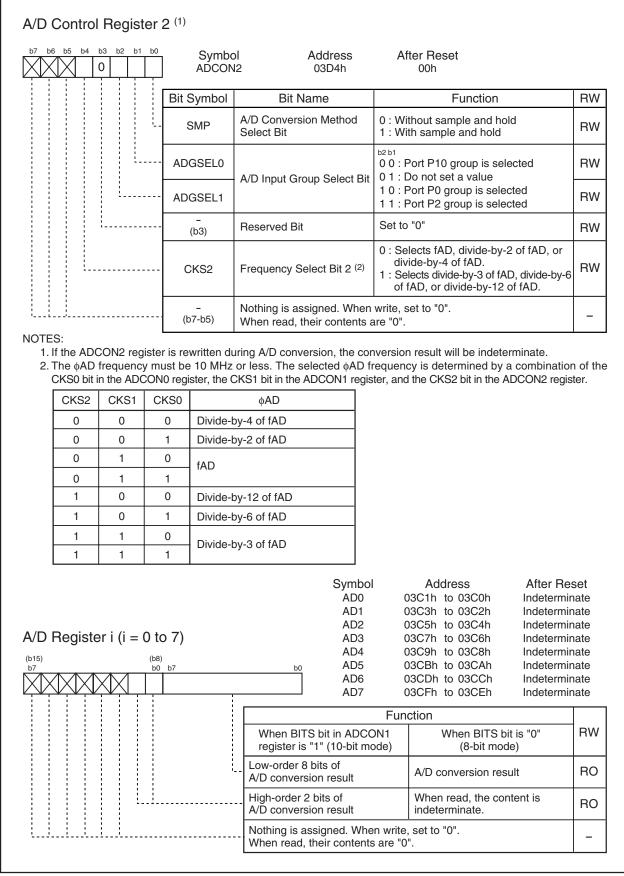


Figure 16.3 ADCON2 Register, and AD0 to AD7 Registers

16.1 Mode Description

16.1.1 One-shot Mode

In one-shot mode, analog voltage applied to a selected pin is A/D converted once. Table 16.2 lists the specifications of one-shot mode. Figure 16.4 shows the ADCON0 and ADCON1 registers in one-shot mode.

Item	Specification			
Function	The CH2 to CH0 bits in the ADCON0 register, the ADGSEL1 to ADGSEL0			
	bits in the ADCON2 register and the OPA1 to OPA0 bits in the ADCON1			
	register select a pin Analog voltage applied to the pin is converted to a			
	digital code once.			
A/D Conversion	• When the TRG bit in the ADCON0 register is "0" (software trigger)			
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)			
	• When the TRG bit is "1" (ADTRG trigger)			
	Input on the ADTRG pin changes state from high to low after the ADST			
	bit is set to "1" (A/D conversion starts)			
A/D Conversion	Completion of A/D conversion (If a software trigger is selected, the ADST			
Stop Condition	bit is set to "0" (A/D conversion halted).)			
	• Set the ADST bit to "0"			
Interrupt Request	Completion of A/D conversion			
Generation Timing				
Analog Input Pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7,			
	ANEX0 to ANEX1			
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin			
A/D Converter				

Table 16.2	One-shot Mode	Specifications
	One-shot would	opecifications

A/D Control Re	gister	0 (1)			
b7 b6 b5 b4 b3 b	2 b1 b0	Symbol ADCON0		After Reset 00000XXXb	
		Bit Symbol	Bit Name	Function	RW
		CH0		^{b2 b1 b0} 0 0 0 : AN0 is selected 0 0 1 : AN1 is selected	RW
	·	CH1	Analog Input Pin Select Bit	0 1 0 : AN2 is selected 0 1 1 : AN3 is selected 1 0 0 : AN4 is selected 1 0 1 : AN5 is selected 1 1 0 : AN6 is selected 1 1 1 : AN7 is selected ^{(2) (3)}	RW
		CH2			RW
		MD0	A/D Operation Mode	b4 b3	RW
		MD1	Select Bit 0	0 0 : One-shot mode ⁽³⁾	RW
,		TRG	Trigger Select Bit	0 : Software trigger 1 : ADTRG trigger	RW
		ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
		CKS0	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2 Register	RW
NOTES:	O recisto	r in rouwitton du	ring A/D conversion the con	worsion rocult will be indeterminate	<u> </u>

 If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate. 2. ANO_0 to AN_7, and AN2_0 to AN2_7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0

bits in the ADCON2 register to select the desired pin.

3. After rewriting the MD1 to MD0 bits, set the CH2 to CH0 bits over again using another instruction.

A/D Control Register 1 (1)

b7 b6 b5 b	4 b3	b2	b1	b0	Symbol ADCON1		After Reset 00h	
					Bit Symbol	Bit Name	Function	RW
		-	-	÷.	SCAN0	A/D Sweep Pin Select Bit	Invalid in one-shot mode	RW
					SCAN1		Invalid in one-shot mode	RW
					MD2	A/D Operation Mode Select Bit 1	Set to "0" when one-shot mode is selected	RW
					BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
					CKS1	Frequency Select Bit 1	Refer to NOTE 2 for ADCON2 Register	RW
· · · · · · · · · · · · · · · · · · ·					VCUT	VREF Connect Bit ⁽²⁾	1 : VREF connected	RW
					OPA0	External Op-Amp	0 0 : ANEX0 and ANEX1 are not used 0 1 : ANEX0 input is A/D converted	RW
					OPA1	Connection Mode Bit	1 0 : ANEX1 input is A/D converted 1 1 : External op-amp connection mode	RW
NOTES								

NOTES:

1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

2. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 µs or more before starting A/D conversion.

Figure 16.4 ADCON0 Register and ADCON1 Register in One-shot Mode

16.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 16.3 lists the specifications of repeat mode. Figure 16.5 shows the ADCON0 and ADCON1 registers in repeat mode.

Item	Specification
Function	The CH2 to CH0 bits in the ADCON0 register, the ADGSEL1 to ADGSEL0
	bits in the ADCON2 register and the OPA1 to OPA0 bits in the ADCON1
	register select a pin. Analog voltage applied to this pin is repeatedly
	converted to a digital code.
A/D Conversion	• When the TRG bit in the ADCON0 register is "0" (software trigger)
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to "1" (A/D conversion starts)
A/D Conversion	Set the ADST bit to "0" (A/D conversion halted)
Stop Condition	
Interrupt Request	None generated
Generation Timing	
Analog Input Pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7,
	ANEX0 to ANEX1
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin
A/D Converter	

Table 16.3 Repeat Mode Specifications

A/D Control Register	0 (1)			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol ADCON0		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	RW
	CH0		0 0 0 : AN0 is selected 0 0 1 : AN1 is selected	RW
	CH1	Analog Input Pin Select Bit	0 1 0 : AN2 is selected 0 1 1 : AN3 is selected 1 0 0 : AN4 is selected	RW
	CH2		1 0 1 : AN5 is selected 1 1 0 : AN6 is selected 1 1 1 : AN7 is selected ^{(2) (3)}	RW
	MD0	A/D Operation Mode	b4 b3	RW
	MD1	Select Bit 0	0 1 : Repeat mode ⁽³⁾	RW
,	TRG	Trigger Select Bit	0 : Software trigger 1 : ADTRG trigger	RW
	ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
	CKS0	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2 Register	RW
NOTES: 1. If the ADCON0 registe	r is rewritten du	ring A/D conversion, the cor	nversion result will be indeterminate	

2. AN0_0 to AN_7, and AN2_0 to AN2_7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.

3. After rewriting the MD1 to MD0 bits, set the CH2 to CH0 bits over again using another instruction.

A/D Control Register 1 (1)

b7 b6 b5 b4 b3 b2 b1 b 1 0	Symbol		After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	- SCAN0	A/D Sweep Pin Select Bit	Invalid in repeat mode	RW
	- SCAN1			RW
	MD2	A/D Operation Mode Select Bit 1	Set to "0" when repeat mode is selected	RW
	BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
	CKS1	Frequency Select Bit 1	Refer to NOTE 2 for ADCON2 Register	RW
	VCUT	VREF Connect Bit ⁽²⁾	1 : VREF connected	RW
	OPA0	External Op-Amp	0 0 : ANEX0 and ANEX1 are not used 0 1 : ANEX0 input is A/D converted	RW
	- OPA1	Connection Mode Bit	1 0 : ANEX1 input is A/D converted 1 1 : External op-amp connection mode	RW
NOTES:				

1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

2. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 µs or more before starting A/D conversion.

Figure 16.5 ADCON0 Register and ADCON1 Register in Repeat Mode

16.1.3 Single Sweep Mode

In single sweep mode, analog voltage that is applied to selected pins is converted one-by-one to a digital code. Table 16.4 lists the specifications of single sweep mode. Figure 16.6 shows the ADCON0 and ADCON1 registers in single sweep mode.

Item	Specification
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and the ADGSEL1 to
	ADGSEL0 bits in the ADCON2 register select pins. Analog voltage applied
	to this pins is converted one-by-one to a digital code.
A/D Conversion	• When the TRG bit in the ADCON0 register is "0" (software trigger)
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to "1" (A/D conversion starts)
A/D Conversion	Completion of A/D conversion (If a software trigger is selected, the ADST
Stop Condition	bit is set to "0" (A/D conversion halted).)
	Set the ADST bit to "0"
Interrupt Request	Completion of A/D conversion
Generation Timing	
Analog Input Pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins),
	AN0 to AN7 (8 pins) ⁽¹⁾
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin
A/D Converter	
NOTE:	

Table 16.4	Single	Sweep	Mode	Specifications
------------	--------	-------	------	----------------

NOTE:

1. AN0_0 to AN0_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

/D Control F	b2 b1 b0				
		Symbol ADCON0		After Reset 00000XXXb	
		Bit Symbol	Bit Name	Function	RW
		CH0			RW
		CH1	Analog Input Pin Select Bit	Invalid in single sweep mode	RW
		CH2			RW
		MD0	A/D Operation Mode	b4 b3	RW
		MD1	Select Bit 0	1 0 : Single sweep mode	RW
,		TRG	Trigger Select Bit	0 : Software trigger 1 : ADTRG trigger	RW
		ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
		CKS0	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2 Register	RW
OTE: 1. If the ADCO /D Control F 17 b6 b5 b4 b3	-	1 ⁽¹⁾		oversion result will be indeterminate. After Reset	I
1. If the ADCO	Register		Address		I
1. If the ADCO	Register	1 ⁽¹⁾ I Symbol	Address	After Reset	RW
1. If the ADCO	Register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h Bit Name	After Reset 00h Function When single sweep mode is selected	RW
1. If the ADCO	Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	Address 03D7h	After Reset 00h Function When single sweep mode is selected	RW
1. If the ADCO	Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	Address 03D7h Bit Name	After Reset 00h Function When single sweep mode is selected b100 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins)	
1. If the ADCO	Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode	After Reset 00h Function When single sweep mode is selected b1b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 0 : AN0 to AN7 (8 pins) (2) Set to "0" when single sweep mode	RW RW RW
1. If the ADCO	Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1	After Reset 00h Function When single sweep mode is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to "0" when single sweep mode is selected 0 : 8-bit mode	RW
1. If the ADCO	Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit	After Reset 00h Function When single sweep mode is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to "0" when single sweep mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	RW RW RW RW
1. If the ADCO	Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit Frequency Select Bit 1	After Reset 00h Function When single sweep mode is selected b1b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to "0" when single sweep mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	RW RW RW

2. ANO_0 to AN_7, and AN2_0 to AN2_7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.

3. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μs or more before starting A/D conversion.

Figure 16.6 ADCON0 Register and ADCON1 Register in Single Sweep Mode

16.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltage applied to selected pins is repeatedly converted to a digital code. Table 16.5 lists the specifications of repeat sweep mode 0. Figure 16.7 shows the ADCON0 and ADCON1 registers in repeat sweep mode 0.

Item	Specification
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and the ADGSEL1 to
	ADGSEL0 bits in the ADCON2 register select pins. Analog voltage applied
	to the pins is repeatedly converted to a digital code.
A/D Conversion	• When the TRG bit in the ADCON0 register is "0" (software trigger)
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to "1" (A/D conversion starts)
A/D Conversion	Set the ADST bit to "0" (A/D conversion halted)
Stop Condition	
Interrupt Request	None generated
Generation Timing	
Analog Input Pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins),
	AN0 to AN7 (8 pins) ⁽¹⁾
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin
A/D Converter	
NOTE:	

Table 16.5	Repeat Sweep	Mode 0 S	pecifications
------------	--------------	----------	---------------

NOTE:

1. AN0_0 to AN0_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

7 b6 b5 b4 b3 b2 b1 b0 1 1 1	Symbol ADCONC		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	RW
	CH0			RV
	CH1	Analog Input Pin Select Bit	Invalid in repeat sweep mode 0	RV
	CH2			RV
	MD0	A/D Operation Mode	b4 b3	RV
	MD1	Select Bit 0	1 1 : Repeat sweep mode 0 or Repeat sweep mode 1	RV
	TRG	Trigger Select Bit	0 : <u>Softwa</u> re trigger 1 : ADTRG trigger	RV
	ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
	CKS0	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2 Register	RV
D Control Register	1 ⁽¹⁾ I Symbol	Address	After reset	
1. If the ADCON0 register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h	After reset 00h	
1. If the ADCON0 register	1 ⁽¹⁾ I Symbol	Address	After reset	RV
1. If the ADCON0 register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h Bit Name	After reset 00h Function When repeat sweep mode 0 is selected	RV
1. If the ADCON0 register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	Address 03D7h	After reset 00h Function When repeat sweep mode 0 is selected	RV
1. If the ADCON0 register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	Address 03D7h Bit Name	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins)	RV RV
1. If the ADCON0 register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to "0" when repeat sweep	RV RV RV
1. If the ADCON0 register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to "0" when repeat sweep mode 0 is selected 0 : 8-bit mode	RV RV RV RV
1. If the ADCON0 register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to "0" when repeat sweep mode 0 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	RV RV RV RV
1. If the ADCON0 register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit Frequency Select Bit 1	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to "0" when repeat sweep mode 0 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	i

bits in the ADCON2 register to select the desired pin.

3. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μs or more before starting A/D conversion.

16.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltage selectively applied to all pins is repeatedly converted to a digital code. Table 16.6 lists the specifications of repeat sweep mode 1. Figure 16.8 shows the ADCON0 and ADCON1 registers in repeat sweep mode 1.

Item	Specification
Function	The input voltages on all pins selected by the ADGSEL1 to ADGSEL0 bits
	in the ADCON2 register are A/D converted repeatedly, with priority given
	to pins selected by the SCAN1 to SCAN0 bits in the ADCON1 register and
	ADGSEL1 to ADGSEL0 bits.
	Example : If AN0 selected, input voltages are A/D converted in order of
	AN0 \rightarrow AN1 \rightarrow AN0 \rightarrow AN2 \rightarrow AN0 \rightarrow AN3, and so on.
A/D Conversion	When the TRG bit in the ADCON0 register is "0" (software trigger)
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	 When the TRG bit is "1" (ADTRG trigger)
	Input on the $\overline{\text{ADTRG}}$ pin changes state from high to low after the ADST
	bit is set to "1" (A/D conversion starts)
A/D Conversion	Set the ADST bit to "0" (A/D conversion halted)
Stop Condition	
Interrupt Request	None generated
Generation Timing	
Analog Input Pins to be Given	Select from AN0 (1 pin), AN0 to AN1 (2 pins), AN0 to AN2 (3 pins),
Priority when A/D Converted	AN0 to AN3 (4 pins) ⁽¹⁾
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin
A/D Converter	

Table 16.6	Repeat	Sweep	Mode [·]	1 Specifications
------------	--------	-------	-------------------	------------------

NOTE:

1. AN0_0 to AN0_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

7 b6 b5 b4 b3 b2 b1 b0	Symbol ADCON0		After Reset 00000XXXb	
	ADCONC	000000		
	Bit Symbol	Bit Name	Function	RW
	CH0			RW
	CH1	Analog Input Pin Select Bit	Invalid in repeat sweep mode 1	RW
	CH2			RV
	MD0	A/D Operation Mode	1 1 : Repeat sweep mode 0 or	RW
	MD1	Select Bit 0	Repeat sweep mode 1	RW
	TRG	Trigger Select Bit	0 : <u>Softwa</u> re trigger 1 : ADTRG trigger	RV
	ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
	CKS0	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2 Register	RV
DTE: 1. If the ADCON0 register /D Control Register 7 b6 b5 b4 b3 b2 b1 b0 1 1 1 1	1 ⁽¹⁾ Symbol	Address	nversion result will be indeterminate. After Reset	<u>I</u>
1. If the ADCON0 register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h	Nversion result will be indeterminate. After Reset 00h	i
1. If the ADCON0 register	1 ⁽¹⁾ Symbol	Address	After Reset 00h Function	RW
1. If the ADCON0 register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h Bit Name	After Reset 00h Function When repeat sweep mode 1 is selected	RV
1. If the ADCON0 register /D Control Register 7 b6 b5 b4 b3 b2 b1 b0 1 1 1 1	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	Address 03D7h	After Reset 00h Function When repeat sweep mode 1 is selected	RV
1. If the ADCON0 register /D Control Register 7 b6 b5 b4 b3 b2 b1 b0 1 1 1 1	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	Address 03D7h Bit Name	After Reset 00h Function When repeat sweep mode 1 is selected b1 b0 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins)	RV RV
1. If the ADCON0 register /D Control Register 7 b6 b5 b4 b3 b2 b1 b0 1 1 1 1	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode	After Reset 00h Function When repeat sweep mode 1 is selected b1 b0 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to "1" when repeat sweep	RV RV RV
1. If the ADCON0 register /D Control Register 7 b6 b5 b4 b3 b2 b1 b0 1 1 1 1	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1	After Reset 00h Function When repeat sweep mode 1 is selected b100 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) (2) Set to "1" when repeat sweep mode 1 is selected 0 : 8-bit mode	i
1. If the ADCON0 register /D Control Register 7 b6 b5 b4 b3 b2 b1 b0 1 1 1 1	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit	After Reset 00h Function When repeat sweep mode 1 is selected ^{b1 b0} 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to "1" when repeat sweep mode 1 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	RV RV RV RV
1. If the ADCON0 register /D Control Register 7 b6 b5 b4 b3 b2 b1 b0 1 1 1 1	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit Frequency Select Bit 1	After Reset 00h Function When repeat sweep mode 1 is selected ^{b1 b0} 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to "1" when repeat sweep mode 1 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	RV RV RV

bits in the ADCON2 register to select the desired pin.

3. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μs or more before starting A/D conversion.

16.2 Function

16.2.1 Resolution Select Function

The desired resolution can be selected using the BITS bit in the ADCON1 register. If the BITS bit is set to "1" (10-bit conversion accuracy), the A/D conversion result is stored in the bit 0 to bit 9 in the ADI register (i = 0 to 7). If the BITS bit is set to "0" (8-bit conversion accuracy), the A/D conversion result is stored in the bit 0 to bit 7 in the ADI register.

16.2.2 Sample and Hold

If the SMP bit in the ADCON2 register is set to "1" (with sample-and-hold), the conversion speed per pin is increased to 28 ϕ AD cycles for 8-bit resolution or 33 ϕ AD cycles for 10-bit resolution. Sample-and-hold is effective in all operation modes. Select whether or not to use the sample and hold function before starting A/D conversion.

16.2.3 Extended Analog Input Pins

In one-shot and repeat modes, the ANEX0 and ANEX1 pins can be used as analog input pins. Use the OPA1 to OPA0 bits in the ADCON1 register to select whether or not use ANEX0 and ANEX1. The A/D conversion results of ANEX0 and ANEX1 inputs are stored in the AD0 and AD1 registers, respectively.

16.2.4 External Operation Amplifier (Op-Amp) Connection Mode

Multiple analog inputs can be amplified using a single external op-amp via the ANEX0 and ANEX1 pins. Set the OPA1 to OPA0 bits in the ADCON1 register to "11b" (external op-amp connection mode). The inputs from ANi (i = 0 to 7) ⁽¹⁾ are output from the ANEX0 pin. Amplify this output with an external op-amp before sending it back to the ANEX1 pin. The A/D conversion result is stored in the corresponding ADi register. The A/D conversion speed depends on the response characteristics of the external op-amp. Figure 16.9 shows an example of how to connect the pins in external operation amp.

NOTE:

1. AN0_i and AN2_i can be used the same as ANi.

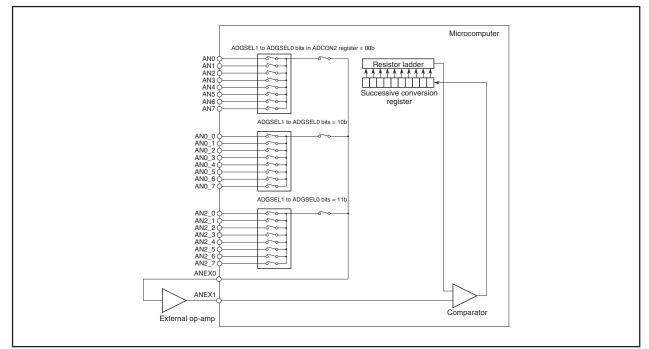


Figure 16.9 External Op-Amp Connection

16.2.5 Current Consumption Reducing Function

When not using the A/D converter, its resistor ladder and reference voltage input pin (VREF) can be separated using the VCUT bit in the ADCON1 register. When separated, no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

To use the A/D converter, set the VCUT bit to "1" (VREF connected) and then set the ADST bit in the ADCON0 register to "1" (A/D conversion start). The VCUT and ADST bits cannot be set to "1" at the same time. Nor can the VCUT bit be set to "0" (VREF unconnected) during A/D conversion.

Note that this does not affect VREF for the D/A converter (irrelevant).

16.2.6 Output Impedance of Sensor under A/D Conversion

To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 16.10 has to be completed within a specified period of time. T (sampling time) as the specified time. Let output impedance of sensor equivalent circuit be R0, microcomputer's internal resistance be R, precision (error) of the A/D converter be X, and the resolution of A/D converter be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

VC is generally VC = VIN {1 - e<sup>-
$$\frac{1}{C(R0 + R)}t$$</sup>}
And when t = T, VC=VIN - $\frac{X}{Y}$ VIN = VIN(1 - $\frac{X}{Y}$)
 $e^{-\frac{1}{C(R0 + R)}T} = \frac{X}{Y}$
 $-\frac{1}{C(R0 + R)}T = ln\frac{X}{Y}$
Hence, R0 = $-\frac{T}{C \cdot ln\frac{X}{Y}} - R$

Figure 16.10 shows analog input pin and external sensor equivalent circuit.

When the difference between VIN and VC becomes 0.1LSB, we find impedance R0 when voltage between pins VC changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A/D precision drop due to insufficient capacitor charge is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB.

When $f(\phi AD) = 10$ MHz, T = 0.3 µs in the A/D conversion mode with sample & hold. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

T = 0.3 $\mu s,$ R = 7.8 k $\Omega,$ C = 1.5 pF, X = 0.1, and Y = 1024. Hence,

$$R0 = - \frac{0.3 \times 10^{-6}}{1.5 \times 10^{-12} \cdot \ln \frac{0.1}{1024}} -7.8 \times 10^{3} = 13.9 \times 10^{3}$$

Thus, the allowable output impedance of the sensor circuit capable of thoroughly driving the A/D converter turns out to be approximately 13.9 k Ω .

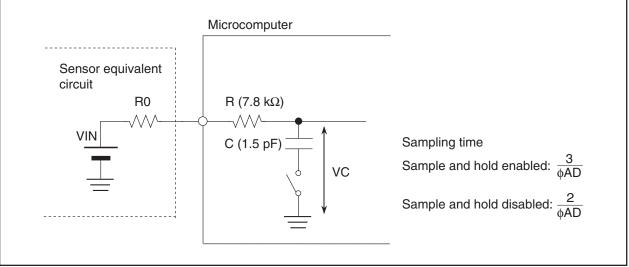


Figure 16.10 Analog Input Pin and External Sensor Equivalent Circuit

This is an 8-bit, R-2R type D/A converter. These are two independent D/A converters.

D/A conversion is performed by writing to the DAi register (i = 0, 1). To output the result of conversion, set the DAiE bit in the DACON register to "1" (output enabled). Before D/A conversion can be used, the corresponding port direction bit must be set to "0" (input mode). Setting the DAiE bit to "1" removes a pull-up from the corresponding port.

Output analog voltage (V) is determined by a set value (n : decimal) in the DAi register.

 $V = VREF \times n/256$ (n = 0 to 255) VREF : reference voltage

Table 17.1 lists the performance of the D/A converter. Figure 17.1 shows the block diagram of the D/A converter. Figure 17.2 shows the D/A converter-related registers. Figure 17.3 shows the D/A converter equivalent circuit.

Table 17.1 D/A Converter Performance	Table 17.1	D/A Converter Performance	
--------------------------------------	------------	---------------------------	--

Item	Performance
D/A conversion Method	R-2R method
Resolution	8 bits
Analog Output Pin	2 channels (DA0 and DA1)

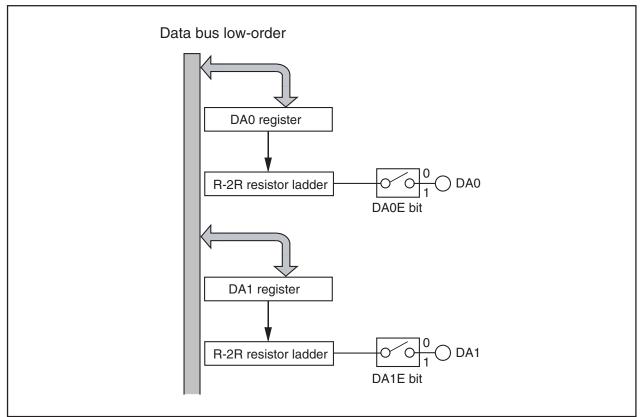


Figure 17.1 D/A Converter Block Diagram

b7 b6 b5 b4 b3 b2 b1 b0	Symbol DACO		After Reset 00h		
	Bit Symbol	Bit Name	Fu	inction	RW
· · · · · · · · · · · · · · · · · · ·	DA0E	D/A0 Output Enable Bit	0 : Output disat 1 : Output enab		RW
	DA1E	D/A1 Output Enable Bit	0 : Output disat 1 : Output enab		RW
	1				
		Nothing is assigned. When When read, their contents set the DAiE bit ($i = 0, 1$) to "C set the DAi register to "00h"	are "0".)" (output disabled) ;		
1. When not using the D/ current consumption in resistor ladder.	A converter, s the chip and	When read, their contents	are "0".)" (output disabled) ;		
 When not using the D/ current consumption in resistor ladder. D/A Register i (i = 0, 	A converter, s n the chip and 1) ⁽¹⁾	When read, their contents is set the DAiE bit (i = 0, 1) to "C I set the DAi register to "00h"	are "0".)" (output disabled) ;		
 When not using the D/ current consumption in resistor ladder. D/A Register i (i = 0, 	A converter, s n the chip and 1) ⁽¹⁾	When read, their contents set the DAiE bit (i = 0, 1) to "C set the DAi register to "00h" ol Address	are "0". " (output disabled) [;] ' to prevent current		
 When not using the D/ current consumption in resistor ladder. D/A Register i (i = 0, 	A converter, s n the chip and 1) ⁽¹⁾ Symbo	When read, their contents set the DAiE bit (i = 0, 1) to "C set the DAi register to "00h" ol Address 03D8h	are "0".)" (output disabled) [;] ' to prevent current After Reset 00h		

Figure 17.2 DACON Register, DA0 and DA1 Registers

resistor ladder.

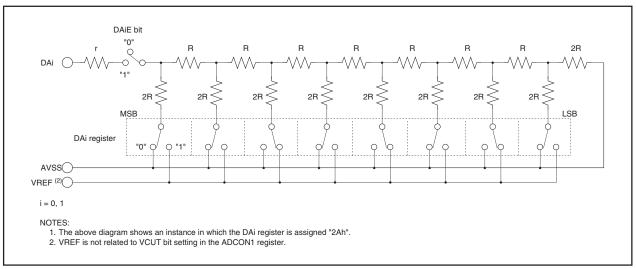


Figure 17.3 D/A Converter Equivalent Circuit

18. CRC Calculation

The Cyclic Redundancy Check (CRC) operation detects an error in data blocks. The microcomputer uses a generator polynomial of CRC-CCITT ($X^{16} + X^{12} + X^{5} + 1$) to generate CRC code.

The CRC code consists of 16 bits which are generated for each data block in given length, separated in 8-bit unit. After the initial value is set in the CRCD register, the CRC code is set in that register each time one byte of data is written to the CRCIN register. CRC code generation for one-byte data is finished in two cycles. Figure 18.1 shows the block diagram of the CRC circuit. Figure 18.2 shows the CRC-related registers.

Figure 18.3 shows the calculation example using the CRC operation.

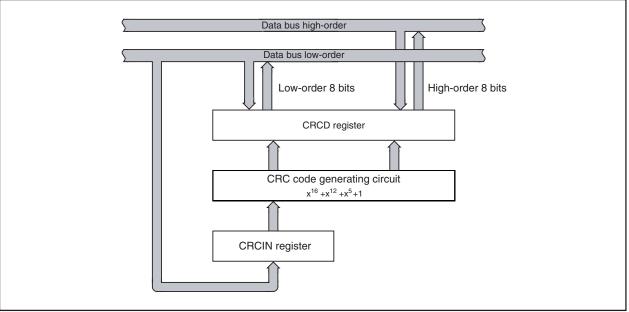


Figure 18.1 CRC Circuit Block Diagram

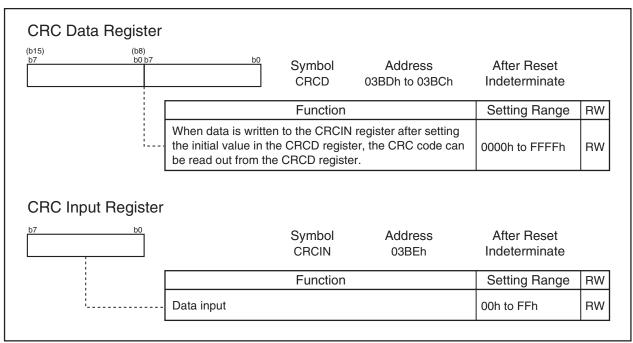


Figure 18.3 CRC Calculation

19. CAN Module

The CAN (Controller Area Network) module for the M16C/6N Group (M16C/6N4) of microcomputers is a communication controller implementing the CAN 2.0B protocol. The M16C/6N Group (M16C/6N4) contains two CAN modules which can transmit and receive messages in both standard (11-bit) ID and extended (29-bit) ID formats.

Figure 19.1 shows a block diagram of the CAN module.

External CAN bus driver and receiver are required.

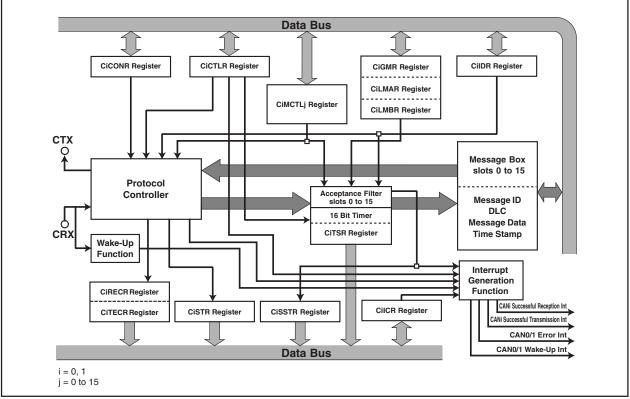


Figure 19.1 CAN Module Block Diagram

CTX/CRX:	CAN I/O pins.
Protocol controller:	This controller handles the bus arbitration and the CAN protocol services, i.e. bit timing, stuffing, error status etc.
Message box:	This memory block consists of 16 slots that can be configured either as transmitter or receiver. Each slot contains an individual ID, data length code, a data field
	(8 bytes) and a time stamp.
Acceptance filter:	This block performs filtering operation for received messages. For the filtering
	operation, the CiGMR register (i = 0, 1), the CiLMAR register, or the CiLMBR
	register is used.
16 bit timer:	Used for the time stamp function. When the received message is stored in the
	message memory, the timer value is stored as a time stamp.
Wake-up function:	CAN0/1 wake-up interrupt request is generated by a message from the CAN bus.
Interrupt generation function	: The interrupt requests are generated by the CAN module. CANi successful reception
	interrupt, CANi successful transmission interrupt, CAN0/1 error interrupt and
	CAN0/1 wake-up interrupt.

19.1 CAN Module-Related Registers

The CANi (i = 0, 1) module has the following registers.

19.1.1 CAN Message Box

A CAN module is equipped with 16 slots (16 bytes or 8 words each). Slots 14 and 15 can be used as Basic CAN.

- Priority of the slots: The smaller the number of the slot, the higher the priority, in both transmission and reception.
- A program can define whether a slot is defined as transmitter or receiver.

19.1.2 Acceptance Mask Registers

A CAN module is equipped with 3 masks for the acceptance filter.

- CANi global mask register (i = 0, 1) (CiGMR register: 6 bytes)
 Configuration of the masking condition for acceptance filtering processing to slots 0 to 13
- CANi local mask A register (CiLMAR register: 6 bytes) Configuration of the masking condition for acceptance filtering processing to slot 14
- CANi local mask B register (CiLMBR register: 6 bytes) Configuration of the masking condition for acceptance filtering processing to slot 15

19.1.3 CAN SFR Registers

- CANi message control register j (i = 0, 1, j = 0 to 15) (CiMCTLj register: 8 bits \times 16) Control of transmission and reception of a corresponding slot
- CANi control register (CiCTLR register: 16 bits) Control of the CAN protocol
- CANi status register (CiSTR register: 16 bits) Indication of the protocol status
- CANi slot status register (CiSSTR register: 16 bits) Indication of the status of contents of each slot
- CANi interrupt control register (CiICR register: 16 bits) Selection of "interrupt enabled or disabled" for each slot
- CANi extended ID register (CiIDR register: 16 bits) Selection of ID format (standard or extended) for each slot
- CANi configuration register (CiCONR register: 16 bits) Configuration of the bus timing
- CANi receive error count register (CiRECR register: 8 bits) Indication of the error status of the CAN module in reception: the counter value is incremented or decremented according to the error occurrence.
- CANi transmit error count register (CiTECR register: 8 bits) Indication of the error status of the CAN module in transmission: the counter value is incremented or decremented according to the error occurrence.
- CANi time stamp register (CiTSR register: 16 bits) Indication of the value of the time stamp counter
- CANi acceptance filter support register (CiAFS register: 16 bits) Decoding the received ID for use by the acceptance filter support unit

Explanation of each register is given below.

19.2 CANi Message Box (i = 0, 1)

Table 19.1 shows the memory mapping of the CANi message box.

It is possible to access to the message box in byte or word.

Mapping of the message contents differs from byte access to word access. Byte access or word access can be selected by the MsgOrder bit of the CiCTLR register.

Add	ress	Message Content	(Memory mapping)
CAN0	CAN1	Byte access (8 bits)	Word access (16 bits)
0060h + n • 16 + 0	0260h + n • 16 + 0	SID10 to SID6	SID5 to SID0
0060h + n • 16 + 1	0260h + n • 16 + 1	SID5 to SID0	SID10 to SID6
0060h + n • 16 + 2	0260h + n • 16 + 2	EID17 to EID14	EID13 to EID6
0060h + n • 16 + 3	0260h + n • 16 + 3	EID13 to EID6	EID17 to EID14
0060h + n • 16 + 4	0260h + n • 16 + 4	EID5 to EID0	Data Length Code (DLC)
0060h + n • 16 + 5	0260h + n • 16 + 5	Data Length Code (DLC)	EID5 to EID0
0060h + n • 16 + 6	0260h + n • 16 + 6	Data byte 0	Data byte 1
0060h + n • 16 + 7	0260h + n • 16 + 7	Data byte 1	Data byte 0
0060h + n • 16 + 13	0260h + n • 16 + 13	Data byte 7	Data byte 6
0060h + n • 16 + 14	0260h + n • 16 + 14	Time stamp high-order byte	Time stamp low-order byte
0060h + n • 16 + 15	0260h + n • 16 + 15	Time stamp low-order byte	Time stamp high-order byte

Table 19.1 Memory Mapping of CANi Message Box

i = 0, 1

n = 0 to 15: the number of the slot

Figures 19.2 and 19.3 show the bit mapping in each slot in byte access and word access. The content of each slot remains unchanged unless transmission or reception of a new message is performed.

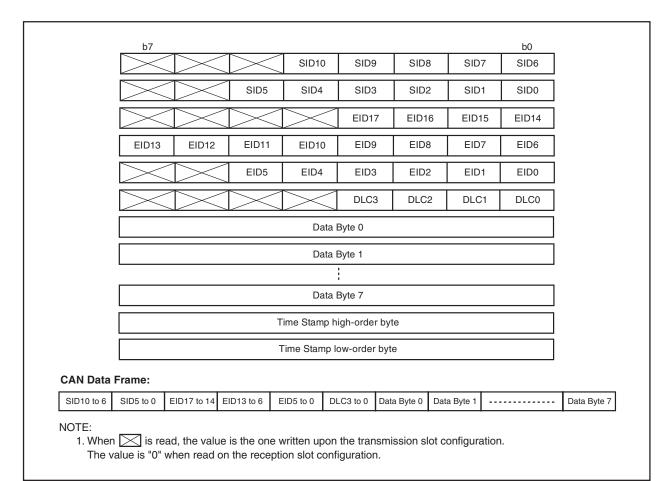


Figure 19.2 Bit Mapping in Byte Access

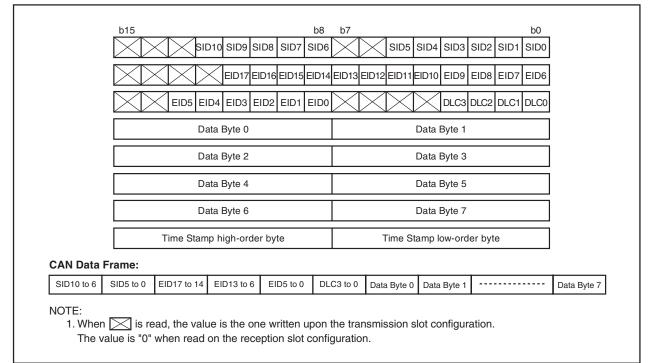


Figure 19.3 Bit Mapping in Word Access

19.3 Acceptance Mask Registers

Figures 19.4 and 19.5 show the CiGMR register (i = 0, 1), the CiLMAR register, and the CiLMBR register, in which bit mapping in byte access and word access are shown.

\geq	$>\!$	$>\!$	SID10	SID9	SID8	SID7	SID6	0160h	0360h	
\ge	\ge	SID5	SID4	SID3	SID2	SID1	SID0	0161h	0361h	
\geq	\geq	\ge	\geq	EID17	EID16	EID15	EID14	0162h	0362h	CiGMR register
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	0163h	0363h	
\ge	\succ	EID5	EID4	EID3	EID2	EID1	EID0	0164h	0364h	J
\ge	\succ	\ge	SID10	SID9	SID8	SID7	SID6	0166h	0366h	
\ge	\succ	SID5	SID4	SID3	SID2	SID1	SID0	0167h	0367h	
\ge	\succ	\succ	\succ	EID17	EID16	EID15	EID14	0168h	0368h	CiLMAR register
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	0169h	0369h	
\ge	\ge	EID5	EID4	EID3	EID2	EID1	EID0	016Ah	036Ah	J
\ge	\succ	\ge	SID10	SID9	SID8	SID7	SID6	016Ch	036Ch	
\ge	\ge	SID5	SID4	SID3	SID2	SID1	SID0	016Dh	036Dh	
\ge	\ge	\ge	\succ	EID17	EID16	EID15	EID14	016Eh	036Eh	CiLMBR register
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	016Fh	036Fh	
\ge	\ge	EID5	EID4	EID3	EID2	EID1	EID0	0170h	0370h	J
= 0, 1 NOTES: 1. 🖂	☐ is under	efined.								

Figure 19.4 Bit Mapping of Mask Registers in Byte Access

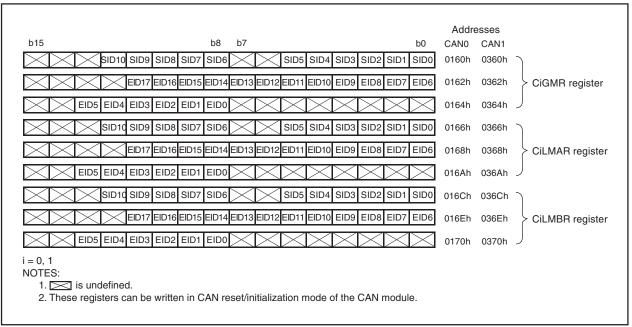


Figure 19.5 Bit Mapping of Mask Registers in Word Access

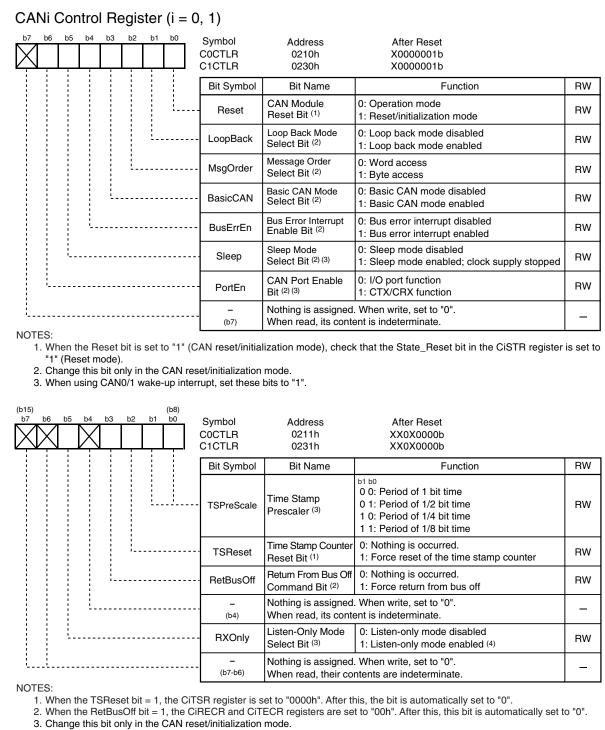
19.4 CAN SFR Registers

Figures 19.6 to 19.11 show the CAN SFR registers.

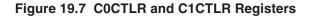
7 b6	b6 b5 b4 b3 b2 b1 b0		COMCTLO	vmbol to C0MCTL15 to C1MCTL15	AddressAfter Reset0200h to 020Fh00h0220h to 022Fh00h	
			Bit Symbol	Bit Name	Function	RW
			NewData	Successful Reception Flag	 When set to reception slot 0: The content of the slot is read or still under processing by the CPU. 1 The CAN module has stored new data in the slot. 	RO ⁽¹⁾
			SentData	Successful Transmission Flag	When set to transmission slot 0: Transmission is not started or completed yet. 1: Transmission is successfully completed.	RO ⁽¹⁾
			InvalData	"Under Reception" Flag	When set to reception slot 0: The message is valid. 1: The message is invalid. (The message is being updated.)	RO
			TrmActive	"Under Transmission" Flag	When set to transmission slot 0: Waiting for bus idle or completion of arbitration. 1: Transmitting	RO
			MsgLost	Overwrite Flag	When set to reception slotO: No message has been overwritten in this slot.1: This slot already contained a message, but it has been overwritten by a new one.	RO ⁽¹⁾
			RemActive	Remote Frame Transmission/ Reception Status Flag ⁽²⁾	0: Data frame transmission/reception status 1: Remote frame transmission/reception status	RW
			RspLock	Auto Response Lock Mode Select Bit	 When set to reception remote frame slot O: After a remote frame is received, it will be answered automatically. 1: After a remote frame is received, no transmission will be started as long as this bit is set to "1". (Not responding) 	RW
Remote			Remote	Remote Frame Corresponding Slot Select Bit	0: Slot not corresponding to remote frame 1: Slot corresponding to remote frame	RW
			RecReq	Reception Slot Request Bit ⁽³⁾	0: Not reception slot 1: Reception slot	RW
			TrmReq	Transmission Slot Request Bit (3)	0: Not transmission slot 1: Transmission slot	RW

NOTES:

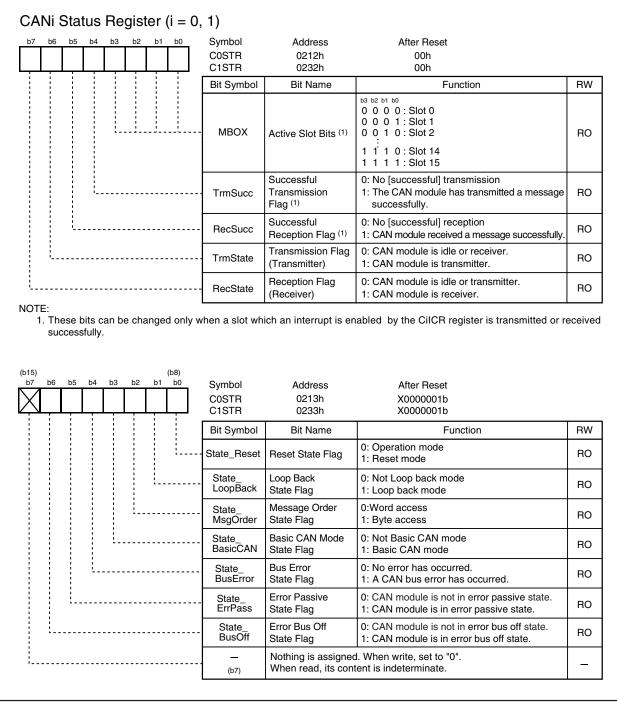
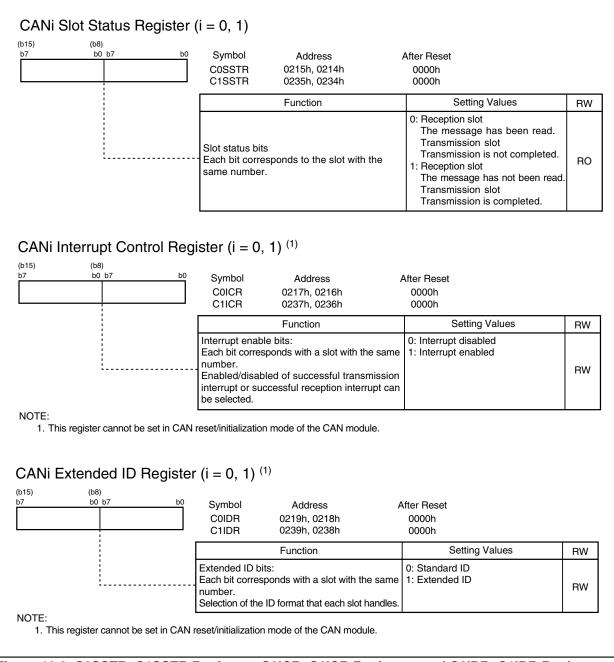
1. As for write, only writing "0" is possible. The value of each bit is written when the CAN module enters the respective state.


2. In Basic CAN mode, slots 14 and 15 serve as data format identification flag. The RemActive bit is set to "0" if the data frame is received and it is set to "1" if the remote frame is received.

3. One slot cannot be defined as reception slot and transmission slot at the same time.


4. This register cannot be set in CAN reset/initialization mode of the CAN module.

4. When the listen-only mode is selected, do not request the transmission.

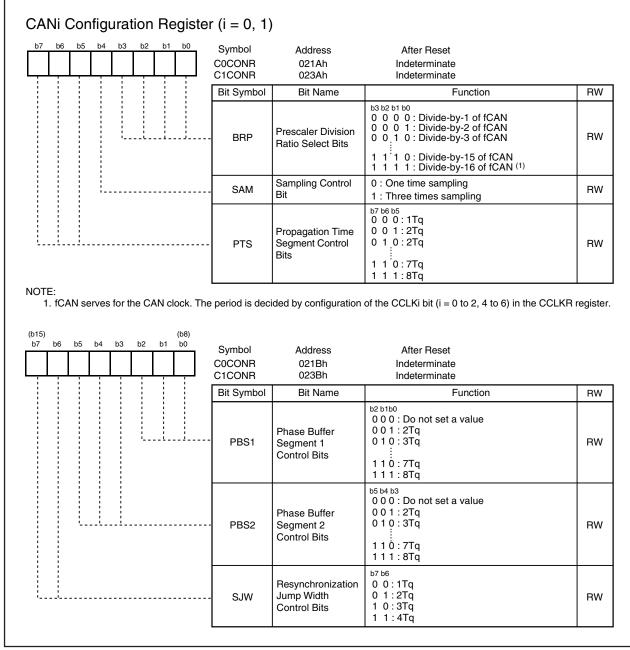

Figure 19.8 COSTR and C1STR Registers

Figure 19.9 C0SSTR, C1SSTR Registers, C0ICR, C1ICR Registers, and C0IDR, C1IDR Registers

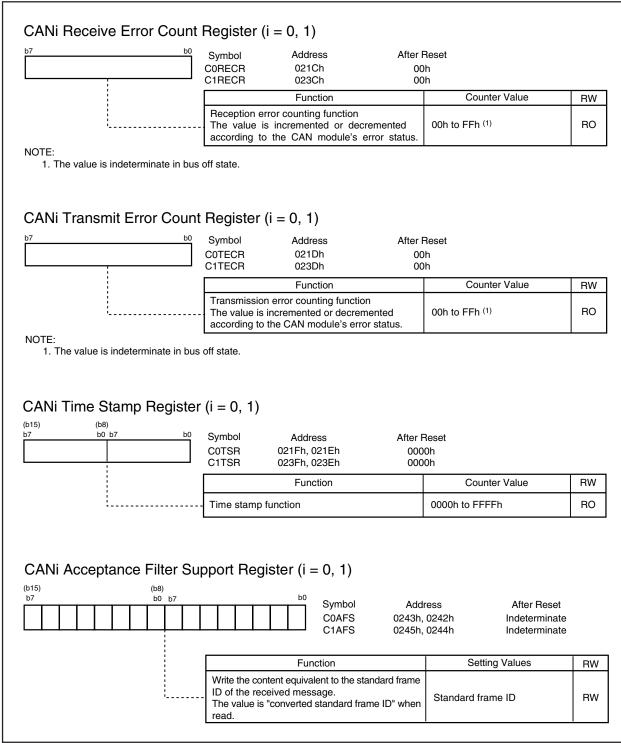


Figure 19.11 CORECR, C1RECR Registers, C0TECR, C1TECR Registers, C0TSR, C1TSR Registers, and C0AFS, C1AFS Registers

19.5 Operational Modes

The CAN module has the following four operational modes.

- CAN Reset/Initialization Mode
- CAN Operation Mode
- CAN Sleep Mode
- CAN Interface Sleep Mode

Figure 19.12 shows transition between operational modes.

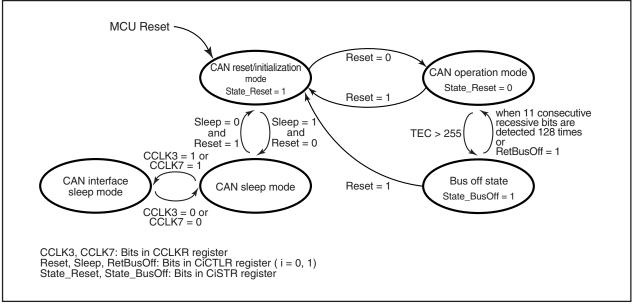


Figure 19.12 Transition Between Operational Modes

19.5.1 CAN Reset/Initialization Mode

The CAN reset/initialization mode is activated upon MCU reset or by setting the Reset bit in the CiCTLR register (i = 0, 1) to "1". If the Reset bit is set to "1", check that the State_Reset bit in the CiSTR register is set to "1".

Entering the CAN reset/initialization mode initiates the following functions by the module:

- CAN communication is impossible.
- When the CAN reset/initialization mode is activated during an ongoing transmission in operation mode, the module suspends the mode transition until completion of the transmission (successful, arbitration loss, or error detection). Then, the State_Reset bit is set to "1", and the CAN reset/initialization mode is activated.
- The CiMCTLj (j = 0 to 15), CiSTR, CiICR, CiIDR, CiRECR, CiTECR and CiTSR registers are initialized. All these registers are locked to prevent CPU modification.
- The CiCTLR, CiCONR, CiGMR, CiLMAR and CiLMBR registers and the CANi message box retain their contents and are available for CPU access.

19.5.2 CAN Operation Mode

The CAN operation mode is activated by setting the Reset bit in the CiCTLR register (i = 0, 1) to "0". If the Reset bit is set to "0", check that the State_Reset bit in the CiSTR register is set to "0".

If 11 consecutive recessive bits are detected after entering the CAN operation mode, the module initiates the following functions:

- The module's communication functions are released and it becomes an active node on the network and may transmit and receive CAN messages.
- Release the internal fault confinement logic including receive and transmit error counters. The module may leave the CAN operation mode depending on the error counts.

Within the CAN operation mode, the module may be in three different sub modes, depending on which type of communication functions are performed:

- Module idle : The modules receive and transmit sections are inactive.
- Module receives : The module receives a CAN message sent by another node.
- Module transmits : The module transmits a CAN message. The module may receive its own message simultaneously when the LoopBack bit in the CiCTLR register = 1 (Loop back mode enabled).

Figure 19.13 shows sub modes of the CAN operation mode.

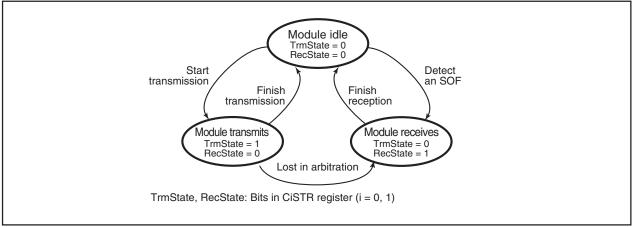


Figure 19.13 Sub Modes of CAN Operation Mode

19.5.3 CAN Sleep Mode

The CAN sleep mode is activated by setting the Sleep bit to "1" and the Reset bit to "0" in the CiCTLR register. It should never be activated from the CAN operation mode but only via the CAN reset/initialization mode.

Entering the CAN sleep mode instantly stops the clock supply to the module and thereby reduces power dissipation.

19.5.4 CAN Interface Sleep Mode

The CAN interface sleep mode is activated by setting the CCLK3 or CCLK7 bit in the CCLKR register to "1". It should never be activated but only via the CAN sleep mode.

Entering the CAN interface sleep mode instantly stops the clock supply to the CPU Interface in the module and thereby reduces power dissipation.

19.5.5 Bus Off State

The bus off state is entered according to the fault confinement rules of the CAN specification. When returning to the CAN operation mode from the bus off state, the module has the following two cases. In this time, the value of any CAN registers, except CiSTR, CiRECR and CiTECR registers, does not change.

(1) When 11 consecutive recessive bits are detected 128 times

The module enters instantly into error active state and the CAN communication becomes possible immediately.

(2) When the RetBusOff bit in the CiCTLR register = 1 (Force return from buss off)

The module enters instantly into error active state, and the CAN communication becomes possible again after 11 consecutive recessive bits are detected.

19.6 Configuration CAN Module System Clock

The M16C/6N Group (M16C/6N4) has a CAN module system clock select circuit.

Configuration of the CAN module system clock can be done through manipulating the CCLKR register and the BRP bit in the CiCONR register (i = 0, 1).

For the CCLKR register, refer to 8. Clock Generating Circuit.

Figure 19.14 shows a block diagram of the clock generating circuit of the CAN module system.

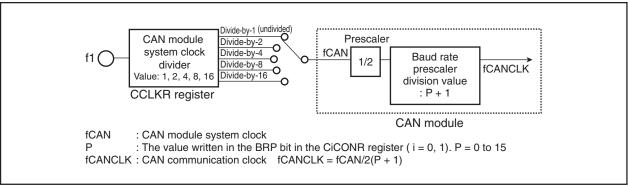
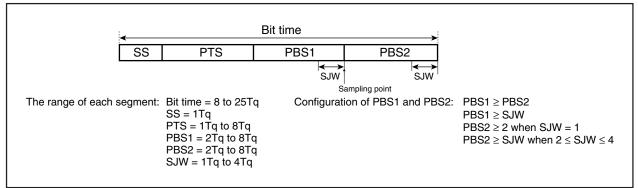


Figure 19.14 Block Diagram of CAN Module System Clock Generating Circuit

19.7 Bit Timing Configuration

The bit time consists of the following four segments:


• Synchronization segment (SS)

This serves for monitoring a falling edge for synchronization.

- Propagation time segment (PTS)
 This segment absorbs physical delay on the CAN network which amounts to double the total sum of delay on the CAN bus, the input comparator delay, and the output driver delay.
- Phase buffer segment 1 (PBS1)
 This serves for compensating the phase error. When the falling edge of the bit falls later than expected, the segment can become longer by the maximum of the value defined in SJW.
- Phase buffer segment 2 (PBS2)

This segment has the same function as the phase buffer segment 1. When the falling edge of the bit falls earlier than expected, the segment can become shorter by the maximum of the value defined in SJW.

Figure 19.15 shows the bit timing.

19.8 Bit-rate

Bit-rate depends on f1, the division value of the CAN module system clock, the division value of the baud rate prescaler, and the number of Tq of one bit.

Table 19.2 shows the examples of bit-rate.

Bit-rate	24MHz (2)	20MHz	16MHz	10MHz	8MHz
1Mbps	12Tq (1)	10Tq (1)	8Tq (1)	_	_
500kbps	12Tq (2)	10Tq (2)	8Tq (2)	10Tq (1)	8Tq (1)
	24Tq (1)	20Tq (1)	16Tq (1)	_	-
125kbps	12Tq (8)	10Tq (8)	8Tq (8)	10Tq (4)	8Tq (4)
	16Tq (6)	20Tq (4)	16Tq (4)	20Tq (2)	16Tq (2)
	24Tq (4)	_	_	_	-
83.3kbps	12Tq (12)	10Tq (12)	8Tq (12)	10Tq (6)	8Tq (6)
	16Tq (9)	20Tq (6)	16Tq (6)	20Tq (3)	16Tq (3)
	24Tq (6)	_	_	_	-
33.3kbps	12Tq (30)	10Tq (30)	8Tq (30)	10Tq (15)	8Tq (15)
	24Tq (15)	20Tq (15)	16Tq (15)	_	_

Table 19.2 Examples of Bit-rate

NOTES:

1. The number in () indicates a value of "fCAN division value" multiplied by "baud rate prescaler division value".

2. 24 MHz is available Normal-ver. only.

19.8.1 Calculation of Bit-rate

f1

 $2 \times$ "fCAN division value ⁽¹⁾" \times "baud rate prescaler division value ⁽²⁾" \times "number of Tq of one bit"

NOTES:

1. fCAN division value = 1, 2, 4, 8, 16

fCAN division value: a value selected in the CCLKR register

- 2. Baud rate prescaler division value = P + 1 (P: 0 to 15)
 - P: a value selected in the BRP bit in the CiCONR register (i = 0, 1)

19.9 Acceptance Filtering Function and Masking Function

These functions serve the users to select and receive a facultative message. The CiGMR register (i = 0, 1), the CiLMAR register, and the CiLMBR register can perform masking to the standard ID and the extended ID of 29 bits. The CiGMR register corresponds to slots 0 to 13, the CiLMAR register corresponds to slot 14, and the CiLMBR register corresponds to slot 15. The masking function becomes valid to 11 bits or 29 bits of a received ID according to the value in the corresponding slot of the CiIDR register upon acceptance filtering operation. When the masking function is employed, it is possible to receive a certain range of IDs. Figure 19.16 shows correspondence of the mask registers and slots, Figure 19.17 shows the acceptance function.

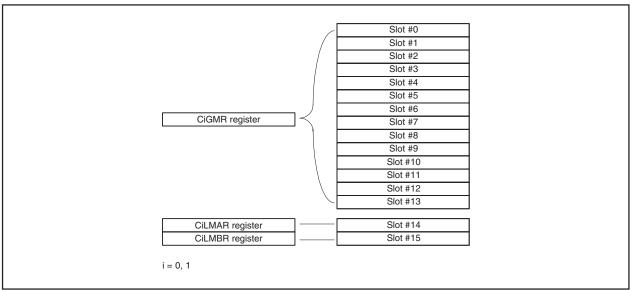


Figure 19.16 Correspondence of Mask Registers to Slots

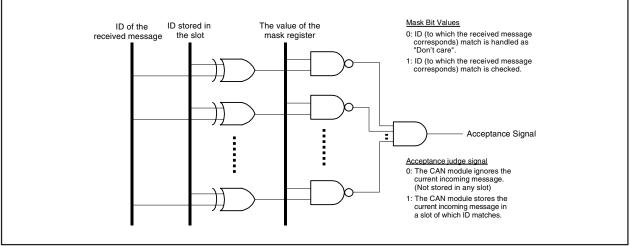


Figure 19.17 Acceptance Function

When using the acceptance function, note the following points.

- (1) When one ID is defined in two slots, the one with a smaller number alone is valid.
- (2) When it is configured that slots 14 and 15 receive all IDs with Basic CAN mode, slots 14 and 15 receive all IDs which are not stored into slots 0 to 13.

19.10 Acceptance Filter Support Unit (ASU)

The acceptance filter support unit has a function to judge valid/invalid of a received ID through table search. The IDs to receive are registered in the data table; a received ID is stored in the CiAFS register (i = 0, 1), and table search is performed with a decoded received ID. The acceptance filter support unit can be used for the IDs of the standard frame only.

The acceptance filter support unit is valid in the following cases.

- When the ID to receive cannot be masked by the acceptance filter. (Example) IDs to receive: 078h, 087h, 111h
- When there are too many IDs to receive; it would take too much time to filter them by software.

Figure 19.18 shows the write and read of the CiAFS register in word access.

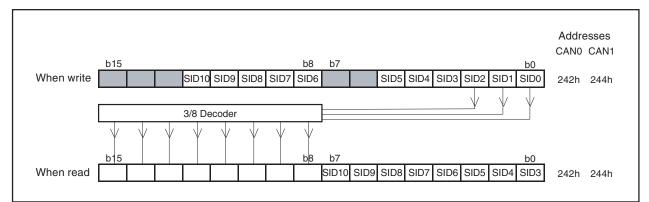


Figure 19.18 Write/read of CiAFS Register in Word Access

19.11 Basic CAN Mode

When the BasicCAN bit in the CiCTLR register (i = 0, 1) is set to "1" (Basic CAN mode enabled), slots 14 and 15 correspond to Basic CAN mode. In normal operation mode, each slot can handle only one type message at a time, either a data frame or a remote frame by setting CiMCTLj register (j = 0 to 15). However, in Basic CAN mode, slots 14 and 15 can receive both types of message at the same time. When slots 14 and 15 are defined as reception slots in Basic CAN mode, received messages are stored in slots 14 and 15 alternately.

Which type of message has been received can be checked by the RemActive bit in the CiMCTLj register. Figure 19.19 shows the operation of slots 14 and 15 in Basic CAN mode.

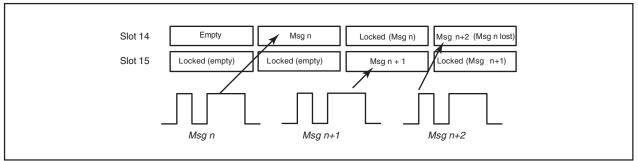


Figure 19.19 Operation of Slots 14 and 15 in Basic CAN Mode

When using Basic CAN mode, note the following points.

- (1) Setting of Basic CAN mode has to be done in CAN reset/initialization mode.
- (2) Select the same ID for slots 14 and 15. Also, setting of the CiLMAR and CiLMBR register has to be the same.
- (3) Define slots 14 and 15 as reception slot only.
- (4) There is no protection available against message overwrite. A message can be overwritten by a new message.
- (5) Slots 0 to 13 can be used in the same way as in normal CAN operation mode.

19.12 Return from Bus Off Function

When the protocol controller enters bus off state, it is possible to make it forced return from bus off state by setting the RetBusOff bit in the CiCTLR register (i = 0, 1) to "1" (Force return from bus off). At this time, the error state changes from bus off state to error active state. If the RetBusOff bit is set to "1", the CiRECR and CiTECR registers are initialized and the State_BusOff bit in the CiSTR register is set to "0" (CAN module is not in error bus off state). However, registers of the CAN module such as CiCONR register and the content of each slot are not initialized.

19.13 Time Stamp Counter and Time Stamp Function

When the CiTSR register (i = 0, 1) is read, the value of the time stamp counter at the moment is read. The period of the time stamp counter reference clock is the same as that of 1 bit time that is configured by the CiCONR register. The time stamp counter functions as a free run counter.

The 1 bit time period can be divided by 1 (undivided), 2, 4 or 8 to produce the time stamp counter reference clock. Use the TSPreScale bit in the CiCTLR register to select the divide-by-n value.

The time stamp counter is equipped with a register that captures the counter value when the protocol controller regards it as a successful reception. The captured value is stored when a time stamp value is stored in a reception slot.

19.14 Listen-Only Mode

When the RXOnly bit in the CiCTLR register (i = 0, 1) is set to "1", the module enters listen-only mode. In listen-only mode, no transmission, such as data frames, error frames, and ACK response, is performed to bus.

When listen-only mode is selected, do not request the transmission.

19.15 Reception and Transmission

Table 19.3 shows configuration of CAN reception and transmission mode.

TrmReq	RecReq	Remote	RspLock	Communication Mode of Slot
0	0	-	-	Communication environment configuration mode:
				configure the communication mode of the slot.
0	1	0	0	Configured as a reception slot for a data frame.
1	0	1	0	Configured as a transmission slot for a remote frame.
				(At this time the RemActive = 1.)
				After completion of transmission, this functions as a reception
				slot for a data frame. (At this time the RemActive = 0.)
				However, when an ID that matches on the CAN bus is detected
				before remote frame transmission, this immediately functions
				as a reception slot for a data frame.
1	0	0	0	Configured as a transmission slot for a data frame.
0	1	1	1/0	Configured as a reception slot for a remote frame.
				(At this time the RemActive = 1.)
				After completion of reception, this functions as a transmission
				slot for a data frame. (At this time the RemActive = 0.)
				However, transmission does not start as long as RspLock bit
				remains "1"; thus no automatic response.
				Response (transmission) starts when the RspLock bit is set to "0".

TrmReq, RecReq, Remote, RspLock, RemActive, RspLock: Bits in CiMCTLj register (i = 0, 1, j = 0 to 15)

When configuring a slot as a reception slot, note the following points.

- (1) Before configuring a slot as a reception slot, be sure to set the CiMCTLj register to "00h".
- (2) A received message is stored in a slot that matches the condition first according to the result of reception mode configuration and acceptance filtering operation. Upon deciding in which slot to store, the smaller the number of the slot is, the higher priority it has.
- (3) In normal CAN operation mode, when a CAN module transmits a message of which ID matches, the CAN module never receives the transmitted data. In loop back mode, however, the CAN module receives back the transmitted data. In this case, the module does not return ACK.

When configuring a slot as a transmission slot, note the following points.

- (1) Before configuring a slot as a transmission slot, be sure to set the CiMCTLj registers to "00h".
- (2) Set the TrmReq bit in the CiMCTLj register to "0" (not transmission slot) before rewriting a transmission slot.
- (3) A transmission slot should not be rewritten when the TrmActive bit in the CiMCTLj register is "1" (transmitting).

If it is rewritten, an indeterminate data will be transmitted.

19.15.1 Reception

Figure 19.20 shows the behavior of the module when receiving two consecutive CAN messages, that fit into the slot of the shown CiMCTLj register (i = 0, 1, j = 0 to 15) and leads to losing/overwriting of the first message.

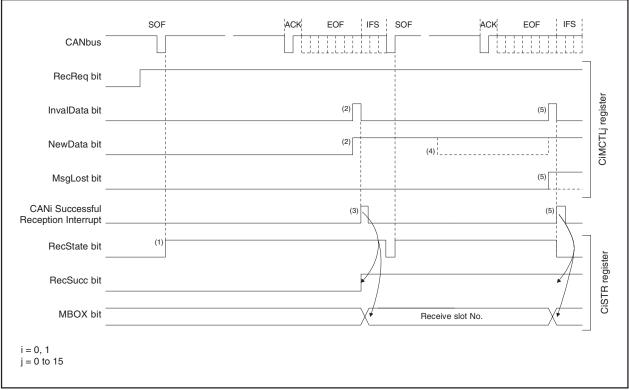


Figure 19.20 Timing of Receive Data Frame Sequence

- (1) On monitoring a SOF on the CAN bus the RecState bit in the CiSTR register becomes "1" (CAN module is receiver) immediately, given the module has no transmission pending.
- (2) After successful reception of the message, the NewData bit in the CiMCTLj register of the receiving slot becomes "1" (stored new data in slot). The InvalData bit in the CiMCTLj register becomes "1" (message is being updated) at the same time and the InvalData bit becomes "0" (message is valid) again after the complete message was transferred to the slot.
- (3) When the interrupt enable bit in the CiICR register of the receiving slot = 1 (interrupt enabled), the CANi successful reception interrupt request is generated and the MBOX bit in the CiSTR register is changed. It shows the slot number where the message was stored and the RecSucc bit in the CiSTR register is active.
- (4) Read the message out of the slot after setting the New Data bit to "0" (the content of the slot is read or still under processing by the CPU) by a program.
- (5) When next CAN message is received before the NewData bit is set to "0" by a program or a receive request to a slot is canceled, the MsgLost bit in the CiMCTLj register is set to "1" (message has been overwritten). The new received message is transferred to the slot. Generating of an interrupt request and change of the CiSTR register are same as in 3).

19.15.2 Transmission

Figure 19.21 shows the timing of the transmit sequence.

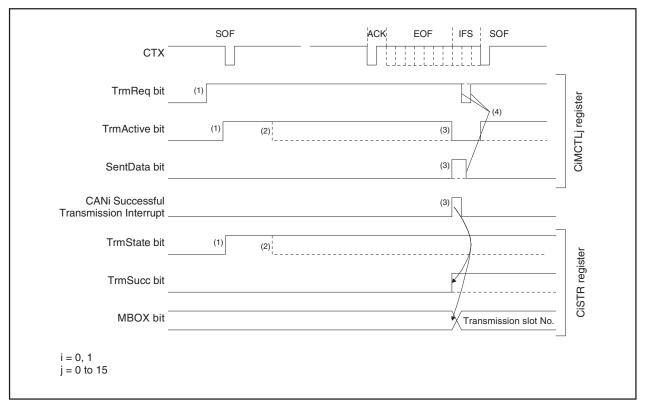


Figure 19.21 Timing of Transmit Sequence

- (1) If the TrmReq bit in the CiMCTLj register (i = 0, 1, j = 0 to 15) is set to "1" (Transmission slot) in the bus idle state, the TrmActive bit in the CiMCTLj register and the TrmState bit in the CiSTR register are set to "1" (Transmitting/Transmitter), and CAN module starts the transmission.
- (2) If the arbitration is lost after the CAN module starts the transmission, the TrmActive and TrmState bits are set to "0".
- (3) If the transmission has been successful without lost in arbitration, the SentData bit in the CiMCTLj register is set to "1" (Transmission is successfully completed) and TrmActive bit is set to "0" (Waiting for bus idle or completion of arbitration). And when the interrupt enable bits in the CiICR register = 1 (Interrupt enabled), CANi successful transmission interrupt request is generated and the MBOX (the slot number which transmitted the message) and TrmSucc bit in the CiSTR register are changed.
- (4) When starting the next transmission, set the SentData and TrmReq bits to "0". And set the TrmReq bit to "1" after checking that the SentData and TrmReq bits are set to "0".

19.16 CAN Interrupt

The CAN module provides the following CAN interrupts.

- CANi Successful Reception Interrupt (i = 0, 1)
- CANi Successful Transmission Interrupt
- CAN0/1 Error Interrupt: Error Passive State
 - Error BusOff State

Bus Error (this feature can be disabled separately)

• CAN0/1 Wake-up Interrupt

When the CPU detects the CANi successful reception/transmission interrupt request, the MBOX bit in the CiSTR register must be read to determine which slot has generated the interrupt request.

20. Programmable I/O Ports

The programmable input/output ports (hereafter referred to simply as I/O ports) consist of 87 lines P0 to P10 (except P8_5). Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high every 4 lines. P8_5 is an input-only port and does not have a pull-up resistor. Port P8_5 shares the pin with $\overline{\text{NMI}}$, so that the $\overline{\text{NMI}}$ input level can be read from the P8_5 bit in the P8 register.

Figures 20.1 to 20.5 show the I/O ports. Figure 20.6 shows the I/O pins.

Each pin functions as an I/O port, a peripheral function input/output pin or a bus control pin.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input or D/A converter output pin, set the direction bit for that pin to "0" (input mode). Any pin used as an output pin for peripheral functions other than the D/A converter is directed for output no matter how the corresponding direction bit is set.

When using any pin as a bus control pin, refer to **7.2 Bus Control**.

20.1 PDi Register (i = 0 to 10)

Figure 20.7 shows the PDi register.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

During memory expansion and microprocessor modes, the PDi registers for the pins functioning as bus control pins (A0 to A19, D0 to D15, $\overline{CS0}$ to $\overline{CS3}$, \overline{RD} , $\overline{WRL}/\overline{WR}$, $\overline{WRH}/\overline{BHE}$, ALE, \overline{RDY} , \overline{HOLD} , \overline{HLDA} , and BCLK) cannot be modified.

No direction register bit for P8_5 is available.

20.2 Pi Register (i = 0 to 10)

Figure 20.8 shows the Pi register.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the input/output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

During memory expansion and microprocessor modes, the Pi registers for the pins functioning as bus control pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA, and BCLK) cannot be modified.

20.3 PURj Register (j = 0 to 2)

Figure 20.9 shows the PURj register.

The PURj register bits can be used to select whether or not to pull the corresponding port high in 4-bit unit. The port selected to be pulled high has a pull-up resistor connected to it when the direction bit is set for input mode.

However, the pull-up control register has no effect on P0 to P3, P4_0 to P4_3, and P5 during memory expansion and microprocessor modes. Although the register contents can be modified, no pull-up resistors are connected.

20.4 PCR Register

Figure 20.10 shows the PCR register.

When the P1 register is read after setting the PCR0 bit in the PCR register to "1", the corresponding port latch can be read no matter how the PD1 register is set.

Tables 20.1 and 20.2 list an example connection of unused pins. Figure 20.11 shows an example connection of unused pins.

M16C/6N Group (M16C/6N4)

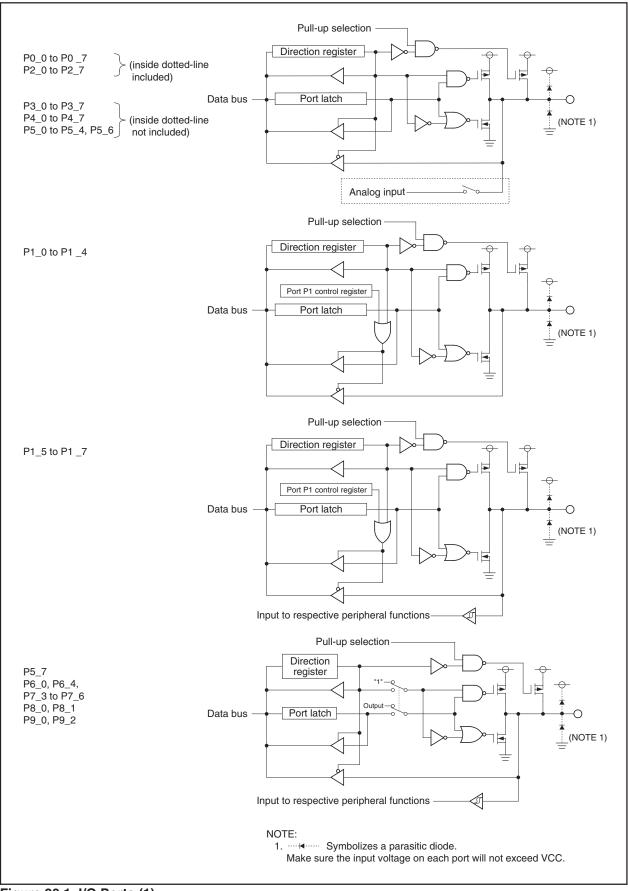


Figure 20.1 I/O Ports (1)

Under development This document is under development and its contents are subject to change. M16C/6N Group (M16C/6NA)

M16C/6N Group (M16C/6N4)

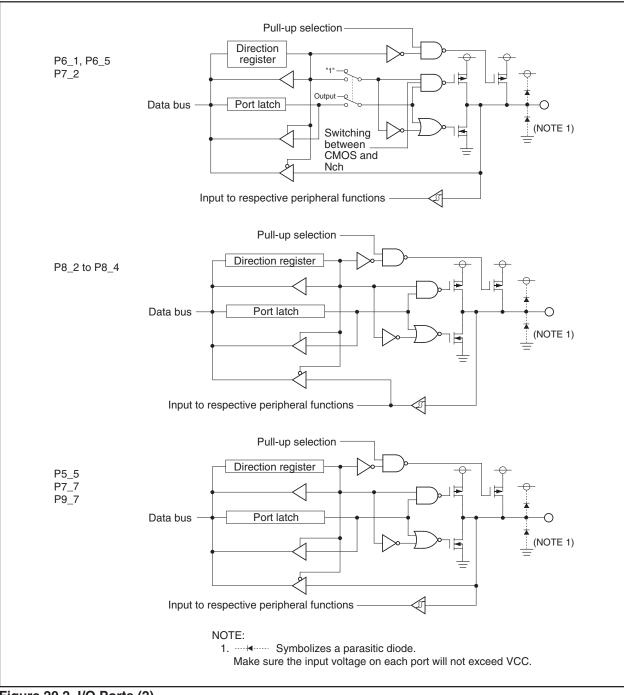
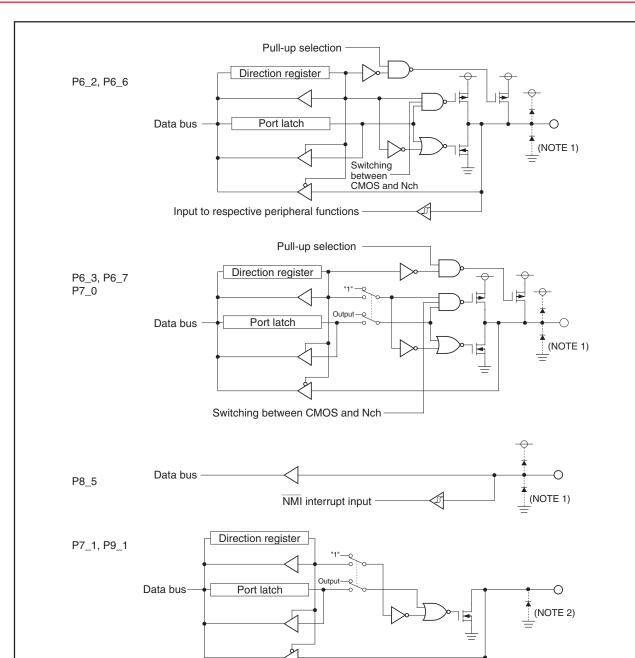
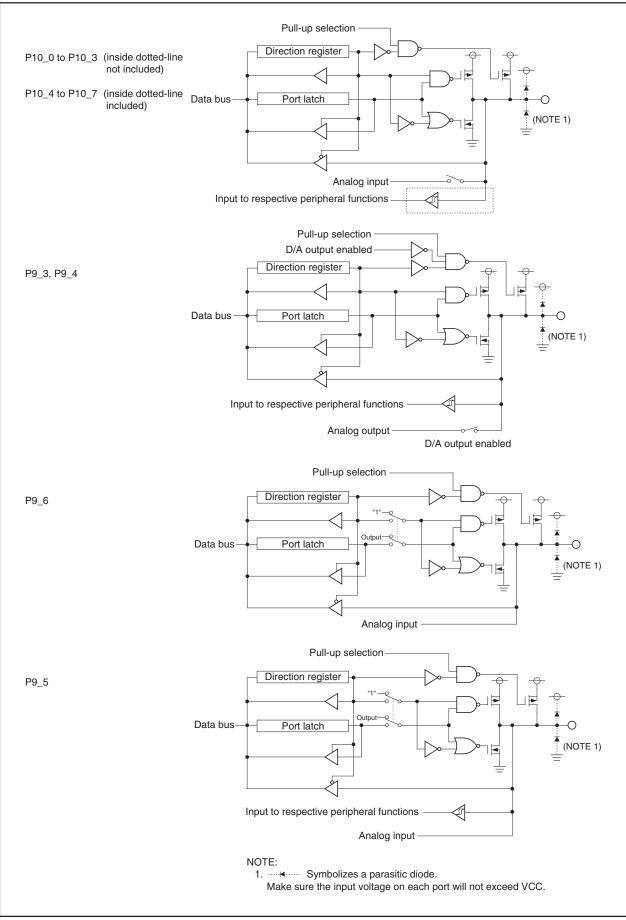



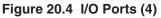
Figure 20.2 I/O Ports (2)

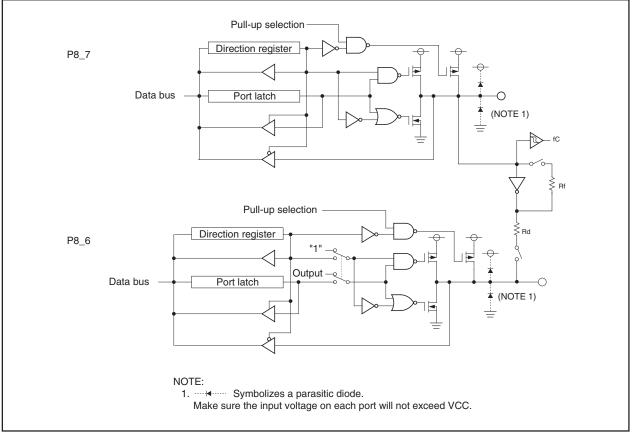
20. Programmable I/O Ports

NOTES:

Input to respective peripheral functions


1. Symbolizes a parasitic diode.


- Make sure the input voltage on each port will not exceed VCC.
- 2. Symbolizes a parasitic diode.


Figure 20.3 I/O Ports (3)

Under development This document is under development and its contents are subject to change.

M16C/6N Group (M16C/6N4)

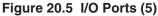


Figure 20.6 I/O Pins

b7 b6 b5 b4 b3 b2 b1 b	PD0 to F PD4 to F PD9, PD	2D3 03E2h, 03 2D7 03EAh, 03 010 03F3h, 03		After Reset 00h 00h 00h	
	Bit Symbol	Bit Name	Funct	tion	RV
	PDi_0	Port Pi_0 Direction Bit	0 : Input mode		RW
	- PDi_1	Port Pi_1 Direction Bit	(Functions as an 1 : Output mode	input port)	RV
	- PDi_2	Port Pi_2 Direction Bit	- (Functions as an	output port)	RW
	- PDi_3	Port Pi_3 Direction Bit		output porty	RW
	PDi_4	Port Pi_4 Direction Bit			RW
	- PDi_5	Port Pi_5 Direction Bit			RW
	- PDi_6	Port Pi_6 Direction Bit			RW
!	PDi_7	Port Pi_7 Direction Bit			RW
2. During memory expa pins (A0 to A19, D0 cannot be modified.	to D15, <u>CS0</u> to 0	processor modes, the PD CS3, RD, WRL/WR, WR			
2. During memory expa pins (A0 to A19, D0	nsion and microp to D15, CS0 to (gister	CS3, RD, WRL/WR, WR			
2. During memory expa pins (A0 to A19, D0 cannot be modified.	egister	CS3, RD, WRL/WR, WR pol 3	Address 03F2h	OLD, HLDA and After Reset 00X00000b	BCL
2. During memory expa pins (A0 to A19, D0 cannot be modified.	egister Bit Symbol	CS3, RD, WRL/WR, WR	Address 03F2h Funct	OLD, HLDA and After Reset 00X00000b	RW
2. During memory expa pins (A0 to A19, D0 cannot be modified.	egister Bit Symbol PD8_0	CS3, RD, WRL/WR, WR pol Bit Name Port P8_0 Direction Bit	Address 03F2h 0 : Input mode	OLD, HLDA and After Reset 00X00000b tion	RV RW
2. During memory expa pins (A0 to A19, D0 cannot be modified.	egister Bit Symbol PD8_0	CS3, RD, WRL/WR, WR pol Bit Name Port P8_0 Direction Bit Port P8_1 Direction Bit	Address 03F2h 0 : Input mode (Functions as an	OLD, HLDA and After Reset 00X00000b tion	RW RW RW
2. During memory expa pins (A0 to A19, D0 cannot be modified.	egister Bit Symbol PD8_1 PD8_2	CS3, RD, WRL/WR, WR Dol Bit Name Port P8_0 Direction Bit Port P8_1 Direction Bit Port P8_2 Direction Bit	Address 03F2h 0 : Input mode (Functions as an 1 : Output mode (Functions as an	OLD, HLDA and After Reset 00X00000b tion input port)	RW RW RW RW
2. During memory expa pins (A0 to A19, D0 cannot be modified.	egister Bit Symbol PD8_0 PD8_1 PD8_3	CS3, RD, WRL/WR, WR bol Bit Name Port P8_0 Direction Bit Port P8_1 Direction Bit Port P8_2 Direction Bit Port P8_3 Direction Bit	Address 03F2h 0 : Input mode (Functions as an 1 : Output mode (Functions as an	OLD, HLDA and After Reset 00X00000b tion input port)	RW RW RW RW
2. During memory expa pins (A0 to A19, D0 cannot be modified.	egister Bit Symbol PD8_1 PD8_2	CS3, RD, WRL/WR, WR Dol Bit Name Port P8_0 Direction Bit Port P8_1 Direction Bit Port P8_2 Direction Bit Port P8_3 Direction Bit Port P8_4 Direction Bit	Address 03F2h 0 : Input mode (Functions as an 1 : Output mode (Functions as an	OLD, HLDA and After Reset 00X00000b tion input port)	RW RW RW RW
2. During memory expa pins (A0 to A19, D0 cannot be modified.	egister Bit Symbol PD8_0 PD8_1 PD8_3	CS3, RD, WRL/WR, WR bol Bit Name Port P8_0 Direction Bit Port P8_1 Direction Bit Port P8_2 Direction Bit Port P8_3 Direction Bit	Address 03F2h 0 : Input mode (Functions as an 1 : Output mode (Functions as an 1 : Output mode (Functions as an	OLD, HLDA and After Reset 00X00000b tion input port)	RW RW RW RW
2. During memory expa pins (A0 to A19, D0 cannot be modified.	Bit Symbol PD8_0 PD8_1 PD8_3 PD8_4 PD8_4 PD8_4	CS3, RD, WRL/WR, WR bol Bit Name Port P8_0 Direction Bit Port P8_1 Direction Bit Port P8_2 Direction Bit Port P8_3 Direction Bit Port P8_4 Direction Bit Nothing is assigned. W	Address 03F2h 0 : Input mode (Functions as an 1 : Output mode (Functions as an 1 : Output mode (Functions as an hen write, set to "0". is indeterminate. 0 : Input mode (Functions as an	OLD, HEDA and After Reset 00X00000b tion input port) output port)	RW RW RW RW RW
2. During memory expa pins (A0 to A19, D0 cannot be modified.	Bit Symbol Bit Symbol PD8_0 PD8_1 PD8_3 PD8_4 (b5)	Dol Bit Name Port P8_0 Direction Bit Port P8_1 Direction Bit Port P8_2 Direction Bit Port P8_3 Direction Bit Port P8_3 Direction Bit Port P8_4 Direction Bit Nothing is assigned. W When read, its content	Address 03F2h 0 : Input mode (Functions as an 1 : Output mode (Functions as an 1 : Output mode (Functions as an 0 : Input mode (Functions as an 1 : Output mode	OLD, HLDA and After Reset 00X00000b tion input port) output port) input port)	BCL RV RV RV RV RV RV

Figure 20.7 PD0 to PD10 Registers

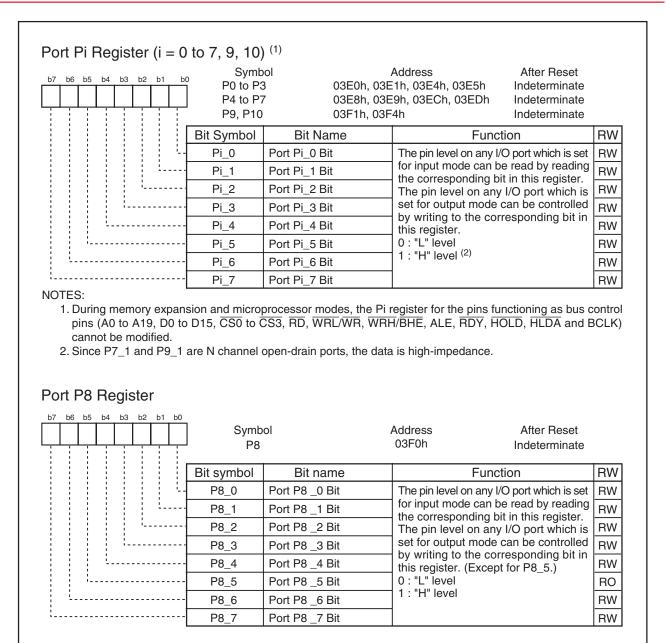


Figure 20.8 P0 to P10 Registers

3. The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Figure 20.9 PUR0, PUR1 and PUR2 Registers

b7 b6 b5 b4 b3 b2 b1 b0	Symbo PCR		Address 03FFh	After Reset 00h	
	Bit Symbol	Bit Name	Fi	unction	RW
	PCR0	Port P1 Control Bit	register is read 0 : When the po input levels are read. Wh port latch is r 1 : The port latcl	rmed when the P1 ort is set for input, the of P1_0 to P1_7 pins hen set for output, the read. In is read regardless of port is set for input or	
	– (b7-b1)	Nothing is assigned. W When read, their conte			-

Figure 20.10 PCR Register

Table 20.2	Unassigned	Pin Handling in	Single-chip Mode
------------	------------	-----------------	------------------

Pin Name	Connection
Ports P0 to P7, P8_0 to P8_4,	After setting for input mode, connect every pin to VSS via a resistor (pull-down);
P8_6, P8_7, P9, P10	or after setting for output mode, leave these pins open. $^{(1)(2)(3)}$
XOUT (4)	Open
NMI(P8_5)	Connect via resistor to VCC (pull-up)
AVCC	Connect to VCC
AVSS, VREF, BYTE	Connect to VSS

NOTES:

1. When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes indeterminate, causing the power supply current to increase while the port remains in input mode.

Furthermore, by considering a possibility that the contents of the direction registers could be changed by noise or noise-induced runaway, it is recommended that the contents of the direction registers be periodically reset in software, for the increased reliability of the program.

- 2. Make sure the unused pins are processed with the shortest possible wiring from the microcomputer pins (within 2 cm).
- 3. When the ports P7_1 and P9_1 are set for output mode, make sure a low-level signal is output from the pins. The ports P7_1 and P9_1 are N-channel open-drain outputs.
- 4. With external clock input to XIN pin.

Table 20.3 Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode

Pin Name	Connection
Ports P0 to P7, P8_0 to P8_4,	After setting for input mode, connect every pin to VSS via a resistor (pull-down);
P8_6, P8_7, P9, P10	or after setting for output mode, leave these pins open. (1) (2) (3) (4)
P4_5/CS1 to P4_7/CS3	Connect to VCC via a resistor (pulled high) by setting the PD4 register's
	corresponding direction bit for $\overline{CS}i$ (i = 1 to 3) to "0" (input mode) and
	the $\overline{\text{CS}}$ i bit in the CSR register to "0" (chip select disabled).
BHE, ALE, HLDA, XOUT ⁽⁵⁾ ,	Open
BCLK ⁽⁶⁾	
HOLD, RDY, NMI(P8_5)	Connect via resistor to VCC (pull-up)
AVCC	Connect to VCC
AVSS, VREF	Connect to VSS

NOTES:

- When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes indeterminate, causing the power supply current to increase while the port remains in input mode. Furthermore, by considering a possibility that the contents of the direction registers could be changed by noise or noise-induced runaway, it is recommended that the contents of the direction registers be periodically reset in software, for the increased reliability of the program.
- 2. Make sure the unused pins are processed with the shortest possible wiring from the microcomputer pins (within 2 cm).
- 3. If the CNVSS pin has the VSS level applied to it, these pins are set for input ports until the processor mode is switched over in a program after reset. For this reason, the voltage levels on these pins become indeterminate, causing the power supply current to increase while they remain set for input ports.
- 4. When the ports P7_1 and P9_1 are set for output mode, make sure a low-level signal is output from the pins. The ports P7_1 and P9_1 are N-channel open-drain outputs.
- 5. With external clock input to XIN pin.
- 6. If the PM07 bit in the PM0 register is set to "1" (BCLK not output), connect this pin to VCC via a resistor (pulled high).

M16C/6N Group (M16C/6N4)

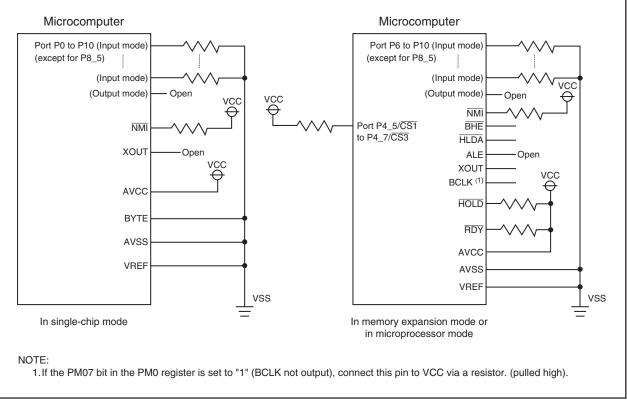


Figure 20.11 Unassigned Pins Handling

21. Flash Memory Version

Aside from the built-in flash memory, the flash memory version microcomputer has the same functions as the masked ROM version.

In the flash memory version, the flash memory can perform in four rewrite mode: CPU rewrite mode, standard serial I/O mode, parallel I/O mode and CAN I/O mode.

Table 21.1 lists the specifications of the flash memory version. See **Table 1.1 Performance outline**, for the items not listed in Table 21.1). Table 21.2 shows the outline of flash memory rewrite mode.

Table 21.1	Flash	Memory	Version	Specifications
------------	-------	--------	---------	----------------

Item		Specifications		
Flash Memory Operating Mode		4 modes (CPU rewrite, standard serial I/O, parallel I/O, CAN I/O)		
Erase Block User ROM Area Boot ROM Area		See Figure 21.1 Flash Memory Block Diagram		
		1 block (4 Kbytes) ⁽¹⁾		
Program Method		In units of word, in units of byte ⁽²⁾		
Erase Method		Collective erase, block erase		
Program and Erase Control Method		Program and erase controlled by software command		
Protect Method		Lock bit protects each block		
Number of Commands		8 commands		
Program and Erase Endurance (3)		100 times		
ROM Code Protect	tion	Parallel I/O , standard serial I/O and CAN I/O modes are supported.		

NOTES:

1. The boot ROM area contains a standard serial I/O mode and CAN I/O mode rewrite control program which is stored in it when shipped from the factory. This area can only be rewritten in parallel I/O mode.

2. Can be programmed in byte units in only parallel I/O mode.

3. Definition of program and erase endurance

The programming and erasure times are defined to be per-block erasure times. For example, assume a case where a 4K-byte block A is programmed in 2,048 operations by writing one word at a time and erased thereafter. In this case, the block is reckoned as having been programmed and erased once.

If a product is 100 times of programming and erasure, each block in it can be erased up to 100 times.

Flash Memory Rewrite Mode	CPU Rewrite Mode ("	Standard Serial I/O Mode		CAN I/O Mode
Function	rewritten when the CPU executes software commands. EW0 mode:	rewritten using a dedicated serial programmer. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2:	ROM areas are rewritten using a dedicated parallel programmer.	The user ROM area is rewritten busing a dedicated CAN programmer.
Areas which can be Rewritten	User ROM area	User ROM area	User ROM area Boot ROM area	User ROM area
Operation Mode	Single-chip mode Memory expansion mode (EW0 mode) Boot mode (EW0 mode)	Boot mode	Parallel I/O mode	Boot mode
ROM Programmer	None	Serial programmer	Parallel programmer	CAN programmer

NOTES:

1. The PM13 bit remains set to "1" while the FMR01 bit in the FMR0 register = 1 (CPU rewrite mode enabled). The PM13 bit is reverted to its original value by setting the FMR01 bit to "0" (CPU rewrite mode disabled). However, if the PM13 bit is changed during CPU rewrite mode, its changed value is not reflected until after the FMR01 bit is set to "0".

2. When in CPU rewrite mode, the PM10 and PM13 bits in the PM1 register are set to "1". The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM13 bit = 1.

3. When using the standard serial I/O mode 2, make sure a main clock input oscillation frequency is set to 5 MHz, 10 MHz or 16 MHz.

21.1 Memory Map

The flash memory contains the user ROM area and a boot ROM area. The user ROM area has space to store the microcomputer operating program in single-chip mode or memory expansion mode and a separate 4-Kbyte space as the block A.

Figure 21.1 shows the block diagram of flash memory.

The user ROM area is divided into several blocks, each of which can individually be protected (locked) against programming or erasure. The user ROM area can be rewritten in all of CPU rewrite, standard serial I/O mode, parallel I/O mode and CAN I/O mode. Block A is enabled for use by setting the PM10 bit in the PM1 register to "1" (block A enabled. CS2 area at addresses 10000h to 26FFFh).

The boot ROM area is located at the same addresses as the user ROM area. It can only be rewritten in parallel I/O mode (refer to **21.1.1 Boot Mode**). A program in the boot ROM area is executed after a hardware reset occurs while an "H" signal is applied to the CNVSS and P5_0 pins and an "L" signal is applied to the P5_5 pin (refer to **21.1.1 Boot Mode**). A program in the user ROM area is executed after a hardware reset occurs while an "L" signal is applied to the CNVSS pin. However, the boot ROM area cannot be read.

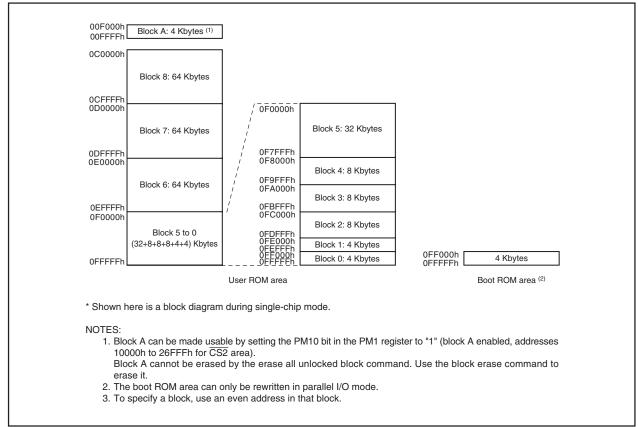


Figure 21.1 Flash Memory Block Diagram

21.1.1 Boot Mode

The microcomputer enters boot mode when a hardware reset occurs while an "H " signal is applied to the CNVSS and P5_0 pins and an "L " signal is applied to the P5_5 pin. A program in the boot ROM area is executed.

In boot mode, the FMR05 bit in the FMR0 register selects access to the boot ROM area or the user ROM area. The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. The boot ROM area can be rewritten in parallel I/O mode only. If any rewrite control program using erase-write mode (EW0 mode) is written in the boot ROM area, the flash memory can be rewritten according to the system implemented.

21.2 Functions to Prevent Flash Memory from Rewriting

The flash memory has a built-in ROM code protect function for parallel I/O mode and a built-in ID code check function for standard serial I/O mode and CAN I/O mode to prevent the flash memory from reading or rewriting.

21.2.1 ROM Code Protect Function

The ROM code protect function inhibits the flash memory from being read or rewritten during parallel I/O mode. Figure 21.2 shows the ROMCP register. The ROMCP register is located in the user ROM area. The ROM code protect function is enabled when the ROMCR bits are set to other than "11b". In this case, set the bit 5 to bit 0 to "111111b".

When exiting ROM code protect, erase the block including the ROMCP register by the CPU rewrite mode or the standard serial I/O mode or CAN I/O mode.

21.2.2 ID Code Check Function

Use the ID code check function in standard serial I/O mode and CAN I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFFh", ID codes are not compared, allowing all commands to be accepted. The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses 0FFFDFh, 0FFFE3h, 0FFFE3h, 0FFFE3h, 0FFFF7h, and 0FFFFBh. The flash memory must have a program with the ID codes set in these addresses.

Figure 21.3 shows the ID code store addresses.

b7 b6 b5 b4 b3 b2 b1 b0	Symbo ROMC		lue when Shipped FFh ⁽¹⁾	
	Bit Symbol	Bit Name	Function	RW
	(b5-b0)	Reserved Bit	Set to "1"	RW
	DOMODI	ROM Code Protect Level 1	^{b7 b6} 0 0 : 0 1 : ≻Protect enabled	RW
	ROMCP1 Set Bit (1) (2) (3) (4)		1 0 : J 1 1 : Protect disabled	RW

1. The ROMCP address is set to "FFh" when a block, including the ROMCP address, is erased.

2. When the ROM code protection is active by the ROMCP1 bit setting, the flash memory is protected against reading or rewriting in parallel I/O mode.

- 3. Set the bit 5 to bit 0 to "111111b" when the ROMCP1 bit is set to a value other than "11b". If the bit 5 to bit 0 are set to values other than "111111b", the ROM code protection may not become active by setting the ROMCP1 bit to a value other than "11b".
- 4. To make the ROM code protection inactive, erase a block including the ROMCP address in CPU rewrite mode, standard serial I/O mode or CAN I/O mode.
- 5. When a value of the ROMCPaddress is "00h" or "FFh", the ROM code protect function is disabled.

Figure 21.2 ROMCP Register

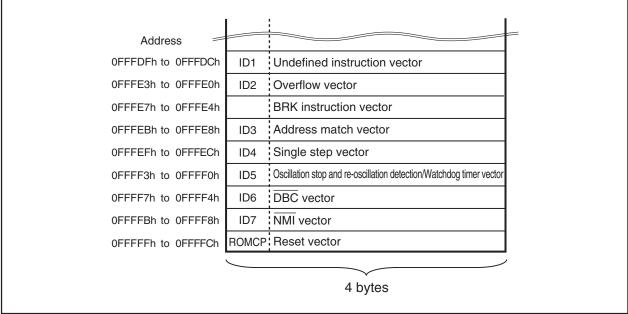


Figure 21.3 Address for ID Code Stored

21.3 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands. The user ROM area can be rewritten with the microcomputer is mounted on a board without using a parallel, serial or CAN programmer.

In CPU rewrite mode, only the user ROM area shown in Figure 21.1 can be rewritten. The boot ROM area cannot be rewritten. Program and the block erase command are executed only in the user ROM area. Erase-write 0 (EW0) mode and erase-write 1 (EW1) mode are provided as CPU rewrite mode. Table 21.3 lists the differences between EW0 and EW1 modes.

Item	EW0 Mode	EW1 Mode
Operation Mode	Single-chip mode	Single chip mode
	Memory expansion mode	
	Boot mode	
Space where Rewrite	User ROM area	User ROM area
Control Program can be	Boot ROM area	
Placed		
Space where Rewrite	The rewrite control program must be	The rewrite control program can be
Control Program can be	transferred to any space other than the	executed in the user ROM area
Executed	flash memory (e.g., RAM) before being	
	executed ⁽²⁾	
Space which can be	User ROM area	User ROM area
Rewritten		However, this excludes blocks with the
		rewrite control program
Software Command	None	 Program and block erase commands
Restriction		cannot be executed in a block having
		the rewrite control program.
		 Erase all unlocked block command
		cannot be executed when the lock bit in
		a block having the rewrite control program
		is set to "1" (unlocked) or when the
		FMR02 bit in the FMR0 register is set
		to "1" (lock bit disabled).
		 Read status register command cannot
		be used
Modes after Program or	Read status register mode	Read array mode
Erasing		
CPU Status during Auto	Operating	Maintains hold state (I/O ports maintains
Write and Auto Erase		the state before the command was
		executed) ⁽¹⁾
Flash Memory Status	•Read the FMR00, FMR06 and FMR07	Read the FMR00, FMR06 and FMR07
Detection	bits in the FMR0 register by program	bits in the FMR0 register by program
	•Execute the read status register	
	command to read the SR7, SR5, and	
	SR4 bits in the status register	

	Table 21.3	EW0	Mode	and	EW1	Mode
--	------------	-----	------	-----	-----	------

NOTES:

1. Do not generate an interrupts (except NMI interrupt) and DMA transfer.

2. When in CPU rewrite mode, the PM10 and PM13 bits in the PM1 register are set to "1". The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM13 bit = 1.

21.3.1 EW0 Mode

The microcomputer enters CPU rewrite mode by setting the FMR01 bit in the FMR0 register to "1" (CPU rewrite mode enabled) and is ready to accept commands. EW0 mode is selected by setting the FMR11 bit in the FMR1 register to "0". To set the FMR01 bit to "1", set to "1" after first writing "0".

The software commands control programming and erasing. The FMR0 register or the status register indicates whether a program or erase operation is completed as expected or not.

21.3.2 EW1 Mode

EW1 mode is selected by setting FMR11 bit to "1" (by writing "0" and then "1" in succession) after setting the FMR01 bit to "1" (by writing "0" and then "1" in succession). (Both bits must be set to "0" first before setting to "1".)

The FMR0 register indicates whether or not a program or erase operation has been completed as expected. The status register cannot be read in EW1 mode.

When an erase/program operation is initiated the CPU halts all program execution until the operation is completed or erase-suspend is requested.

21.3.3 FMR0, FMR1 Registers

Figure 21.4 shows FMR0 and FMR1 registers.

7 b6 b5	0	3 b2 b1 b0	Symbol FMR0	Address 01B7h	After Reset 00000001b	
			Bit Symbol	Bit Name	Function	RW
			FMR00	RY/BY Status Flag	0 : Busy (being written or erased) ⁽¹⁾ 1 : Ready	RO
			FMR01	CPU Rewrite Mode Select Bit ⁽²⁾	0 : Disables CPU rewrite mode 1 : Enables CPU rewrite mode	RW
			FMR02	Lock Bit Disable Select Bit ⁽³⁾	0: Enables lock bit 1: Disables lock bit	RW
			FMSTP	Flash Memory Stop Bit ^{(4) (5)}	0 Enables flash memory operation 1: Stops flash memory operation (placed in low power dissipation mode, flash memory initialized)	RW
			(b4)	Reserved Bit	Set to "0"	RW
			FMR05	User ROM Area Select Bit ⁽⁴⁾ (Effective in only boot mode)	0 : Boot ROM area is accessed 1 : User ROM area is accessed	RW
			FMR06	Program Status Flag (6)	0 : Terminated normally 1 : Terminated in error	RO
			FMR07	Erase Status Flag (6)	0 : Terminated normally 1 : Terminated in error	RO

NOTES:

1. This status includes writing or reading with the lock bit program or read lock bit status command.

2. To set this bit to "1", write "0" and then "1" in succession. Make sure no interrupts or no DMA transfers will occur before writing "1" after writing "0".

Write to this bit when the $\overline{\text{NMI}}$ pin is in the high state. Also, while in EW0 mode, write to this bit from a program in other than the flash memory.

To set this bit to "0", in a read array mode.

3. To set this bit to "1", write "0" and then "1" in succession when the FMR01 bit = 1. Make sure no interrupts or no DMA transfers will occur before writing "1" after writing "0".

4. Write to this bit from a program in other than the flash memory.

5. Effective when the FMR01 bit = 1 (CPU rewrite mode). If the FMR01 bit = 0, although the FMSTP bit can be set to "1" by writing "1" in a program, the flash memory is neither placed in low power dissipation state nor initialized.

6. This bit is set to "0" by executing the clear status command.

Flash Memory Control Register 1

b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0	Symbol FMR1	Address 01B5h	After Reset 0X00XX0Xb	
	Bit Symbol	Bit Name	Function	RW
	(b0)	Reserved Bit	The value in this bit when read is indeterminate.	RO
	FMR11	EW1 Mode Select Bit (1)	0 : EW0 mode 1 : EW1 mode	RW
	(b3-b2)	Reserved Bit	The value in this bit when read is indeterminate.	RO
	(b5-b4)	Reserved Bit	Set to "0"	RW
	FMR16	Lock Bit Status Flag	0 : Lock 1 : Unlock	RO
·	(b7)	Reserved Bit	Set to "0"	RW

NOTE:

1. To set this bit to "1", write "0" and then "1" in succession when the FMR01 bit in the FMR0 register = 1. Make sure no interrupts or no DMA transfers will occur before writing "1" after writing "0".

Write to this bit when the $\overline{\text{NMI}}$ pin is in the high state.

The FMR01 and FMR11 bits both are set to "0" by setting the FMR01 bit to "0".

Figure 21.4 FMR0 Register and FMR1 Register

21.3.3.1 FMR00 Bit

This bit indicates the flash memory operating status. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

21.3.3.2 FMR01 Bit

The microcomputer can accept commands when the FMR01 bit is set to "1" (CPU rewrite mode). Set the FMR05 bit to "1" (user ROM area access) as well if in boot mode.

21.3.3.3 FMR02 Bit

The lock bit is disabled by setting the FMR02 bit to "1" (lock bit disabled). (Refer to **21.3.6 Data Protect Function**.) The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled).

The FMR02 bit does not change the lock bit status but disables the lock bit function. If the block erase or erase all unlocked block command is executed when the FMR02 bit is set to "1", the lock bit status changes "0" (locked) to "1" (unlocked) after command execution is completed.

21.3.3.4 FMSTP Bit

This bit resets the flash memory control circuits and minimizes power consumption in the flash memory. Access to the flash memory is disabled when the FMSTP bit is set to "1". Set the FMSTP bit by program in a space other than the flash memory.

Set the FMSTP bit to "1" if one of the followings occurs:

- A flash memory access error occurs while erasing or programming in EW0 mode (FMR00 bit does not switch back to "1" (ready))
- Low power dissipation mode or on-chip oscillator low power dissipation mode is entered

Use the following the procedure to change the FMSTP bit setting.

- (1) Set the FMSTP bit to "1"
- (2) Set tps (the wait time to stabilize flash memory circuit)
- (3) Set the FMSTP bit to "0"
- (4) Set tps (the wait time to stabilize flash memory circuit)

Figure 21.7 shows a flow chart illustrating how to start and stop the flash memory processing before and after low power dissipation mode or on-chip oscillator low power dissipation mode. Follow the procedure on this flow chart.

When entering stop or wait mode, the flash memory is automatically turned off. When exiting stop or wait mode, the flash memory is turned back on. The FMR0 register does not need to be set.

21.3.3.5 FMR05 Bit

This bit selects the boot ROM or user ROM area in boot mode. Set to "0" to access (read) the boot ROM area or to "1" (user ROM access) to access (read, write or erase) the user ROM area.

21.3.3.6 FMR06 Bit

This is a read-only bit indicating an auto program operation state. The FMR06 bit is set to "1" when a program error occurs; otherwise, it is set to "0". Refer to **21.3.8 Full Status Check**.

21.3.3.7 FMR07 Bit

This is a read-only bit indicating the auto erase operation status. The FMR07 bit is set to "1" when an erase error occurs; otherwise, it is set to "0". For details, refer to **21.3.8 Full Status Check**.

21.3.3.8 FMR11 Bit

EW0 mode is entered by setting the FMR11 bit to "0" (EW0 mode). EW1 mode is entered by setting the FMR11 bit to "1" (EW1 mode).

21.3.3.9 FMR16 Bit

This is a read-only bit indicating the execution result of the read lock bit status command. When the block, where the read lock bit status command is executed, is locked, the FMR16 bit is set to "0". When the block, where the read lock bit status command is executed, is unlocked, the FMR16 bit is set to "1".

Figure 21.5 shows setting and resetting of EW0 mode. Figure 21.6 show setting and resetting of EW1 mode.

M16C/6N Group (M16C/6N4)

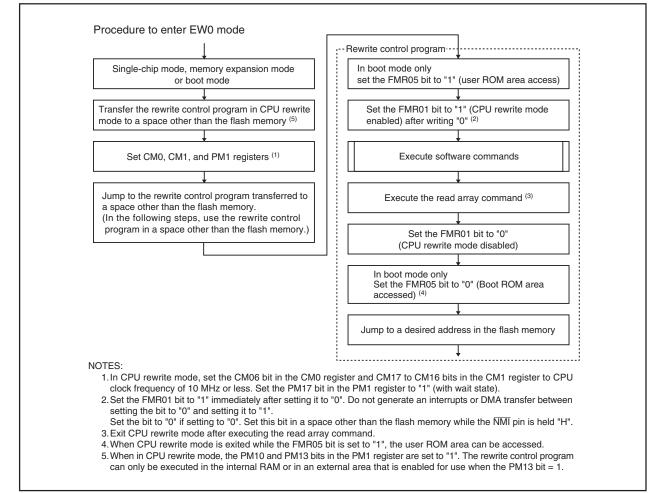
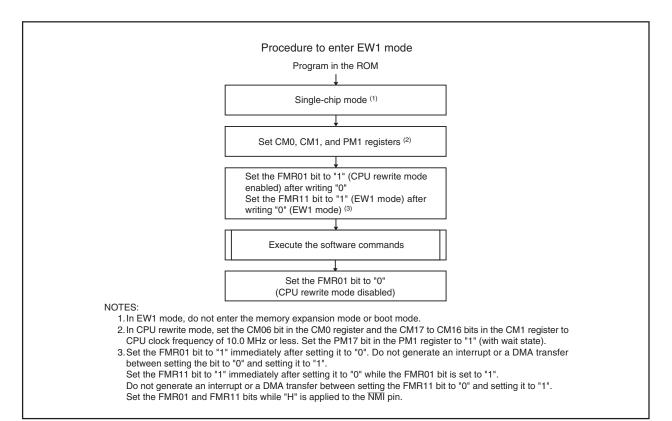



Figure 21.5 Setting and Resetting of EW0 Mode

M16C/6N Group (M16C/6N4)

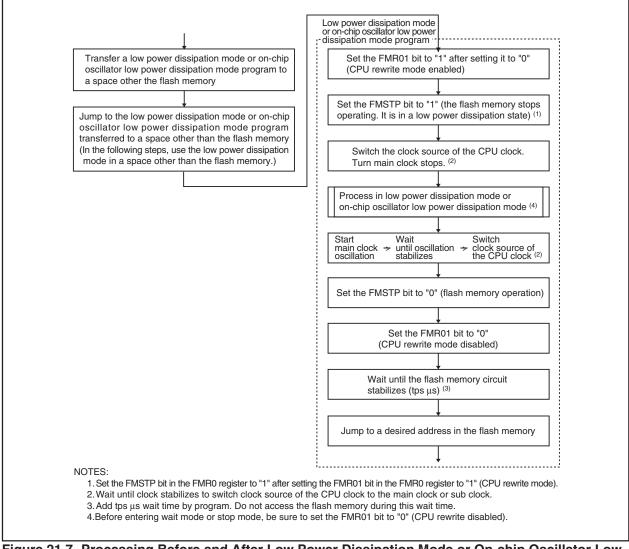


Figure 21.7 Processing Before and After Low Power Dissipation Mode or On-chip Oscillator Low Power Dissipation Mode

21.3.4 Precautions on CPU Rewrite Mode

21.3.4.1 Operating Speed

Set the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register to clock frequency of 10 MHz or less before entering CPU rewrite mode (EW0 or EW1 mode). Also, set the PM17 bit in the PM1 register to "1" (with wait state).

21.3.4.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because the CPU tries to read data in flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

21.3.4.3 Interrupts (EW0 Mode)

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The NMI and watchdog timer interrupts are available since the FMR0 and FMR1 registers are forcibly reset when either interrupt request is generated. Allocate the jump addresses for each interrupt service routines to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt request is generated. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

21.3.4.4 Interrupts (EW1 Mode)

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during the auto program or auto erase period.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since the FMR0 and FMR1 registers are forcibly reset when the interrupt request is generated. Allocate the jump address for the interrupt service routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI interrupt request is generated. Execute the rewrite program again after exiting the interrupt service routine.

21.3.4.5 How to Access

To set the FMR01, FMR02 or FMR11 bit to "1", write "1" after first setting the bit to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while an "H" signal is applied to the $\overline{\text{NMI}}$ pin.

21.3.4.6 Rewriting in User ROM Area (EW0 Mode)

The supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode or CAN I/O mode.

21.3.4.7 Rewriting in User ROM Area (EW1 Mode)

Avoid rewriting any block in which the rewrite control program is stored.

21.3.4.8 DMA Transfer

In EW1 mode, do not perform a DMA transfer while the FMR00 bit in the FMR0 register is set to "0" (auto programming or auto erasing).

21.3.4.9 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

21.3.4.10 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

21.3.4.11 Stop Mode

When the microcomputer enters stop mode, execute the instruction which sets the CM10 bit to "1" (stop mode) after setting the FMR01 bit to "0" (CPU rewrite mode disabled) and disabling the DMA transfer.

21.3.4.12 Low Power Dissipation Mode and On-chip Oscillator Low Power Dissipation Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Erase all unlocked blocks
- Lock bit program
- Read lock bit status

21.3.5 Software Commands

Software commands are described below. The command code and data must be read and written in 16-bit unit, to and from even addresses in the user ROM area. When writing command code, the high-order 8 bits (D15 to D8) are ignored.

Table 21.4 lists the software commands.

Table 21.4 Software Commands

	First Bus Cycle			Second Bus Cycle		
Software Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)
Read Array	Write	×	xxFFh	-	-	-
Read Status Register	Write	×	xx70h	Read	×	SRD
Clear Status Register	Write	×	xx50h	-	-	-
Program	Write	WA	xx40h	Write	WA	WD
Block Erase	Write	×	xx20h	Write	BA	xxD0h
Erase All Unlocked Block (1)	Write	×	xxA7h	Write	×	xxD0h
Lock Bit Program	Write	BA	xx77h	Write	BA	xxD0h
Read Lock Bit Status	Write	×	xx71h	Write	BA	xxD0h

SRD:data in SRD register (D7 to D0)

WA: Address to be written (The address specified in the first bus cycle is the same even address as the address specified in the second bus cycle.)

WD: 16-bit write data

BA: Highest-order block address (must be an even address)

X: Any even address in the user ROM area

xx: High-order 8 bits of command code (ignored)

NOTE

1. It is only blocks 0 to 8 that can be erased by the erase all unlocked block command. Block A cannot be erased. The block erase command must be used to erase the block A.

21.3.5.1 Read Array Command (FFh)

The read array command reads the flash memory.

By writing command code "xxFFh" in the first bus cycle, read array mode is entered. Content of a specified address can be read in 16-bit unit after the next bus cycle.

The microcomputer remains in read array mode until another command is written. Therefore, contents from multiple addresses can be read consecutively.

21.3.5.2 Read Status Register Command (70h)

The read status register command reads the status register (refer to **21.3.7 Status Register (SRD Register)** for detail).

By writing command code "xx70h" in the first bus cycle, the status register can be read in the second bus cycle. Read an even address in the user ROM area.

Do not execute this command in EW1 mode.

21.3.5.3 Clear Status Register Command (50h)

The clear status register command clears the status register.

By writing "xx50h" in the first bus cycle, the FMR07, FMR06 bits in the FMR0 register are set to "00b" and the SR5, SR4 bits in the status register are set to "00b".

21.3.5.4 Program Command (40h)

The program command writes 2-byte data to the flash memory.

By writing "xx40h" in the first bus cycle and data to the write address in the second bus cycle, an auto program operation (data program and verify) will start. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether an auto program operation has been completed. The FMR00 bit is set to "0" (busy) during auto program and to "1" (ready) when an auto program operation is completed.

After the completion of an auto program operation, the FMR06 bit in the FMR0 register indicates whether or not the auto program operation has been completed as expected. (Refer to **21.3.8 Full Status Check.**)

An address that is already written cannot be altered or rewritten.

Figure 21.8 shows a flow chart of the program command programming.

The lock bit protects each block from being programmed inadvertently. (Refer to **21.3.6 Data Protect Function.**)

In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the microcomputer enters read status register mode as soon as an auto program operation starts. The status register can be read. The SR7 bit in the status register is set to "0" at the same time an auto program operation starts. It is set to "1" when auto program operation is completed. The microcomputer remains in read status register mode until the read array command is written. After completion of an auto program operation, the status register indicates whether or not the auto program operation has been completed as expected.

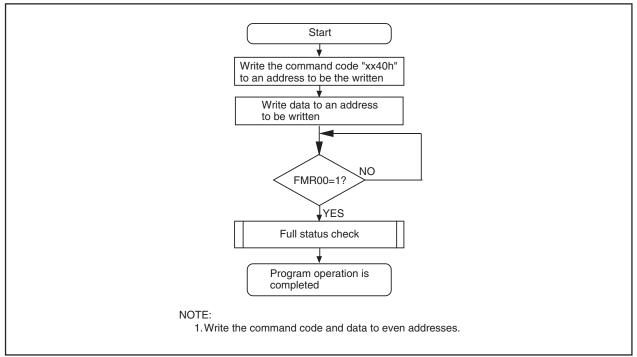


Figure 21.8 Program Command

21.3.5.5 Block Erase Command

The block erase command erases each block.

By writing "xx20h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, an auto erase operation (erase and verify) will start in the specified block.

The FMR00 bit in the FMR0 register indicates whether an auto erase operation has been completed.

The FMR00 bit is set to "0" (busy) during auto erase and to "1" (ready) when the auto erase operation is completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected. (Refer to **21.3.8 Full Status Check**.) Figure 21.9 shows a flow chart of the block erase command programming.

The lock bit protects each block from being programmed inadvertently. (Refer to **21.3.6 Data Protect Function**.)

In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the microcomputer enters read status register mode as soon as an auto erase operation starts. The status register can be read. The SR7 bit in the status register is set to "0" at the same time an auto erase operation starts. It is set to "1" when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written. Also execute the clear status register command and block erase command at least 3 times until an erase error is not generated when an erase error is generated.

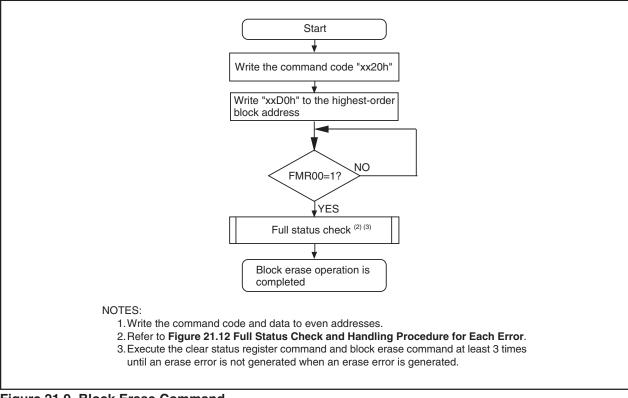


Figure 21.9 Block Erase Command

21.3.5.6 Erase All Unlocked Block

The erase all unlocked block command erases all blocks except the block A.

By writing "xxA7h" in the first bus cycle and "xxD0h" in the second bus cycle, an auto erase (erase and verify) operation will run continuously in all blocks except the block A.

The FMR00 bit in the FMR0 register indicates whether an auto erase operation has been completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected.

The lock bit can protect each block from being programmed inadvertently. (Refer to **21.3.6 Data Protect Function**.)

In EW1 mode, do not execute this command when the lock bit for any block storing the rewrite control program is set to "1" (unlocked) or when the FMR02 bit in the FMR0 register is set to "1" (lock bit disabled).

In EW0 mode, the microcomputer enters read status register mode as soon as an auto erase operation starts. The status register can be read. The SR7 bit in the status register is set to "0" (busy) at the same time an auto erase operation starts. It is set to "1" (ready) when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written.

Only blocks 0 to 8 can be erased by the erase all unlocked block command. The block A cannot be erased. Use the block erase command to erase the block A.

21.3.5.7 Lock Bit Program Command

The lock bit program command sets the lock bit for a specified block to "0" (locked).

By writing "xx77h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to "0". The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

Figure 21.10 shows a flow chart of the lock bit program command programming. Execute read lock bit status command to read lock bit state (lock bit data).

The FMR00 bit in the FMR0 register indicates whether a lock bit program operation is completed.

Refer to 21.3.6 Data Protect Function for details on lock bit functions and how to set it to "1" (unlocked).

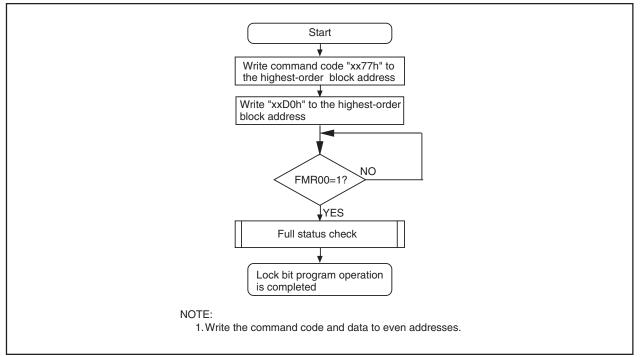


Figure 21.10 Lock Bit Program Command

21.3.5.8 Read Lock Bit Status Command (71h)

The read lock bit status command reads the lock bit state of a specified block.

By writing "xx71h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the FMR16 bit in the FMR1 register stores information on whether or not the lock bit of a specified block is locked. Read the FMR16 bit after the FMR00 bit in the FMR0 register is set to "1" (ready).

Figure 21.11 shows a flow chart of the read lock bit status command programming.

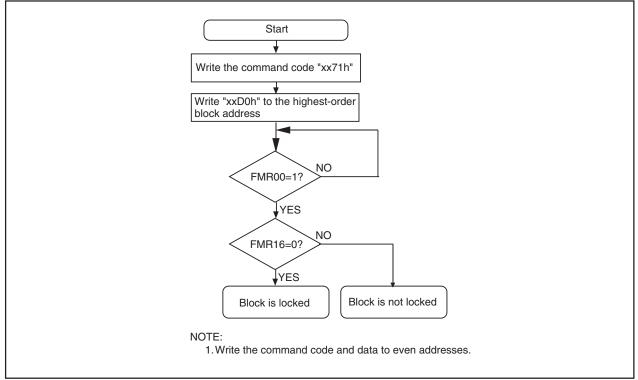


Figure 21.11 Read Lock Bit Status Command

21.3.6 Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit in the FMR0 register to "0" (lock bit enabled). The lock bit allows each block to be individually protected (locked) against program and erase. This helps prevent data from being inadvertently written to or erased from the flash memory.

- When the lock bit status is set to "0", the block is locked (block is protected against program and erase).
- When the lock bit status is set to "1", the block is not locked (block can be programmed or erased).

The lock bit status is set to "0" (locked) by executing the lock bit program command and to "1" (unlocked) by erasing the block. The lock bit status cannot be set to "1" by any commands. The lock bit status can be read by the read lock bit status command.

The lock bit function is disabled by setting the FMR02 bit to "1". All blocks are unlocked. However, individual lock bit status remains unchanged. The lock bit function is enabled by setting the FMR02 bit to "0". Lock bit status is retained.

If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to "1", the target block or all blocks are erased regardless of lock bit status. The lock bit status of each block are set to "1" after an erase operation is completed.

Refer to 21.3.5 Software Commands for details on each command.

21.3.7 Status Register (SRD Register)

The status register indicates the flash memory operation state and whether or not an erase or program operation is completed as expected. The FMR00, FMR06 and FMR07 bits in the FMR0 register indicate status register states.

Table 21.5 shows the status register.

In EW0 mode, the status register can be read when the followings occur.

- Any even address in the user ROM area is read after writing the read status register command
- Any even address in the user ROM area is read from when the program, block erase, erase all unlocked block, or lock bit program command is executed until when the read array command is executed.

21.3.7.1 Sequencer Status (SR7 and FMR00 Bits)

The sequence status indicates the flash memory operation state. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

21.3.7.2 Erase Status (SR5 and FMR07 Bits)

Refer to 21.3.8 Full Status Check.

21.3.7.3 Program Status (SR4 and FMR06 Bits)

Refer to 21.3.8 Full Status Check.

Table 21.5 Status Register

Bits in Status	Bits in FMR0	Ototuo Nomo	Cont	Value after		
Register	Register	Status Name	"0"	"1"	Reset	
SR0 (D0)	-	Reserved	-	-	-	
SR1 (D1)	-	Reserved	-	-	-	
SR2 (D2)	-	Reserved	-	-	-	
SR3 (D3)	-	Reserved	-	-	-	
SR4 (D4)	FMR06	Program status	Terminated normally	Terminated in error	0	
SR5 (D5)	FMR07	Erase status	Terminated normally	Terminated in error	0	
SR6 (D6)	-	Reserved	-	-	-	
SR7 (D7)	FMR00	Sequencer status	Busy	Ready	1	

D0 to D7: These data bus are read when the read status register command is executed. NOTE:

1. The FMR06 bit (SR4) and FMR07 bit (SR5) are set to "0" by executing the clear status register command. When the FMR06 bit (SR4) or FMR07 bit (SR5) is set to "1", the program, block erase, erase all unlocked block, and lock bit program commands are not accepted.

21.3.8 Full Status Check

If an error occurs when a program or erase operation is completed, the FMR06, FMR07 bits in the FMR0 register are set to "1", indicating a specific error. Therefore, execution results can be confirmed by checking these bits (full status check).

Table 21.6 lists errors and FMR0 register state. Figure 21.12 shows a flow chart of the full status check and handling procedure for each error.

FRM00 Register (Status Register) Status		Error	Error Occurrence Conditions				
FMR07 bit (SR5)	FMR06 bit (SR4)						
1	1	Command	 Command is written incorrectly 				
		Sequence	• A value other than "xxD0h" or "xxFFh" is written in the second				
		error	bus cycle of the lock bit program, block erase or eras unlocked block command ⁽¹⁾				
1 0 Erase error		Erase error	• The block erase command is executed on a locked block ⁽²⁾				
			• The block erase or erase all unlocked block command is				
			executed on an unlock block and auto erase operation is not				
			completed as expected				
0	1	Program error	• The program command is executed on locked blocks ⁽²⁾				
			• The program command is executed on unlocked blocks but				
			program operation is not completed as expected				
			• The lock bit program command is executed but program				
			operation is not completed as expected				

Table 21.6	Errors and	FMR0	Register	Status
------------	------------	------	----------	--------

NOTES:

1. The flash memory enters read array mode by writing command code "xxFFh" in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.

2. When the FMR02 bit in the FMR0 register is set to "1" (lock bit disabled), no error occurs even under the conditions above.

M16C/6N Group (M16C/6N4)

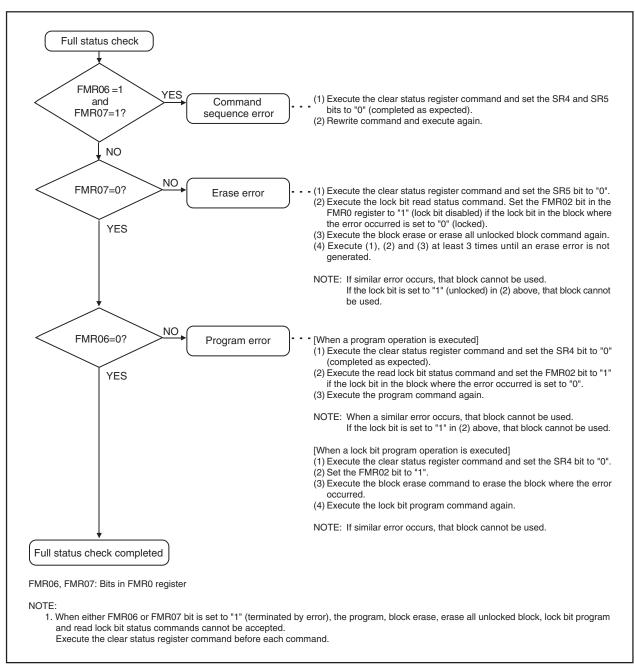


Figure 21.12 Full Status Check and Handling Procedure for Each Error

21.4 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the M16C/6N Group (M16C/6N4) can be used to rewrite the flash memory user ROM area in the microcomputer mounted on a board. For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Table 21.7 lists pin functions for standard serial I/O mode. Figures 21.13 and 21.14 show pin connections for standard serial I/O mode.

21.4.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer matches those written in the flash memory. (Refer to **21.2 Functions to Prevent Flash Memory from Rewriting**.)

Table 21.7 Pin Functions for Standard Serial I/O Mode

Pin	Name	I/O	Description
VCC1, VCC2, VSS	Power supply		Apply the Flash Program, Erase Voltage to VCC1 pin and VCC2 to
	input		VCC2 pin. The VCC apply condition is that VCC2 = VCC1.
			Apply 0 V to VSS pin.
CNVSS	CNVSS	I	Connect to VCC1 pin.
RESET	Reset input	I	Reset input pin. While RESET pin is "L" level, input 20 cycles or
			longer clock to XIN pin.
XIN	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and
XOUT	Clock output	0	XOUT pins. To input an externally generated clock, input it to XIN
			pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to VCC1 or VSS.
AVCC, AVSS	Analog power		Connect AVCC to VCC1 and AVSS to VSS, respectively.
	supply input		
VREF	Reference	1	Enter the reference voltage for A/D and D/A converters from this
	voltage input		pin.
P0_0 to P0_7	Input port P0	1	Input "H" or "L" level signal or open.
P1_0 to P1_7	Input port P1	I	Input "H" or "L" level signal or open.
P2_0 to P2_7	Input port P2	I	Input "H" or "L" level signal or open.
P3_0 to P3_7	Input port P3	I	Input "H" or "L" level signal or open.
P4_0 to P4_7	Input port P4	1	Input "H" or "L" level signal or open.
P5_0	CE input	1	Input "H" level signal.
P5_1 to P5_4,	Input port P5	I	Input "H" or "L" level signal or open.
P5_6, P5_7			
P5_5	EPM input	I	Input "L" level signal.
P6_0 to P6_3	Input port P6	I	Input "H" or "L" level signal or open.
P6_4/RTS1	BUSY output	0	Standard serial I/O mode 1: BUSY signal output pin
			Standard serial I/O mode 2: Monitors the boot program operation
			check signal output pin.
P6_5/CLK1	SCLK input	I	Standard serial I/O mode 1: Serial clock input pin.
			Standard serial I/O mode 2: Input "L".
P6_6/RXD1	RXD input	I	Serial data input pin
P6_7/TXD1	TXD output	0	Serial data output pin ⁽¹⁾
P7_0 to P7_7	Input port P7	1	Input "H" or "L" level signal or open.
P8_0 to P8_3,	Input port P8	1	Input "H" or "L" level signal or open.
P8_6, P8_7			
P8_4	P8_4 input	I	Input "L" level signal. (2)
P8_5/NMI	NMI input	I	Connect this pin to VCC1.
P9_0 to P9_4, P9_7	Input port P9	1	Input "H" or "L" level signal or open.
P9_5/CRX0	CRX input	1	Input "H" or "L" level signal or connect to a CAN transceiver.
P9_6/CTX0	CTX output	0	Input "H" level signal, open or connect to a CAN transceiver.
P10_0 to P10_7	Input port P10	1	Input "H" or "L" level signal or open.

NOTES:

1. When using the standard serial I/O mode, It is necessary to input "H" to the TXD1(P6_7) pin while the RESET pin is "L". Therefore, the internal pull-up is enabled for the TXD1(P6_7) pin while the RESET pin is "L".

2. When using the standard serial I/O mode, the P0_0 to P0_7, P1_0 to P1_7 pins may become indeterminate while the P8_4 pin is "H" and the RESET pin is "L". If this causes a problem, apply "L" to the P8_4 pin.

21. Flash Memory Version

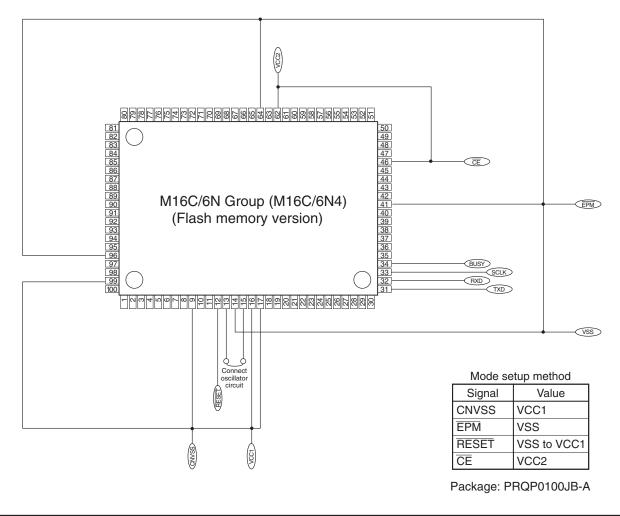


Figure 21.13 Pin Connections for Standard Serial I/O Mode (1)

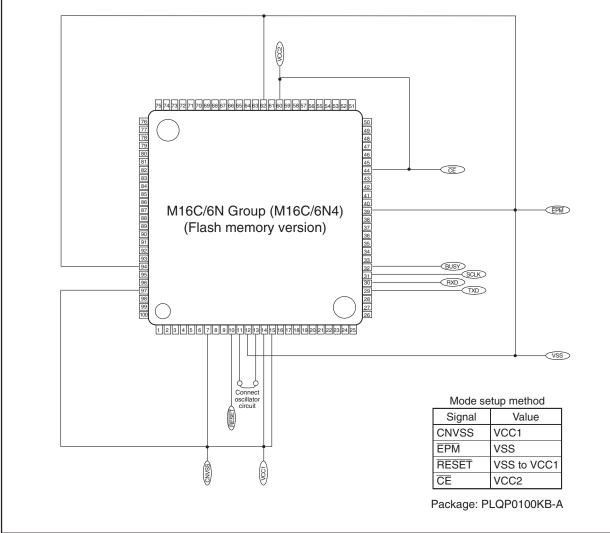


Figure 21.14 Pin Connections for Standard Serial I/O Mode (2)

21.4.2 Example of Circuit Application in Standard Serial I/O Mode

Figures 21.15 and 21.16 show example of circuit application in standard serial I/O mode 1 and mode 2, respectively. Refer to the user's manual of your serial programmer to handle pins controlled by a serial programmer.

Note that when using the standard serial I/O mode 2, make sure a main clock input oscillation frequency is set to 5 MHz, 10 MHz or 16 MHz.

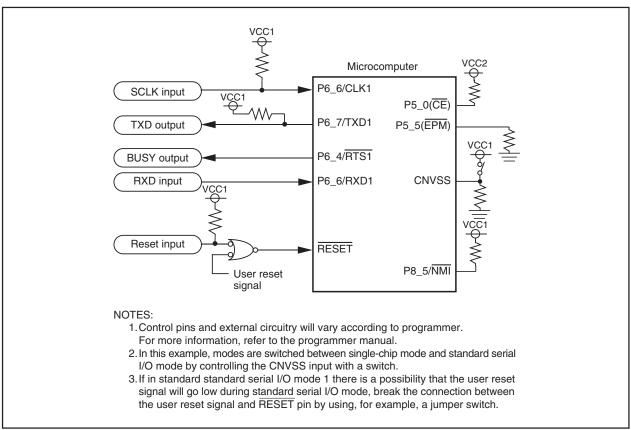


Figure 21.15 Circuit Application in Standard Serial I/O Mode 1

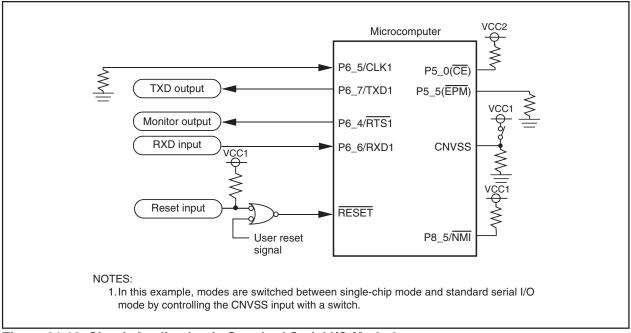


Figure 21.16 Circuit Application in Standard Serial I/O Mode 2

21.5 Parallel I/O Mode

In parallel I/O mode, the user ROM area and the boot ROM area can be rewritten by a parallel programmer supporting the M16C/6N Group (M16C/6N4). Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

21.5.1 User ROM and Boot ROM Areas

An erase block operation in the boot ROM area is applied to only one 4-Kbyte block. The rewrite control program in standard serial I/O and CAN I/O modes are written in the boot ROM area before shipment. Do not rewrite the boot ROM area if using the serial programmer.

In parallel I/O mode, the boot ROM area is located in addresses 0FF000h to 0FFFFFh. Rewrite this address range only if rewriting the boot ROM area. (Do not access addresses other than addresses 0FF000h to 0FFFFFh.)

21.5.2 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten in parallel I/O mode. (Refer to **21.2 Functions to Prevent Flash Memory from Rewriting**.)

21.6 CAN I/O Mode

In CAN I/O mode, the CAN programmer supporting the M16C/6N Group (M16C/6N4) can be used to rewrite the flash memory user ROM area in the microcomputer mounted on a board. For more information about the CAN programmer, contact your CAN programmer manufacturer. Refer to the user's manual included with your CAN programmer for instructions.

Table 21.8 lists pin functions for CAN I/O mode. Figures 21.17 and 21.18 show pin connections for CAN I/O mode.

21.6.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the CAN programmer matches those written in the flash memory. (Refer to **21.2 Functions to Prevent Flash Memory from Rewriting**.)

Pin	Name	I/O	Description
VCC1, VCC2, VSS	Power supply		Apply the Flash Program, Erase Voltage to VCC1 pin and VCC2
	input		to VCC2 pin. The VCC apply condition is that VCC2 = VCC1.
			Apply 0 V to VSS pin.
CNVSS	CNVSS	I	Connect to VCC1 pin.
RESET	Reset input	I	Reset input pin. While RESET pin is "L" level, input 20 cycles or
			longer clock to XIN pin.
XIN	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and
XOUT	Clock output	0	XOUT pins. To input an externally generated clock, input it to XIN
			pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to VCC1 or VSS.
AVCC, AVSS	Analog power		Connect AVCC to VCC1 and AVSS to VSS, respectively.
	supply input		
VREF	Reference	I	Enter the reference voltage for A/D and D/A converters from this
	voltage input		pin.
P0_0 to P0_7	Input port P0	I	Input "H" or "L" level signal or open.
P1_0 to P1_7	Input port P1	I	Input "H" or "L" level signal or open.
P2_0 to P2_7	Input port P2	I	Input "H" or "L" level signal or open.
P3_0 to P3_7	Input port P3	I	Input "H" or "L" level signal or open.
P4_0 to P4_7	Input port P4	I	Input "H" or "L" level signal or open.
P5_0	CE input	I	Input "H" level signal.
P5_1 to P5_4,	Input port P5	I	Input "H" or "L" level signal or open.
P5_6, P5_7			
P5_5	EPM input	I	Input "L" level signal.
P6_0 to P6_4, P6_6	Input port P6	I	Input "H" or "L" level signal or open.
P6_5/CLK1	SCLK input	I	Input "L" level signal.
P6_7/TXD1	TXD output	0	Input "H" level signal.
P7_0 to P7_7	Input port P7	I	Input "H" or "L" level signal or open.
P8_0 to P8_3,	Input port P8	I	Input "H" or "L" level signal or open.
P8_6, P8_7			
P8_4	P8_4 Input	I	Input "L" level signal. (1)
P8_5/NMI	NMI input	I	Connect this pin to VCC1.
P9_0 to P9_4, P9_7	Input port P9	I	Input "H" or "L" level signal or open.
P9_5/CRX0	CRX input	I	Connect to a CAN transceiver.
P9_6/CTX0	CTX output	0	Connect to a CAN transceiver.
P10_0 to P10_7	Input port P10	1	Input "H" or "L" level signal or open

Table 21.8 Pin Functions for CAN I/O Mode

NOTE:

1. When using CAN I/O mode, the P0_0 to P0_7, P1_0 to P1_7 pins may become indeterminate while the P8_4 pin is "H" and the RESET pin is "L". If this causes a problem, apply "L" to the P8_4 pin.

M16C/6N Group (M16C/6N4)

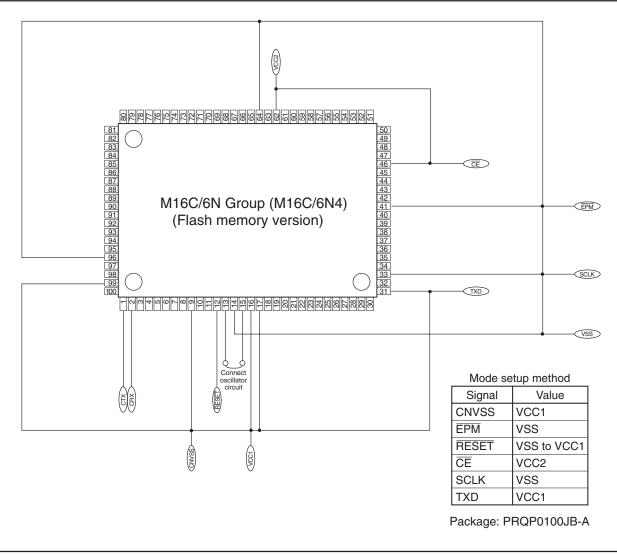


Figure 21.17 Pin Connections for CAN I/O Mode (1)

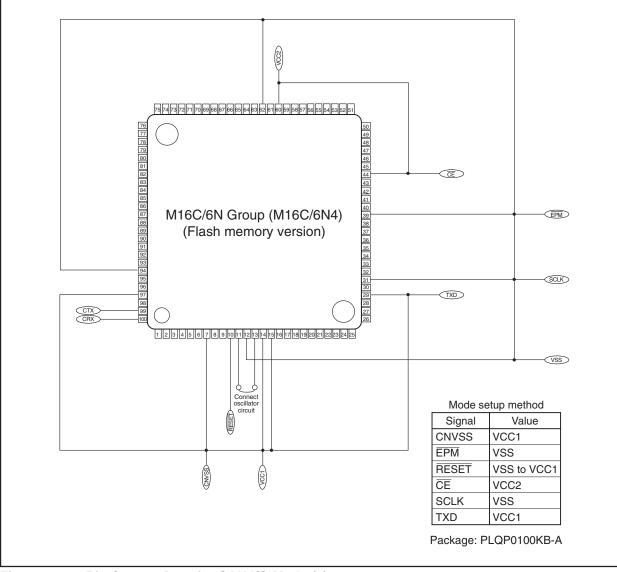


Figure 21.18 Pin Connections for CAN I/O Mode (2)

21.6.2 Example of Circuit Application in CAN I/O Mode

Figure 21.19 shows example of circuit application in CAN I/O mode. Refer to the user's manual of your CAN programmer to handle pins controlled by a CAN programmer.

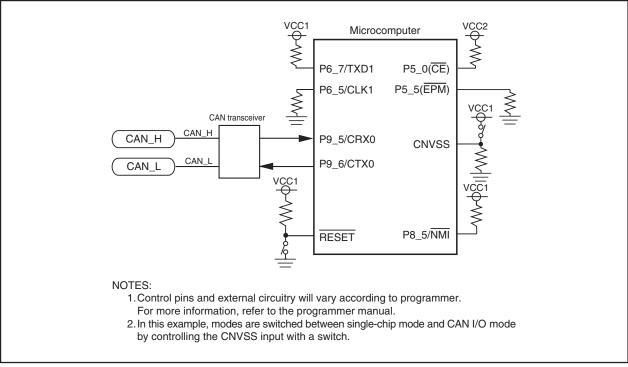


Figure 21.19 Circuit Application in CAN I/O Mode

21.7 Electrical Characteristics

21.7.1 Electrical Characteristics (T/V-ver.)

Table 21.9 lists the flash memory electrical characteristics. Table 21.10 lists the flash memory version program/erase voltage and read operation voltage characteristics.

Symbol	Paramete			Standard		Unit
Symbol	Faraniele		Min.	Тур.	Max.	Unit
-	Program and Erase Endurance ⁽²⁾		100			cycle
-	Word Program Time (VCC = 5.0V)			25	200	μs
-	Lock Bit Program Time			25	200	μs
-	Block Erase Time	4-Kbyte block		0.3	4	S
	(VCC = 5.0V)	8-Kbyte block		0.3	4	S
		32-Kbyte block		0.5	4	S
		64-Kbyte block		0.8	4	S
-	Erase All Unlocked Blocks Time				4 × n (3)	S
tps	Flash Memory Circuit Stabiliz	zation Wait Time			15	μs

NOTES:

- 1. Referenced to VCC = 4.5 to 5.5V, Topr = 0 to 60° C unless otherwise specified.
- 2. Program and Erase Endurance refers to the number of times a block erase can be performed. If the program and erase endurance is n (n = 100), each block can be erased n times. For example, if a 4-Kbyte block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)
- 3. n denotes the number of blocks to erase.

Table 21.10 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr = 0 to 60 °C)

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC = 5.0 \pm 0.5V$	VCC = 4.2 to 5.5V

21.7.2 Electrical Characteristics (Normal-ver.)

Table 21.11 lists the flash memory electrical characteristics. Table 21.12 lists the flash memory version program/erase voltage and read operation voltage characteristics.

Symbol	Parameter			Standard				
Symbol	Falaillete		Min.	Тур.	Max.	Unit		
-	Program and Erase Endurance ⁽²⁾		100			cycle		
-	Word Program Time (VCC = 5.0V)			25	200	μs		
-	Lock Bit Program Time			25	200	μs		
-	Block Erase Time	4-Kbyte block		0.3	4	S		
	(VCC = 5.0V)	8-Kbyte block		0.3	4	S		
		32-Kbyte block		0.5	4	S		
		64-Kbyte block		0.8	4	S		
-	Erase All Unlocked Blocks Time				4 × n (3)	S		
tps	Flash Memory Circuit Stabili	zation Wait Time			15	μs		

Table 21.11 Flash Memory Version Electrical Characteristics ⁽¹⁾	Table 21.11	Flash Memory	Version	Electrical	Characteristics (1	1)
--	-------------	--------------	---------	------------	--------------------	----

NOTES:

- 1. Referenced to VCC = 4.5 to 5.5V, 3.0 to 3.6V, Topr = 0 to 60°C unless otherwise specified.
- 2. Program and Erase Endurance refers to the number of times a block erase can be performed. If the program and erase endurance is n (n = 100), each block can be erased n times. For example, if a 4-Kbyte block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)
- 3. n denotes the number of blocks to erase.

Table 21.12 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr = 0 to 60 °C)

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC = 3.3 \pm 0.3V \text{ or } 5.0 \pm 0.5V$	VCC = 3.0 to 5.5V

22. Electrical Characteristics

22.1 Electrical Characteristics (T/V-ver.)

Table 22.1 Absolute Maximum Ratings

		Parameter	Condition	Rated Value	Unit
Supply Voltage (VCC1 = VCC2)			VCC = AVCC	-0.3 to 6.5	V
Analog S	upply Volt	age	VCC = AVCC	-0.3 to 6.5	V
Input	RESET,	CNVSS, BYTE,		-0.3 to VCC+0.3	V
Voltage	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,			
	P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
	P6_0 to F	P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7,			
	P9_0, P	9_2 to P9_7, P10_0 to P10_7,			
	VREF, >	(IN			
	P7_1, P9_1			-0.3 to 6.5	V
Output P0_0 to		P0_7, P1_0 to P1_7, P2_0 to P2_7,		-0.3 to VCC+0.3	V
Voltage	P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
	P6_0 to	P6_7, P7_0, P7_2 to P7_7,			
	P8_0 to I	P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,			
	P10_0 t	p P10_7, XOUT			
	P7_1, P	9_1		-0.3 to 6.5	V
Power Di	ssipation		Topr = 25°C	700	mW
Operating	Ambient	When the Microcomputer is		T version: -40 to 85	°C
Temperat	ure	Operating		V version: -40 to 125 (option)	
		Flash Program Erase		0 to 60	
Storage 7	emperatu	ire		-65 to 150	°C
	Analog Si Input Voltage Output Voltage Power Dia Operating Temperat	Analog Supply Volt Input RESET, Voltage P0_0 to P3_0 to P6_0 to F P9_0, P3 VREF, X P7_1, P3 Output P0_0 to Voltage P3_0 to P6_0 to P6_0 to P6_0 to P6_0 to P10_0 to P7_1, P3 P10_0 to P7_1, P3 P10_0 to P10_0 t	Supply Voltage (VCC1 = VCC2) Analog Supply Voltage Input RESET, CNVSS, BYTE, Voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, VREF, XIN P7_1, P9_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, Voltage P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, XOUT P7_1, P9_1 Power Dissipation Operating Ambient When the Microcomputer is Operating Operating	Supply Voltage (VCC1 = VCC2)VCC = AVCCAnalog Supply VoltageVCC = AVCCInputRESET, CNVSS, BYTE, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, VREF, XINP7_1, P9_1OutputP0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P5_7, P6_0 to P0_7, P1_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, XOUTTopr = 25°COver DissipationTopr = 25°COperating Ambient TemperatureWhen the Microcomputer is Operating Flash Program EraseTopr = 25°C	Supply Voltage (VCC1 = VCC2) VCC = AVCC -0.3 to 6.5 Analog Supply Voltage VCC = AVCC -0.3 to 6.5 Input RESET, CNVSS, BYTE, Voltage VCC = AVCC -0.3 to VCC+0.3 Voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, VREF, XIN -0.3 to 6.5 Output P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, Valtage -0.3 to VCC+0.3 P7_1, P9_1 -0.3 to VCC+0.3 Voltage P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, XOUT -0.3 to 4.5 Power Dissipation Topr = 25°C 700 Operating Ambient When the Microcomputer is Temperature T version: -40 to 85 V version: -40 to 125 (option)

option: All options are on request basis.

Table 22.2 Recommended Operating Conditions (1) ⁽¹⁾

Symbol	Parameter			Standard			
Symbol		Parameter	Min.	Тур.	Max.	Unit	
Vcc	Supply Volta	ge (VCC1 = VCC2)	4.2	5.0	5.5	V	
AVcc	Analog Supp	ly Voltage		Vcc		V	
Vss	Supply Volta	ge		0		V	
AVss	Analog Supp	ly Voltage		0		V	
VIH	HIGH Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0.8Vcc		Vcc	V	
	Voltage	P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7,					
		P10_0 to P10_7, XIN, RESET, CNVSS, BYTE					
		P7_1, P9_1	0.8Vcc		6.5	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.8Vcc		Vcc	V	
		(During single-chip mode)					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.5Vcc		Vcc	V	
		(Data input during memory expansion and microprocessor modes)					
VIL	LOW Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0		0.2Vcc	V	
	Voltage	P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,					
		XIN, RESET, CNVSS, BYTE					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.2Vcc	V	
		(During single-chip mode)					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.16Vcc	V	
		(Data input during memory expansion and microprocessor modes)					
OH(peak)	HIGH Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA	
	Output Current	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,					
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,					
		P9_2 to P9_7, P10_0 to P10_7					
OH(avg)	HIGH Average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-5.0	mA	
	Output Current	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,					
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,					
		P9_2 to P9_7, P10_0 to P10_7					
OL(peak)	LOW Peak	$P0_0 \text{ to } P0_7, P1_0 \text{ to } P1_7, P2_0 \text{ to } P2_7, P3_0 \text{ to } P3_7,$			10.0	mA	
	Output Current	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,					
		$P8_0 \text{ to } P8_4, P8_6, P8_7, P9_0 \text{ to } P9_7, P10_0 \text{ to } P10_7$					
OL(avg)	LOW Average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			5.0	mA	
	Output Current	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,					
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7					

NOTES:

1. Referenced to VCC = 4.2 to 5.5V at Topr = -40 to 85° C unless otherwise specified.

2. The mean output current is the mean value within 100 ms.

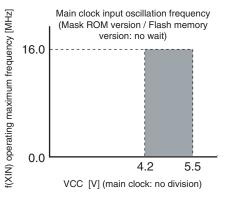
3. The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9 and P10 must be 80mA max. The total IoL(peak) for ports P3, P4, P5, P6, P7 and P8_0 to P8_4 must be 80mA max.

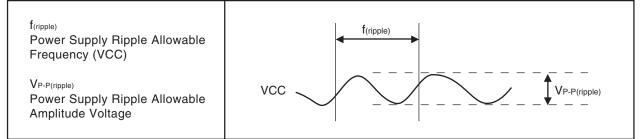
The total IOH(peak) for ports P0, P1, and P2 must be -40mA max.

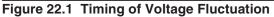
The total IOH(peak) for ports P3, P4 and P5 must be -40mA max.

The total IOH(peak) for ports P6, P7 and P8_0 to P8_4 must be -40mA max.

The total IOH(peak) for ports P8_6, P8_7, P9 and P10 must be -40mA max.




Table 22.3 Recommended Operating Conditions (2) ⁽¹⁾


Cumbol		Parameter			Standard			- Unit
Symbol	Parameter			Min.	Тур.	Max.		
f(XIN)	Main Clock Input Oscillation	No Wait	Mask ROM Version	VCC = 4.2 to 5.5V	0		16	MHz
	Frequency (2) (3) (4)		Flash Memory Version					
f(XCIN)	Sub Clock Oscillation Frequency				32.768	50	kHz	
f(Ring)	On-chip Oscillation Frequency				1		MHz	
f(PLL)	PLL Clock Oscillation F	requenc	зy		16		20	MHz
f(BCLK)	CPU Operation Clock			VCC = 4.2 to 5.5V	0		20	MHz
tsu(PLL)	PLL Frequency Synthes	sizer Sta	abilization Wait Tim	ie			20	ms
f(ripple)	Power Supply Ripple A	Power Supply Ripple Allowable Frequency (VCC)					10	kHz
VP-P(ripple)	Power Supply Ripple Al	lowable	Amplitude Voltage	VCC = 5V			0.5	V
$V_{\text{CC}(\Delta V/\Delta T)}$	Power Supply Ripple R	ising/Fa	lling Gradient	VCC = 5V			0.3	V/ms

NOTES:

- 1. Referenced to VCC = 4.2 to 5.5V at Topr = -40 to 85° C unless otherwise specified.
- 2. Relationship between main clock oscillation frequency and supply voltage is shown right.
- 3. Execute program/erase of flash memory by VCC = 5.0 ± 0.5 V.
- 4. When using over 16MHz, use PLL clock. PLL clock oscillation frequency which can be used is 16MHz or 20MHz.

Table 22.4 Electrical Characteristics (1) (1)

Symbol		Pa	rameter	Measuring Condition		tandar		Unit
Vон	HIGH Output		0_7, P1_0 to P1_7, P2_0 to P2_7,	<u> </u>	Min. Vcc-2.0	Тур.	Max. Vcc	V
VOH	Voltage		3_7, P4_0 to P4_7, P5_0 to P5_7,	IOH = -5111A	VCC-2.0		VCC	v
	l'enage							
			P6_7, P7_0, P7_2 to P7_7,					
			P8_4, P8_6, P8_7, P9_0,					
			P9_7, P10_0 to P10_7					
Vон	HIGH Output		0_7, P1_0 to P1_7, P2_0 to P2_7,	Іон = –200µА	Vcc-0.3		Vcc	V
	Voltage		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			P6_7, P7_0, P7_2 to P7_7,					
			P8_4, P8_6, P8_7, P9_0,					
			P9_7, P10_0 to P10_7					
√он	HIGH Output	XOUT	HIGHPOWER	Іон = –1mA	3.0		Vcc	V
	Voltage		LOWPOWER	Іон = – 0.5mA	3.0		Vcc	
	HIGH Output	XCOUT	HIGHPOWER	With no load applied		2.5		V
	Voltage		LOWPOWER	With no load applied		1.6		
Vol	LOW Output	P0_0 to F	0_7, P1_0 to P1_7, P2_0 to P2_7,	lo∟ = 5mA			2.0	V
	Voltage		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0 to P7_7, P8_0 to P8_4,					
			_7, P9_0 to P9_7, P10_0 to P10_7					
Vol	LOW Output		0_7, P1_0 to P1_7, P2_0 to P2_7,				0.45	V
VOL	Voltage		3_7, P4_0 to P4_7, P5_0 to P5_7,				0.10	
			6_7, P7_0 to P7_7, P8_0 to P8_4,					
			_7, P9_0 to P9_7, P10_0 to P10_7					
Vol	LOW Output	XOUT	HIGHPOWER	lo∟ = 1mA			2.0	V
VOL	Voltage	7001					-	v
	-	VOOLIT	LOWPOWER	$I_{OL} = 0.5 \text{mA}$		0	2.0	V
	LOW Output Voltage	XCOUT	HIGHPOWER	With no load applied		0		v
	-			With no load applied	0.2	0		V
V⊤+-V⊤-	Hysteresis		DY, TAOIN to TA4IN, TBOIN to TB5IN,		0.2		1.0	v
			IT5, NMI, ADTRG, CTS0 to CTS2,					
			CL2, SDA0 to SDA2, CLK0 to CLK3,					
			to TA4OUT, $\overline{\text{KI0}}$ to $\overline{\text{KI3}}$,					
			RXD2, SIN3					
V⊤+-V⊤-	Hysteresis	RESET			0.2		2.5	V
V⊤+-V⊤-	Hysteresis	XIN			0.2		0.8	V
Іін	HIGH Input	P0_0 to F	0_7, P1_0 to P1_7, P2_0 to P2_7,	$V_1 = 5V$			5.0	μA
	Current	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_7,					
		P9_0 to F	9_7, P10_0 to P10_7,					
		XIN, RES	SET, CNVSS, BYTE					
IL	LOW Input		0_7, P1_0 to P1_7, P2_0 to P2_7,	$V_{I} = 0V$			-5.0	μA
	Current	P3 0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					·
			6_7, P7_0 to P7_7, P8_0 to P8_7,					
		_	9_7, P10_0 to P10_7,					
			SET, CNVSS, BYTE					
RPULLUP	Pull-up		0_7, P1_0 to P1_7, P2_0 to P2_7,	$V_1 = 0V$	30	50	170	kΩ
TPULLUP	Resistance	_	3_7, P4_0 to P4_7, P5_0 to P5_7,		00	50	170	
			6_7, P7_0, P7_2 to P7_7, P8_0 to					
			_6, P8_7, P9_0, P9_2 to P9_7,					
_		P10_0 to						
Rfxin	Feedback Resi		XIN			1.5		MΩ
Rfxcin	Feedback Resi		XCIN			15		MΩ
Vram	RAM Retention	Voltage		At stop mode	2.0			V

NOTES:

1. Referenced to VCC = 4.2 to 5.5V, VSS = 0V at Topr = -40 to 85°C, f(BCLK) = 20MHz unless otherwise specified.

Symbol	Pa	rameter	Maggur	ing Condition	S	tandar	d	Unit
-					Min.	Typ.	Max.	
lcc	Power Supply Current	and other pins are VSS.	Mask ROM	f(BCLK) = 20MHz, PLL operation,		18	32	mA
	(VCC = 4.2 to 5.5V)			No division				
				On-chip oscillation,		1		mA
				No division				
			Flash Memory	f(BCLK) = 20MHz,		20	34	mA
				PLL operation,				
				No division				
				On-chip oscillation,		1.8		mA
				No division				
			Flash Memory	f(BCLK) = 10MHz,		15		mA
			Program	VCC = 5V				
			Flash Memory	f(BCLK) = 10MHz,		25		mA
			Erase	VCC = 5V				
			Mask ROM	f(BCLK) = 32kHz,		25		μA
				Low power dissipation				
				mode, ROM ⁽²⁾				
			Flash Memory	f(BCLK) = 32kHz,		25		μA
				Low power dissipation				
				mode, RAM ⁽²⁾				
				f(BCLK) = 32kHz,		420		μA
				Low power dissipation				
				mode,				
				Flash memory (2)				
			Mask ROM	On-chip oscillation,		50		μA
			Flash Memory					
				f(BCLK) = 32kHz,		8.5		μA
				Wait mode (3),				
				Oscillation capacity High				
				f(BCLK) = 32kHz,		3.0		μA
				Wait mode (3),				
				Oscillation capacity Low				
				Stop mode,		0.8	3.0	μA
				Topr = 25°C				

Table 22.5 Electrical Characteristics (2) (1)

NOTES:

1. Referenced to VCC = 4.2 to 5.5V, VSS = 0V at Topr = -40 to 85° C, f(BCLK) = 20MHz unless otherwise specified.

2. This indicates the memory in which the program to be executed exists.

3. With one timer operated using fC32.

Symbol	Paran	notor	Measuring Condition		Standard		Unit	
Symbol	Paran	neter		Measuring Condition	Min.	Тур.	Max.	Unit
_	Resolution		VREF :	= VCC			10	Bit
INL	Integral	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	Nonlinearity		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
	Error		= 5V	External operation amp connection mode			±7	LSB
		8 bits	VREF :	= AVCC = VCC = 5V			±2	LSB
_	Absolute	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	Accuracy		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 5V	External operation amp connection mode			±7	LSB
		8 bits	VREF :	= AVCC = VCC = 5V			±2	LSB
DNL	Differential Nor	linearity Error					±1	LSB
_	Offset Error						±3	LSB
_	Gain Error						±3	LSB
RLADDER	Resistor Ladde	ər	VREF :	= VCC	10		40	kΩ
tconv	10-bit Convers	sion Time,	VREF :	= VCC = 5V, φAD = 10MHz	3.3			μs
	Sample & Hold	d Available						
	8-bit Conversi	ion time,	VREF :	= VCC = 5V, φAD = 10MHz	2.8			μs
	Sample & Hold	d Available						
t SAMP	Sampling Time	Э			0.3			μs
VREF	Reference Vol	tage			2.0		Vcc	V
VIA	Analog Input V	/oltage			0		VREF	V

Table 22.6	A/D	Conversion	Characteristics	(1)
		001100101011	onuluotonotioo	

NOTES:

1. Referenced to VCC = AVCC = VREF = 4.2 to 5.5V, VSS = AVSS = 0V, -40 to 85°C unless otherwise specified.

2. ϕAD frequency must be 10MHz or less.

When sample & hold is disabled, φAD frequency must be 250kHz or more in addition to a limit of NOTE 2.
 When sample & hold is enabled, φAD frequency must be 1MHz or more in addition to a limit of NOTE 2.

Table 22.7 D/A conversion Characteristics ⁽¹⁾

Symbol	Parameter	Measuring condition	S	Unit		
Symbol	Falailletei	Measuring condition	Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to VCC = AVCC = VREF = 4.2 to 5.5V, VSS = AVSS = 0V, -40 to 85°C unless otherwise specified.

2. This applies when using one D/A converter, with the DAi register (i = 0, 1) for the unused D/A converter set to "00h". The resistor ladder of the A/D converter is not included. Also, the current IVREF always flows even though VREF may have been set to be unconnected by the ADCON1 register.

Table 22.8 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring	Standard			Unit
Symbol		Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	VCC = 4.2 to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μs
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs

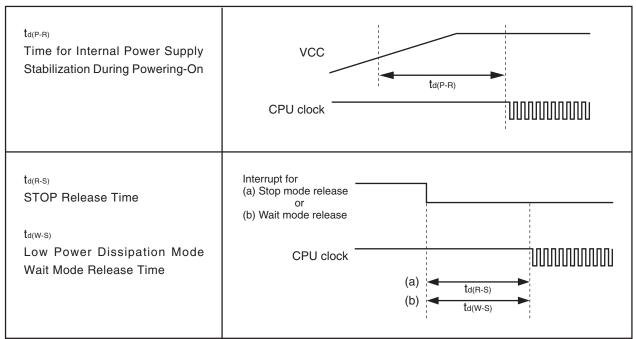


Figure 22.2 Power Supply Circuit Timing Diagram

Timing Requirements V((Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

VCC = 5V

Table 22.9 External Clock Input (XIN Input)

Symbol	Parameter		Standard		
Symbol	Farameter	Min.	Max.	Unit	
tc	External Clock Input Cycle Time	62.5		ns	
tw(H)	External Clock Input HIGH Pulse Width	25		ns	
tw(L)	External Clock Input LOW Pulse Width	25		ns	
tr	External Clock Rise Time		15	ns	
tr	External Clock Fall Time		15	ns	

Table 22.10 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Stan	dard	Unit
Symbol	Falameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	RDY input setup time	30		ns
tsu(HOLD-BCLK)	HOLD input setup time	40		ns
t h(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 45 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45 \text{ [ns]}$ n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times 10^9}{f(BCLK)} - 45 \text{ [ns]} \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

Timing Requirements VCC = 5V(Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.11 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter		Standard		
Symbol	Farameter	Min.	Max.	Unit	
tc(TA)	TAIIN Input Cycle Time	100		ns	
tw(TAH)	TAIIN Input HIGH Pulse Width	40		ns	
tw(TAL)	TAIIN Input LOW Pulse Width	40		ns	

Table 22.12 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter		Standard		
Symbol	Falailletei	Parameter Unit Min. Max. 400 ns			
tc(TA)	TAiIN Input Cycle Time	400		ns	
tw(TAH)	TAIIN Input HIGH Pulse Width	200		ns	
tw(TAL)	TAilN Input LOW Pulse Width	200		ns	

Table 22.13 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tc(TA)	TAIIN Input Cycle Time	200		ns	
tw(TAH)	TAIIN Input HIGH Pulse Width	100		ns	
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns	

Table 22.14 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
t _{w(TAH)}	TAIIN Input HIGH Pulse Width	100		ns
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns

Table 22.15 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
Symbol	Farameter	Min.	Max.	Unit
t _{c(UP)}	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAIOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time	400		ns

Table 22.16 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Symbol Parameter	Standard		Unit
Symbol		Min.	Max.	
tc(TA)	TAIIN Input Cycle Time	800		ns
$t_{\text{su}(\text{TAIN-TAOUT})}$	TAiOUT Input Setup Time	200		ns
tsu(TAOUT-TAIN)	TAIIN Input Setup Time	200		ns

Timing Requirements VCC = 5V(Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.17 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
Symbol	Farameter	Min.	Max.	Unit
tc(TB)	TBiIN Input Cycle Time (counted on one edge)	100		ns
t _{w(TBH)}	TBiIN Input HIGH Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	40		ns
tc(TB)	TBiIN Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	80		ns

Table 22.18 Timer B Input (Pulse Period Measurement Mode)

Symbol Parameter	Daramatar	Standard		Unit
	Min.	Max.		
t _{c(TB)}	TBIIN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 22.19 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
Symbol	Symbol Parameter	Min.	Max.	Unit
t _{c(TB)}	TBiIN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBIIN Input LOW Pulse Width	200		ns

Table 22.20 A/D Trigger Input

Cumbal	ymbol Parameter	Standard		Linit
Symbol		Min.	Max.	Unit
tc(AD)	ADTRG Input Cycle Time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG Input LOW Pulse Width	125		ns

Table 22.21 Serial Interface

Symbol	Parameter	Standard		Unit
Symbol	Faldineter	Min.	Max.	
tc(CK)	CLKi Input Cycle Time	200		ns
t _{w(CKH)}	CLKi Input HIGH Pulse Width	100		ns
tw(CKL)	CLKi Input LOW Pulse Width	100		ns
td(C-Q)	TXDi Output Delay Time		80	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	70		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 22.22 External Interrupt INTi Input

Cumbal	ymbol Parameter	Standard		Lloit
Symbol		Min.	Max.	Unit
t _{w(INH)}	INTi Input HIGH Pulse Width	250		ns
t _{w(INL)}	INTi Input LOW Pulse Width	250		ns

Switching Characteristics

VCC = 5V

(Referenced to VCC = 5V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Standard		Unit
Symbol		condition	Min.	Max.	
$t_{d(BCLK-AD)}$	Address output delay time	Figure 22.3		25	ns
$t_{h(BCLK-AD)}$	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
$t_{d(BCLK-CS)}$	Chip select output delay time			25	ns
$t_{h(BCLK-CS)}$	Chip select output hold time (refers to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
$t_{d(BCLK-RD)}$	RD signal output delay time			25	ns
$t_{h(BCLK-RD)}$	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
$\mathbf{t}_{h(BCLK-WR)}$	WR signal output hold time		0		ns
$t_{d(BCLK-DB)}$	Data output delay time (refers to BCLK)			40	ns
$t_{h(BCLK-DB)}$	Data output hold time (refers to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.23 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)}$$
 – 10 [ns]

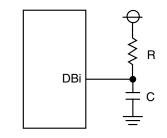
2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad f(BCLK) \text{ is } 12.5 \text{ MHz or less.}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when V_{OL} = 0.2 Vcc, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

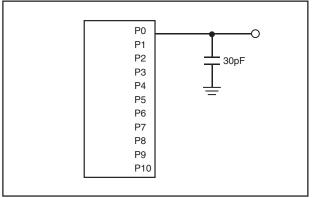


Figure 22.3 Port P0 to P10 Measurement Circuit

Switching Characteristics

VCC = 5V

(Referenced to VCC = 5V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Standard		Unit
Symbol	Falametei	condition	Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 22.3		25	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			15	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.24 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

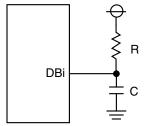
 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]}$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n = 1, f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}.$

Switching Characteristics

VCC = 5V

(Referenced to VCC = 5V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

0 1 1		Measuring	Stand	Standard	
Symbol	Parameter	condition	Min.	Max.	- Unit
td(BCLK-AD)	Address output delay time	Figure 22.3		25	ns
$\mathbf{t}_{h(BCLK-AD)}$	Address output hold time (refers to BCLK)		4		ns
t h(RD-AD)	Address output hold time (refers to RD)		(NOTE 1)		ns
t h(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
th(RD-CS)	Chip select output hold time (refers to RD)		(NOTE 1)		ns
th(WR-CS)	Chip select output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
$t_{h(BCLK-DB)}$	Data output hold time (refers to BCLK)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
t h(WR-DB)	Data output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time (refers to BCLK)			15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time (refers to BCLK)		-4		ns
td(AD-ALE)	ALE signal output delay time (refers to Address)		(NOTE 3)		ns
th(ALE-AD)	ALE signal output hold time (refers to Address)		(NOTE 4)		ns
td(AD-RD)	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

Table 22.25 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting, external area access and multiplexed bus selection)

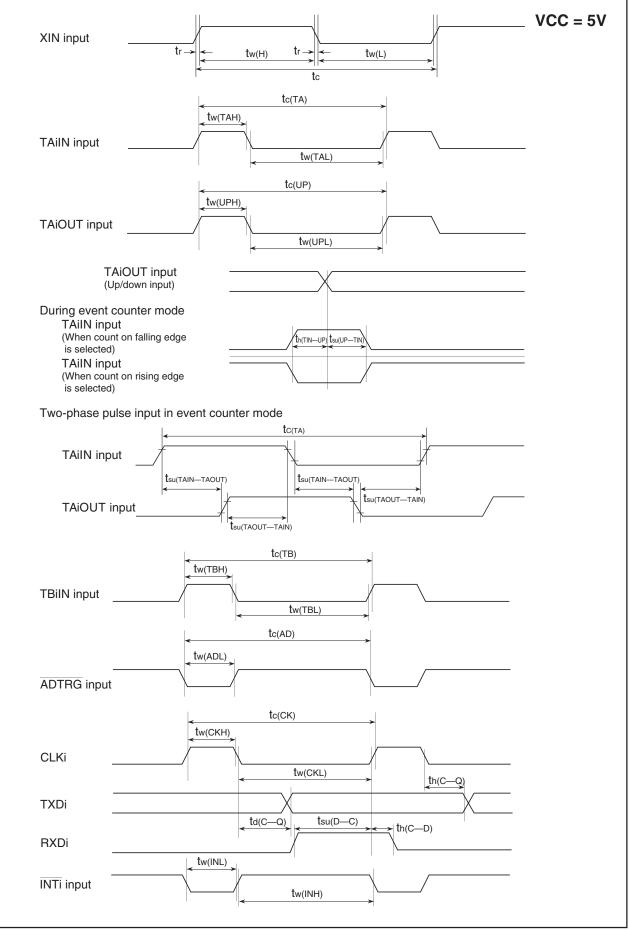
NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 \text{ [ns]}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)}$$
 - 40 [ns] n is "2" for 2-wait setting, "3" for 3-wait setting.


3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 25 [ns]$$

4. Calculated according to the BCLK frequency as follows:

22. Electric Characteristics (T/V-ver.)

Memory Expansion Mode and Microprocessor Mode (Effective for setting with wait)				
BCLK				
RD (Separate bus)				
WR, WRL, WRH(Separate bus)				
RD (Multiplexed bus)				
WR, WRL, WRH				
RDY input	 ()			
(Common to setting with wait and setting without wait)	,			
BCLK				
HOLD input				
HLDA output				
P0, P1, P2,				
NOTE: 1. The above pins are set to high-impedance regardless of the input level of the I the PM06 bit in the PM0 register and the PM11 bit in the PM1 register.	BYTE pin,			
Measuring conditions : • VCC = 5 V • Input timing voltage : Determined with VIL = 1.0 V, VIH = 4.0 V • Output timing voltage: Determined with VOL = 2.5 V, VOH = 2.5 V				

Figure 22.5 Timing Diagram (2)

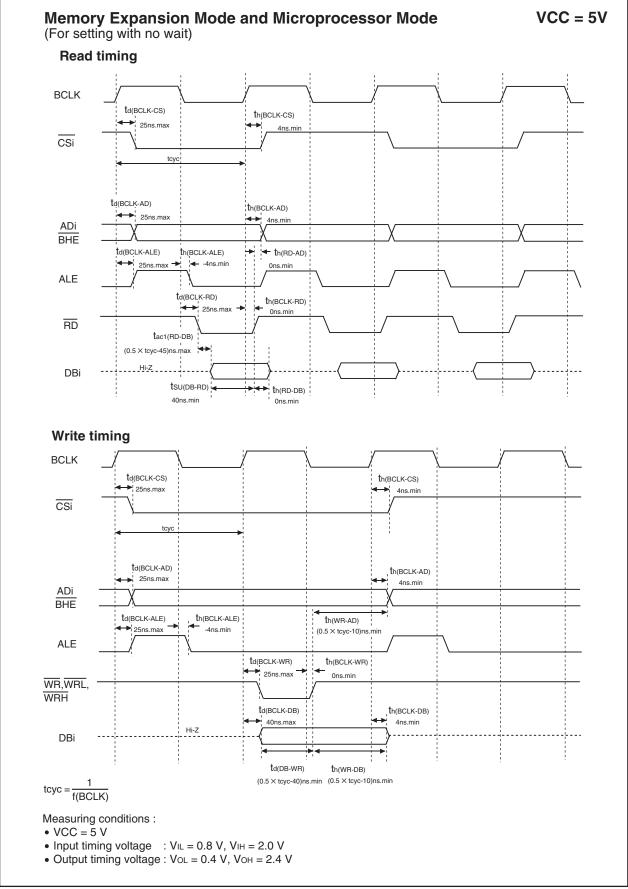


Figure 22.6 Timing Diagram (3)

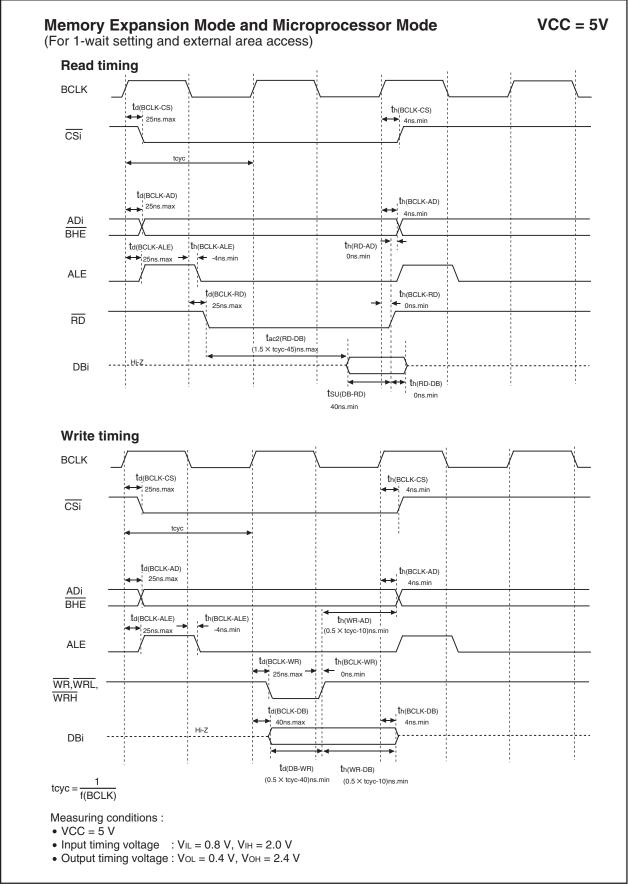


Figure 22.7 Timing Diagram (4)

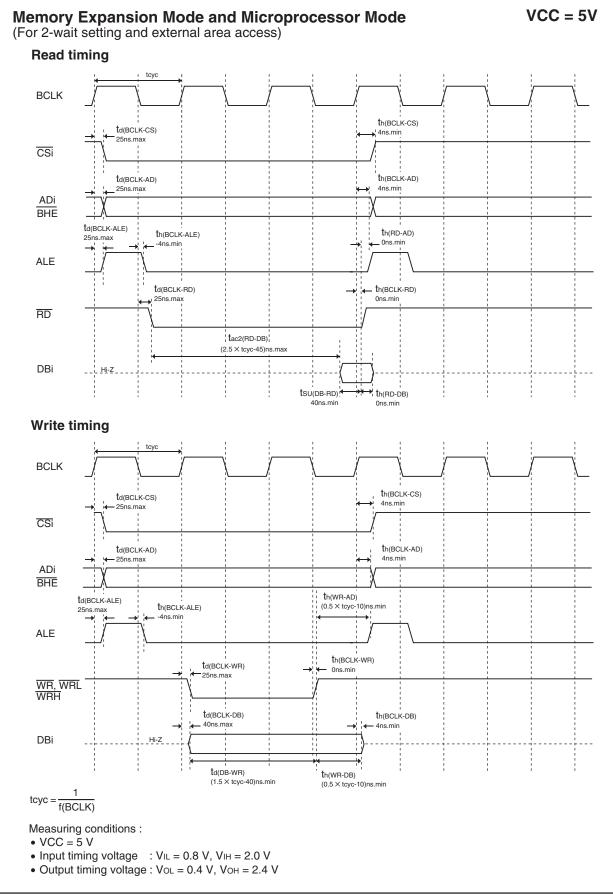


Figure 22.8 Timing Diagram (5)

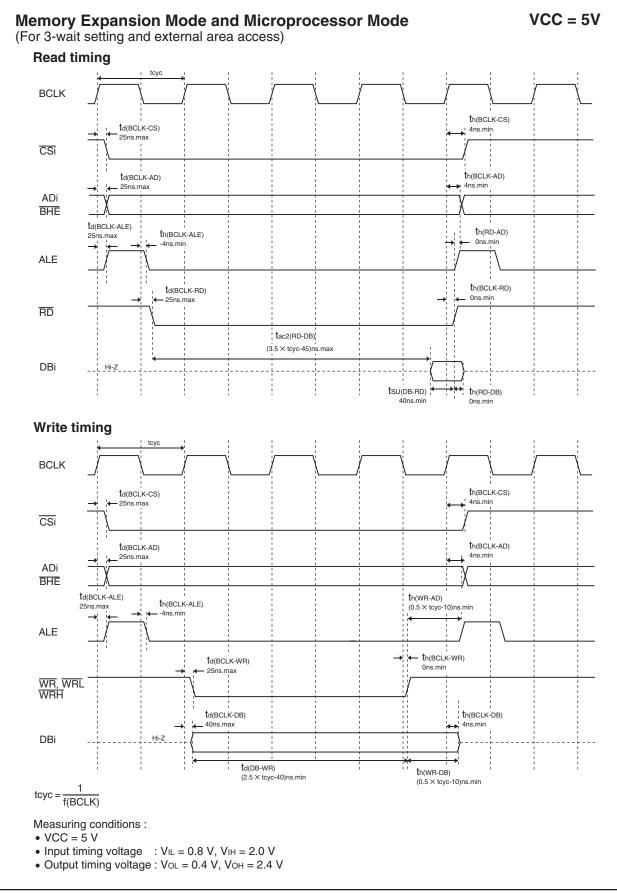


Figure 22.9 Timing Diagram (6)

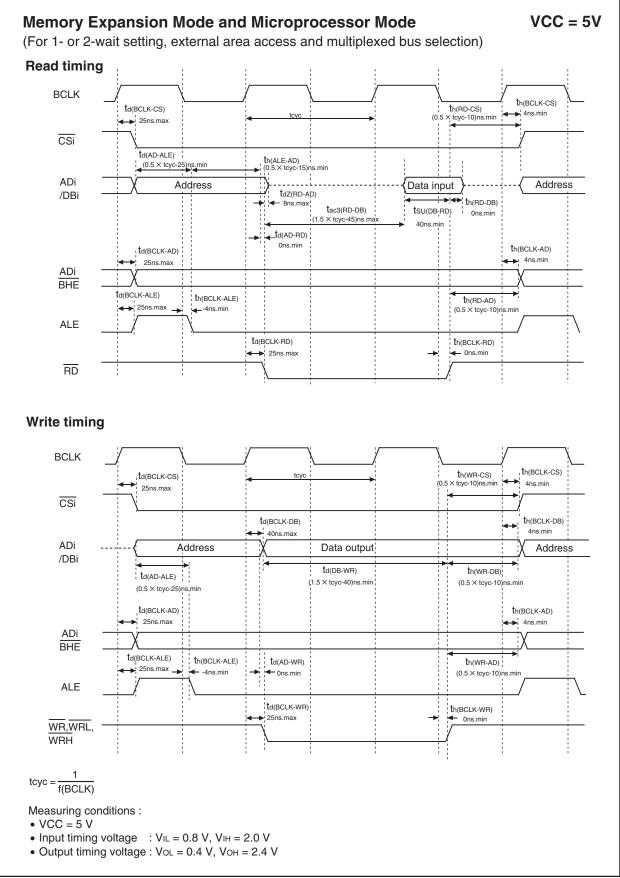


Figure 22.10 Timing Diagram (7)

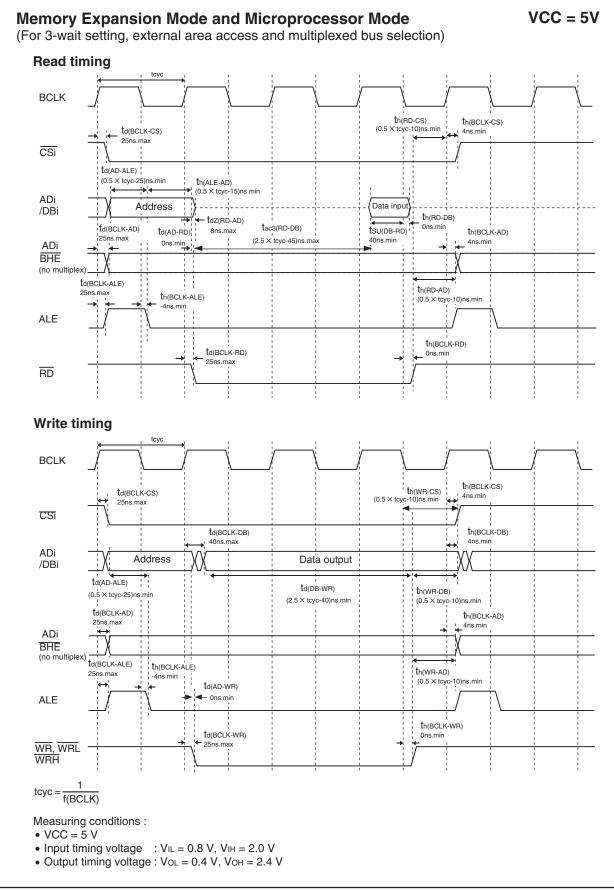


Figure 22.11 Timing Diagram (8)

22.2 Electrical Characteristics (Normal-ver.)

Symbol	Parameter			Condition	Rated Value	Unit
Vcc	Supply Voltage (VCC1 = VCC2)			VCC = AVCC	-0.3 to 6.5	V
AVcc	Analog Supply Voltage			VCC = AVCC	-0.3 to 6.5	V
Vı	Input RESET, CNVSS, BYTE,				-0.3 to VCC+0.3	V
	Voltage	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,			
		P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to F	P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7,			
		P9_0, P	9_2 to P9_7, P10_0 to P10_7,			
		VREF, X	(IN			
		P7_1, P	9_1		-0.3 to 6.5	V
Vo	Output	t P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7,			-0.3 to VCC+0.3	V
	Voltage	oltage P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,				
	P6_0 to P6_7, P7_0, P7_2 to P7_7,					
			P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,			
			p P10_7, XOUT			
			9_1		-0.3 to 6.5	V
Pd	Power Dissipation			Topr = 25°C	700	mW
Topr	Operating Ambient		When the Microcomputer is		-40 to 85	°C
	Temperature		Operating			
			Flash Program Erase		0 to 60	
Tstg	Storage Temperatur		ire		-65 to 150	°C

Table 22.26 Absolute Maximum Ratings

Table 22.27 Recommended Operating Conditions (1)	Table 22.27	Recommended	Operating	Conditions	(1) ⁽¹	I)
--	-------------	-------------	-----------	------------	-------------------	----

Symbol	Parameter			Standard			
Symbol		Parameter	Min.	Тур.	Max.	Unit	
Vcc	Supply Volta	ge (VCC1 = VCC2)	3.0	5.0	5.5	V	
AVcc	Analog Supp	ly Voltage		Vcc		V	
Vss	Supply Volta	ge		0		V	
AVss	Analog Supp	ly Voltage		0		V	
VIH	HIGH Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0.8Vcc		Vcc	V	
	Voltage	P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7,					
		P10_0 to P10_7, XIN, RESET, CNVSS, BYTE					
		P7_1, P9_1	0.8Vcc		6.5	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.8Vcc		Vcc	V	
		(During single-chip mode)					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.5Vcc		Vcc	V	
		(Data input during memory expansion and microprocessor modes)					
VIL	LOW Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0		0.2Vcc	V	
	Voltage	P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,					
		XIN, RESET, CNVSS, BYTE					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.2Vcc	V	
		(During single-chip mode)					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.16Vcc	V	
		(Data input during memory expansion and microprocessor modes)					
OH(peak)	HIGH Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA	
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,					
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,					
		P9_2 to P9_7, P10_0 to P10_7					
OH(avg)	HIGH Average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-5.0	mA	
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,					
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,					
		P9_2 to P9_7, P10_0 to P10_7					
OL(peak)	LOW Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			10.0	mA	
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,					
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7					
OL(avg)	LOW Average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			5.0	mA	
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,					
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7					

NOTES:

1. Referenced to VCC = 3.0 to 5.5V at Topr = -40 to 85° C unless otherwise specified.

2. The mean output current is the mean value within 100 ms.

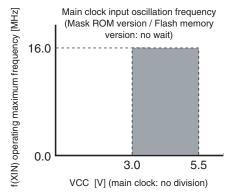
3. The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9 and P10 must be 80mA max. The total IoL(peak) for ports P3, P4, P5, P6, P7 and P8_0 to P8_4 must be 80mA max.

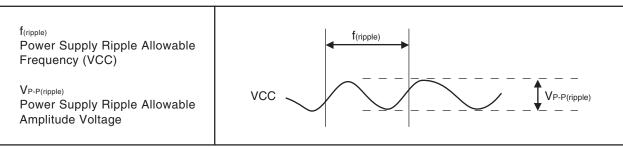
The total $I_{OH(peak)}$ for ports P0, P1, and P2 must be -40mA max.

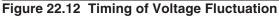
The total $I_{\text{OH}(\text{peak})}$ for ports P3, P4 and P5 must be -40mA max.

The total $I_{OH(peak)}$ for ports P6, P7 and P8_0 to P8_4 must be -40mA max.

The total IOH(peak) for ports P8_6, P8_7, P9 and P10 must be -40mA max.




Table 22.28 Recommended Operating Conditions (2) (1)


Cumhal		Dam				Standard		Linit
Symbol		Para	ameter		Min.	Тур.	Max.	- Unit
f(XIN)	Main Clock Input Oscillation	No Wait	Mask ROM Version	VCC = 3.0 to 5.5V	0		16	MHz
	Frequency (2) (3) (4)		Flash Memory Version					
f(XCIN)	Sub Clock Oscillation Fr	ub Clock Oscillation Frequency						kHz
f(Ring)	On-chip Oscillation Frequency					1		MHz
f(PLL)	PLL Clock Oscillation Frequency				16		24	MHz
f(BCLK)	CPU Operation Clock	CPU Operation Clock VCC = 3.0 to 5					24	MHz
tsu(PLL)	PLL Frequency Synthes	izer Sta	bilization Wait Tim	e			20	ms
f (ripple)	Power Supply Ripple All	owable	Frequency (VCC)				10	kHz
VP-P(ripple)	Power Supply Ripple Allo	owable	Amplitude Voltage	VCC = 5V			0.5	V
				VCC = 3.3V			0.3	
$V_{\text{CC}(\Delta V/\Delta T)}$	Power Supply Ripple Ris	sing/Fa	ling Gradient	VCC = 5V			0.3	V/ms
				VCC = 3.3V			0.3	

NOTES:

- 1. Referenced to VCC = 3.0 to 5.5V at Topr = -40 to 85° C unless otherwise specified.
- 2. Relationship between main clock oscillation frequency and supply voltage is shown right.
- 3. Execute program/erase of flash memory by VCC = 3.3 \pm 0.3 V or VCC = 5.0 \pm 0.5 V.
- 4. When using over 16MHz, use PLL clock. PLL clock oscillation frequency which can be used is 16MHz, 20MHz or 24MHz.

Symbol	Parameter		Magguring Condition		Standard			Unit
Symbol	Falai	neter		Measuring Condition	Min.	Тур.	Max.	Unit
_	Resolution		VREF = VCC				10	Bit
INL	Integral	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	Nonlinearity		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
	Error		= 5V	External operation amp connection mode			±7	LSB
			VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±5	LSB
			= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 3.3V	External operation amp connection mode			±7	LSB
		8 bits	VREF :	= AVCC = VCC = 5.0V, 3.3V			±2	LSB
-	Absolute	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	Accuracy		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 5V	External operation amp connection mode			±7	LSB
			VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±5	LSB
			= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 3.3V	External operation amp connection mode			±7	LSB
		8 bits	VREF :	= AVCC = VCC = 5.0V, 3.3V			±2	LSB
DNL	Differential Non	linearity Error					±1	LSB
-	Offset Error						±3	LSB
-	Gain Error						±3	LSB
RLADDER	Resistor Ladde	ər	VREF :	= VCC	10		40	kΩ
tconv	10-bit Convers	sion Time,	VREF :	= VCC = 5V, φAD = 10MHz	3.3			μs
	Sample & Hold	d Available						
	8-bit Conversion time,		VREF :	= VCC = 5V, φAD = 10MHz	2.8			μs
	Sample & Hold Available							
tsamp	Sampling Time		0.3			μs		
Vref	Reference Vol	tage			2.0		Vcc	V
VIA	Analog Input V	/oltage			0		VREF	V

Table 22.29 A/D Conversion Characteristi	s ⁽¹⁾
--	------------------

NOTES:

1. Referenced to VCC = AVCC = VREF = 3.3 to 5.5V, VSS = AVSS = 0V, -40 to 85°C unless otherwise specified.

2. ϕ AD frequency must be 10MHz or less.

When sample & hold is disabled, φAD frequency must be 250kHz or more in addition to a limit of NOTE 2.
 When sample & hold is enabled, φAD frequency must be 1MHz or more in addition to a limit of NOTE 2.

Table 22.30 D/A conversion Characteristics (1)

Symbol	Parameter	Measuring condition	S	Unit		
	i aldinetei	Measuring condition	Min.	Тур.	Max.	Onit
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to VCC = AVCC = VREF = 3.3 to 5.5V, VSS = AVSS = 0V, -40 to $85^{\circ}C$ unless otherwise specified.

2. This applies when using one D/A converter, with the DAi register (i = 0, 1) for the unused D/A converter set to "00h". The resistor ladder of the A/D converter is not included. Also, the current IVREF always flows even though VREF may have been set to be unconnected by the ADCON1 register.

Table 22.31 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring	S	d	Unit	
Symbol		Condition	Min.	Тур.	Max.	Onne
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	VCC = 3.0 to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μs
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs

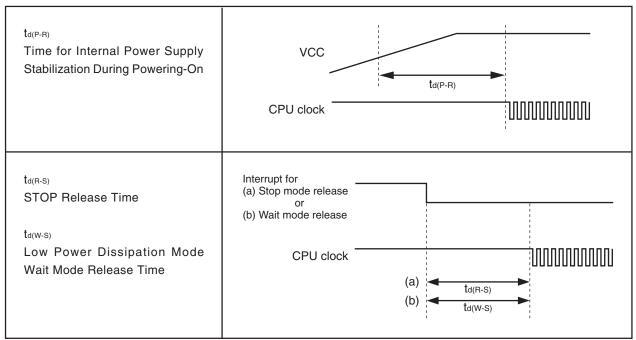


Figure 22.13 Power Supply Circuit Timing Diagram

Table 22.32 Electrical Characteristics (1) (1)

VCC = 5V

Symbol	l Parameter			Measuring Condition		tandar T	d	= 5 Unit
Vон					Min.	Тур.	Max.	V
V ОН	HIGH Output Voltage		0_7, P1_0 to P1_7, P2_0 to P2_7,		Vcc-2.0		Vcc	V
	vonage	P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,						
			P6_7, P7_0, P7_2 to P7_7,					
			P8_4, P8_6, P8_7, P9_0,					
		P9_2 to	P9_7, P10_0 to P10_7					
√он	HIGH Output	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	Іон = –200µА	Vcc-0.3		Vcc	V
	Voltage	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to	P6_7, P7_0, P7_2 to P7_7,					
			P8_4, P8_6, P8_7, P9_0,					
			P9_7, P10_0 to P10_7					
√он	HIGH Output	XOUT	HIGHPOWER	Iон = –1mA	3.0		Vcc	V
VOH	Voltage	7001	LOWPOWER	$I_{OH} = -0.5 \text{mA}$	3.0		Vcc	v
	-	VOOLIT		With no load applied	3.0	2.5	VCC	V
	HIGH Output Voltage	XCOUT	HIGHPOWER			-		v
			LOWPOWER	With no load applied		1.6		
Vol	LOW Output		0_7, P1_0 to P1_7, P2_0 to P2_7,				2.0	V
Va	Voltage	P3_0 to P	23_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_4,					
		P8_6, P8	_7, P9_0 to P9_7, P10_0 to P10_7					
Vol	LOW Output	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	Ιοι = 200μΑ			0.45	V
ľ	Voltage		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0 to P7_7, P8_0 to P8_4,					
			_7, P9_0 to P9_7, P10_0 to P10_7					
Vol L	LOW Output	XOUT	HIGHPOWER	lo∟ = 1mA			2.0	V
	Voltage	X001						v
	-	VOOLIT	LOWPOWER	lo∟ = 0.5mA		0	2.0	V
	LOW Output	XCOUT	HIGHPOWER	With no load applied				V
	Voltage		LOWPOWER	With no load applied		0		
V⊤+-V⊤-	Hysteresis		$\overline{\text{DY}}$, TA0IN to TA4IN, TB0IN to TB5IN,		0.2		1.0	V
		INTO to IN	$\overline{\text{IT5}}$, $\overline{\text{NMI}}$, $\overline{\text{ADTRG}}$, $\overline{\text{CTS0}}$ to $\overline{\text{CTS2}}$,					
		SCL0 to S	CL2, SDA0 to SDA2, CLK0 to CLK3,					
		TA0OUT	to TA4OUT, KI0 to KI3,					
			RXD2, SIN3					
V⊤+-V⊤-	Hysteresis	RESET			0.2		2.5	V
	Hysteresis	XIN			0.2		0.8	V
	HIGH Input		0_7, P1_0 to P1_7, P2_0 to P2_7,	$V_1 = 5V_2$	0.2		5.0	
	Current		'3_7, P4_0 to P4_7, P5_0 to P5_7,				5.0	μA
	Ourient							
			6_7, P7_0 to P7_7, P8_0 to P8_7,					
			9_7, P10_0 to P10_7,					
		-	SET, CNVSS, BYTE					
IL	LOW Input		0_7, P1_0 to P1_7, P2_0 to P2_7,				-5.0	μA
	Current	P3_0 to P	'3_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_7,					
		P9_0 to F	9_7, P10_0 to P10_7,					
		XIN. RES	SET, CNVSS, BYTE					
RPULLUP	Pull-up	-	0_7, P1_0 to P1_7, P2_0 to P2_7,	$V_1 = 0V$	30	50	170	kΩ
	Resistance		'3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0, P7_2 to P7_7, P8_0 to					
			_6, P8_7, P9_0, P9_2 to P9_7,					
		P10_0 to						
R fXIN	Feedback Resi		XIN			1.5		MΩ
Rfxcin	Feedback Resi	stance	XCIN			15		MΩ
V RAM	RAM Retention	Voltage		At stop mode	2.0			V

NOTES:

1. Referenced to VCC = 4.2 to 5.5V, VSS = 0V at Topr = -40 to 85°C, f(BCLK) = 24MHz unless otherwise specified.

Symbol	Pa	rameter	Moasur	ing Condition	Standard			Unit
·					Min.	Тур.	Max.	Unit
lcc	Power Supply	Output pins are open	Mask ROM	f(BCLK) = 24MHz,		20	36	mA
	Current	and other pins are VSS.		PLL operation,				
	(VCC = 3.0 to 5.5V)			No division				
				On-chip oscillation,		1		mA
				No division				
			Flash Memory	f(BCLK) = 24MHz,		22	38	mA
				PLL operation,				
				No division				
				On-chip oscillation,		1.8		mA
				No division				
			Flash Memory	f(BCLK) = 10MHz,		15		mA
			Program	VCC = 5V				
			Flash Memory	f(BCLK) = 10MHz,		25		mA
			Erase	VCC = 5V				
			Mask ROM	f(BCLK) = 32kHz,		25		μA
				Low power dissipation				
				mode, ROM ⁽²⁾				
			Flash Memory	f(BCLK) = 32kHz,		25		μA
				Low power dissipation				
				mode, RAM ⁽²⁾				
				f(BCLK) = 32kHz,		420		μA
				Low power dissipation				
				mode,				
				Flash memory (2)				
			Mask ROM	On-chip oscillation,		50		μA
			Flash Memory	Wait mode				
				f(BCLK) = 32kHz,		8.5		μA
				Wait mode (3),				
				Oscillation capacity High				
				f(BCLK) = 32kHz,		3.0		μA
				Wait mode (3),				
				Oscillation capacity Low				
				Stop mode,		0.8	3.0	μA
				Topr = 25°C				

Table 22.33 Electrical Characteristics (2) (1)

NOTES:

1. Referenced to VCC = 3.0 to 5.5V, VSS = 0V at Topr = -40 to 85° C, f(BCLK) = 24MHz unless otherwise specified.

2. This indicates the memory in which the program to be executed exists.

3. With one timer operated using fC32.

Timing Requirements V((Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

VCC = 5V

Table 22.34 External Clock Input (XIN Input)

Symbol	Parameter	Stan	Unit	
	Parameter		Max.	Onit
tc	External Clock Input Cycle Time	62.5		ns
t _{w(H)}	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tr	External Clock Fall Time		15	ns

Table 22.35 Memory Expansion Mode and Microprocessor Mode

Symbol	Poromotor	Stan	Idard	Unit
Symbol	Parameter		Max.	Unit
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	RDY input setup time	30		ns
tsu(HOLD-BCLK)	HOLD input setup time	40		ns
t h(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 45 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45 \text{ [ns]}$ n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times 10^9}{f(BCLK)} - 45 \text{ [ns]} \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

Timing Requirements VC (Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

VCC = 5V

Table 22.36 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
	Parameter		Max.	Unit
tc(TA)	TAIIN Input Cycle Time	100		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	40		ns
tw(TAL)	TAIIN Input LOW Pulse Width	40		ns

Table 22.37 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	
tc(TA)	TAIIN Input Cycle Time	400		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	200		ns
tw(TAL)	TAilN Input LOW Pulse Width	200		ns

Table 22.38 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Standard		Unit	
Symbol	Falameter	Min.	Max.		
tc(TA)	TAIIN Input Cycle Time	200		ns	
tw(TAH)	TAIIN Input HIGH Pulse Width	100		ns	
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns	

Table 22.39 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	dard	Unit
	Falameter	Min.	Max.	Unit
t _{w(TAH)}	TAIIN Input HIGH Pulse Width	100		ns
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns

Table 22.40 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Standard	Unit	
Symbol	Farameter	Min.	Max.	Unit
t _{c(UP)}	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAIOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time	400		ns

Table 22.41 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard	Unit	
	Falalleter	Min.	Max.	
tc(TA)	TAIIN Input Cycle Time	800		ns
$t_{\text{su}(\text{TAIN-TAOUT})}$	TAiOUT Input Setup Time	200		ns
tsu(TAOUT-TAIN)	TAIIN Input Setup Time	200		ns

Timing Requirements VCC = 5V(Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.42 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard	Unit	
Symbol	Falameter	Min.	Max.	Unit
tc(TB)	TBiIN Input Cycle Time (counted on one edge)	100		ns
t _{w(TBH)}	TBiIN Input HIGH Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	40		ns
tc(TB)	TBiIN Input Cycle Time (counted on both edges)	200		ns
t _{w(TBH)}	TBiIN Input HIGH Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	80		ns

Table 22.43 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
	Faldineter	Min. Max.	Unit	
t _{c(TB)}	TBiIN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 22.44 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard	Unit	
	Farameter	Min.	Max.	Unit
t _{c(TB)}	TBiIN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBIIN Input LOW Pulse Width	200		ns

Table 22.45 A/D Trigger Input

Cumbol	Darameter	Stan	dard	Linit
Symbol	Parameter	Min.	Max.	Unit
tc(AD)	ADTRG Input Cycle Time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG Input LOW Pulse Width	125		ns

Table 22.46 Serial Interface

Symbol	Parameter	Standard		Unit
	Faldineter	Min.	Max.	Unit
tc(CK)	CLKi Input Cycle Time	200		ns
t _{w(CKH)}	CLKi Input HIGH Pulse Width	100		ns
tw(CKL)	CLKi Input LOW Pulse Width	100		ns
td(C-Q)	TXDi Output Delay Time		80	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	70		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 22.47 External Interrupt INTi Input

Symbol	Baramatar	Stan	dard	Lloit
	Parameter	Min.	Max.	Unit
t _{w(INH)}	INTi Input HIGH Pulse Width	250		ns
t _{w(INL)}	INTi Input LOW Pulse Width	250		ns

VCC = 5V

(Referenced to VCC = 5V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

			-	,	
Symbol	Parameter	Measuring	Standard		Unit
Symbol	i alametei	condition	Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 22.14		25	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			15	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
t h(WR-DB)	Data output hold time (refers to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.48 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

NOTES:

1. Calculated according to the BCLK frequency as follows:

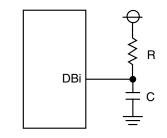
2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad f(BCLK) \text{ is } 12.5 \text{ MHz or less.}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when V_{OL} = 0.2 Vcc, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

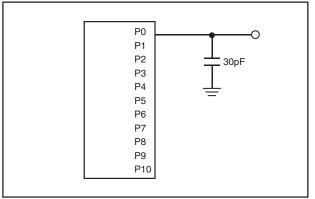


Figure 22.14 Port P0 to P10 Measurement Circuit

VCC = 5V

(Referenced to VCC = 5V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Standard		Unit
Symbol	Falameter	condition	Min.	Max.	Unit
$t_{d(BCLK-AD)}$	Address output delay time	Figure 22.14		25	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
$t_{h(BCLK-CS)}$	Chip select output hold time (refers to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
$t_{h(BCLK-RD)}$	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
$t_{h(BCLK-WR)}$	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.49 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

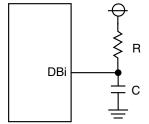
 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]}$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n = 1, f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

 $t = -30 \text{ pF} \times 1 \text{ k}\Omega \times \ln(1 - 0.2 \text{ Vcc} / \text{ Vcc}) = 6.7 \text{ ns.}.$

VCC = 5V

(Referenced to VCC = 5V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Oursels al		Measuring	Stand	dard	
Symbol	Parameter	condition	Min.	Max.	- Unit
td(BCLK-AD)	Address output delay time	Figure 22.14		25	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
t h(RD-AD)	Address output hold time (refers to RD)		(NOTE 1)		ns
t h(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
th(RD-CS)	Chip select output hold time (refers to RD)		(NOTE 1)		ns
th(WR-CS)	Chip select output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
t h(WR-DB)	Data output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time (refers to BCLK)			15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time (refers to BCLK)		-4		ns
td(AD-ALE)	ALE signal output delay time (refers to Address)		(NOTE 3)		ns
th(ALE-AD)	ALE signal output hold time (refers to Address)		(NOTE 4)		ns
td(AD-RD)	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdZ(RD-AD)	Address output floating start time	7		8	ns

Table 22.50 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting, external area access and multiplexed bus selection)

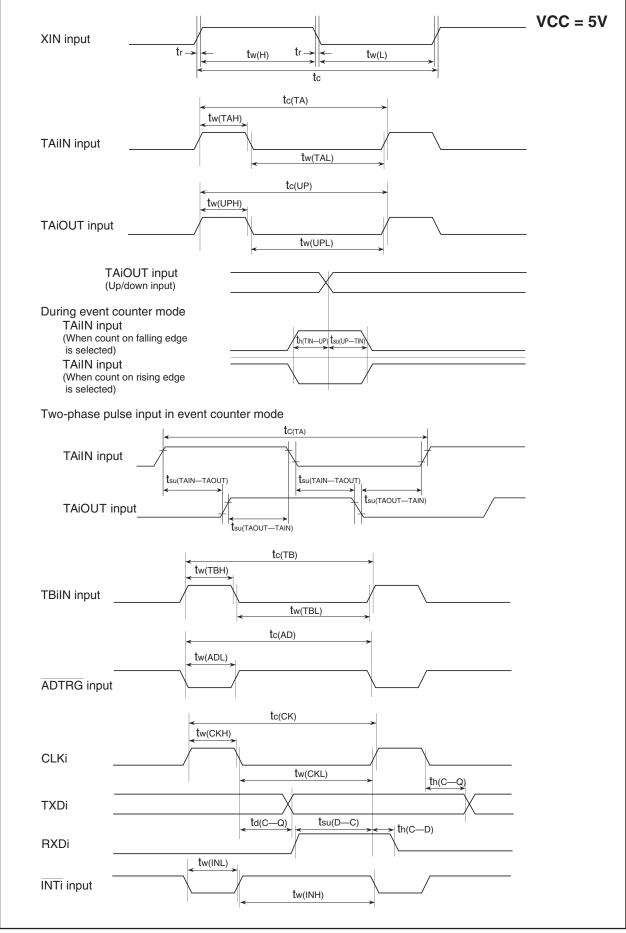
NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^{\circ}}{f(BCLK)} - 40 \text{ [ns]} \text{ n is "2" for 2-wait setting, "3" for 3-wait setting.}$$


3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 25 \text{ [ns]}$$

4. Calculated according to the BCLK frequency as follows:

22. Electric Characteristics (Normal-ver.)

Memory Expansion Mode and Microprocessor Mode (Effective for setting with wait)	VCC = 5V
BCLK	
RD (Separate bus)	
WR, WRL, WRH	
RD (Multiplexed bus)	
WR, WRL, WRH	
RDY input	
tsu(RDY—BCLK)	1
(Common to setting with wait and setting without wait)	
BCLK	
HOLD input	
HLDA output	
P0, P1, P2, P3, P4, P3, P4,	
P5_0 to P5_2 ⁽¹⁾	
NOTE: 1. The above pins are set to high-impedance regardless of the input level of the B the PM06 bit in the PM0 register and the PM11 bit in the PM1 register.	SYTE pin,
Measuring conditions : • VCC = 5 V • Input timing voltage : Determined with VIL = 1.0 V, VIH = 4.0 V • Output timing voltage: Determined with VoL = 2.5 V, VOH = 2.5 V	

Figure 22.16 Timing Diagram (2)

Figure 22.17 Timing Diagram (3)

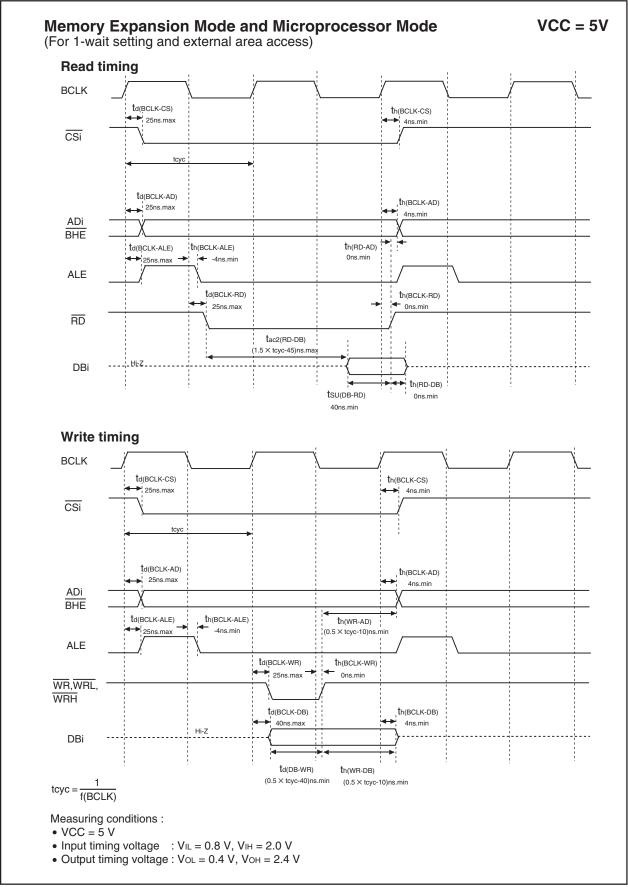


Figure 22.18 Timing Diagram (4)

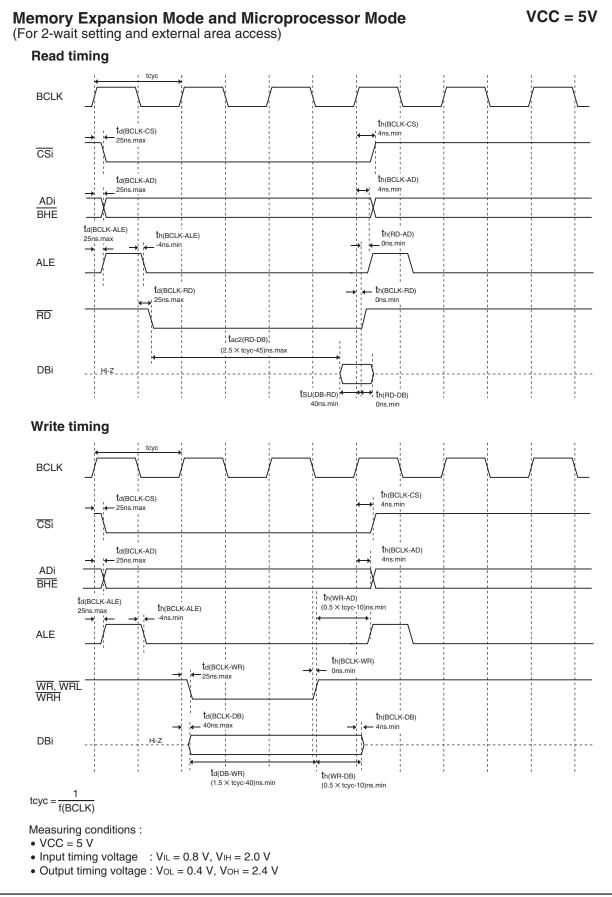


Figure 22.19 Timing Diagram (5)

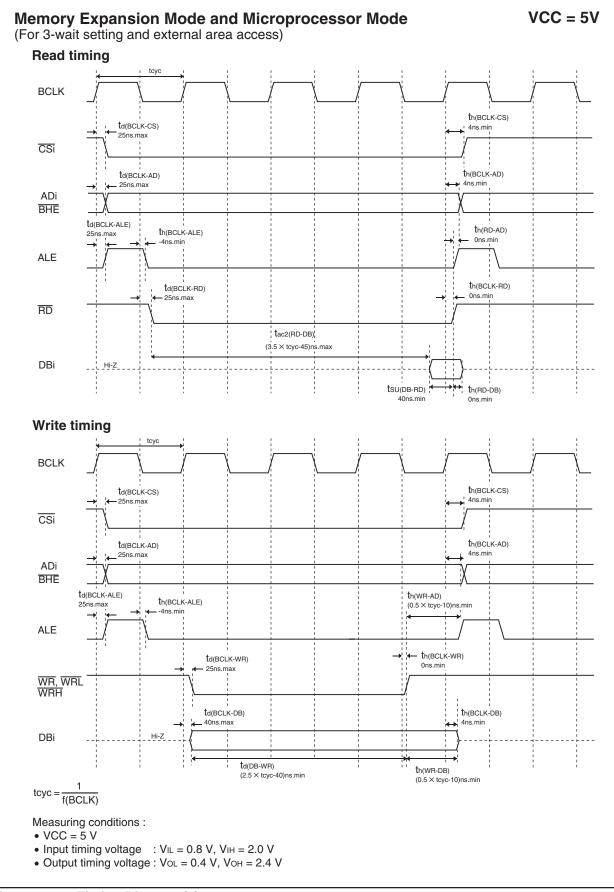


Figure 22.20 Timing Diagram (6)

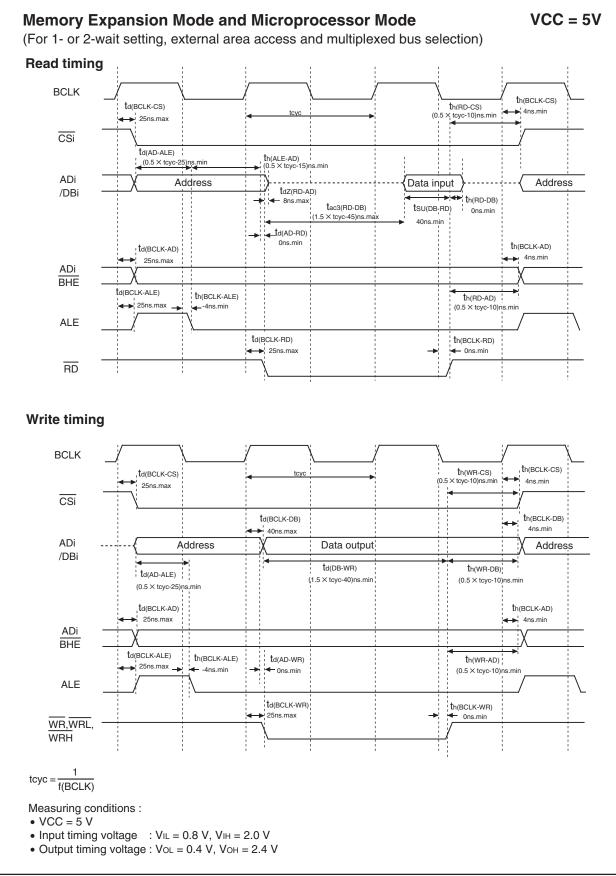


Figure 22.21 Timing Diagram (7)

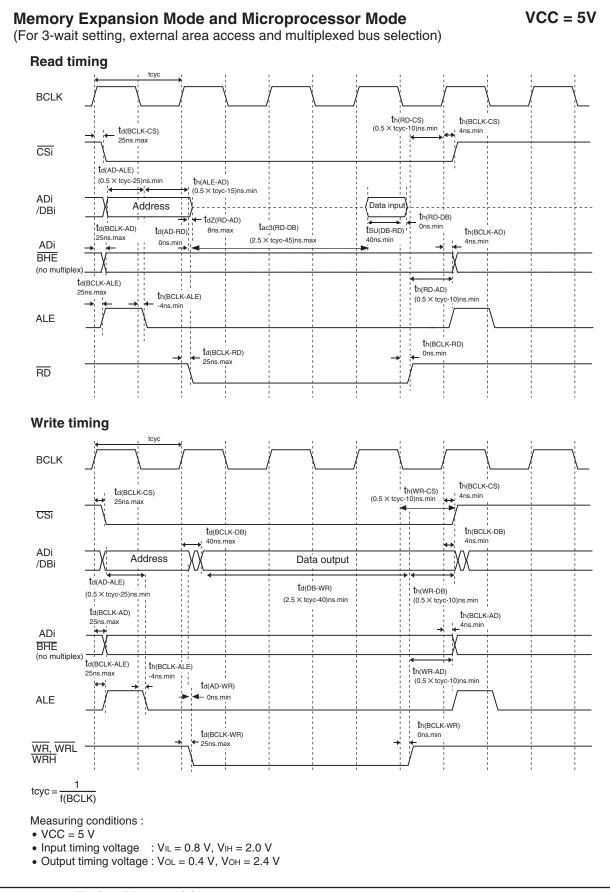


Figure 22.22 Timing Diagram (8)

Standal Typ. 5 5 2.5 1.6	Max. Vcc Vcc Vcc	V V V
5 5 5 2.5	Vcc Vcc Vcc	V
5 5 2.5	Vcc	
5 2.5		V
2.5	0.5	V
1.6	0.5	-
	0 5	1
	0.5	V
	0.5	V
	0.5	-
0		V
0		1
	0.8	V
	1.8	V
	0.8	V
	4.0	μA
	-4.0	μA
100	500	kΩ
3.0	1	MΩ
		MΩ
		0.8 4.0 -4.0 100 500 3.0

Table 22.51 Electrical Characteristics ⁽¹⁾

VCC = 3.3V

NOTES:

1. Referenced to VCC = 3.0 to 3.6V, VSS = 0V at Topr = -40 to 85° C, f(BCLK) = 24MHz unless otherwise specified.

Timing Requirements VCC = 3.3V (Referenced to VCC = 3.3V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.52 External Clock Input (XIN Input)

Symbol	Parameter	Stan	Unit	
Symbol	Falainetei	Min.	Max.	Unit
tc	External Clock Input Cycle Time	62.5		ns
t _{w(H)}	External Clock Input HIGH Pulse Width	25		ns
t _{w(L)}	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tr	External Clock Fall Time		15	ns

Table 22.53 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Stan	Standard	
Symbol	Farameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data input setup time	50		ns
tsu(RDY-BCLK)	RDY input setup time	40		ns
tsu(HOLD-BCLK)	HOLD input setup time	50		ns
t h(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 60 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 60 \text{ [ns]}$ n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 60 \text{ [ns]} \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

Timing Requirements VCC = 3.3V (Referenced to VCC = 3.3V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.54 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Symbol Parameter	Standard		Unit
Symbol		Min.	Max.	Unit
tc(TA)	TAIIN Input Cycle Time	150		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	60		ns
tw(TAL)	TAIIN Input LOW Pulse Width	60		ns

Table 22.55 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Unit	
	Falailletei	Min.	Max.	
tc(TA)	TAIIN Input Cycle Time	600		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	300		ns
tw(TAL)	TAilN Input LOW Pulse Width	300		ns

Table 22.56 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Symbol Parameter	Standard		Unit
Symbol		Min.	Max.	
tc(TA)	TAIIN Input Cycle Time	300		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	150		ns
tw(TAL)	TAIIN Input LOW Pulse Width	150		ns

Table 22.57 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	Unit	
Symbol	Falameter	Min.	Max.	Unit
t _{w(TAH)}	TAIIN Input HIGH Pulse Width	150		ns
tw(TAL)	TAIIN Input LOW Pulse Width	150		ns

Table 22.58 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
Symbol	Farameter	Min.	Max.	Unit
t _{c(UP)}	TAiOUT Input Cycle Time	3000		ns
tw(UPH)	TAIOUT Input HIGH Pulse Width	1500		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1500		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	600		ns
th(TIN-UP)	TAiOUT Input Hold Time	600		ns

Table 22.59 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Symbol Parameter	Standard		Unit
Symbol		Min.	Max.	Unit
tc(TA)	TAIIN Input Cycle Time	2		μs
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	500		ns
tsu(TAOUT-TAIN)	TAIIN Input Setup Time	500		ns

Timing Requirements VCC = 3.3V (Referenced to VCC = 3.3V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.60 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
Symbol		Min.	Max.	Unit
tc(TB)	TBiIN Input Cycle Time (counted on one edge)	150		ns
t _{w(TBH)}	TBiIN Input HIGH Pulse Width (counted on one edge)	60		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	60		ns
tc(TB)	TBiIN Input Cycle Time (counted on both edges)	300		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on both edges)	120		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	120		ns

Table 22.61 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Linit
		Min.	Max.	Unit
t _{c(TB)}	TBIIN Input Cycle Time	600		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	300		ns
tw(TBL)	TBiIN Input LOW Pulse Width	300		ns

Table 22.62 Timer B Input (Pulse Width Measurement Mode)

Symbol Parameter	Devemeter	Standard		Unit
	Farameter	Min.	Max.	Unit
t _{c(TB)}	TBiIN Input Cycle Time	600		ns
t _{w(TBH)}	TBIIN Input HIGH Pulse Width	300		ns
tw(TBL)	TBIIN Input LOW Pulse Width	300		ns

Table 22.63 A/D Trigger Input

Symbol	Parameter	Standard		Linit
		Min.	Max.	Unit
tc(AD)	ADTRG Input Cycle Time (trigger able minimum)	1500		ns
tw(ADL)	ADTRG Input LOW Pulse Width	200		ns

Table 22.64 Serial Interface

Cumbol	Parameter	Standard		Unit
Symbol	Faldineter	Min.	Max.	Unit
tc(CK)	CLKi Input Cycle Time	300		ns
t _{w(CKH)}	CLKi Input HIGH Pulse Width	150		ns
tw(CKL)	CLKi Input LOW Pulse Width	150		ns
td(C-Q)	TXDi Output Delay Time		160	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	100		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 22.65 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
	Parameter	Min.	Max.	Unit
tw(INH)	INTi Input HIGH Pulse Width	380		ns
t _{w(INL)}	INTi Input LOW Pulse Width	380		ns

VCC = 3.3V

(Referenced to VCC = 3.3V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

r		-	-		-
Symbol	Parameter	Measuring	Standard		Unit
eyniser		condition	Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 22.23		30	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			30	ns
$t_{h(BCLK-CS)}$	Chip select output hold time (refers to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			25	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			30	ns
$t_{h(BCLK-RD)}$	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			30	ns
$t_{h(BCLK-WR)}$	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK) (3)		4		ns
$t_{d(DB-WR)}$	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.66 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)}$$
 – 10 [ns]

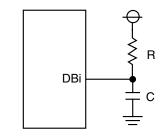
2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad f(BCLK) \text{ is } 12.5 \text{ MHz or less.}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when V_{OL} = 0.2 Vcc, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

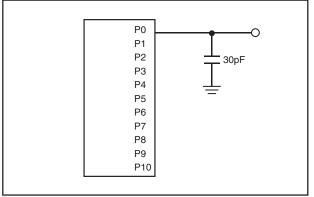


Figure 22.23 Port P0 to P10 Measurement Circuit

VCC = 3.3V

(Referenced to VCC = 3.3V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Standard		Unit
Symbol		condition	Min.	Max.	
$t_{d(BCLK-AD)}$	Address output delay time	Figure 22.23		30	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time	-		30	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			25	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
$t_{d(BCLK-RD)}$	RD signal output delay time			30	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			30	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.67 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

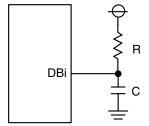
 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]}$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n = 1, f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

 $t = -30 \text{ pF} \times 1 \text{ k}\Omega \times \ln(1 - 0.2 \text{ Vcc} / \text{ Vcc}) = 6.7 \text{ ns.}.$

VCC = 3.3V

(Referenced to VCC = 3.3V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

0 1 1	(for 2- to 3-wait setting, external area access	Measuring condition	Standard		
Symbol	Parameter		Min.	Max.	Unit
$t_{d(BCLK-AD)}$	Address output delay time	Figure 22.23		50	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)	-	4		ns
th(RD-AD)	Address output hold time (refers to RD)		(NOTE 1)		ns
th(WR-AD)	Address output hold time (refers to WR)	-	(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time	-		50	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
th(RD-CS)	Chip select output hold time (refers to RD)		(NOTE 1)		ns
th(WR-CS)	Chip select output hold time (refers to WR)	-	(NOTE 1)		ns
td(BCLK-RD)	RD signal output delay time	-		40	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			40	ns
$\mathbf{t}_{h(BCLK-WR)}$	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)	-		50	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)	-	4		ns
td(DB-WR)	Data output delay time (refers to WR)	-	(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time (refers to BCLK)	m		25	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time (refers to BCLK)		-4		ns
td(AD-ALE)	ALE signal output delay time (refers to Address)	-	(NOTE 3)		ns
th(ALE-AD)	ALE signal output hold time (refers to Address)		(NOTE 4)		ns
td(AD-RD)	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdZ(RD-AD)	Address output floating start time	1		8	ns

Table 22.68 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting, external area access and multiplexed bus selection)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 \text{ [ns]}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 50 \text{ [ns]} \quad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]}$$

4. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 15 \text{ [ns]}$$

M16C/6N Group (M16C/6N4)

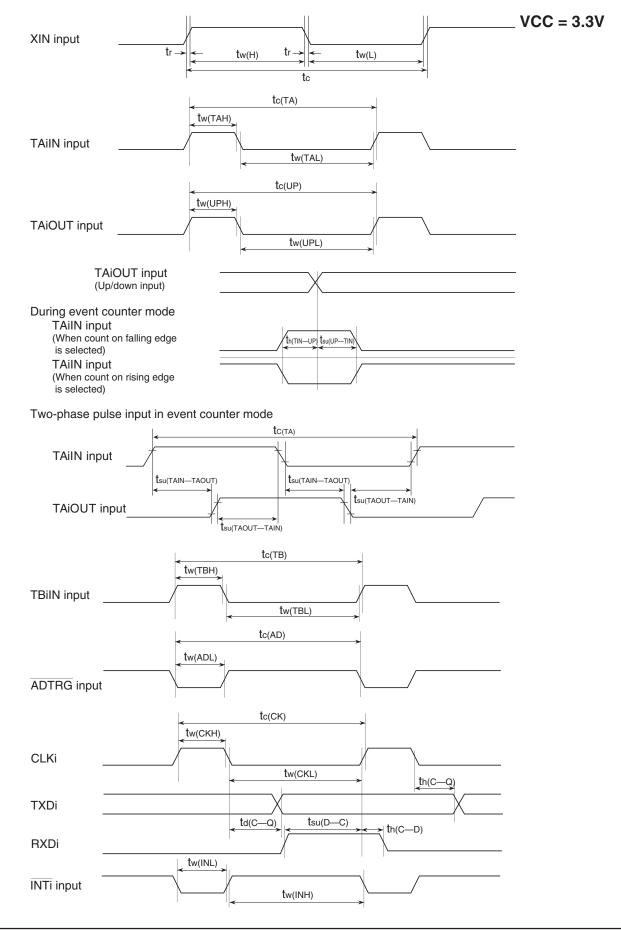


Figure 22.24 Timing Diagram (1)

Memory Expansion Mode and Microprocessor Mode (Effective for setting with wait)	VCC = 3.3V
BCLK	
RD (Separate bus)	/
WR, WRL, WRH	/
RD (Multiplexed bus)	
WR, WRL, WRH	
RDY input	
tsu(RDY-BCLK)	IY)
HOLD input	
HLDA output	
P0, P1, P2, P3, P4, P5_0 to P5_2 ⁽¹⁾	
NOTE: 1. The above pins are set to high-impedance regardless of the input level of the the PM06 bit in the PM0 register and the PM11 bit in the PM1 register.	e BYTE pin,
Measuring conditions : • VCC = 3.3 V • Input timing voltage : Determined with VIL = 0.6 V, VIH = 2.7 V • Output timing voltage: Determined with VoL = 1.65 V, VOH = 1.65 V	

Figure 22.25 Timing Diagram (2)

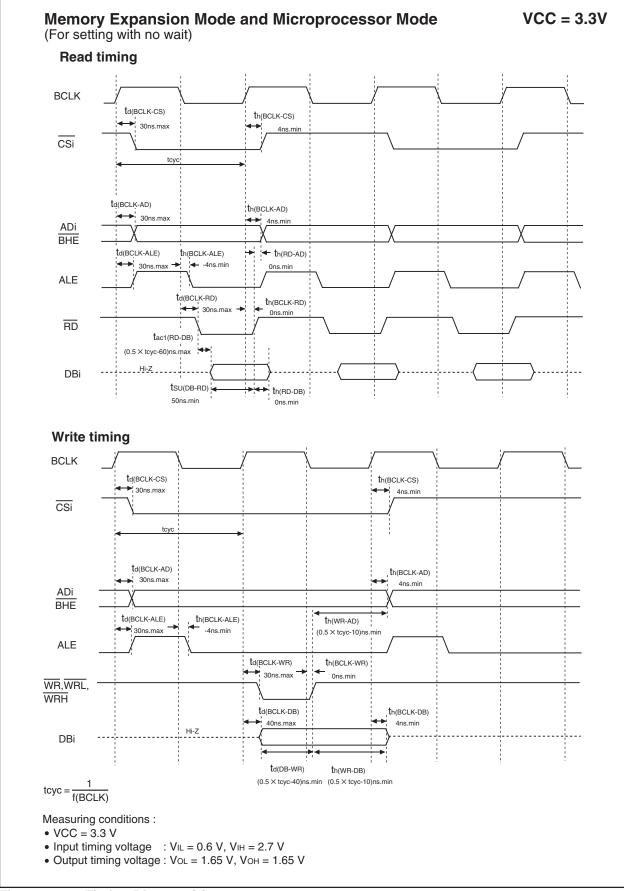


Figure 22.26 Timing Diagram (3)

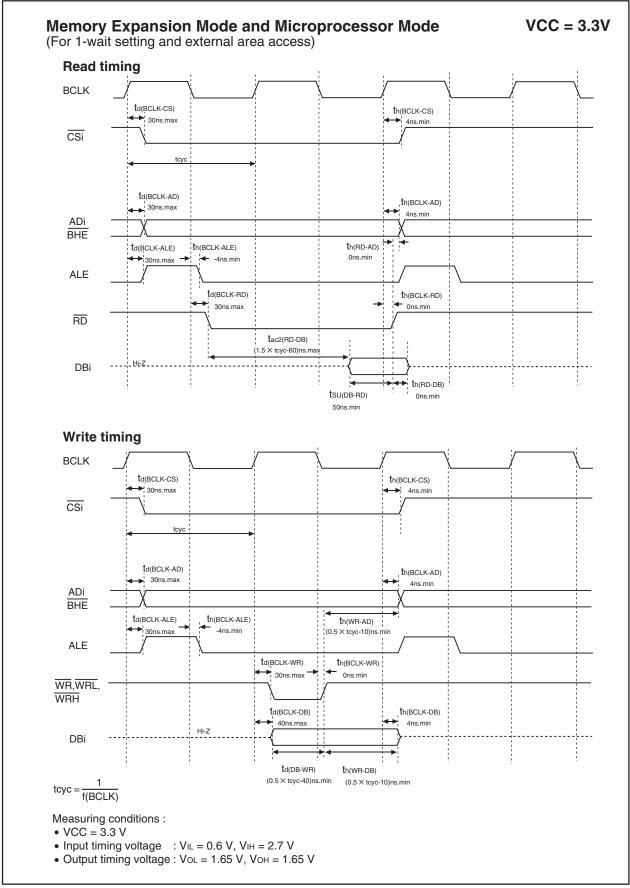


Figure 22.27 Timing Diagram (4)

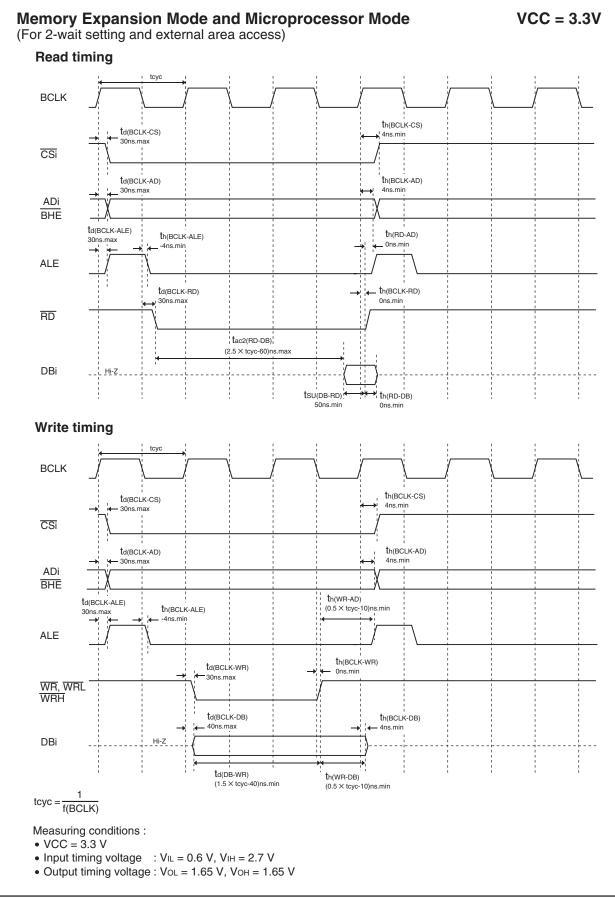


Figure 22.28 Timing Diagram (5)

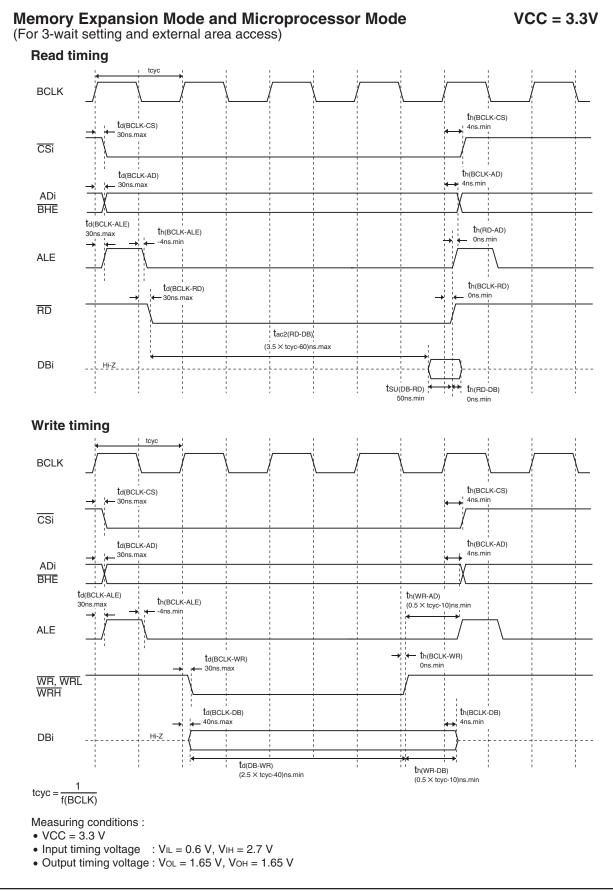


Figure 22.29 Timing Diagram (6)

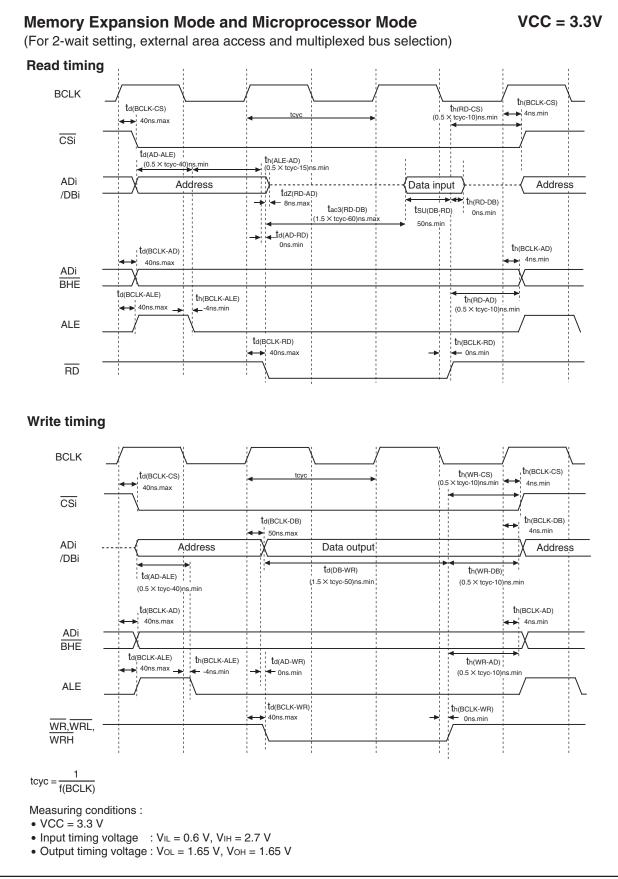


Figure 22.30 Timing Diagram (7)

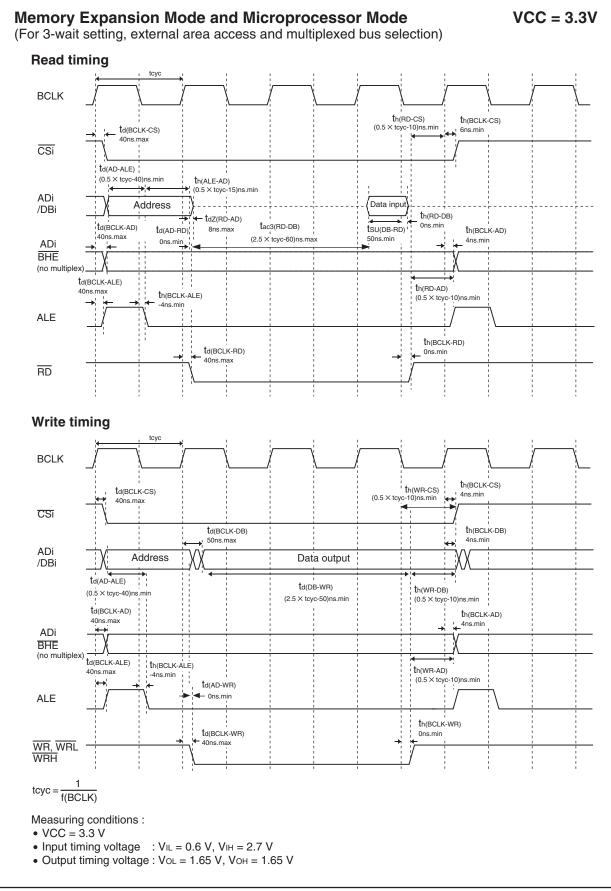


Figure 22.31 Timing Diagram (8)

23. Usage Precaution

23.1 External Bus

When resetting CNVSS pin with "H" input, contents of internal ROM cannot be read out.

23.2 PLL Frequency Synthesizer

Stabilize supply voltage so that the standard of the power supply ripple is met. (Refer to **22. Electrical characteristics**.)

23.3 Power Control

- When exiting stop mode by hardware reset, set RESET pin to "L" until a main clock oscillation is stabilized.
- Set the MR0 bit in the TAiMR register (i = 0 to 4) to "0" (pulse is not output) to use the timer A to exit stop mode.
- When entering wait mode, insert a JMP.B instruction before a WAIT instruction. Do not execute any
 instructions which can generate a write to RAM between the JMP.B and WAIT instructions. Disable the
 DMA transfers, if a DMA transfer may occur between the JMP.B and WAIT instructions. After the WAIT
 instruction, insert at least 4 NOP instructions. When entering wait mode, the instruction queue roadstead
 the instructions following WAIT, and depending on timing, some of these may execute before the
 microcomputer enters wait mode.

Program example when entering wait mode

Program Example:		JMP.B	L1	; Insert JMP.B instruction before WAIT instruction
L	.1:			
		FSET	I	;
		WAIT		; Enter wait mode
		NOP		; More than 4 NOP instructions
		NOP		
		NOP		
		NOP		

• When entering stop mode, insert a JMP.B instruction immediately after executing an instruction which sets the CM10 bit in the CM1 register to "1", and then insert at least 4 NOP instructions. When entering stop mode, the instruction queue reads ahead the instructions following the instruction which sets the CM10 bit to "1" (all clock stops), and, some of these may execute before the microcomputer enters stop mode or before the interrupt routine for returning from stop mode.

Program example when entering stop mode

Program Example:		FSET	I	
		BSET	CM10	; Enter stop mode
		JMP.B	L2	; Insert JMP.B instruction
	L2:			
		NOP		; More than 4 NOP instructions
		NOP		
		NOP		
		NOP		

• Wait for main clock oscillation stabilization time, before switching the clock source for CPU clock to the main clock.

Similarly, wait until the sub clock oscillates stably before switching the clock source for CPU clock to the sub clock.

RENESAS

• Suggestions to reduce power consumption.

Ports

The processor retains the state of each I/O port even when it goes to wait mode or to stop mode. A current flows in active I/O ports. A pass current flows in input ports that high-impedance state. When entering wait mode or stop mode, set non-used ports to input and stabilize the potential.

A/D converter

When A/D conversion is not performed, set the VCUT bit in the ADCON1 register to "0" (VREF not connection). When A/D conversion is performed, start the A/D conversion at least 1 μ s or longer after setting the VCUT bit to "1" (VREF connection).

D/A converter

When not performing D/A conversion, set the DAiE bit (i = 0, 1) in the DACON register to "0" (input disabled) and DAi register to "00h".

Stopping peripheral functions

Use the CM02 bit in the CM0 register to stop the unnecessary peripheral functions during wait mode. However, because the peripheral function clock (fC32) generated from the sub-clock does not stop, this measure is not conducive to reducing the power consumption of the chip. If low speed mode or low power dissipation mode is to be changed to wait mode, set the CM02 bit to "0" (do not peripheral function clock stopped when in wait mode), before changing wait mode.

Switching the oscillation-driving capacity

Set the driving capacity to "LOW" when oscillation is stable.

23.4 Protection

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be set to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or no DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction.

23.5 Interrupt

23.5.1 Reading Address 00000h

Do not read the address 00000h in a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from the address 00000h during the interrupt sequence. At this time, the IR bit for the accepted interrupt is set to "0".

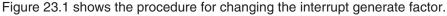
If the address 00000h is read in a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to "0". This causes a problem that the interrupt is canceled, or an unexpected interrupt request is generated.

23.5.2 Setting SP

Set any value in the SP (USP, ISP) before accepting an interrupt. The SP (USP, ISP) is set to "0000h" after reset. Therefore, if an interrupt is accepted before setting any value in the SP (USP, ISP), the program may go out of control.

Especially when using $\overline{\text{NMI}}$ interrupt, set a value in the ISP at the beginning of the program. For the first and only the first instruction after reset, all interrupts including $\overline{\text{NMI}}$ interrupt are disabled.

23.5.3 NMI Interrupt


- The NMI interrupt cannot be disabled. If this interrupt is unused, connect the NMI pin to VCC via a resistor (pull-up).
- The input level of the NMI pin can be read by accessing the P8_5 bit in the P8 register. Note that the P8_5 bit can only be read when determining the pin level in NMI interrupt routine.
- Stop mode cannot be entered into while input on the $\overline{\text{NMI}}$ pin is low. This is because while input on the $\overline{\text{NMI}}$ pin is low the CM10 bit in the CM1 register is fixed to "0".
- Do not go to wait mode while input on the NMI pin is low. This is because when input on the NMI pin goes low, the CPU stops but CPU clock remains active; therefore, the current consumption in the chip does not drop. In this case, normal condition is restored by an interrupt generated thereafter.
- The low and high level durations of the input signal to the NMI pin must each be 2 CPU clock cycles + 300 ns or more.

23.5.4 Changing Interrupt Generate Factor

If the interrupt generate factor is changed, the IR bit of the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). If you changed the interrupt generate factor for an interrupt that needs to be used, be sure to set the IR bit for that interrupt to "0" (interrupt not requested).

Changing the interrupt generate factor referred to here means any act of changing the source, polarity or timing of the interrupt assigned to each software interrupt number. Therefore, if a mode change of any peripheral function involves changing the generate factor, polarity or timing of an interrupt, be sure to set the IR bit for that interrupt to "0" (interrupt not requested) after making such changes. Refer to the description of each peripheral function for details about the interrupts from peripheral functions.

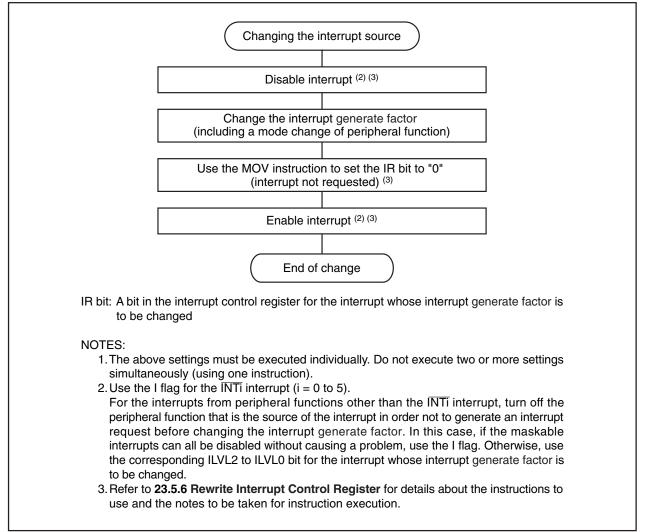


Figure 23.1 Procedure for Changing Interrupt Generate Factor

23.5.5 INT Interrupt

- Either an "L" level of at least tW(INH) or an "H" level of at least tW(INL) width is necessary for the signal input to pins INTO to INT5 regardless of the CPU operation clock.
- If the POL bit in the INTOIC to INT5IC registers or the IFSR10 to IFSR17 bits in the IFSR1 register are changed, the IR bit may inadvertently set to "1" (interrupt requested). Be sure to set the IR bit to "0" (interrupt not requested) after changing any of those register bits.

23.5.6 Rewrite Interrupt Control Register

- (a) The interrupt control register for any interrupt should be modified in places where no interrupt requests may be generated. Otherwise, disable the interrupt before rewriting the interrupt control register.
- (b) To rewrite the interrupt control register for any interrupt after disabling that interrupt, be careful with the instruction to be used.

Changing any bit other than IR bit

If while executing an instruction, an interrupt request controlled by the register being modified is generated, the IR bit of the register may not be set to "1" (interrupt requested), with the result that the interrupt request is ignored. If such a situation presents a problem, use the instructions shown below to modify the register.

Usable instructions: AND, OR, BCLR, BSET

Changing IR bit

Depending on the instruction used, the IR bit may not always be set to "0" (interrupt not requested). Therefore, be sure to use the MOV instruction to set the IR bit to "0".

(c) When using the I flag to disable an interrupt, refer to the sample program fragments shown below as you set the I flag. (Refer to (b) for details about rewrite the interrupt control registers in the sample program fragments.)

Examples 1 through 3 show how to prevent the I flag from being set to "1" (interrupt enabled) before the interrupt control register is rewritten, owing to the effects of the internal bus and the instruction queue buffer.

Example 1: Using the NOP instruction to keep the program waiting until the interrupt control register is modified INT_SWITCH1:

FCLR	I	; Disable interrupt.
AND.B	#00h, 0055h	; Set the TA0IC register to "00h".
NOP		. ,
NOP		
FSET	I	; Enable interrupt.

The number of the NOP instruction is as follows.

- The PM20 bit in the PM2 register = 1 (1 wait) : 2
- The PM20 bit = 0 (2 waits) : 3
- When using HOLD function : 4

Example 2: Using the dummy read to keep the FSET instruction waiting INT_SWITCH2:

FCLR	I	; Disable interrupt.
AND.B	#00h, 0055h	; Set the TA0IC register to "00h".
MOV.W	MEM, R0	; <u>Dummy read.</u>
FSET	I	; Enable interrupt.

Example 3: Using the POPC instruction to changing the I flag

1	1_30010	ло.	
	PUSHC	FLG	
	FCLR	I	; Disable interrupt.
	AND.B	#00h, 0055h	; Set the TA0IC register to "00h".
	POPC	FLG	; Enable interrupt.

23.5.7 Watchdog Timer Interrupt

Initialize the watchdog timer after the watchdog timer interrupt request is generated.

23.6 DMAC

23.6.1 Write to DMAE Bit in DMiCON Register (i = 0, 1)

When both of the conditions below are met, follow the steps below.

Conditions

- The DMAE bit is set to "1" again while it remains set (DMAi is in an active state).
- A DMA request may occur simultaneously when the DMAE bit is being written.

Step 1: Write "1" to the DMAE bit and DMAS bit in the DMiCON register simultaneously ⁽¹⁾. Step 2: Make sure that the DMAi is in an initial state ⁽²⁾ in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

NOTES:

1. The DMAS bit remains unchanged even if "1" is written. However, if "0" is written to this bit, it is set to "0" (DMA not requested). In order to prevent the DMAS bit from being modified to "0, "1" should be written to the DMAS bit when "1" is written to the DMAE bit. In this way the state of the DMAS bit immediately before being written can be maintained.

Similarly, when writing to the DMAE bit with a read-modify-write instruction, "1" should be written to the DMAS bit in order to maintain a DMA request which is generated during execution.

2. Read the TCRi register to verify whether the DMAi is in an initial state. If the read value is equal to a value which was written to the TCRi register before DMA transfer start, the DMAi is in an initial state. (If a DMA request occurs after writing to the DMAE bit, the value written to the TCRi register is "1".) If the read value is a value in the middle of transfer, the DMAi is not in an initial state.

23.7 Timers

23.7.1 Timer A

23.7.1.1 Timer A (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register and the TAi register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register is modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, if the counter is read at the same time it is reloaded, the value "FFFFh" is read. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (threephase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

23.7.1.2 Timer A (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the UDF register, the TAZIE, TAOTGL and TAOTGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register, the UDF register, the TAZIE, TAOTGL and TAOTGH bits in the ONSF register and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, "FFFFh" can be read in underflow, while reloading, and "0000h" in overflow. When setting the TAi register to a value during a counter stop, the setting value can be read before a counter starts counting. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (threephase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

23.7.1.3 Timer A (One-shot Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, the TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

When setting the TAiS bit to "0" (count stop), the followings occur:

- A counter stops counting and a content of reload register is reloaded.
- TAiOUT pin outputs "L".
- After one cycle of the CPU clock, the IR bit in the TAiIC register is set to "1" (interrupt request).

Output in one-shot timer mode synchronizes with a count source internally generated. When an external trigger has been selected, one-cycle delay of a count source as maximum occurs between a trigger input to TAIIN pin and output in one-shot timer mode.

The IR bit is set to "1" when timer operation mode is set with any of the following procedures:

- Select one-shot timer mode after reset.
- Change an operation mode from timer mode to one-shot timer mode.
- Change an operation mode from event counter mode to one-shot timer mode.

To use the Timer Ai interrupt (the IR bit), set the IR bit to "0" after the changes listed above have been made.

When a trigger occurs, while counting, a counter reloads the reload register to continue counting after generating a re-trigger and counting down once. To generate a trigger while counting, generate a second trigger between occurring the previous trigger and operating longer than one cycle of a timer count source.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (threephase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

23.7.1.4 Timer A (Pulse Width Modulation Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

The IR bit is set to "1" when setting a timer operation mode with any of the following procedures:

- Select the pulse width modulation mode after reset.
- Change an operation mode from timer mode to pulse width modulation mode.
- Change an operation mode from event counter mode to pulse width modulation mode.

To use the Timer Ai interrupt (the IR bit), set the IR bit to "0" by program after the above listed changes have been made.

When setting TAiS bit to "0" (count stop) during PWM pulse output, the following action occurs:

- Stop counting.
- When TAiOUT pin is output "H", output level is set to "L" and the IR bit is set to "1".
- When TAiOUT pin is output "L", both output level and the IR bit remain unchanged.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (threephase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

23.7.2 Timer B

23.7.2.1 Timer B (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit ⁽¹⁾ in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

NOTE:

1. The TB0S to TB2S bits are the bits 5 to 7 in the TABSR register, the TB3S to TB5S bits are the bits 5 to 7 in the TBSR register.

A value of a counter, while counting, can be read in the TBi register at any time. "FFFFh" is read while reloading. Setting value is read between setting values in the TBi register at count stop and starting a counter.

23.7.2.2 Timer B (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

The counter value can be read out on-the-fly at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always "FFFFh." If the TBi register is read after setting a value in it while not counting but before the counter starts counting, the read value is the one that has been set in the register.

23.7.2.3 Timer B (Pulse Period/pulse Width Measurement Mode)

The timer remains idle after reset. Set the mode, count source, etc. using the TBiMR (i = 0 to 5) register before setting the TBiS bit in the TABSR or TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not. To set the MR3 bit to "0" by writing to the TBiMR register while the TBiS bit = 1 (count starts), be sure to write the same value as previously written to the TM0D0, TM0D1, MR0, MR1, TCK0 and TCK1 bits and a 0 to the MR2 bit.

The IR bit in the TBiIC register goes to "1" (interrupt request), when an effective edge of a measurement pulse is input or timer Bi is overflowed. The factor of interrupt request can be determined by use of the MR3 bit in the TBiMR register within the interrupt routine.

If the source of interrupt cannot be identified by the MR3 bit such as when the measurement pulse input and a timer overflow occur at the same time, use another timer to count the number of times Timer B has overflowed.

To set the MR3 bit to "0" (no overflow), set the TBiMR register with setting the TBiS bit to "1" and counting the next count source after setting the MR3 bit to "1" (overflow).

Use the IR bit in the TBiIC register to detect only overflows. Use the MR3 bit only to determine the interrupt factor.

When a count is started and the first effective edge is input, an indeterminate value is transferred to the reload register. At this time, Timer Bi interrupt request is not generated.

A value of the counter is indeterminate at the beginning of a count. The MR3 bit may be set to "1" and Timer Bi interrupt request may be generated between a count start and an effective edge input.

For pulse width measurement, pulse widths are successively measured. Use program to check whether the measurement result is an "H" level width or an "L" level width.

23.8 Serial Interface

23.8.1 Clock Synchronous Serial I/O Mode

23.8.1.1 Transmission/reception

With an external clock selected, and choosing the RTS function, the output level of the RTSi pin goes to "L" when the data-receivable status becomes ready, which informs the transmission side that the reception has become ready. The output level of the RTSi pin goes to "H" when reception starts. So if the RTSi pin is connected to the CTSi pin on the transmission side, the circuit can transmission and reception data with consistent timing. With the internal clock, the RTS function has no effect.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (threephase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the $\overline{\text{RTS2}}$ and CLK2 pins go to a high-impedance state.

23.8.1.2 Transmission

When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the transfer clock), the external clock is in the falling edge of the transfer clock), the external clock is in the falling edge of the transfer clock), the external clock is in the falling edge of the transfer clock), the external clock is in the low state.

- The TE bit in the UiC1 register = 1 (transmission enabled)
- The TI bit in the UiC1 register = 0 (data present in UiTB register)
- If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin = L

23.8.1.3 Reception

In operating the clock synchronous serial I/O, operating a transmitter generates a shift clock. Fix settings for transmission even when using the device only for reception. Dummy data is output to the outside from the TXDi (i = 0 to 2) pin when receiving data.

When an internal clock is selected, set the TE bit in the UiC1 register to "1" (transmission enabled) and write dummy data to the UiTB register, and the shift clock will thereby be generated. When an external clock is selected, set the TE bit to "1" and write dummy data to the UiTB register, and the shift clock will be generated when the external clock is fed to the CLKi input pin.

When successively receiving data, if all bits of the next receive data are prepared in the UARTi receive register while the RI bit in the UiC1 register = 1 (data present in the UiRB register), an overrun error occurs and the OER bit in the UiRB register is set to "1" (overrun error occurred). In this case, because the content of the UiRB register is indeterminate, a corrective measure must be taken by programs on the transmit and receive sides so that the valid data before the overrun error occurred will be retransmitted. Note that when an overrun error occurred, the IR bit in the SiRIC register does not change state.

To receive data in succession, set dummy data in the lower-order byte of the UiTB register every time reception is made.

When an external clock is selected, the conditions must be met while if the CKPOL bit = 0, the external clock is in the high state; if the CKPOL bit = 1, the external clock is in the low state.

- The RE bit in the UiC1 register = 1 (reception enabled)
- The TE bit in the UiC1 register = 1 (transmission enabled)
- The TI bit in the UiC1 register = 0 (data present in the UiTB register)

23.8.2 Special Modes

23.8.2.1 Special Mode 1 (I²C Mode)

When generating start, stop and restart conditions, set the STSPSEL bit in the UiSMR4 register to "0" (start and stop conditions not output) and wait for more than half cycle of the transfer clock before setting each condition generate bit (STAREQ, RSTAREQ and STPREQ bits) from "0" (clear) to "1" (start).

23.8.2.2 Special Mode 2

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the $\overline{\text{RTS2}}$ and CLK2 pins go to a high-impedance state.

23.8.2.3 Special Mode 4 (SIM Mode)

A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to "1" (transmission complete) and U2ERE bit in the U2C1 register to "1" (error signal output) after reset. Therefore, when using SIM mode, be sure to set the IR bit to "0" (no interrupt request) after setting these bits.

23.8.3 SI/O3

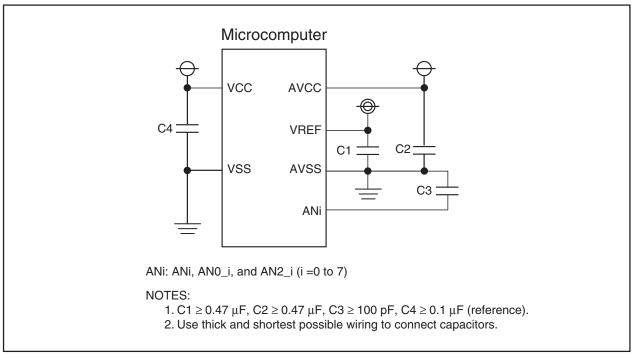
The SOUT3 default value which is set to the SOUT3 pin by the SM37 in the S3C register bit approximately 10ns may be output when changing the SM33 bit in the S3C register from "0" (I/O port) to "1" (SOUT3 output and CLK3 function) while the SM32 bit in the S3C register to "0" (SOUT3 output) and the SM36 bit is set to "1" (internal clock). And then the SOUT3 pin is held high-impedance.

If the level which is output from the SOUT3 pin is a problem when changing the SM33 bit from "0" to "1", set the default value of the SOUT3 pin by the SM37 bit.

23.9 A/D Converter

Set the ADCON0 (except bit 6), ADCON1 and ADCON2 registers when A/D conversion is stopped (before a trigger occurs).

When the VCUT bit in the ADCON1 register is changed from "0" (VREF not connected) to "1" (VREF connected), start A/D conversion after passing 1 μ s or longer.


To prevent noise-induced device malfunction or latch-up, as well as to reduce conversion errors, insert capacitors between the AVCC, VREF, and analog input pins (ANi (i = 0 to 7), AN0_i, and AN2_i) each and the AVSS pin. Similarly, insert a capacitor between the VCC pin and the VSS pin. Figure 23.2 shows an example connection of each pin.

Make sure the port direction bits for those pins that are used as analog inputs are set to "0" (input mode). Also, if the TGR bit in the ADCON0 register = 1 (external trigger), make sure the port direction bit for the ADTRG pin is set to "0" (input mode).

When using key input interrupt, do not use any of the four AN4 to AN7 pins as analog inputs. (A key input interrupt request is generated when the A/D input voltage goes low.)

The ϕ AD frequency must be 10 MHz or less. Without sample and hold, limit the ϕ AD frequency to 250 kHz or more. With the sample and hold, limit the ϕ AD frequency to 1 MHz or more.

When changing an A/D operation mode, select analog input pin again in the CH2 to CH0 bits in the ADCON0 register and the SCAN1 to SCAN0 bits in the ADCON1 register.

RENESAS

If the CPU reads the ADi register at the same time the conversion result is stored in the ADi register after completion of A/D conversion, an incorrect value may be stored in the ADi register. This problem occurs when a divide-by-n clock derived from the main clock or a sub clock is selected for CPU clock.

- When operating in one-shot or single-sweep mode Check to see that A/D conversion is completed before reading the target ADi register. (Check the IR bit in the ADIC register to see if A/D conversion is completed.)
- When operating in repeat mode or repeat sweep mode 0 or 1 Use the main clock for CPU clock directly without dividing it.

If A/D conversion is forcibly terminated while in progress by setting the ADST bit in the ADCON0 register to "0" (A/D conversion halted), the conversion result of the A/D converter is indeterminate. The contents of ADi registers irrelevant to A/D conversion may also become indeterminate. If while A/D conversion is underway the ADST bit is set to "0" in a program, ignore the values of all ADi registers.

When setting the ADST bit to "0" in single sweep mode during A/D conversion and A/D conversion is aborted, disable the interrupt before setting the ADST bit to "0".

The applied intermediate potential may cause more increase in power consumption than other analog input pins (AN0 to AN3, AN0_0 to AN0_7 and AN2_0 to AN2_7), since the AN4 to AN7 are used with the $\overline{\text{KI0}}$ to $\overline{\text{KI3}}$.

23.10 CAN Module

23.10.1 Reading CiSTR Register (i = 0, 1)

The CAN module on the M16C/6N Group (M16C/6N4) updates the status of the CiSTR register in a certain period. When the CPU and the CAN module access to the CiSTR register at the same time, the CPU has the access priority; the access from the CAN module is disabled. Consequently, when the updating period of the CAN module matches the access period from the CPU, the status of the CAN module cannot be updated. (See **Figure 23.3 When Updating Period of CAN Module Matches Access Period from CPU**.)

Accordingly, be careful about the following points so that the access period from the CPU should not match the updating period of the CAN module:

- (a) There should be a wait time of 3fCAN or longer (see Table 23.1 CAN Module Status Updating Period) before the CPU reads the CiSTR register. (See Figure 23.4 With a Wait Time of 3fCAN Before CPU Read.)
- (b) When the CPU polls the CiSTR register, the polling period must be 3fCAN or longer. (See Figure 23.5 When Polling Period of CPU is 3fCAN or Longer.)

3fCAN Period = 3 × XIN (Original Oscillation Period) × Division Value of CAN Clock (CCLK)			
(Example 1) Condition XIN 16 MHz CCLK: Divided by 1	3 fCAN period = 3×62.5 ns $\times 1$ = 187.5 ns		
(Example 2) Condition XIN 16 MHz CCLK: Divided by 2	3 fCAN period = 3×62.5 ns $\times 2 = 375$ ns		
(Example 3) Condition XIN 16 MHz CCLK: Divided by 4	3 fCAN period = 3×62.5 ns $\times 4$ = 750 ns		
(Example 4) Condition XIN 16 MHz CCLK: Divided by 8	3fCAN period = 3×62.5 ns $\times 8 = 1.5 \ \mu$ s		
(Example 5) Condition XIN 16 MHz CCLK: Divided by 16	3fCAN period = 3×62.5 ns $\times 16$ = 3μ s		

Table 23.1 CAN Module Status Updating Period

fCAN						
CPU read signal						
Updating period of CAN module						
CPU reset signal						
CiSTR register b8: State_Reset bit	 ×	×	×	×	×	
0: CAN operation mode 1: CAN reset/initial- ization mode					natches the CPU's r s the higher priority	

Figure 23.3 When Updating Period of CAN Module Matches Access Period from CPU

Figure 23.4 With a Wait Time of 3fCAN Before CPU Read

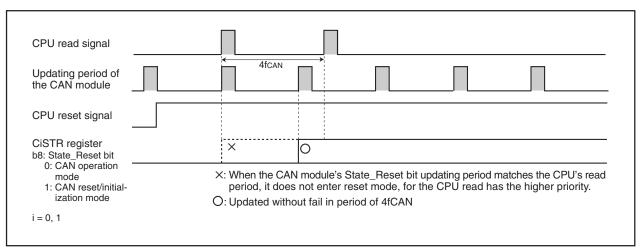


Figure 23.5 When Polling Period of CPU is 3fCAN or Longer

RENESAS

23.10.2 Performing CAN Configuration

If the Reset bit in the CiCTLR register (i = 0, 1) is changed from "0" (operation mode) to "1" (reset/ initialization mode) in order to place the CAN module from CAN operation mode into CAN reset/initialization mode, always be sure to check that the State_Reset bit in the CiSTR register is set to "1" (reset mode). Similarly, if the Reset bit is changed from "1" to "0" in order to place the CAN module from CAN reset/ initialization mode into CAN operation mode, always be sure to check that the State_Reset bit is set to "0" (operation mode).

The procedure is described below.

To place CAN Module from CAN Operation Mode into CAN Reset/Initialization Mode

- Change the Reset bit from "0" to "1".
- Check that the State_Reset bit is set to "1".

To place CAN Module from CAN Reset/Initialization Mode into CAN Operation Mode

- Change the Reset bit from "1" to "0".
- Check that the State_Reset bit is set to "0".

23.10.3 Suggestions to Reduce Power Consumption

When not performing CAN communication, the operation mode of CAN transceiver should be set to "standby mode" or "sleep mode".

When performing CAN communication, the power consumption in CAN transceiver in not performing CAN communication can be substantially reduced by controlling the operation mode pins of CAN transceiver.

Tables 23.2 and 23.3 show recommended pin connections.

	Standby Mode	High-speed Mode
Rs Pin ⁽¹⁾	"H"	"L"
Power Consumption in	less than 170 μA	less than 70 mA
CAN Transceiver (2)		
CAN Communication	impossible	possible
Connection	M16C/6N4 CTXi CRXi Port (3) "H" output	M16C/6N4 CTXi CRXi Port (3) L" output

i = 0, 1

NOTES:

- 1. The pin which controls the operation mode of CAN transceiver.
- 2. In case of Ta = 25 °C
- 3. Connect to enabled port to control CAN transceiver.

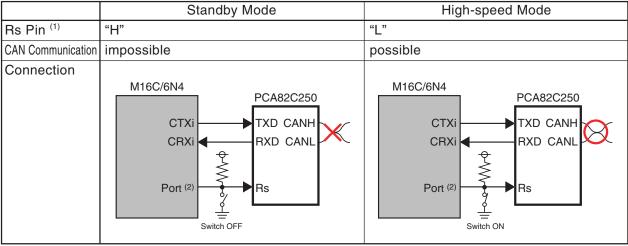
Table 23.3 Recommended Pin Connections (In case of PCA82C252: Philips product)

	Sleep Mode	Normal Operation Mode
STB Pin ⁽¹⁾	"L"	"H"
EN Pin ⁽¹⁾	"L"	"H"
Power Consumption in	less than 50 μA	less than 35 mA
CAN Transceiver (2)		
CAN Communication	impossible	possible
Connection	M16C/6N4 PCA82C252 TXD CANH RXD CANL Port (3) Port (3) L" output	M16C/6N4 PCA82C252 TXD CANH RXD CANL Port (3) Port (3) H" output

i = 0, 1 NOTES:

1. The pin which controls the operation mode of CAN transceiver.

2. Ta = 25 °C


3. Connect to enabled port to control CAN transceiver.

23.10.4 CAN Transceiver in Boot Mode

When programming the flash memory in boot mode via CAN bus, the operation mode of CAN transceiver should be set to "high-speed mode" or "normal operation mode". If the operation mode is controlled by the microcomputer, CAN transceiver must be set the operation mode to "high-speed mode" or "normal operation mode" before programming the flash memory by changing the switch etc. Tables 23.4 and 23.5 show pin connections of CAN transceiver.

Table 23.4 Pin Connections of CAN Transceiver (In case of PCA82C250: Philips product)

i = 0, 1

NOTES:

1. The pin which controls the operation mode of CAN transceiver.

2. Connect to enabled port to control CAN transceiver.

	•	
	Sleep Mode	Normal Operation Mode
STB Pin ⁽¹⁾	"L"	"H"
\square	"["	"[]"

Table 23.5 Pin Connections of CAN Transceiver (In case of PCA82C252: Philips product)

EN Pin ⁽¹⁾	"L"	"H"
CAN Communication	impossible	possible
Connection	M16C/6N4 PCA82C252 TXD CANH RXD CANL Port ⁽²⁾ Fort ⁽²⁾ Switch OFF	M16C/6N4 PCA82C252 TXD CANH RXD CANL Port ⁽²⁾ Port ⁽²⁾ Switch ON

i = 0, 1

NOTES:

1. The pin which controls the operation mode of CAN transceiver.

2. Connect to enabled port to control CAN transceiver.

23.11 Programmable I/O Ports

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the P7_2 to P7_5, P8_0 and P8_1 pins go to a high-impedance state.

Setting the SM32 bit in the S3C register to "1" causes the P9_2 pin to go to a high-impedance state.

The input threshold voltage of pins differs between programmable I/O ports and peripheral functions. Therefore, if any pin is shared by a programmable I/O port and a peripheral function and the input level at this pin is outside the range of recommended operating conditions VIH and VIL (neither "high" nor "low"), the input level may be determined differently depending on which side—the programmable I/O port or the peripheral function—is currently selected.

Indeterminate values are read from the P3_7 to P3_4, PD3_7 to PD3_4 bits by reading the P3 and PD3 registers when the PM01 to PM00 bits in the PM0 register are set to "01b" (memory expansion mode) or "11b" (microprocessor mode) and setting the PM11 bit to "1".

Use the MOV instruction when rewriting the P3 and PD3 registers (including the case that the size specifier is ".W" and the P2 and PD2 registers are rewritten).

When the PM01 to PM00 bits are rewritten, "L" is output from the P3_7 to P3_4 pins during 0.5 cycles of the BCLK by setting the PM01 to PM00 bits in the PM0 register to "01b" (memory expansion mode) or "11b" (microprocessor mode) from "00b" (single-chip mode) after setting the PM11 bit to "1".

23.12 Electrical Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers

Flash memory version and mask ROM version may have different characteristics, operating margin, noise tolerated dose, noise width dose in electrical characteristics due to internal ROM, different layout pattern, etc. When switching to the mask ROM version, conduct equivalent tests as system evaluation tests conducted in the flash memory version.

23.13 Mask ROM Version

When using the masked ROM version, write nothing to internal ROM area.

23.14 Flash Memory Version

23.14.1 Functions to Prevent Flash Memory from Rewriting

ID codes are stored in addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFEFh, 0FFFF3h, 0FFFF7h, and 0FFFFBh. If wrong data are written to theses addresses, the flash memory cannot be read or written in standard serial I/O mode and CAN I/O mode.

The ROMCP register is mapped in address 0FFFFh. If wrong data is written to this address, the flash memory cannot be read or written in parallel I/O mode.

In the flash memory version of microcomputer, these addresses are allocated to the vector addresses (H) of fixed vectors.

23.14.2 Stop Mode

When the microcomputer enters stop mode, execute the instruction which sets the CM10 bit to "1" (stop mode) after setting the FMR01 bit to "0" (CPU rewrite mode disabled) and disabling the DMA transfer.

23.14.3 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

23.14.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Erase all unlocked blocks
- Lock bit program
- Read lock bit status

23.14.5 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

23.14.6 Program Command

By writing "xx40h" in the first bus cycle and data to the write address in the second bus cycle, an auto program operation (data program and verify) will start. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

23.14.7 Lock Bit Program Command

By writing "xx77h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to "0". The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

23.14.8 Operation Speed

Before entering CPU rewrite mode (EW0 or EW1 mode), set the CM11 bit in the CM1 register to "0" (main clock), select 10 MHz or less for CPU clock using the CM06 bit in the CM0 register and CM17 to CM16 bits in the CM1 register. Also, set the PM17 bit in the PM1 register to "1" (with wait state).

23.14.9 Prohibited Instructions

The following instructions cannot be used in EW0 mode because the CPU tries to read data in flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

23.14.10 Interrupt

EW0 Mode

To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.

- The NMI and watchdog timer interrupts are available since the FMR0 and FMR1 registers are forcibly reset when either interrupt request is generated. Allocate the jump addresses for each interrupt service routines to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt request is generated. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

EW1 Mode

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during the auto program or auto erase period.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since the FMR0 and FMR1 registers are forcibly reset when the interrupt request is generated. Allocate the jump address for the interrupt service routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI interrupt request is generated. Execute the rewrite program again after exiting the interrupt service routine.

23.14.11 How to Access

To set the FMR01, FMR02 or FMR11 bit to "1", write "1" after first setting the bit to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while an "H" signal is applied to the $\overline{\text{NMI}}$ pin.

23.14.12 Rewriting in User ROM Area

EW0 Mode

The supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode or CAN I/O mode.

EW1 Mode

Avoid rewriting any block in which the rewrite control program is stored.

23.14.13 DMA Transfer

In EW1 mode, do not perform a DMA transfer while the FMR00 bit in the FMR0 register is set to "0" (auto programming or auto erasing).

23.15 Flash Memory Programming Using Boot Program

When programming the internal flash memory using boot program, be careful about the pins state and connection as follows.

23.15.1 Programming Using Serial I/O Mode

CTX0 pin : This pin automatically outputs "H" level.

CRX0 pin : Connect to CAN transceiver or connect via resister to VCC (pull-up)

Figure 23.6 shows a pin connection example for programming using serial I/O mode.

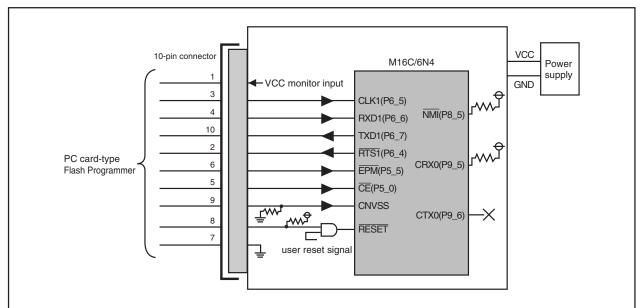


Figure 23.6 Pin Connection for Programming Using Serial I/O Mode

23.15.2 Programming Using CAN I/O Mode

RTS1 pin : This pin automatically outputs "H" and "L" level.

Figure 23.7 shows a pin connection example for programming using CAN I/O mode.

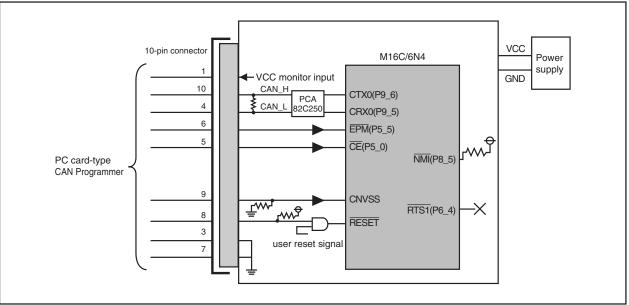


Figure 23.7 Pin Connection for Programming Using CAN I/O Mode

23.16 Noise

Connect a bypass capacitor (approximately 0.1 μ F) across the VCC1 and VSS pins, and VCC2 and VSS pins using the shortest and thicker possible wiring. Figure 23.8 shows the bypass capacitor connection.

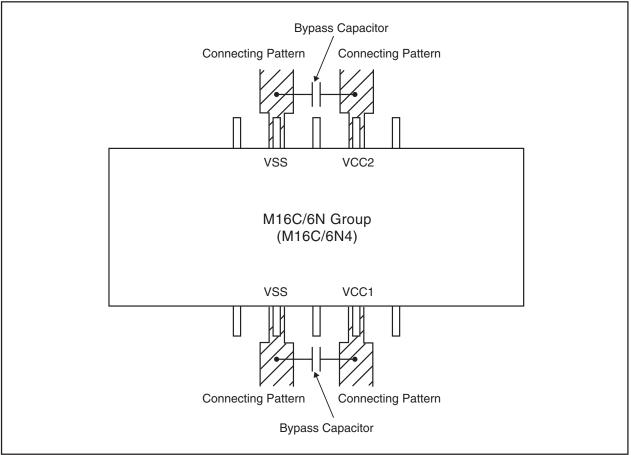
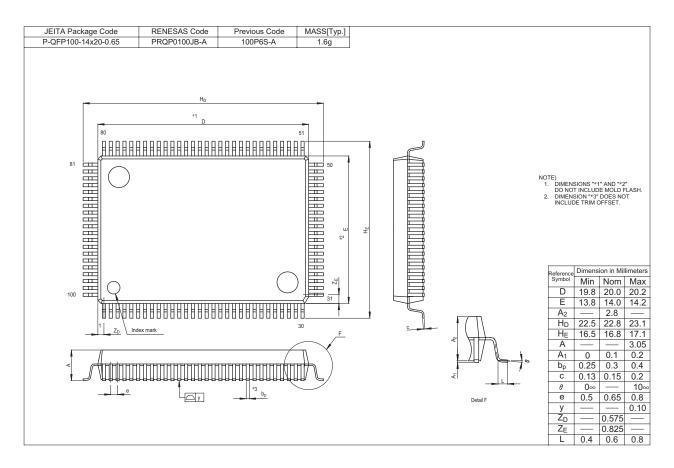
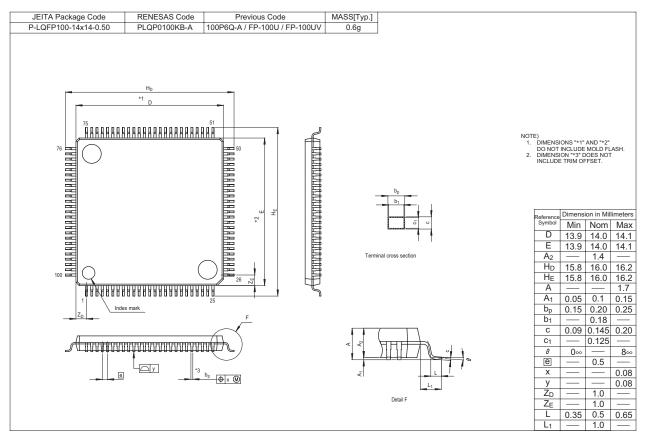




Figure 23.8 Bypass Capacitor Connection

Appendix 1. Package Dimensions

RENESAS

Memo

Register Index

Α

AD0 to AD7 196
ADCON0 195,198,200,202,204,206
ADCON1 195,198,200,202,204,206
ADCON2 196
ADIC 80
AIER
AIER2

С

C01ERRIC 80
C01WKIC 80
C0AFS, C1AFS 224
C0CONR, C1CONR 223
COCTLR, C1CTLR 220
C0GMR, C1GMR 218
C0ICR, C1ICR 222
C0IDR, C1IDR 222
C0LMAR, C1LMAR 218
COLMBR, C1LMBR 218
COMCTL0 to COMCTL15 219
CORECIC 80
CORECR, C1RECR 224
COSSTR, C1SSTR 225
C0STR, C1STR 221
COTECR, C1TECR 224
C0TRMIC 80
C0TSR, C1TSR 224
C1MCTL0 to C1MCTL15 219
C1RECIC 81
C1TRMIC 81
CAN0/1 Slot 0 to 15
: Time Stamp 216,217
: Data Field 216,217
: Message Box 216,217
CCLKR 56
CM0
CM1
CM2
CPSRF 110,124
CRCD 212
CRCIN 212
CSE 47
CSR 41
D

DA0, DA121	1
DACON21	1

DAR0, DAR1	99
DM0CON, DM1CON	98
DM0IC, DM1IC 8	80
DM0SL	97
DM1SL	98
DTT 13	34

F

FMR0	 257
FMR1	 257

ICTB2	136
IDB0, IDB1	134
IFSR0	89
IFSR1	89
INTOIC to INT5IC	81
INVC0	132
INVC1	133

Κ

KUPIC 80 O

	-	
ONSF	 	 110

Ρ

P0 to P10	246
PCLKR	56
PCR	248
PD0 to PD10	245
PLC0	57
PM0	35
PM1	36
PM2	57
PRCR	74
PUR0 to PUR2	247

R

RMAD0 to RMAD3	92
ROMCP 2	254

S

SORIC to S2RIC 80
S0TIC to S2TIC 80
S3BRG 189
S3C 189
S3IC 81
S3TRR 189
SAR0, SAR1

Register Index

т
TA0 108
TA0IC 80
TA0MR 108,111,113,118,120
TA1 108,135
TA11 135
TA1IC 80
TA1MR 108,111,113,118,120,138
TA2 108,135
TA21 135
TA2IC 80
TA2MR 108,111,113,115,118,120,138
TA3 108
TA3IC 80
TA3MR 108,111,113,115,118,120
TA4 108,135
TA41 135
TA4IC 80
TA4MR 108,111,113,115,118,120,138
TABSR 109,124,137
ТВ0 123
TB0IC 80
TB0MR 123,125,126,128
TB1 123
TB1IC 80
TB1MR 123,125,126,128
TB2 123,135
TB2IC 80
TB2MR 123,125,126,128,138
TB2SC 136
ТВЗ 123
TB3IC 80
TB3MR 123,125,126,128
ТВ4 123
TB4IC 80
TB4MR 123,125,126,128
ТВ5 123
TB5IC 80
TB5MR 123,125,126,128
TBSR 124
TCR0, TCR1
TRGSR 110,137

U

U0BCNIC to U2BCNIC	. 80
U0BRG to U2BRG	145
U0C0 to U2C0	146
U0C1 to U2C1	147

U0MR to U2MR 146
U0RB to U2RB 145
U0SMR to U2SMR 148
U0SMR2 to U2SMR2 149
U0SMR3 to U2SMR3 149
U0SMR4 to U2SMR4 150
U0TB to U2TB 145
UCON 148
UDF 109

W

WDC	94
WDTS	94

Rev.	Date -		Description
nev.	Date	Page	Summary
1.00	May. 30, 2003	_	First edition issued
2.00	Nov. 10, 2004	_	Revised edition issued
			* Words standardizes (on-chip oscillator)
			* 100P6Q-A (100-pin version) is added.
			* Usage Notes Reference Book is added to Chapter 23 Usage Precaution.
			* Revised parts and revised contents are as follows (except for change of chapter composition,
			change of a layout, and an expressional change).
		1	1. Overview 3rd line: "and LQFP" is added.
		2	Table 1.1 Performance outline of M16C/6N Group (M16C/6N4)
			Operation Mode is added.
			Address Space is added.
			Power Consumption is revised.
			"LQFP" is added to Package.
		4	Table 1.2 Product List is revised.
			Figure 1.2 Type No., Memory Size, and Package:
			 "GP: Package 100P6Q-A" is added to Package type.
		5	Figure 1.3 Pin Configuration (Top View) (1): "ZP" is added.
		6	Figure 1.4 Pin Configuration (Top View) (2) is added. (100P6Q-A)
		8	Table 1.4 Pin Description (2): "ZP" is added to Timer A.
		12	3. Memory
			• 5th to 6th lines: The description about the flash memory version (block A) is added.
			Figure 3.1 Memory Map:
			Internal ROM (data area) is added.
			• NOTES 3, 4 are added and NOTE 5 is revised.
		13	Table 4.1 SFR Information (1)
			• The value of After Reset in PM1 register is revised.
			The value of After Reset in CM2 register is revised.
		19	Table 4.7 SFR Information (7)
			• The value of After Reset in FMR0 register is revised.
		27	Table 4.15 SFR Information (15)
			• The value of After Reset in U0C1 register is revised.
			• The value of After Reset in U1C1 register is revised.
			•NOTE 1 is added.
		28	Table 4.16 SFR Information (16)
			• The value of After Reset in DA0, DA1 registers are revised.
		30	Figure 5.1 Example Reset Circuit: NOTE 1 is added.
		34	Figure 6.2 PM1 Register
			• The value of After Reset is revised.
			•NOTES 2, 6 are revised.
		37	Figure 6.6 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (3)
			•NOTE 2 is added.
			Figure 6.7 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (4)
			•NOTE 1 is added.

Rev.	Date		Description
nev.	Dale	Page	Summary
2.00	Nov. 10, 2004	38	Table 7.1 Difference between Separate Bus and Multiplexed Bus is added.
		39	Figure 7.1 CSR Register: NOTE 2 is revised.
		46	Table 7.8 Software Wait Related Bits and Bus Cycles
			• Bus Cycle of SFR (PM20 = 0) is revised from "2 BCLK cycles" to "3 BCLK cycles".
			• Bus Cycle of SFR (PM20 = 1) is revised from "3 BCLK cycles" to "2 BCLK cycles".
			• From bottom to 5th item in CSR Register: The value is revised from "1" to "0".
			• NOTE 5 is added.
		49	Table 8.1 Clock Generating Circuit Specifications
			 Clock Frequency in PLL Frequency Synthesizer: 16 MHz is added.
		50	Figure 8.1 Clock Generating Circuit: Block diagram (upper) is revised.
		51	Figure 8.2 CM0 Register
			• Bit name of CM02 is revised.
			• NOTE 6 (2) and NOTE 8 are revised.
		52	Figure 8.3 CM1 Register: NOTE 3 of CM11 bit is deleted.
		54	Figure 8.6 CCLKR Register: Location of NOTE 2 is changed and NOTE 3 is added.
		55	Figure 8.7 PM2 Register: NOTE 2 is revised.
			Figure 8.8 PLC0 Register: Function of 011b and 100b in PLC02 to PLC00 bits are revised
			from "Multiply by 6 and Multiply by 8" to "Do not set a value".
		58	8.1.4 PLL Clock 11th line: 16 MHz is added to PLL clock frequency.
			Table 8.2 Example for Setting PLL Clock Frequencies
			• PLL clock = 16 MHz is added. $(8 \times 2, 4 \times 4)$
		50	• 16 MHz is added to NOTE 1.
		59	Figure 8.11 Procedure to Use PLL Clock as CPU Clock Source
			 4th frame: "(To select a 16 MHz or higher PLL clock)" is revised to "(When PLL clock >16 MHz)".
		61	8.4.1.2 PLL Operation Mode: 1st line
		01	• The main clock multiplied is revised from "by 2, 4, 6 or 8" to "by 2 or 4".
		62	Table 8.3 Setting Clock Related Bit and Modes
		02	• CM21 bit in Low Power Dissipation Mode: Value is revised from "-" to "0".
			• CM11 bit in Low-Speed Mode, Low Power Dissipation Mode, On-chip Oscillator Mode
			and On-chip Oscillator Low Power Dissipation Mode: Value is revised from "-" to "0".
		63	8.4.2 Wait Mode 4th line: "PLL clock" is deleted.
			Table 8.4 Pin Status During Wait Mode
			Memory Expansion Mode, Microprocessor Mode in ALE: Value is revised from
			"H" to "L".
		64	Table 8.5 Interrupts to Exit Wait Mode
			• CAN0/1 Wake-up Interrupt: "in CAN sleep mode" is added.
		65	8.4.3 Stop Mode
			• CAN0/1 Wake-up interrupt: "(when CAN sleep mode is selected)" is added.
			Table 8.6 Pin Status in Stop Mode
			• Memory Expansion Mode, Microprocessor Mode in ALE: Value is revised from
			" H" to "indeterminate".

Rev.	Data		Description
nev.	Date	Page	Summary
2.00	Nov. 10, 2004	67	Figure 8.12 State Transition to Stop Mode and Wait Mode
			• Figure is revised.
			• NOTE 3 is revised.
		68	Figure 8.13 State Transition in Normal Operation Mode
			 Low-Speed and Low Power Dissipation Mode: "CM7 = 1" is revised to "CM7 = 0" (3 places). NOTES 2, 6 are revised.
		71	Figure 8.14 Procedure to Switch Clock Source from On-chip Oscillator to Main Clock is revised.
		77	Table 10.2 Relocatable Vector Tables
		11	 Interrupt Source: "Software interrupt" is revised to "INT Instruction Interrupt" NOTES 10, 11 are added.
		78	Figure 10.3 Interrupt Control Registers (1): NOTES 5, 6, 7 are added.
		79	Figure 10.4 Interrupt Control Registers (2)
			NOTE 2 is added to C1RECIC/INT5IC, C1TRMIC/S3IC/INT4IC
			NOTES 6, 7 are added.
		87	Figure 10.11 (upper) IFSR0 Register: NOTE 3 is added.
		88	10.9 CAN0/1 Wake-up Interrupt is revised.
			Figure 10.13 CAN0/1 Wake-up Interrupt Block Diagram is revised.
		91	Figure 11.1 Watchdog Timer Block Diagram: "RESET" is revised to "Internal RESET signal".
		108	Figure 13.6 (upper and middle) ONSF Register, TRGSR Register: NOTE 2 is added.
		109	Table 13.1 Specifications in Timer Mode
			 Specification of Divide Ratio: "TAiMR register" is revised to "TAi register".
			• Specification of Select Function: "When not counting, the pin outputs a low" is
			revised to "When TAiS bit is set to "0" (stop counting), the pin outputs a low".
		110	Table 13.2 Specifications in Event Counter Mode (when not processing two-phase pulse signal)
			• Specification in Select Function: "When not counting, the pin outputs a low" is
			revised to "When TAiS bit is set to "0" (stop counting), the pin outputs a low".
		114	13.1.2.1 Counter Initialization by Two-Phase Pulse Signal Processing 4th line
			• "the INT2 pin" is revised to "the ZP pin".
			Figure 13.10 Two-phase Pulse (A phase and B phase) and Z Phase
			 "INT2 (Z phase)" is revised to "ZP".
		118	Figure 13.12 TA0MR to TA4MR Registers in PWM Mode
			• Bit name and Function in MR0 bit is revised from "Set to "1" in PWM mode" to "Pulse Output Function Select Bit ⁽³⁾ ".
			• NOTE 3 is added.
		123	Table 13.6 Specifications in Timer Mode • Specification in Divide Ratio: "TBiMR register" is revised to "TBi register".
		129	Figure 14.1 Three-Phase Motor Control Timer Function Block Diagram is revised.
		130	Figure 14.2 INVC0 Register is revised.
		131	Figure 14.3 INVC1 Register: Function of INV13 bit is revised.
		132	Figure 14.4 (upper) IDB0 and IDB1 Registers: (b7-b6) is revised.
		102	Figure 14.4 (lower) DTT Register: NOTE 2 is revised.
			$\frac{1}{2} = \frac{1}{2} = \frac{1}$

Rev.	Date		Description
nev.	Dale	Page	Summary
2.00	Nov. 10, 2004	134	Figure 14.6 (upper) ICTB2 Register
			• (b7-b4) is revised.
			• NOTE 3 is added.
		135	Figure 14.7 (upper) TRGSR Register: NOTE 2 is added.
		136	Figure 14.8 (upper) TA1MR, TA2MR and TA4MR Registers
			 Function of MR1 bit: "Has no effect" is revised to "Set to "0" ".
		137	Figure 14.9 Triangular Wave Modulation Operation is revised.
		139	15.1 UARTi: "UART0, UART1" in Special mode 3 is deleted.
		140, 141	Figures 15.1 to 15.3 UART0 to 2 Block Diagram are revised.
		142	Figure 15.4 UARTi Transmit/Receive Unit is revised.
		144	Figure 15.6 (lower) U0C0 to U2C0 Registers: NOTES 3, 4 are revised.
		145	Figure 15.7 (upper) U0C1, U1C1 Registers
			 The value of After Reset is revised.
			• (b5-b4) is revised from "When read, their contents are "0" " to "When read, their
			contents are indeterminate".
			•NOTE 1 is added.
			Figure 15.7 (lower) U2C1 Register: NOTE 1 is added.
		153	15.1.1.1 Counter Measure for Communication Error Occurs is added.
		154	15.1.1.4 Continuous Receive Mode: first to 4th lines are added.
		156	15.1.1.7 CTS/RTS Function is added.
		157	Table 15.5 UART Mode Specifications: NOTE 3 is added.
		159	Table 15.7 I/O Pin Functions
			Method of Selection in TXDi: "Output dummy data" is revised to "Output "H" ".
		161	15.1.2.1 Bit Rates and Table 15.9 Example of Bit Rates and Settings are added.
		162	15.1.2.2 Counter Measure for Communication Error Occurs is added.
		164	15.1.2.6 CTS/RTS Function is added.
		176	Table 15.15 Registers to Be Used and Settings in Special Mode 2
		179	 "U2LCH" in UiC1 register is revised to "UiLCH". Table 15.16 Registers to Be Used and Settings in IE Mode
		175	• "UIRRM" in UiC1 register is revised to "U2RRM".
		181	Table 15.17 SIM Mode Specifications: NOTE 3 is added.
		189	Figure 15.39 Polarity of Transfer Clock is revised.
		205	16.2.4 External Operation Amplifier (Op-Amp) Connection Mode: 6th line
		200	• "Note that the ANEX0 and ANEX1 pins cannot be directly connected to each other."
			is deleted.
		206	16.2.6 Output Impedance of Sensor under A/D Conversion is added.
		209	Figure 17.2 (lower) DA0 and DA1 Registers: The value of After Reset are revised.
		216	Figure 19.4 Bit Mapping of Mask Registers in Byte Access: NOTES 1, 2 are added.
			Figure 19.5 Bit Mapping of Mask Registers in Word Access: NOTES 1, 2 are added.
		217	Figure 19.6 C0MCTLj and C1MCTLj Registers: NOTE 2 is revised.
		218	Figure 19.7 C0CTLR and C1CTLR Registers (upper)
			• NOTE 1 (Rev.1.00) is deleted and NOTES 1, 2, 3 are added.
			Figure 19.7 C0CTLR and C1CTLR Registers (lower): NOTES 3, 4 are added.

Rev.	Date		Description
Tiev.	Dale	Page	Summary
2.00	Nov. 10, 2004	219	Figure 19.8 C0STR and C1STR Registers (upper): NOTE 2 is added.
		223	19.5 Operational Modes
			 1st line: "three operational modes" is revised to "four operational modes".
			 5th line: "CAN Interface Sleep Mode" is added.
			Figure 19.12 Transition Between Operational Modes is revised.
			19.5.1 CAN Reset/Initialization Mode is revised.
		224	19.5.2 CAN Operation Mode is revised.
			19.5.3 CAN Sleep Mode is revised.
			19.5.4 CAN Interface Sleep Mode is added.
		225	19.5.5 Bus Off State is revised.
		231	19.12 Return from Bus Off Function is revised.
			19.14 Listen-Only Mode
			Iast line: "When listen-only mode is selected, do not request the transmission." is added.
		233	Figure 19.20 Timing of Receive Data Frame Sequence: Waveform of RecState bit is revised.
		004	19.15.1 Reception: (4) (5) are revised.
		234	Figure 19.21 Timing of Transmit Sequence
			 The position of the number corresponding to the text is revised. 19.15.2 Transmission: (1) to (4) are revised.
		251	21.2.1 ROM Code Protect Function is revised.
		201	21.2.1 NOW Code Protect Function is revised.
		252	Figure 21.2 ROMCP Register is revised.
		252	Figure 21.2 (upper) FMR0 Register: The value of After Reset is revised.
		256	21.3.3.1 FMR00 Bit is revised.
		200	21.3.3.8 FMR11 Bit is revised.
			21.3.3.9 FMR16 Bit is revised.
		257	Figure 21.5 Setting and Resetting of EW0 Mode is revised.
			Figure 21.6 Setting and Resetting of EW1 Mode: NOTE 3 is revised.
		258	Figure 21.7 Processing Before and After Low Power Dissipation Mode: NOTE 4 is added.
		260	21.3.4.12 Low Power Dissipation Mode and On-chip Oscillator Low Power Dissipation
			Mode is revised.
		261	Table 21.4 Software Commands: NOTE 2 is deleted.
		262	21.3.5.4 Program Command (40h)
			 From bottom to 3rd line: "read command" is revised to "read array command".
		265	Figure 21.11 Read Lock Bit Status Command
			 "Locked", "Not locked" are revised to "Block is locked", "Block is not locked".
		266	21.3.7.1 Sequencer Status (SR7 and FMR00 Bits) is revised.
		271	Table 21.7 Pin Functions for Standard Serial I/O Mode
			 "VCC" is revised to "VCC1", and "VCC2" is added.
			• VCC1, VCC2, VSS: VCC apply condition is added.
		273	Figure 21.14 Pin Connections for Standard Serial I/O Mode (2) is added.
		274	Figure 21.16 Circuit Application in Standard Serial I/O Mode 2: "RESET" is added.
		276	Table 21.8 Pin Functions for CAN I/O Mode
			"VCC" is revised to "VCC1", and "VCC2" is added.
			•VCC1, VCC2, VSS: VCC apply condition is added.

Rev.	Date		Description
nev.	Dale	Page	Summary
2.00	Nov. 10, 2004	278	Figure 21.18 Pin Connections for CAN I/O Mode (2) is added.
		280	Table 21.9 Flash Memory Version Electrical Characteristics
			 Parameter is added and the value of some item is revised.
		281	Table 22.1 Absolute Maximum Ratings
			 "Flash Program Erase" in Operating Ambient Temperature is added.
		283	Table 22.3 Recommended Operating Conditions (2)
			 Parameters of Power Supply Ripple are added.
			• NOTE 4 is revised.
			Figure 22.1 Timing of Voltage Fluctuation is added.
		284	Table 22.4 Electrical Characteristics (1): Hysteresis
			 "CLK4" is revised to "CLK3", and "TA2OUT" is revised to "TA0OUT".
			 Max. of Standard in RESET is revised from "2.2" to "2.5".
			• XIN is added.
		286	Table 22.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is added.
		287	Table 22.8 Power Supply Circuit Timing Characteristics: "td(M-L)" is deleted.
			Figure 22.2 Power Supply Circuit Timing Diagram is added.
		288	Table 22.10 Memory Expansion Mode and Microprocessor Mode: "td(BCLK-HLDA)" is deleted.
		290	Table 22.21 Serial I/O: Min. of standard in $t_{su(D-C)}$ is revised from "30" to "70".
		291	Table 22.23 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".
			• td(BCLK-HLDA) is added.
		292	Table 22.24 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting
			and external area access)
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".
			• td(BCLK-HLDA) is added.
		293	Table 22.25 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting,
			external area access and multiplexed bus selection)
			• td(BCLK-HLDA) is added.
		004	• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".
		294	Figure 22.4 Timing Diagram (1): "XIN input" is added.
		296, 297	Figures 22.6 and 22.7 Timing Diagram (3) (4): "DB" in Read timing is revised to "DBi".
		298, 299	Figures 22.8 and 22.9 Timing Diagram (5) (6): "DB" in Write timing is revised to "DBi".
		301	Figure 22.11 Timing Diagram (8) "ADi/DB" in Read/Write timing is revised to "ADi/DBi".
		302	23.1 External Bus: The description of the external ROM version is deleted.
		303	23.2 PLL Frequency Synthesizer is revised.
		303	23.3 Power Control
			• 2nd item is added. (Set the MR0 bit in the TAiMR register to •••)
			• 4th item is revised. (Wait for main clock oscillation •••)
			Section of "External clock" is deleted.
		316	23.8.2.1 Special Mode 1 (I ² C Mode) is added.
		317	23.8.3 SI/O3 is added.

Rev.	Date		Description
TIEV.	Date	Page	Summary
2.00	Nov. 10, 2004	319	23.9 A/D Converter: last item is added. (When setting the ADST bit to •••)
		322	23.10.2 Performing CAN Configuration is added.
		323	23.10.3 Suggestions to Reduce Power Consumption is added.
		327	23.13 Mask ROM Version is added.
		328	23.14.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation
			Mode is revised.
		330	23.15 Flash Memory Programming Using Boot Program is added.
		331	23.16 Noise is added.
		332	Appendix 1. Package Dimensions: 100P6Q-A is added.
2.10	Jun. 24, 2005	_	Revised edition issued
			* The contents of product are revised. (Normal-ver. is added.)
			* Revised parts and revised contents are as follows (except for expressional change).
		2	Table 1.1 Performance outline of M16C/6N Group (M16C/6N4)
			 Performance outline of Normal-ver. is added.
		4	Table 1.2 Product List is revised. (Normal-ver. is added.)
			Figure 1.2 Type No., Memory Size, and Package:
			 "(no): Normal-ver." is added to Characteristics.
		19	Figure 4.7 SFR Information (7): NOTE 1 is revised.
		53	Figure 8.4 CM2 Register: The value of After Reset is revised.
		68	Figure 8.13 State Transition in Normal Operation Mode: NOTE 7 is revised.
		217	Figure 19.6 C0MCTLj and C1MCTLj Registers
			RemActive bit: Function is revised.
			RspLock bit: Bit Name is revised.
			• NOTE 2 is revised.
		218	Figure 19.7 C0CTLR and C1CTLR Registers (upper)
			 LoopBack bit: The expression of Function is revised.
			 BasicCAN bit: The expression of Function is revised.
			Figure 19.7 C0CTLR and C1CTLR Registers (lower)
			• TSPreScale bit: Bit Symbol is revised. ("Bit1, Bit0" is deleted.)
			• TSReset bit: The expression of Function is revised.
			RetBusOff bit: The expression of Function is revised.
			• RXOnly bit: The expression of Function is revised.
		219	Figure 19.8 COSTR and C1STR Registers (upper): NOTE 1 is deleted.
			Figure 19.8 COSTR and C1STR Registers (lower)
			State_LoopBack bit: The expression of Function is revised.
			State_BasicCAN bit: The expression of Function is revised.
		222	Figure 19.11 CORECR, C1RECR Registers, C0TECR, C1TECR Registers, C0TSR,
			C1TSR Registers, and C0AFS, C1AFS Registers
			CORECR, C1RECR Registers: NOTE 2 is deleted.
			COTECR, C1TECR Registers: NOTE 1 is deleted.
			• C0TSR, C1TSR Registers: NOTE 1 is deleted.
		233	19.15.1 Reception (1): "(refer to 19.15.2 Transmission)" is deleted.

Rev.	Date		Description
110 .	Duit	Page	Summary
2.10	Jun. 24, 2005	238	Figure 20.1 I/O Ports (1): "P7_0" in 4th figure is deleted.
		240	Figure 20.3 I/O Ports (3): "P7_0" is added to middle figure.
		242	Figure 20.6 I/O Pins: NOTE 1 is deleted.
		284	Table 22.4 Electrical Characteristics (1)
			• Measuring Condition of VoL is revised from "LoL = -200μ A" to "LoL = 200μ A".
		285	Table 22.5 Electrical Characteristics (2): Mask ROM (5th item)
			 "f(XCIN)" is changed to "(f(BCLK)).
		286	Table 22.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is deleted.
2.30	Oct. 24, 2005	-	Revised edition issued
			* Electric Characteristics of Normal-ver. is added.
			* Revised parts and revised contents are as follows (except for expressional change).
		1	1.1 Applications: Comment of Normal-ver. is added.
		4	Table 1.2 Product List: NOTE 1 is added.
		7, 8	Tables 1.3 and 1.4 Pin Characteristics (1)(2) are added.
		9	Table 1.5 Pin Description (1)
			 3.0 to 3.6 V (Normal-ver.) is added to Description of Power supply input.
		31 to 33	5. Reset: Layout is changed.
		33	5.5 Internal Space is added.
		44	7.2.6 RDY Signal: Last sentence is revised.
		51	Table 8.1 Clock Generating Circuit Specifications
			• Clock Frequency in PLL Frequency Synthesizer: 24 MHz ⁽¹⁾ is added.
			NOTE 1 is added.
		57	Figure 8.8 PLC0 Register
			 PLC02 to PLC00 bits: Function of 011b is revised.
			NOTE 4 is added.
		58	Figure 8.9 Examples of Main Clock Connection Circuit is revised.
		59	Figure 8.10 Examples of Sub Clock Connection Circuit is revised.
		60	8.1.4 PLL Clock
			• 9th line: The sentence (When the PLL to) is added.
			12th line: 24 MHz and NOTE 1 is added to PLL clock frequency.
			• NOTE 1 is added.
			Figure 8.2 Example for Setting PLL Clock Frequencies
			• 24 MHz is added to PLL clock.
			• 24 MHz is added to NOTE 1.
			NOTES 2 and 3 are added.
		63	8.4.1.2 PLL Operation Mode
		04	• 1st line: The main clock multiplied by "6" and NOTE 1 is added.
		64	8.4.1.6 On-chip Oscillator Mode: Last sentence (When the operation mode is) is added.
			8.4.1.7 On-chip Oscillator Low Power Dissipation Mode: Last sentence (When the
		07	operation mode is) is deleted.
		67	Table 8.6 Interrrupts to Stop Mode and Use Conditions is added.
		70	Figure 8.13 State Transition in Normal Operation Mode: NOTE 7 is deleted.

Rev.	Date		Description
Tiev.	Dale	Page	Summary
2.30	Oct. 24, 2005	86	10.5.8 Returning from an Interrupt Routine: Last sentence (Register bank) is added.
			10.5.9 Interrupt Priority: First sentence (If two or more) is revised.
			10.5.10 Interrupt Priority Resolution Circuit: First sentence (The interrupt priority level)
			is revised.
		89	Figure 10.11 IFSR1 Register (upper)
			IFSR17: NOTE 2 is added to Bit Name.
			NOTE 2 is revised.
		96	Table 12.1 DMAC Specifications: DMA transfer Cycles is added.
		100	12.1.3 Effect of Software Wait: 3rd to 9th lines is moved from next section of 12.1.4.
		120	Figure 13.12 TA0MR to TA4MR Registers in PWM Mode: b2 is revised from "1" to "(blank)".
		131	Figure 14.1 Three-Phase Motor Control Timer Function Block Diagram is revised.
		132	Figure 14.2 INVC0 Register: NOTES 5 and 6 are revised.
		145	Figure 15.5 U0BRG to U2BRG Registers (lower): NOTE 3 is added.
		146	Figure 15.6 U0C0 to U2C0 Registers (lower): NOTE 5 is added.
		163	Table 15.9 Example of Bit Rates and Settings: 24 MHz and NOTE 1 is added.
		189	Figure 15.37 S3C Register (upper): NOTE 5 is added.
			Figure 15.37 S3BRG Register (middle): NOTE 3 is added.
		193	Table 16.1 A/D Converter Performance
			• Performance of Integral Nonlinearity Error: "When AVCC = VREF = 3.3 V" is added.
		194	Figure 16.1 A/D Converter Block Diagram
			 ADGSEL1 to ADGSEL0 (righit/lower) is revised from "10b" to "11b".
		208	16.2.6 Output Impedance of Sensor under A/D Conversion
			 10th line: f(XIN) is revised to f(\u00f6AD).
		209	Figure 16.10 Analog Input Pin and External Sensor Equivalent Circuit
			• fAD is revised to φAD.
		210	Figure 17.1 D/A Convertoer Block Diagram is revised.
		211	Figure 17.2 DA0 and DA1 Registers: Setting Range is added.
			Figure 17.3 D/A Converter Equivalent Circuit: NOTE 2 is added.
		213	Figure 18.3 CRC Calculation: Details of CRC operation is revised.
		224	Figure 19.11 COTECR, C1TECR Registers (2nd register): NOTE 1 is added.
		229	Table 19.2 Examples of Bit-rate: 24 MHz and NOTE 2 is added.
		247	Figure 20.9 PUR1 Register (middle): Value of After Reset is revised.
		252	Figure 21.1 Flash Memory Block Diagram is revised.
		254	Figure 21.2 ROMCP Register is revised.
		255	Table 21.3 EW0 Mode and EW1 Mode: NOTE 1 is revised.
		256	21.3.2 EW1 Mode: Last sentence (When an erase/program) is added. 21.3.3.4 FMSTP Bit
		258	
		061	• 8th line: Procedure to change the FMSTP bit setting (1) to (4) are added.
		261	Figure 21.7 Processing Before and After Low Power Dissipation Mode or On-chipOscillator
			Low Power Dissipation Mode
			 Title, First and second frames (left) and top of right: "on-chip oscillator low power dissipation mode" is addded.
			עופטואמווטון וווטעפ וא מעטעפע.

Davi	Data		Description
Rev.	Date	Page	Summary
2.30	Oct. 24, 2005	263	21.3.4.11 Stop Mode is revised.
			21.3.4.12 Low Power Dissipation Mode and On-chip Oscillator Low Power Dissipation
			Mode is partly revised.
		266	21.3.5.5 Block Erase Command: Last sentence (Also execute) is added.
			Figure 21.9 Block Erase Command: NOTES 2 and 3 are added.
		272	Figure 21.12 Full Status Check and Handling Procedure for Each Error
			• Erase error: (4) is added.
		274	Table 21.7 Pin Functions for Standard Serial I/O Mode
			 Description of VCC1, VCC2, VSS is revised.
			 Description of P8_4 is revised.
			NOTE 1 is revised.
			NOTE 2 is added.
		277	Figures 21.15 and 21.16 Circuit Application in Serial I/O Mode 1/2
			 "VCC1" and "VCC2" are added.
		279	Table 21.8 Pin Functions for CAN I/O Mode
			 Description of VCC1, VCC2, VSS is revised.
			 Description of P8_4 is revised.
			NOTE 1 is added.
		282	Figure 21.19 Circuit Application in CAN I/O Mode: "VCC1" and "VCC2" are added.
		283	Table 21.9 Flash Memory Version Electrical Characteristics
			 Measuring condition is revised in word program time and block erase time.
		284	21.7.2 Electrical Characteristics (Normal-ver.) is added.
		306 to 341	
		344	23.3 Power Control: 3rd and 4th items (When entering wait mode and When entering
			stop mode) are revised.
		359	Figure 23.2 Use of Capacitors to Reduce Noise is partly revised.
		360	23.9 A/D Converter: Last item (The applied intermediate) is added.
		366	23.11 Programmable I/O Ports: 4th and 5th items (Indeterminate values and When the
		000	PM01) are added.
		369	23.14.2 Stop Mode is revised.
			23.14.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation
			Mode is partly revised.
			23.14.8 Operation Speed is revised.

M16C/6N Group (M16C/6N4) Hardware Manual

Publication Data : Rev.1.00 May 30, 2003 Rev.2.30 Oct 24, 2005 Published by : Sales Strategic Planning Div. Renesas Technology Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

M16C/6N Group (M16C/6N4) Hardware Manual

Renesas Technology Corp. 2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan