300-MHz, 2.5- Ω, Dual SPDT Analog Switches

DESCRIPTION

The DG3516/DG3517 are dual SPDT analog switches which operate from 1.8 V to 5.5 V single rail power supply. They are design for audio, video, and USB switching applications.
The devices have 2.5Ω on-resistance and 300 MHz 3 dB bandwidth. 0.2Ω on-resistance matching and 1Ω flatness make the device high linearity. The devices are 1.6 V logic compatible within the full operation voltage range.
These switches are built on a sub-micron high density process that brings low power consumption and low voltage performance.
The switches are packaged in MICRO FOOT chip scale package of 4×3 bump array.
As a committed partner to the community and environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For MICRO FOOT analog switch products manufactured with tin/silver/copper (SnAgCu) device termination, the lead (Pb)-free "-E1" suffix is being used as a designator.

FEATURES

- 1.8 V to 5.5 V Operation
- 2.5Ω at $2.7 \mathrm{Vr}_{\mathrm{ON}}$
- $300 \mathrm{MHz}-3 \mathrm{~dB}$ Bandwidth
- ESD Method $3015.7>2 \mathrm{kV}$
- Latch-Up Current 200 mA (JESD 78)
- 1.6 V Logic Compatible

BENEFITS

- Space Saving MICRO FOOT ${ }^{\circledR}$ Package
- High Linearity
- Low Power Consumption
- High Bandwidth
- Full Rail Signal Swing Range

APPLICATIONS

- Cellular Phones
- MP3
- Media Players
- Modems
- Hard Drives
- PCMCIA

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Reference V+ to GND		- 0.3 to +6	V
IN, COM, NC, $\mathrm{NO}^{\text {a }}$		-0.3 to (V++0.3 V)	
Continuous Current (NO, NC, COM)		± 100	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$	ycle)	± 200	
Storage Temperature	(D Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
Package Solder Reflow Conditions ${ }^{\text {b }}$	IR/Convection	250	
ESD per Method 3015.7		>2	kV
Power Dissipation (Packages) ${ }^{\text {c }}$	MICRO FOOT: 10 Bump ($4 \times 3 \mathrm{~mm}$) ${ }^{\text {d }}$	457	mW

Notes:
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. Refer to IPC/JEDEC (J-STD-020B)
c. All bumps welded or soldered to PC Board.
d. Derate $5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS (V+ = 3 V)									
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=2.7 \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V} \text { or } 1.4 \mathrm{~V}^{\mathrm{e}}$		Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$				Full	0		V+	V
On-Resistance ${ }^{\text {d }}$	r_{ON}	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA} \end{gathered}$	$\mathrm{V}_{\text {COM }}=1.5 \mathrm{~V}$	Room Full		2.5	$\begin{aligned} & 3.5 \\ & 3.8 \end{aligned}$	Ω	
ron Flatness ${ }^{\text {d }}$	r_{ON} Flatness		$\mathrm{V}_{\text {COM }}=1,1.5,2 \mathrm{~V}$	Room		0.52	1.0		
On-Resistance Match Between Channels ${ }^{\text {d }}$	$\Delta r_{\text {DS(on) }}$		$\mathrm{V}_{\text {COM }}=1.5 \mathrm{~V}$	Room			0.25		
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$		Room Full	$\begin{aligned} & \hline-2 \\ & -20 \end{aligned}$		$\begin{gathered} 2 \\ 20 \end{gathered}$	nA	
	$\mathrm{I}_{\text {COM(off) }}$			Room Full	$\begin{gathered} -2 \\ -20 \end{gathered}$		$\begin{gathered} \hline 2 \\ 20 \end{gathered}$		
Channel-On Leakage Current	$\mathrm{I}_{\text {COM(on) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\text {COM }}=0.3 \mathrm{~V} / 3 \mathrm{~V}$		Room Full	$\begin{aligned} & \hline-2 \\ & -20 \end{aligned}$		$\begin{gathered} \hline 2 \\ 20 \end{gathered}$		
Digital Control									
Input High Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INH }}$			Full	1.4			V	
Input Low Voltage	$\mathrm{V}_{\text {INL }}$			Full			0.5		
Input Capacitance	$\mathrm{C}_{\text {in }}$			Full		5		pF	
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	VIN	or V+	Full	1		1	$\mu \mathrm{A}$	

SPECIFICATIONS (V+ = 3 V)									
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=2.7 \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V} \text { or } 1.4 \mathrm{~V}^{\mathrm{e}}$		Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$			
Dynamic Characteristics									
Turn-On Time	${ }^{\text {ton }}$	$\begin{gathered} \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$			Room Full		21	$\begin{aligned} & 51 \\ & 52 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$			Room Full		15	$\begin{aligned} & 45 \\ & 46 \end{aligned}$		
Break-Before-Make Time	t_{d}			Full	1				
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$		Room		1		pC	
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		-74		dB	
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-54			
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		$\mathrm{f}=1 \mathrm{MHz}$	Room		-76			
			$\mathrm{f}=10 \mathrm{MHz}$	Room		- 56			
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$, $\mathrm{f}=1 \mathrm{MHz}$		Room		12		pF	
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$			Room		12			
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$			Room		40			
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$			Room		40			
Power Supply									
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$		Room Full			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$	

Vishay Siliconix

SPECIFICATIONS (V+ = 5 V)									
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}_{+}=4.2 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } 2.0 \mathrm{~V}^{\mathrm{e}}$		Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$				Full	0		V+	V
On-Resistance ${ }^{\text {d }}$	$\mathrm{raN}_{\mathrm{O}}$	$\begin{gathered} \mathrm{V}+=4.2 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA} \end{gathered}$	$\mathrm{V}_{\text {COM }}=3.5 \mathrm{~V}$	Room Full		2.2	$\begin{aligned} & 2.9 \\ & 3.1 \end{aligned}$	Ω	
$\mathrm{r}_{\mathrm{ON}} \text { Flatness }^{\mathrm{d}}$	$\begin{gathered} \mathrm{r}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$		$\mathrm{V}_{\text {COM }}=1,2,3.5 \mathrm{~V}$	Room		0.53	1.0		
On-Resistance Match Between Channels ${ }^{\text {d }}$	$\Delta^{\text {d }}$ S(on)		$\mathrm{V}_{\text {COM }}=3.5 \mathrm{~V}$	Room			0.25		
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $I_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$		Room Full	$\begin{gathered} -2 \\ -20 \end{gathered}$		$\begin{gathered} 2 \\ 20 \end{gathered}$	nA	
	$\mathrm{I}_{\text {com(off) }}$			Room Full	$\begin{gathered} \hline-2 \\ -20 \end{gathered}$		$\begin{gathered} \hline 2 \\ 20 \end{gathered}$		
Channel-On Leakage Current	${ }^{\text {COM (on) }}$	$\mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$		Room Full	$\begin{gathered} \hline-2 \\ -20 \end{gathered}$		$\begin{gathered} \hline 2 \\ 20 \end{gathered}$		
Digital Control									
Input High Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INH }}$			Full	2.0			V	
Input Low Voltage	$\mathrm{V}_{\text {INL }}$			Full			0.8		
Input Capacitance	$\mathrm{C}_{\text {in }}$			Full		5		pF A	
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$		Full	1		1		
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\begin{gathered} \mathrm{V}+=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$		Room Full		15	$\begin{array}{r} 45 \\ 46 \\ \hline \end{array}$	ns	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$			Room Full		12	$\begin{aligned} & 42 \\ & 43 \end{aligned}$		
Break-Before-Make Time	t_{d}			Full	1				
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$		Room		1		pC	
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		-74		dB	
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-54			
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		$\mathrm{f}=1 \mathrm{MHz}$	Room		-78			
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-56			
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$		Room		12		pF	
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$			Room		12			
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$			Room		40			
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$			Room		40			
Power Supply									
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}		Room Full			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$	

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V testing, not production tested.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

PACKAGE OUTLINE

MICRO FOOT: 10 BUMP ($4 \times 3,0.5 \mathrm{~mm}$ PITCH, 0.238 mm BUMP HEIGHT)

Recommended Land Pattern

Top Side (Die Back)
$10 \times \varnothing 0.150 \sim 0.229$
Note b
Solder Mask \varnothing ~ Pad Diameter +0.1

Notes (Unless Otherwise Specified):
a. Bump is Lead (Pb)-free $\mathrm{Sn} / \mathrm{Ag} / \mathrm{Cu}$.
b. Non-solder mask defined copper landing pad.
c. Laser Mark on silicon die back; back-lapped, no coating. Shown is not actual marking; sample only.

$\operatorname{Di} \operatorname{Dim}$	Millimeters $^{\mathbf{a}}$		Inches	
	Min	Max	Min	Max
\mathbf{A}	0.688	0.753	0.0271	0.0296
$\mathbf{A}_{\mathbf{1}}$	0.218	0.258	0.0086	0.0102
$\mathbf{A}_{\mathbf{2}}$	0.470	0.495	0.0185	0.0195
\mathbf{b}	0.306	0.346	0.0120	0.0136
\mathbf{D}	1.980	2.020	0.0780	0.0795
\mathbf{E}	1.480	1.520	0.0583	0.0598
\mathbf{e}	0.5 BASIC		0.0197	
BASIC				
\mathbf{S}	0.230	0.270	0.0091	0.0106

Notes:
a. Use millimeters as the primary measurement.

[^0]
Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?73404.

