
74LCX652

LOW VOLT. CMOS OCTAL BUS TRANSCEIVER/REGISTER WITH 5 VOLT TOLERANT INPUTS AND OUTPUTS(3-STATE)

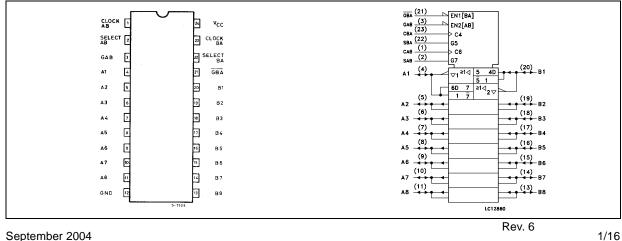
- **5V TOLERANT INPUTS AND OUTPUTS**
- **HIGH SPEED:** t_{PD} = 7.0 ns (MAX.) at V_{CC} = 3V
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $|I_{OH}| = I_{OL} = 24$ mA (MIN) at $V_{CC} = 3V$
- PCI BUS LEVELS GUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS: t_{PI H} ≅ t_{PHI}
- OPERATING VOLTAGE RANGE: $V_{CC}(OPR) = 2.0V$ to 3.6V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 652
- LATCH-UP PERFORMANCE EXCEEDS 500mA (JESD 17)
- ESD PERFORMANCE: HBM > 2000V (MIL STD 883 method 3015); MM > 200V

DESCRIPTION

The 74LCX652 is a low voltage CMOS OCTAL BUS TRANSCEIVER AND REGISTER (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring C^2MOS technology. It is ideal for low power and high speed 3.3V applications; it can be interfaced to 5V signal environment for both inputs and outputs.

Table 1: Order Codes

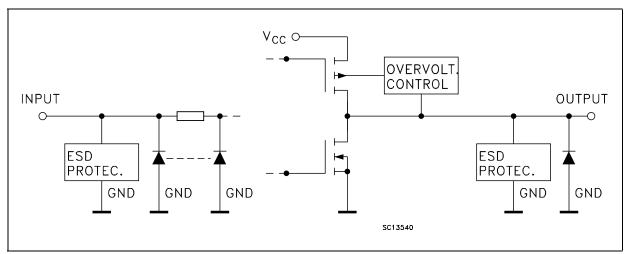
PACKAGE	T & R
SOP	74LCX652RM13TR
TSSOP	74LCX652TTR


This device consists of bus transceiver circuits with 3 state, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal storage registers. Enable (GAB) and (GBA) pins are provided to control the transceiver functions.

Select AB and Select BA control pins are provided to select whether real-time or stored data is transferred. A low input level selects real-time, and a high selects stored data.

Data on the A or B bus, or both, can be stored in the internal D flip-flop by low to high transitions at appropriate clock pins (CAB or CBA) the regardless of the select or enable control pins.

When select AB and select BA are in the real-time transfer mode, it is also possible to store data



without using the internal D-type <u>flip-flops</u> by simultaneously enabling GAB or GBA. In this configuration each output reinforces its input.

It has same speed performance at 3.3V than 5V AC/ACT family, combined with a lower power consumption.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 2: Input And Output Equivalent Circuit

Table 2: Pin Description

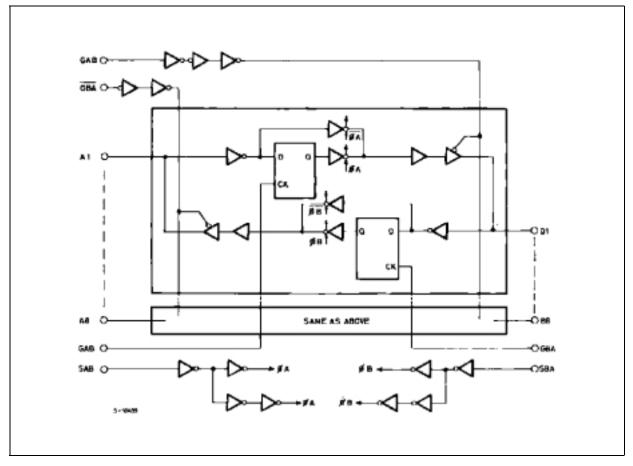

PIN N°	SYMBOL	NAME AND FUNCTION
1	CLOCK AB (CAB)	A to B Clock Input (LOW to HIGH, Edge-Triggered)
2	SELECT AB (SAB)	Select A to B Source Input
3	GAB	Direction Control Input
4, 5, 6, 7, 8, 9, 10, 11	A1 to A8	A Data Inputs/Outputs
20, 19, 18, 17, 16, 15, 14, 13	B1 to B8	B Data Inputs/Outputs
21	GBA	Output Enable Input (Active LOW)
22	SELECT BA (SBA)	Select B to A Source Input
23	CLOCK BA (CBA)	B to A Clock Input (LOW to HIGH, Edge Triggered)
12	GND	Ground (0V)
24	V _{CC}	Positive Supply Voltage

Table 3: Truth Table

GAB	GBA	CAB	СВА	SAB	SBA	Α	В	FUNCTION
						INPUTS	INPUTS	Both the A bus and the B bus are inputs
		Х	Х	Х	Х	Z	Z	The Output functions of the A and B bus are disabled
L	Н			х	х	INPUTS	INPUTS	Both the A and B bus are used for inputs to the internal flip-flops. Data at the bus will be stored on low to high transition of the clock inputs.
						OUTPUTS	INPUTS	The A bus are outputs and the B bus are inputs
		Х*	Х	х	L	L	L	The data at the B bus are displayed at the A bus
		^	^	^	L	Н	H	The data at the B bus are displayed at the A bus
			_			L	L	The data at the B bus are displayed at the A bus. The
L	L	Х*		Х	L	Н	Н	data of the B bus are stored to internal flip-flop on low to high transition of the clock pulse
		Х*	х	х	Н	Qn	Х	The data stored to the internal flip-flop are displayed at the A bus.
						L	L	The data at the B bus are stored to the internal flip-flop
		Х*		Х	Н	Н	Н	on low to high transition of the clock pulse. The states of the internal flip-flops output directly to the A bus.
						INPUTS	OUTPUTS	The A bus are inputs and the B bus are outputs.
		х	X*	L	х	L	L	The data at the A bus are displayed at the B bus
		~	~		~	Н	Н	
		_	N/ +		V	L	L	The data at the A bus are displayed at the B bus. The
н	Н		Х*	L	Х	Н	Н	data of the A bus are stored to the internal flip-flop on low to high transition of the clock pulse.
		х	Х*	Н	х	Х	Qn	The data stored to the internal flip-flops are displayed at the B bus
			Х*	Н	Х	L	L	The data at the A bus are stored to the internal flip-flop
			Х*	Н	Х	Н	Н	on low to high transition of the clock pulse. The states of the internal flip-flops output directly to the B bus.
						OUTPUTS	OUTPUTS	Both the A bus and the B bus are outputs
Н	L	х	х	Н	Н	Qn	Qn	The data stored to the internal flip-flops are displayed at the A and B bus respectively.

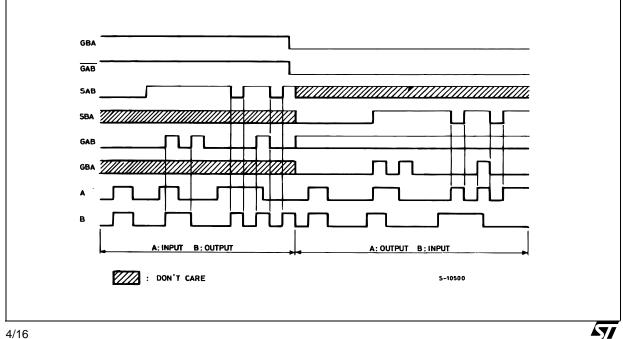

X : Don't Care
Z : High Impedance
Qn : The data stored to the internal flip-flops by most recent low to high transition of the clock inputs
* : The data at the A and B bus will be stored to the internal flip-flops on every low to high transition of the clock inputs.

Figure 3: Logic Diagram

This logic diagram has not be used to estimate propagation delays

Figure 4: Timing Chart

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage (OFF State)	-0.5 to +7.0	V
Vo	DC Output Voltage (High or Low State) (note 1)	-0.5 to V _{CC} + 0.5	V
Ι _{ΙΚ}	DC Input Diode Current	- 50	mA
Ι _{ΟΚ}	DC Output Diode Current (note 2)	- 50	mA
Ι _Ο	DC Output Current	± 50	mA
I _{CC}	DC Supply Current per Supply Pin	± 100	mA
I _{GND}	DC Ground Current per Supply Pin	± 100	mA
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

1) I_O absolute maximum rating must be observed 2) V_O < GND

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage (note 1)	2.0 to 3.6	V
VI	Input Voltage	0 to 5.5	V
Vo	Output Voltage (OFF State)	0 to 5.5	V
Vo	Output Voltage (High or Low State)	0 to V _{CC}	V
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 3.0 to 3.6V)	± 24	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.7V)	± 12	mA
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 2)	0 to 10	ns/V

1) Truth Table guaranteed: 1.5V to 3.6V 2) V_{IN} from 0.8V to 2V at V_{CC} = 3.0V

57

Table 6: DC Specifications

		Те	est Condition					
Symbol	Parameter	v _{cc}		-40 to	85 °C	-55 to 1	-55 to 125 °C	
		(Ŭ)		Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	- 2.7 to 3.6		2.0		2.0		V
V _{IL}	Low Level Input Voltage	2.7 10 3.0			0.8		0.8	V
V _{OH}		2.7 to 3.6	I _O =-100 μA	V _{CC} -0.2		V _{CC} -0.2		
	Voltage	2.7	I _O =-12 mA	2.2		2.2		v
		0.0	I _O =-18 mA	2.4		2.4		v
		3.0	I _O =-24 mA	2.2		2.2		
V _{OL}	Low Level Output	2.7 to 3.6	I _O =100 μA		0.2		0.2	
	Voltage	2.7	I _O =12 mA		0.4		0.4	v
		0.0	I _O =16 mA		0.4		0.4	V
		3.0	I _O =24 mA		0.55		0.55	
Ι _Ι	Input Leakage Current	2.7 to 3.6	V _I = 0 to 5.5V		± 5		±5	μΑ
I _{off}	Power Off Leakage Current	0	V _I or V _O = 5.5V		10		10	μA
I _{OZ}	High Impedance Output Leakage Current	2.7 to 3.6	$V_{I} = V_{IH} \text{ or } V_{IL}$ $V_{O} = 0 \text{ to } V_{CC}$		± 5		± 5	μA
I _{CC}	Quiescent Supply	0.7 to 0.0	$V_I = V_{CC} \text{ or } GND$		10		10	A
	Current	2.7 to 3.6	V_{I} or V_{O} = 3.6 to 5.5V		± 10		± 10	μA
ΔI_{CC}	I _{CC} incr. per Input	2.7 to 3.6	$V_{IH} = V_{CC} - 0.6V$		500		500	μΑ

Table 7: Dynamic Switching Characteristics

		Tes	st Condition		Value		
Symbol	Parameter	v _{cc}		٦	Γ _A = 25 °0	C	Unit
	(Ň)	(V)		Min.	Тур.	Max.	
V _{OLP}	Dynamic Low Level Quiet	3.3	C _L = 50pF V _{IL} = 0V, V _{IH} = 3.3V		0.8		V
V _{OLV}	Output (note 1)	3.5	$V_{IL} = 0V, V_{IH} = 3.3V$		-0.8		v

1) Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

Table 8: A	AC Electrical	Characteristics
------------	---------------	-----------------

		Test Condition				Value				
Symbol	Parameter	V _{cc}	CL	RL	t _s = t _r	-40 to	85 °C	-55 to 125 °C		Unit
		(Ŭ)		(ns)	Min.	Max.	Min.	Max.		
t _{PLH} t _{PHL}	Propagation Delay	2.7				1.5	9.5	1.5	9.5	
	Time (CAB or CBA to An or Bn)	3.0 to 3.6	50	500	2.5	1.5	8.5	1.5	8.5	ns
t _{PLH} t _{PHL}	Propagation Delay	2.7				1.5	8.0	1.5	8.0	
	Time (An to Bn or Bn to An)	3.0 to 3.6	50	500	2.5	1.5	7.0	1.5	7.0	ns
t _{PLH} t _{PHL}	Propagation Delay	2.7				1.5	9.5	1.5	9.5	
	Time (SAB or SBA to An or Bn)	3.0 to 3.6	50	500	2.5	1.5	8.5	1.5	8.5	ns
((Output Enable Time (GAB, GBA to An or Bn)	2.7				1.5	9.5	1.5	9.5	
		3.0 to 3.6	3.0 to 3.6	50 500	00 2.5	1.5	8.5	1.5	8.5	ns
t _{PLZ} t _{PHZ}	Output Disable Time	2.7				1.5	9.5	1.5	9.5	
	(GAB, GBA to An or Bn)	3.0 to 3.6	50	500	2.5	1.5	8.5	1.5	8.5	ns
t _S	Setup Time, HIGH or	2.7				2.5		2.5		
	LOW level Data to CAB, CBA	3.0 to 3.6	50	500	2.5	2.5		2.5		ns
t _h	Hold Time, HIGH or	2.7				1.5		1.5		
	LOW level Data to CAB, CBA	3.0 to 3.6	50	500	2.5	1.5		1.5		ns
t _W	CAB, CBA Pulse	2.7	- 50	500	2.5	4.0		4.0		ns
	Width, HIGH or LOW	3.0 to 3.6	50	500	2.5	3.3		3.3		115
f _{MAX}	Clock Pulse Frequency	3.0 to 3.6	50	500	2.5	150		150		MHz
t _{OSLH} t _{OSHL}	Output To Output Skew Time (note1, 2)	3.0 to 3.6	50	500	2.5		1.0		1.0	ns

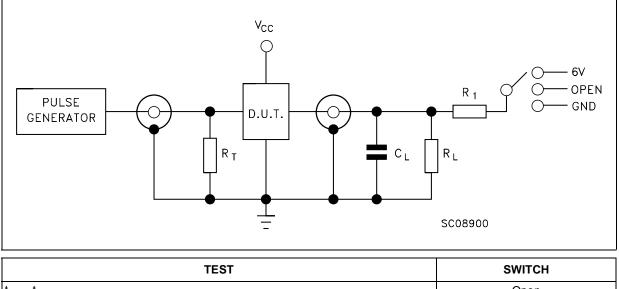
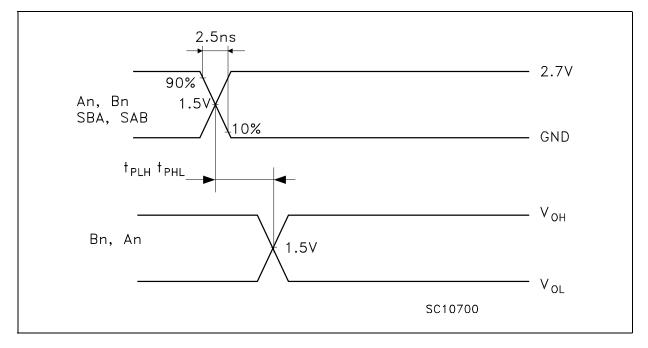

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (t_{OSLH} = | t_{PLHm} - t_{PLHn}|, t_{OSHL} = | t_{PHLm} - t_{PHLn}|) 2) Parameter guaranteed by design

Table 9: Capacitive Characteristics

	Test Condition		Value				
Symbol	Parameter	V _{CC} (V)		T _A = 25 °C		C	Unit
		(V)		Min.	Тур.	Max.	
C _{IN}	Input Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		6		pF
C _{I/O}	I/O Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		10		pF
C _{PD}	Power Dissipation Capacitance (note 1)	3.3	f _{IN} = 10MHz V _{IN} = 0 or V _{CC}		36		pF

1) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/8$ (per circuit)

Figure 5: Test Circuit



1201	ownon
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V
t _{PZH} , t _{PHZ}	GND

 C_L = 50 pF or equivalent (includes jig and probe capacitance) R_L = R1 = 500 Ω or equivalent

 $\bar{R_T} = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 6: Waveform - Propagation Delay Times (f=1MHz; 50% duty cycle)

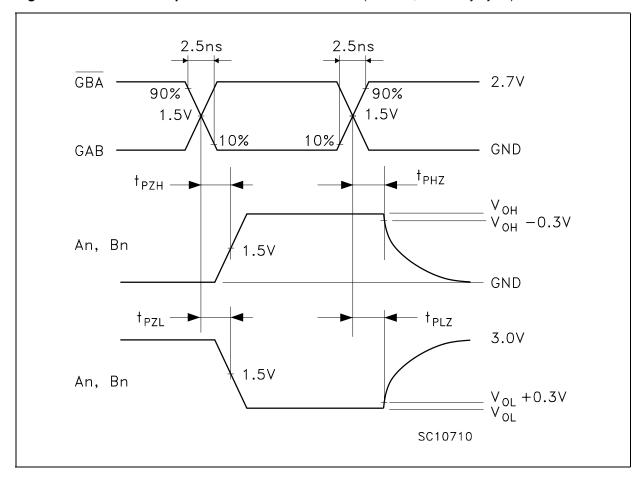


Figure 7: Waveform - Output Enable And Disable Time (f=1MHz; 50% duty cycle)

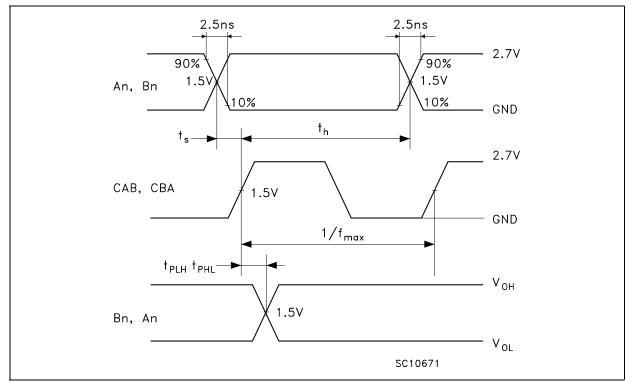
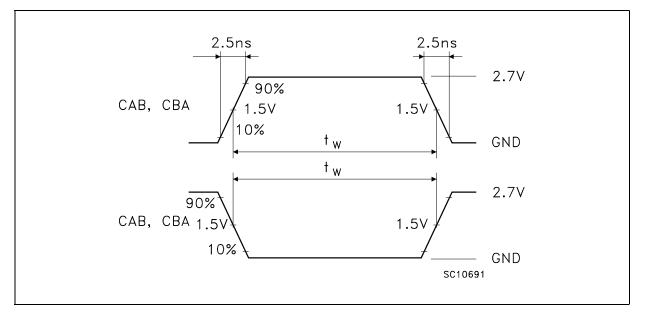
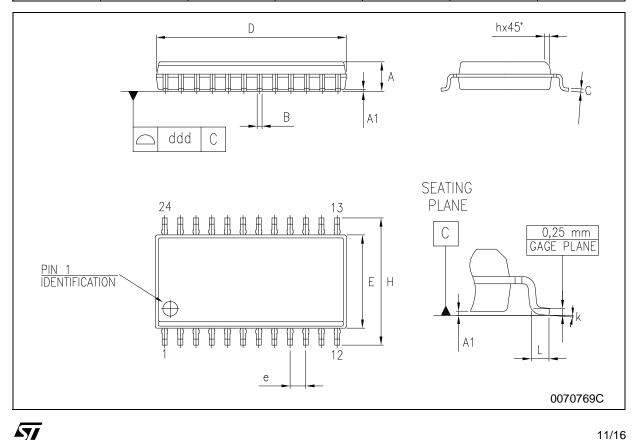
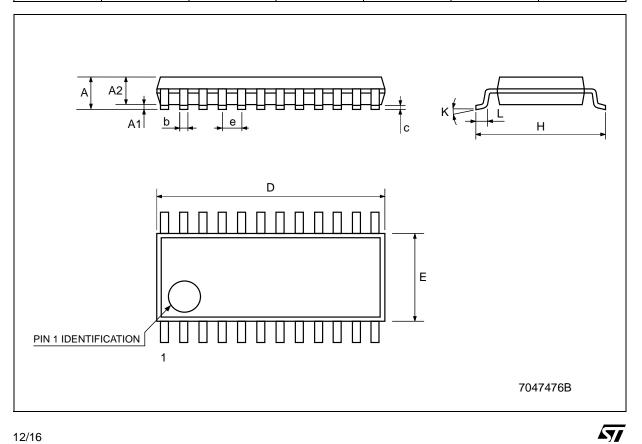



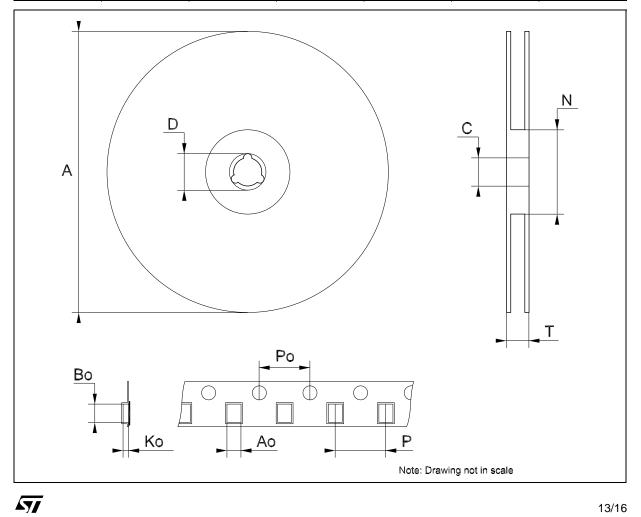
Figure 8: Waveform - Setup And Hold Time, Maximum CK Frequency (f=1MHz; 50% duty cycle)


Figure 9: Waveform - Pulse Width (f=1MHz; 50% duty cycle)

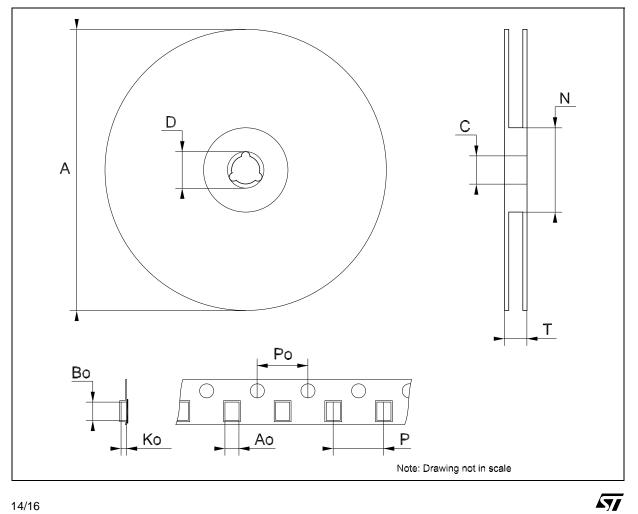
57


SO-24 MECHANICAL DATA

DIM.		mm.		inch				
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
А	2.35		2.65	0.093		0.104		
A1	0.1		0.30	0.004		0.012		
В	0.33		0.51	0.013		0.020		
С	0.23		0.32	0.009		0.013		
D	15.20		15.60	0.598		0.614		
E	7.4		7.6	0.291		0.299		
е		1.27			0.050			
н	10.00		10.65	0.394		0.419		
h	0.25		0.75	0.010		0.030		
L	0.4		1.27	0.016		0.050		
k	0°		8°	0°		8°		
ddd			0.100			0.004		


TSSOP24 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			1.1			0.043
A1	0.05		0.15	0.002		0.006
A2		0.9			0.035	
b	0.19		0.30	0.0075		0.0118
С	0.09		0.20	0.0035		0.0079
D	7.7		7.9	0.303		0.311
Е	4.3		4.5	0.169		0.177
е		0.65 BSC			0.0256 BSC	
Н	6.25		6.5	0.246		0.256
К	0°		8°	0°		8°
L	0.50		0.70	0.020		0.028


Tape & Reel SO-24 MECHANICAL DATA

mm.			inch		
MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
		330			12.992
12.8		13.2	0.504		0.519
20.2			0.795		
60			2.362		
		30.4			1.197
10.8		11.0	0.425		0.433
15.7		15.9	0.618		0.626
2.9		3.1	0.114		0.122
3.9		4.1	0.153		0.161
11.9		12.1	0.468		0.476
	12.8 20.2 60 10.8 15.7 2.9 3.9	MIN. TYP 12.8 12.8 20.2 60 60 10.8 15.7 2.9 3.9 3.9	MIN. TYP MAX. 330 330 12.8 13.2 20.2 13.2 60 30.4 10.8 11.0 15.7 15.9 2.9 3.1 3.9 4.1	MIN. TYP MAX. MIN. 330 330 12.8 13.2 0.504 20.2 0.795 0.795 0.795 60 2.362 2.362 10.8 11.0 0.425 15.7 15.9 0.618 2.9 3.1 0.114 3.9 4.1 0.153	MIN. TYP MAX. MIN. TYP. 330 330 12.8 13.2 0.504 12.8 13.2 0.795 12.8 13.2 0.795 12.8 13.2 0.795 12.8 13.2 0.795 12.8 13.2 0.795 12.8 13.2 0.795 12.8 12.8 13.2 0.795 12.8 13.2 0.795 12.8 13.2 0.795 12.8 12.8 13.2 0.795 12.8

Tape & Reel TSSOP24 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	8.2		8.4	0.323		0.331
Ko	1.7		1.9	0.067		0.075
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Table 10: Revision History

Date	Revision	Description of Changes
15-Sep-2004	6	Ordering Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

۲J/