Sitronix

ST2601B

8-bit Integrated Microcontroller

Datasheet

Note: Sitronix Technology Corp. reserves

Version 1.1
2009/05/07

1 GENERAL DESCRIPTION

The ST2601B is a 8 -bit integrated microcontroller designed with CMOS silicon gate technology. The true static CPU core, power down modes and dual oscillators design makes the ST2601B suitable for power saving and long battery life designs. The ST2601B integrates various logic to support functions on-chip which are needed by system designers.
The ST2601B features the capacity of memory access of maximum 44M bytes and DMA function for fast memory transfer. Six chip-select pins are equipped for direct connection to external ROM, SRAM, Flash memory or other devices. The maximum size for a single external memory device can be 16M bytes.

The ST2601B has 39 I/Os grouped into 5 ports. They are Port-C, Port-D, Port-E (7 pins), Port-F and Port-L, where the Port-F consists of 8 open-drain output pins shared with LCD COMs. Each I/O pins can be programmed to input or output individually. Port-C input pins provide both pull-up and pull-down options. The other input pins only support the pull-up option. In the case of output mode, Port-C output pins have open-drain type and CMOS type options; while the other ports are fixed at CMOS type. The Port-C/D/E/F/L are shared with other system functions. All the properties of the I/O pins are still programmable when they are configured as other special functional signals. This enlarges the flexibility of the usage of the functional signals.

The ability of driving large LCD panels, up to 100×100 in BW mode, and hardware gray-level support may enrich the display information and the diversify the display contents as well. By the patented sharing mechanism design of internal memory, the LCD display function can be done without the need of external display RAM. The variable LCD buffer design also makes it feasible to use small internal display RAM as the buffer of large-sized display. User may free major internal RAM for computing or temporary access while keeping the display content. The clock of LCD (LCDCK) is not only sourced from
main-frequency (OSC), it can also be sourced by OSCX (32 KHz crystal) to make current consumption to be minimum. Besides, VIcd has excellent voltage variation when Vdd changes from 2.4 V to 3.6 V . Further more, ST2601B has inside trimming fuse function for VIcd and LVD.So every ST2601B real-chip will have almost the same default VIcd and LVD voltage.

The ST2601B equips 2 serial communication ports, one UART port and one SPI port, to perform different communications, ex.: RS-232 and IrDA, with system components or other products such as PC, Notebook, and popular PDA. Three clocking outputs can produce synthesized PWM signals or high frequency carrier for IR remote control. This helps products become more useful in our daily life.

The built-in four-channel PSG are designed to generate key tone, melody, voice, and speech. Two dedicated pins with large driving capacity can drive a buzzer/speaker directly.

The ST2601B has a Low Voltage Detector (LVD) for power management usage. The status of internal or external power can be detected and reported to the management software.

Power bouncing during power-on is a major problem when designing a reliable system. The ST2601B equips a Low Voltage Reset function to keep the whole system in reset status when power is low. After the power returns to normal level, the system may recover its original states and keeps working correctly.

With these integrated functions inside, the ST2601B single chip microcontroller is a right solution for PDA, translator, databank and other consumer products.

The block diagram of ST2601B is shown in the following figure.

2 BLOCK DIAGRAM

FIGURE 2-1 ST2601B Block Diagram

3 FEATURES

- Totally static 8-bit CPU

■ ROM: 128k x 8-bit
■ RAM: $1.5 \mathrm{~K} \times 8$-bit

- Stack: Up to 128-level deep
- Operation voltage: $2.4 \mathrm{~V} \sim 3.6 \mathrm{~V}$
- Operation frequency:
-3.0Mhz@2.4V(Min.)
-4.0Mhz@2.7V(Min.)
- LCD Drives
- COM: 36 outputs. Eight shared with one output port
- SEG: 56 outputs. Shared with 3 I/O ports and memory bus signals.
- One 8×8 Signed Multiplier
- Low Voltage Reset (LVR)
- Two levels by code option
- Low Voltage Detector (LVD)
- Programmable 4 levels
- System power or external battery level can be detected.
- Programmable Watchdog Timer (WDT)
- Memory interface to ROM, RAM, Flash
- Memory configuration
- Three kinds of banks for program, data and interrupt
- 12-bit bank registers support up to 44M bytes
- Six programmable chip-selects with 4 modes
- Maximum single device of 16M bytes
- General-Purpose I/O (GPIO) ports
- Up to 39 bit programmable I/Os

8 dedicated CMOS I/Os
23 shared with LCD SEGs
8 open drain output pins shared with LCD COMs

- Bit programmable pull-up for input pins
- Pull-up/down and open-drain/CMOS control for Port-C
- Timer/Counter
- Four 12-bit timers.
- One 8-bit base timer
- Seven fixed base timers
- Three clocking outputs
- Clock sources including Timer0/1, baud rate generator
- Eleven prioritized interrupts with dedicated exception vectors
- External interrupt (edge triggered)
- LCD buffer interrupt
- Base timer interrupt
- Timer0~3 interrupts (x4)
- SPI interrupts (x2)
- UART interrupts (x2)
- Dual clock sources with warm-up timer
- Low frequency crystal oscillator (OSCX)
- High frequency resistor or crysta/resonator 327
(OSC) selected by pin option $455 \mathrm{~K} \sim 4 \mathrm{M} \mathrm{Hz}$
- Direct Memory Access (DMA)
- Block-to-Block transfer
- Block to Single port
- LCD Power Management
- DC-DC converter with 8-level output control
- LC driving voltage regulator with 16 -level control
$-1 / 4,1 / 5,1 / 6$ bias options with 4 voltage followers
- LCD Driver
- 32x28~56x36 resolution, maximum 2016 dots
- One clock source from osc / oscx
- Internal bias resistors(1/4, 1/5, 1/6 bias).
- LCD Controller (LCDC)
- Software programmable display size up to 100X100
- B/W, Hardware 4/16 gray levels with 5-bit palette
- Support 1-/4-/8-bit LCD data bus
- Share system memory with display buffer and with no loss of the CPU time
- LCD buffer extension function to combine both internal and external RAM for larger display
- Diverse functions including virtual screen, panning, scrolling, contrast control and alternating signal generator
- Programmable Sound Generator (PSG)
- Four channels with three playing modes:

9-bit ADPCM, 8-bit PCM and 8-bit melody

- One 16-byte buffer and 6-bit volume control per channel
- Wavetable melody support
- Two dedicated PWM outputs for direct driving
- One 12-bit current DAC
- Universal Asynchronous Receiver/Transmitter (UART)
- Full-duplex operation
- Baud rate generator with one digital PLL
- Standard baud rates of 600 bps to 115.2 kbps
- Both transmitter and receiver buffers supported
- Direct glueless support of IrDA physical layer protocol
- Two sets of I/Os (TX,RX) for two independent devices
- Serial Peripheral Interface (SPI)
- Master and slave modes
- Five serial signals including enable and data-ready
- Both transmitter and receiver buffers supported
- Programmable data length from 7-bit to 16-bit
- VIcd/LVD trimming fuse function:
- VIcd default voltage variation trimming.
- 4-level LVD voltage variation trimming.
- Three power down modes
- WAIO mode
- WAl1 mode
- STP mode

4 SIGNAL DESCRIPTIONS

TABLE 4-1 Signal Function Groups

Function Group	Pad No.	Designation	Description
Power		VCC , PVCC, AVCC	VCC: Power supply for system AVCC: Power supply for LCD function PVCC: Power supply for PSGO and PSGOB
Ground		GND , PGND, AGND	GND: System power ground AGND: Power ground for LCD function PGND: Power ground for PSGO and PSGOB
System control		$\overline{\text { RESET }}$, TEST, MMD/ $\overline{\mathrm{CSO}}$	RESET : Active low system reset signal input TEST: Leave this pin open when normal operation MMD/CS0 : Memory modes selection pin Normal mode: Enable internal ROM. MMD/ $\overline{\text { CSO }}$ is connected to GND. Emulation mode: Disable internal ROM. MMD/ $\overline{\mathrm{CSO}}$ is connected to the chip-select pin of external ROM. During reset period, the MMD/CSO is an internally pulled-up input pin. After reset cycles, MMD/ CSO is changed to be an output pin. It will output signal CSO .
Clock		XIO,OSCI OSCXO,OSCXI, ,	High frequency oscillator (OSC) mode selected by code-option Crystal mode: One crystal or resonator should be connected between OSCl and XIO Resistor oscillator mode: One resistor should be connected between OSCl and VCC OSCXI, OSCXO: Connect one 32768 Hz crystal between these two pins when using low frequency oscillator
External memory bus signals / LCD drivers		$\begin{aligned} & \hline \overline{\mathrm{WR}} / \mathrm{SEG9}, \\ & \overline{\mathrm{RD}} / \mathrm{SEG8} \end{aligned}$	External memory R/W control signals / LCD Segment drivers
		A[22:0]/SEG32~SEG10	External memory address bus / LCD Segment drivers
		D[7:0]/SEG7~SEG0	External memory data bus / LCD Segment drivers
PSG/PWM DAC		PSGO, PSGOB	PSG outputs. Connect to one buzzer or speaker
Chip selects / LCD drivers		$\begin{aligned} & \hline \overline{\text { CS5 }} \sim 1 / \text { 1/PD4~0 / } \\ & \text { SEG33~SEG37, } \\ & \overline{\text { CS6 /A23/PD5 /SEG38 }} \end{aligned}$	I/O port D and chip-select outputs / LCD Segment drivers
UART		RXD0/PC7,TXD0/PC6, RXD1/PD7/SEG40,TXD1/ PD6/SEG39	UART signals and I/Os / LCD Segment drivers
SPI		DATA READY/PC5 SS/PC4, SDO/PC3 SDI/PC2, SCK/PC1	SPI signals and I/Os

TABLE 4-2 Signal Function Groups (continued)

Function Group	Pad No.	Designation	Description
External clock/signal interrupt		INTX/PC0	External interrupt inputs
Clocking output		BCO/PE2/SEG43, TCO1/PE1/SEG42, TCO0/PE0/SEG41	Clocking outputs / LCD Segment drivers
GPIO / LCD drivers		PE6~3/SEG47~SEG44	I/O port E/ LCD Segment drivers
		BLANK/COM0, POFF/COM1, FLM/COM2, LOAD1/COM3, LOAD2/COM4, AC/COM5,CP/COM6, EIO/COMM, LD7~LD0/COM15/COM8	LCD control signals
LCD control signals (for controller mode)	Vout, VICd, V1, V2, V3, V4	LCD voltage sources	
LCD voltage source		C1+, C1-, C2+, C2-	Connect a 0.1 uF between C1+ and C1-, C2+ and C2- repectively.
LCD voltage booster	VIN	Analog input pin of Low Voltage Dector module	
Low Voltage Detector			

5 PAD DIAGRAM

6 DEVICE INFORMATION

1. Pad size: $90 \mathrm{um} \times 90 \mathrm{um}$
2. Substrate: GND
3. Chip size: $3520 \mathrm{um} \times 3800 \mathrm{um}$

PAD No.	Symbol	\mathbf{X}	\mathbf{Y}
1	SEG[14]	-1690.0	1750.5
2	SEG[15]	-1690.0	1640.5
3	SEG[16]	-1690.0	1530.5
4	SEG[17]	-1690.0	1420.5
5	SEG[18]	-1690.0	1315.0
6	SEG[19]	-1690.0	1215.0
7	SEG[20]	-1690.0	1115.0
8	SEG[21]	-1690.0	1015.0
9	SEG[22]	-1690.0	915.0
10	SEG[23]	-1690.0	808.0
11	SEG[24]	-1690.0	702.5
12	SEG[25]	-1690.0	602.5
13	SEG[26]	-1690.0	502.5
14	SEG[27]	-1690.0	402.5
15	SEG[28]	-1690.0	302.5
16	SEG[29]	-1690.0	202.5
17	SEG[30]	-1690.0	102.5
18	SEG[31]	-1690.0	2.5
19	SEG[32]	-1690.0	-101.0
20	SEG[33]	-1690.0	-201.0
21	SEG[34]	-1690.0	-306.5
22	SEG[35]	-1690.0	-416.5
23	SEG[36]	-1690.0	-522.0
24	SEG[37]	-1690.0	-622.0
25	SEG[38]	-1690.0	-722.0
26	SEG[39]	-1690.0	-822.0
27	SEG[40]	-1690.0	-922.0
28	SEG[41]	-1690.0	-1029.0
29	SEG[42]	-1690.0	-1134.5
30	SEG[43]	-1690.0	-1234.5
31	SEG[44]	-1690.0	-1334.5
32	SEG[45]	-1690.0	-1434.5
33	SEG[46]	-1690.0	-1540.0
34	SEG[47]	-1690.0	-1650.0
35	SEG[48]	-1690.0	-1760.0

PAD No.	Symbol	\mathbf{X}	\mathbf{Y}
36	SEG[49]	-1348.3	-1830.0
37	SEG[50]	-1238.3	-1830.0
38	SEG[51]	-1128.3	-1830.0
39	SEG[52]	-1028.3	-1830.0
40	SEG[53]	-928.3	-1830.0
41	SEG[54]	-828.3	-1830.0
42	SEG[55]	-728.3	-1830.0
43	VCC	-607.0	-1830.0
44	XIO	-502.0	-1830.0
45	OSCI	-402.0	-1830.0
46	OSCXO	-302.0	-1830.0
47	OSCXI	-202.0	-1830.0
48	MMD/CS0	-102.0	-1830.0
49	RESETB	-2.0	-1830.0
50	PC[7]	101.7	-1830.0
51	TEST	103.2	-1650.95
52	PC[6]	201.7	-1830.0
53	PC[5]	301.7	-1830.0
54	PC[4]	401.7	-1830.0
55	PC[3]	501.7	-1830.0
56	PC[2]	601.7	-1830.0
57	PC[1]	701.7	-1830.0
58	PC[0]	801.7	-1830.0
59	PVCC	918.8	-1830.0
60	PSGOB	1031.9	-1830.0
61	PSGO	1158.1	-1830.0
62	PGND	1271.2	-1830.0
63	GND	1389.9	-1830.0
64	COM[0]	1690.0	-1786.6
65	COM[1]	1690.0	-1676.6
66	COM[2]	1690.0	-1566.6
67	COM[3]	1690.0	-1466.6
68	COM[4]	1690.0	-1366.6
69	COM[5]	1690.0	-1266.6
70	COM[6]	1690.0	-1166.6

PAD No.	Symbol	\mathbf{X}	\mathbf{Y}
71	COM[7]	1690.0	-1066.6
72	COM[8]	1690.0	-966.6
73	COM[9]	1690.0	-866.6
74	COM[10]	1690.0	-766.6
75	COM[11]	1690.0	-666.6
76	COM[12]	1690.0	-566.6
77	COM[13]	1690.0	-466.6
78	COM[14]	1690.0	-366.6
79	COM[15]	1690.0	-266.6
80	COM[16]	1690.0	-166.6
81	COM[17]	1690.0	-66.6
82	COM[18]	1690.0	33.4
83	COM[19]	1690.0	133.4
84	COM[20]	1690.0	233.4
85	COM[21]	1690.0	333.4
86	COM[22]	1690.0	433.4
87	COM[23]	1690.0	533.4
88	COM[24]	1690.0	633.4
89	COM[25]	1690.0	733.4
90	COM[26]	1690.0	833.4
91	COM[27]	1690.0	933.4
92	COM[28]	1690.0	1033.4
93	COM[29]	1690.0	1133.4
94	COM[30]	1690.0	1233.4
95	COM[31]	1690.0	1333.4
96	COM[32]	1690.0	1434.6
97	COM[33]	1690.0	1534.6
98	COM[34]	1690.0	1644.6
99	COM[35]	1690.0	1754.6
100	VIN	1362.1	1830.0
101	C1-	1234.35	1830.0
102	C2-	1124.35	1830.0
103	C1+	1021.05	1830.0
104	C2+	921.05	1830.0
105	AVCC	819.05	1830.0

PAD No.	Symbol	\mathbf{X}	\mathbf{Y}
106	AGND	717.45	1830.0
107	VOUT	615.45	1830.0
108	VLCD	515.45	1830.0
109	V1	413.95	1830.0
110	V2	313.95	1830.0
111	V3	213.95	1830.0
112	V4	113.55	1830.0
113	SEG[0]	7.95	1830.0
114	SEG[1]	-92.05	1830.0
115	SEG[2]	-192.05	1830.0
116	SEG[3]	-292.05	1830.0
117	SEG[4]	-392.05	1830.0
118	SEG[5]	-492.05	1830.0
119	SEG[6]	-592.05	1830.0
120	SEG[7]	-692.05	1830.0
121	SEG[8]	-792.05	1830.0
122	SEG[9]	-892.05	1830.0
123	SEG[10]	-992.05	1830.0
124	SEG[11]	-1092.05	1830.0
125	SEG[12]	-1202.05	1830.0
126	SEG[13]	-1312.05	1830.0

PAD No.	Symbol	\mathbf{X}	\mathbf{Y}

PAD No.	Symbol	\mathbf{X}	\mathbf{Y}

7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Rations

```
DC Supply Voltage Operating Ambient Temperature Storage Temperature
``` \(\qquad\)
``` to +4.5 V \(-10^{\circ} \mathrm{C}\) to \(+60^{\circ} \mathrm{C}\) \(-10^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
```


7.2 DC/AC Electrical Characteristics

*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. All the ranges are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposed to the absolute maximum rating conditions for extended periods may affect device reliability.

Standard operation conditions: $\mathrm{VCC}=3.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{OSC}=4 \mathrm{M} \mathrm{Hz}$, unless otherwise specified

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Operating Voltage	VCC	2.4	3.0	3.6	V	Fosc $=3 \mathrm{MHz}$
		2.7	3.0	3.6	V	Fosc $=4 \mathrm{MHz}$
Operating Frequency	F_{1}	-	-	3	MHz	$\mathrm{VCC}=2.4 \mathrm{~V} \sim 3.6 \mathrm{~V}$
Operating Frequency	F_{2}	-	-	4	MHz	$\mathrm{VCC}=2.7 \sim 3.6 \mathrm{~V}$
Operating Current	lop		2.5	3	mA	All I/O port are input and pull-up, execute NOP instruction, LCDC on
Standby Current	$I_{\text {sbo }}$		450	550	$\mu \mathrm{A}$	All I/O port are input and pull-up, OSCX on, LCDC off (WAITO mode)
Standby Current	$I_{\text {SB1 }}$		3.5	5	$\mu \mathrm{A}$	All I/O port are input and pull-up, OSCX on, LCDC off (WAIT1 mode)
Standby Current	$I_{\text {SB2 }}$		0.5	1	$\mu \mathrm{A}$	All I/O port are input and pull-up, OSCX off, LCDC off (WAIT1 mode)
Standby Current	$I_{\text {SB3 }}$		100	130	vA	LCD on, sysck = LCDCK = OSCX, OSC off, Wait0, no panel (fast B/W mode)
Input High Voltage	$\mathrm{V}_{\text {IH }}$	0.7 Vcc 0.85 Vcc		$\mathrm{Vcc}+0.3$	V	Port-C/D/E/L RESET
Input Low Voltage	VIL	GND-0.3		$\begin{gathered} 0.3 \mathrm{Vcc} \\ 0.15 \mathrm{Vccc} \end{gathered}$	V V	$\frac{\text { Port-C/D/E/L }}{\overline{\text { RESET }}}$
Pull-up resistance	$\mathrm{R}_{\text {IH }}$		150		$\mathrm{K} \Omega$	Port-C/D/E/L (input Voltage=0.7VCC)
Output high voltage	$\mathrm{V}_{\mathrm{OH} 1}$	0.7Vcc			V	Port-C/D/L ($\mathrm{loH}^{\text {a }}=-6 \mathrm{~mA}$)
Output low voltage	$\mathrm{V}_{\text {OL1 }}$			0.3 Vcc	V	Port-C/D/E/L (lol =9mA)
Output high voltage	$\mathrm{V}_{\text {OH2 }}$	0.7Vcc			V	PSG0/PSGOB(in PWM mode), $\mathrm{I}_{\text {OH }}=35 \mathrm{~mA}$.
Output low voltage	$\mathrm{V}_{\text {OL2 }}$			0.3 Vcc	V	PSGO/PSGOB(in PWM mode), $\mathrm{IoL}=-65 \mathrm{~mA}$.
DAC current		2.4 mA	3	3.6 mA		DAC output current of maximum digital input value
Low Voltage Detector current	ILvR		30	60	$\mu \mathrm{A}$	Total LVD current consumption
VIcd variation		-3\%		+3\%		
INT LVD variation		-4\%		+4\%		
EXT LVD variation		-4\%		+4\%		
SPI clock frequency			-	4.0	MHz	SPI slave mode

7.3 AC Electrical Characteristics

FIGURE 7-1 External Read Timing Diagram

FIGURE 7-2 External Write Timing Diagram

TABLE 7-1 Timing parameters for FIGURE 7-1 and FIGURE 7-2
Standard operation conditions: $\mathrm{VCC}=3.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Characteristic		Rating		
		Min.	Typ.	Max.	
tSA	Address setup time	-	-	10	ns
tHA	Address hold time	0	-	-	ns
tWLC	CS "L" pulse width	166	-	-	ns
tCLWL	CS asserted to $\overline{\mathrm{WR}}$ asserted	-	$1 / 2$ tWLC	-	ns
tWHCH	CS negated after $\overline{\mathrm{WR}}$ is negated	10	-	-	ns
tSDW	CS asserted to data-out is valid	-	$1 / 2$ tWLC	-	ns
tHDW	Data-out hold time after $\overline{\mathrm{WR}}$ is negated	20	-		ns
tCLRL	CS asserted to $\overline{\mathrm{RD}}$ asserted	-	$1 / 2$ tWLC	-	ns
tRHCH	CS negated after $\overline{\mathrm{RD}}$ is negated	10	-	-	ns
tSDR	Data-in valid before $\overline{\mathrm{RD}}$ is negated	30	-	-	ns
tHDR	Data-in hold time after $\overline{\mathrm{RD}}$ is negated	10	-	-	ns
tR	Signal rise time	-	20	-	ns
tF	Signal fall time	-	10	-	ns

7.4 Characteristic Charts

FIGURE 7-3 Frequency of R-OSC as a function of VCC

FIGURE 7-4 Frequency of R-OSC as a function of RESISTANCE

Frequency	
4 MHz	3 V
3 MHz	60 K Ohm
2 MHz	90 K Ohm
1 MHz	140 K Ohm
	300 K Ohm

8 APPLICATION CIRCUITS

ST2601B Application Circuit 1

ST2601B+ST8008+ST8009 Application Circuit

Note:
LR pin of ST8008 is connected to GND.
L/R bit of ST8009 is configured as low by "interface control selection" instruction

9 FEATURE COMPARISON OF ST26XXB SERIES

Part Number	ST2608B	ST2604B	ST2602B	ST2601B
ROM	1M Byte	512K Byte	256K Byte	128K Byte
RAM	5K Byte	3.5K Byte	2.5K Byte	1.5K Byte
Built-in LCD Driver	$\begin{gathered} 36 \text { COMs } \times 72 \\ \text { SEGs } \end{gathered}$	36 COMs X 64 SEGs	36 COMs X 56 SEGs	$\begin{gathered} 36 \text { COMs X } 56 \\ \text { SEGs } \end{gathered}$
Driving LCD with ext. driver	$\begin{gathered} \sim 9000 \text { dots (} 16 \\ \text { gray) } \\ \sim 36000 \text { dots (mono) } \\ \hline \end{gathered}$	~6000 dots (16 gray) ~24000 dots (mono)	~ 4000 dots (16 gray) ~16000 dots (mono)	~2500dots (16 gray) ~ 10000 dots (mono)
Dedicated I/O	24 (PA, PC, PL)	16 (PA, PC)	8 (PC)	8 (PC)
LCD-Shared I/O	$\begin{gathered} 32 \text { (PB, PD, PE, } \\ \mathrm{PF}) \end{gathered}$	$\begin{gathered} 39 \text { (PB[6:0], PD, PE, } \\ \text { PL, PF) } \end{gathered}$	$\begin{gathered} 31 \text { (PD, PE[6:0], PL, } \\ \text { PF) } \end{gathered}$	$\begin{gathered} 31 \text { (PD, PE[6:0], PL, } \\ \text { PF) } \end{gathered}$
LCD gray level	16 gray levels			
PSG/ volume-control	4-channel wavetable / 64 levels			
DAC	9-bit PWM, 12-bit current DAC			
Low voltage detector	4 levels			
Low voltage reset	Yes			
Watchdog timer	Yes			
Serieal interface	UART, SPI, IrDA			
Serieal interface				
Trimming fuse	YES			
LCDCK=32KHz	YES			

9.1 LCFG Setting Difference of ST2600B series

ST2608B

CFGS[2~0]	Pad Definition								
	SEG0~31	SEG32	SEG33~38	SEG39	SEG40	SEG41~47	SEG48~55	SEG56~63	SEG64~71
00X	SEG0~71								
010	SEG0~63								PE0~PE7
011	SEG0~55							PB0~PB7	PE0~PE7
100	SEG0~47						No Use	PB0~PB7	PE0~PE7
101	SEG0~31	No Use	PD0~PD7			No Use		PB0~PB7	PE0~PE7
110	A/D Bus		PD0~PD6		SEG0~31				
111	A/D Bus		PD0~PD7			No Use		PB0~PB7	PE0~PE7

ST2604/ST2604B

CFGS[2~0]	Pad Definition						
	SEG0~31	SEG32	SEG33~39	SEG40	EG41~47	G48~55	SEG56~63
000	SEG0 ~ 63						
001	SEG0 ~ 39			PD7	PB0 ~ 6	PE0 ~ 7	PLO ~ 7
010	SEG0 ~ 63						
011	SEG0 ~ 55						PLO ~ 7
100	SEG0 ~ 47					PE0 ~ 7	PLO ~ 7
101	SEG0 ~ 31	A22	PD0 ~ 7		PB0 ~ 6	PE0 ~ 7	PLO ~ 7
110	A/D bus		PDO ~ 7		PB0 ~ 6	PEO ~ 7	PLO ~ 7
111	A/D bus		PD0 ~ 7		PB0 ~ 6	PE0 ~ 7	PLO ~ 7

ST2601B / ST2602B

CFGS[2~0]	Pad Definition					
	SEG0~31	SEG32	SEG33~39	SEG	EG41~4	G48~55
000	SEG0 ~ 55					
001	SEG0 ~ 39			PD7	PE0 ~ 6	PLO ~ 7
010	SEG0 ~ 55					
011	SEG0 ~ 55					
100	SEG0 ~ 47					PLO ~ 7
101	SEG0 ~ 31	A22	PD0 ~ 7		PE0 ~ 6	PLO ~ 7
110	A/D bus		PD0 ~ 7		PE0 ~ 6	PLO ~ 7
111	A/D bus		PD0 ~ 7		PE0 ~ 6	PLO ~ 7

10 CHECK LIST

Check List of ST2601B- $\square \square \square \square$	
8-Bit Microcontroller With 128K Bytes ROM	
CODE OPTION LOW VOLTAGE RESET	$\square 1.4$ Volt $\square 2.1$ Volt
OSCILLATOR	$\square 32768 \mathrm{~Hz}$ Crystal \square R-OSC $\mathrm{MHz}($ Resistor $=$ $\mathrm{K} \Omega)$ \square Resonator \square Crystal \quad MHz
OPERATING VOLTAGE	$\square 2.4 \mathrm{~V} \sim 3.6 \mathrm{~V}$ $\square 2.7 \mathrm{~V} \sim 3.6 \mathrm{~V}$ \square Regulator V\square Other Range $\sim \quad \mathrm{V}$
	Note: Maximum operating frequency $=4.0 \mathrm{Mhz@2.7V}$, 3.0 Mhz@2.4V
BATTERY	\square AAAx $\quad \square$
POWER DOWN MODES	\square WAl-0 \square WAI-1
LOW VOLTAGE DETECTOR	
UART	\square Enabled, Baud Rate: bps \square Disabled
SPI	\square Enabled, Bit Rate: bps $\quad \square$ Disabled
```ST2600B EV mode Selection Please check ST2600B DVB (PCB-300)```	
LCD SPECIFICATIONS	$\begin{array}{lll}\text { Resolution: } \\ \text { Frame Rate: } & \text { x } & \text { Duty: } 1 / \quad \begin{array}{c}\text { Bias: } 1 / \\ \text { Alternation: Every } \\ \square\end{array} \text { Frame } \quad \square\end{array} \begin{array}{r}\text { V } \\ \text { Lines }\end{array}$
	Driver: $\square$ ST8012x $\quad \square$ ST8008x $\quad \square$ ST8009x $\quad \square$ ST8011x
LCD Gray-level	$\square$ Black and White $\square 4$ Gray-level $\square 16$ Gray-level
PSG mode	Current-type DAC PWM-single pin PWM-two pin push pull PWM-two pin two end
Register Value	


Data sheet	ST2601B user's manual Ver			
CODE FILE:	BIN	DATE(Y/M/D): 20	/	/
CHECK SUM: $\quad \square \square \square \square \mathrm{H}$ (Byte Mode)				
Note: $\quad$ a. File format must be binary and the extension should be ".BIN".   b. File should be wrapped in ZIP format for transferring or e-mailing.   c. Only single file is allowed.   d. File length is 128 K bytes.   e. Functions should be checked on the emulation board or by real chip.   f. Electric characteristics of the emulation board are not identical with those of the real chip.				
CUSTOMER				
COMPANY				
SIGNATURE				
SITRONIX				
FAE/SA				
SALSE				

## Project Name

DATE:

ITEM	CHECK	NOTE	
1.	Make sure the resistor of R-OSC matches the desired frequency and VCC		
2.	Make sure the referenced data sheet is the most updated version		
3.	After power on, enter wait-1 mode for0.5 second before normal operation		
4.	Initialize user RAM and every related control register		
5.	Confirm VIcd level, duty, bias, frame rate, alternating rate and the display quality of   LCD		
6.	Make sure to set LCKR=00h before turning off LCD function		
7.	Make sure to implement a mechanism to fine-tune LCD contrast level. The   mechanism could be pin-option or keying-adjustment.		
8.	Confirm PSG output mode: Current DAC or one of three PWM modes		
9.	Before entering power down mode, turn off unused peripheral such as LCD   controller, PSG, Current DAC and LVD		
10.	Confirm I/O direction, default state and function-enable bits. Enable pull-up for   unused input pins		
11.	Read from an input port after the signals are stable. Ex. when doing key scan,   delay 12 us from a new scan value then read the return lines.		
12.	If an input connects to VCC or GND directly, make sure to remove any DC current   from internal pull-up/down resistor after the status is read.		
	Do not use "read-modify-write" instructions, e.g. ROR and SMBO, to the registers   that are read-only, write-only or have different functions for read and write. The		
13.	registers at least include PA ~ PF, PL, PCL, PSGxA, PSGxB, TxCH, TxCL, PRS,   BTSR, BTC, MULL, MULH, MISC, SYS, IREQL, IREQH, LSSAL, LSSAH, LVPW,   LCKR, LFRA, LPAL, SDATAH, SDATAL, SSR, DMSL, DMSH, DMDL, DMDH,		
DCNTL, DCNTH, LVCTR, UDATA and USR.			

## Engineer

Manager

## ST26xxB application note:

## Content:

1. PSG: Current-DAC and PWM application circuit
2. Methods to make up LCD voltage deviation
3. Vertical Cross talk on LCD display
4. How to use IrDA mode to generate 38 kHz carrier with data?
5. LCDCK=32k clock source on ST2602B/ST2608B display
6. System clock switching from OSC to OSCX
7. Measure RC-OSC system clock
8. IrDA mode application note
9. ST26xx UART details
10. IrDA BGRCK generation source
11. OC-OSC / X'tal application circuit
12. LCD blink cause by PSG
13. How to measure the internal current of ST2600B?
14. Ways to save power consumption
15. 32 KHz (OSCX) application circuit
16. ST26XX+ST8008 CASCADE MODE CONNECTION
17. Standard flow for switching I/O and segment
18. LCDCK $=32 \mathrm{~K}$ with cascade mode
19. User Manual for ST2600B external bus usage
20. Pull-up resistance of D0~D7 for current issue when using ST75xx

Version 1.09

## <PSG: Current-DAC and PWM application circuit>

Description:
(These AP circuits are suitable for ST26xx series IC)


Figure 1 PWM mode application circuit


Figure 2 Current-DAC mode application circuit

## <Methods to make up LCD voltage deviation >

Notice1: In order to cover the variation of VLCD of LCD panel, be sure to reserve pin-option by GPIO to change the status of VLCD( bit0:3 of register LREG). Here we suggest that there are at least 5 -level of voltage pin-option for VLCD. If the GPIO is not enough to make pin-option, programmer can use key-return-line method for power on pin-option.

For example: make pin-option for change VLCD at.../5.6/5.8/6.0V/6.2V/6.4/...
Notice2: Programmer should add a contrast controller function to adjust VLCD for the convenience of end-user to change the contrast as they like.

For example: VLCD is pre-set at 6.2 by pin-option, end-users can also adjust the contrast.../5.8/5.9V/6.0V/6.2V/6.2V/6.3/6.4/...by using contrast controller function.

Notice3: Verifying the performance of voice on ST2602/2604/2608 DEMO boards. Because ST2600B DVB can not provide the totally voice efficacy, such like the volume and the quality of voice. So we strongly suggest to verify voice playing on ST2602B/ST2608B DEMO boards before MASK.
(Ps...Because LCD SEG pins are shared with external EPROM, so the picture can not be verified on DEMO boards.)

## <Vertical Cross talk on LCD display>

Description: Vertical Cross talk on LCD display


Solution: Vertical cross talk usually happens when the differential voltage of V0~V4 are not closely. In this case, increase $\mathrm{C} 0 \sim \mathrm{C} 4$ (recommend $>1 \mathrm{uF}$ ) will eliminate this problem. Fine tuning the value of capacitance to get the best LCD quality.


## <How to use IrDA mode to generate 38 kHz carrier with data?>

Port-E-2 (PE2) is shared with clock signal output function, and the frequency of this pin is programmable. Programmer can define which signal pattern is " 0 ", and which signal is " 1 "

For example, using Timer_interrupt to enable/disable PE2 function, and programmers can produce the signal pattern which means "0" or "1"
The same way, receive side can decode the signal by encode information.


## <LCDCK=32k clock source on ST2602B/ST2608B display>

(1) Control register

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	1 Bit 0	Default
\$047	LCTR	R/W	LPWR	BLNK	REV	CAS	GL[3]	GL[2]	GL[1]	1] GL[0]	10000000
Bit 3~2: GL[3:2] : LCD gray-level selection bit$\begin{aligned} & 00=\mathrm{B} / \mathrm{W} . \\ & 01=4 \text { gray } \\ & 10=16 \text { gray } \\ & 11=\text { fast } B / W \text { mode } \end{aligned}$											
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$048	LCKR	W	-	-	LMOD[1]	LMOD[0]	LCK[3] L	LCK[2]	LCK[1]	LCK[0]	--00 0000
Bit [5:4]: LMOD : LCD data bus mode selection   $00=1$-bit mode   $01=4$-bit mode   $1 \mathrm{X}=8$-bit mode   Bit 3~0: LCKR[3:0] : LCD clock selection (when SYSCK=OSCK)											
	LCKR[3:0]		LCDCK (B/W, 4G, 16G mode)				LCDCK (fast B/W mode)				
			1-bit mode (LMOD=00)	4-bit   (LMO	$\begin{array}{c\|c} \hline \text { 1ode } \\ ==01) & \begin{array}{c} 8-1 \\ \text { (Li } \end{array} \\ \hline \end{array}$	it mode $\mathrm{OD}=1 \mathrm{X}$ )	$\begin{aligned} & \text { 1-bit mode } \\ & (\text { LMOD }=00) \end{aligned}$		$\begin{aligned} & \hline \text { mode } \\ & \mathrm{D}=01) \end{aligned}$	8-bit mode (LMOD=1X)	
		000	SYSCK				SYSCK/8				
		001	SYSCK/2				SYSCK/16				
		010	SYSCK /4				SYSCK /32				
		011	SYSCK /6				SYSCK /48				
		100	SYSCK /8				SYSCK /64				
		101	SYSCK /10				SYSCK /80				
		110	SYSCK /12				SYSCK /96				
		111	SYSCK /14				SYSCK /112				
		000	SYSCK /16				SYSCK/128				
		001	SYSCK /18				SYSCK /144				
		010	SYSCK /20				SYSCK /160				
		011	SYSCK /22				SYSCK /176				
		100	SYSCK /24				SYSCK /192				
		1101	SYSCK /26				SYSCK /208				
		1110	SYSCK /28				SYSCK /224				
		1111	SYSCK /30				SYSCK /240				

(3) Sysclk is RC:

1. Lcd clock source is Sysclk. If Sysclk is RC, LCD clock source will be RC.
2. In ST2602B, if LCD clock source is RC, B/W, 4G, 16G mode are the same as ST2602.
3. The fast $B / W$ mode is added. In fast $B / W$ mode, the LCDCK will be divided by 8.
4. IF Sysclk is RC and in fast B/W mode, the frame rate is determined as below.

$$
\text { Frame Rate }=\frac{L C D C K}{(L X M A X+L F R A+1) \cdot(L Y M A X * 2)}
$$

(4) Sysclk is 32 K :

1. If Sysclk is 32 k , LCD clock source will be 32 k .
2. If Sysclk is $32 k, L C D$ can only display B/W.
3. If LCD clock source is 32 k , please set $\mathrm{GL}[3: 2]=11$ (fash B/W mode). In this condition, LCKR and LPAN control registers will avoid. LCDCK is always 32 k hz and the frame rate is only controlled by LFRA control register.
4. If LCD clock source is 32 k , DC-DC converter clock (LPCK) will also become 32 k . So, user must to change LPCK register to get higher pump frequency(We will provide a macro to take care this part).
5. IF Sysclk is 32 K and in fast $\mathrm{B} / \mathrm{W}$ mode, the frame rate is determined by below equation.

$$
\text { Frame Rate }=\frac{L C D C K}{(L X M A X+L F R A+1) \cdot(L Y M A X * 2)} \text {, where LCDCK is } 32 \mathrm{~K} \mathrm{hz.}
$$

(5) change Sysclk from RC to 32 K

Step1: let LCD in fast B/W mode
Step2: use the macro "SWITCH_SYSCLK_RC_TO_32K" to change Sysclk to 32 K
(6) change Sysclk from 32 K to RC

Step1: use the macro "SWITCH_SYSCLK_32K_TO_RC " to change Sysclk to RC
(7) sample code

1. When $B / W, 4 G, 16 G$ mode change to fast $B / W$ mode or fast $B / W$ mode change to $B / W, 4 G, 16 G$ mode, must turn off $L C D$.
for example: B/W, 4G, 16G mode change to fast B/W mode.
```
;====Step1 LCD OFF ===
 LDA LCTR
 ORA \#10000000B
 STA LCTR
\(;====\) Step 2 set GL[3:2]=11, fast B/W mode \(===\)
 LDA LCTR
 ORA \#00001100B
 STA LCTR
```

;=== Step3 set Frame rate about $65 \mathrm{~Hz}===$
LDA \#6 ;when Sysclk is changed to 32 k , LFRA can't be modified. Thus LFRA
STA LFRA ;is determined by equation2. Let the frame rate in sysclk=32k mode is
;about 65hz
LDA \#00001000B ;since LFRA has been determined, LCKR is determined by frame rate equation.
STA LCKR ;Let the frame rate in Sysclk=RC mode is about 65hz
;===Step4 LCD ON ===
LDA LCTR
AND \#~10000000B
STA LCTR
[After setting up fast B/W mode, then switch SYSCK from RC to 32k]
2. Sysck from RC change to 32 k ...

Please use the macro "SWITCH_SYSCLK_RC_TO_32K".
This macro will use 4 bytes RAM. They are show below.

;===== used ram ====		
LCD_FLAG	DS	1
IENAL_BAK		DS
IENAH_BAK		1
IENS	1	
LPCK_BAK	DS	1

And this macro will also use LCD interrupt. Please copy below program in LCD interrupt service routine.
;==== LCD interrupt service routine ===
LCDFR_ISR:
PHA
LDA \#FFH
STA LCD_FLAG
RMB7 IENĀL ;DISABPLE LCD INTERRUPT
PLA
RTI
The declaration of this macro is show below (please don't modify this macro)
SWITCH_SYSCLK_RC_TO_32K
.MACRO
;=== backup LPCK ===
LDA LPCK
STA LPCK_BAK
LDA \#2
STA LPCK
;=== BACKUP IENAL/H AND ONLY ENABLE LCD INT ===
SEI
LDA IENAL
STA IENAL_BAK
LDA IENAH
STA IENAH_BAK
LDA \#10000000B ${ }^{-}$;ONLY ENABLE LCD INT
STA IENAL
STZ IENAH
LDA \#01111111B

```
 STA IREQL
 STZ LCD_FLAG
 CLI
?WAIT_LCD_INT_RC232K:
 LDA LCD FLAG
 BEQ ?WAIT_LCD_INT_RC232K
 ;=== change SYSCLK = 32K ===
 LDA SYS
 ORA #10000000B
 STA SYS
 NOP
 NOP
 NOP
 BBR7SYS,$
 ;=== RECOVERY IENAL/H ===
 SEI
 LDA IENAL BAK
 STA IENAL
 LDA IENAH_BAK
 STA IENAH
 CLI
 .ENDM
```

3. Sysck from 32 K change to $R C$. (After changing to $R C$, LCD must be in fast $B / W$ mode.)

Please use the macro "SWITCH_SYSCLK_32K_TO_RC".
SWITCH_SYSCLK_32K_TO_RC .MACRO
;=== BACKUP IENAL/H AND ONLY ENABLE LCD INT ===
SEI
LDA IENAL
STA IENAL_BAK
LDA IENAH
STA IENAH_BAK
LDA \#10000000B ;ONLY ENABLE LCD INT
STA IENAL
STZ IENAH
LDA \#01111111B
STA IREQL ;CLEAR LCD INT REQUEST
STZ LCD_FLAG
CLI
?WAIT_LCD_INT_32K2RC:
LDA LCD FLAG
BEQ ?WAIT_LCD_INT_32K2RC
;=== change SYSCLK = RC ===
LDA SYS
AND \#~10000000B
STA SYS
NOP
NOP
NOP
BBS7SYS,\$
;=== RECOVERY IENAL/H ===
SEI
LDA IENAL BAK
STA IENAL
LDA IENAH_BAK
STA IĒNAH
CLI
LDA LPCK_BAK
STA LPCK
.ENDM

## <System clock switching from OSC to OSCX>

Cause warm-up time is different when OSC is RC-OSC or X'tal.
To make sure the system clock has switched to OSCX, or error will happen.
Sample code, please follow up...
LDA SYS
ORA \#80H
STA SYS ; switch OSC to OSCX
NOP
NOP
NOP
BBR7 SYS,\$ ; branch self until OSC is changed to OSCX

## <Measure RC-OSC system clock>

Since programmer wants to measure the system clock when using RC-OSC, please follow up.
Please connect a $3 \mathrm{~K}-0 \mathrm{hm}$ resistor between Vdd and XIO. You can get a periodic signal output from the XIO pin. It's RC osc signal.

## <IrDA mode application note>

Since IrDA has strictly protocol when transmit/receive data.
We suggest programmers use X'tal to be system clock instead of RC-OSC if IrDA signals are needed.
Programmer can use ceramic-OSC to gain some profit since it's cheaper than X'tal.

## <ST26xx UART details>

BGRCK: BGRCK is used to produce UART baud rate, and BGRCK comes from OSC(main frequency) and fine tuning by 32768 Hz crystal(REF) to make output baud rate is a stable frequency signal and will not effected by VDD variation.( RC-OSC frequency will change when VDD changes.)


Baud rate: Baud rate comes from BGRCK, and is determined by BDIV and BRS registers. The "Error rate" of baud rate is the maximum positive/negative inaccuracy of output baud rate.
For example: If baud rate $=9600 \mathrm{bps}$ and OSC is in the rage of $3.72 \sim 4.28 \mathrm{MHz}$, programmer should set BRS=61, BDIV=13 to get the best output baud rate which has error of $0.1 \%$. So the real output baud rate will be in the range of [9600x0.999:9600x1.001].


## < IrDA BGRCK generation source >

BGRCK can be generated by two ways.

1. When bit7 of BCTR is 0, Haredware PLL which is used to stable BGRCK output will be operated. Cause BGRCK comes from OSC, since RC-OSC can't produce stable frequency, ST26xx hardware will fine tune BGRCK output frequency referenced from 32768 Hz crystal to make BGRCK is in the range no matter VDD variation.
2. When bit7 of BCTR is 1 :

It's used when OSC is X'tal. Since X'tal can produce stable frequency, and BGRCK comes from OSC, so BGRCK will also be stable if OSC is X'tal. Programmer can get better BGRCK output to make UART signal much more accurate by this way.
When bit7 of BCTR is 1 , UART baud rate will be get in the following formula:
baud rate = Sysclk/(BDIV*16) (no need to set "BRS")

## < How to avoid LCD blink caused by PSG >

## Description:

LCD display may blink when LCD function and PSG function are playing in the same time. LCD blink caused by CPU can't stand the load of calculation. So the LCD display my lag. And We can find there has blink problem.

## Solution:

By using internal DMA function to move LCD data instead of programming method can solve part of this kind of problem. If there still has the same problem, we can separate LCD data into 16 parts and use DMA method to move into LCD RAM. The LCD blink problem can be totally solved.
Example program can be found by SA engineer. !!Please email us!!!

## < How to measure the internal current of ST2600B?>

When finish developing program by ST2600B, programmer should measure the current consumption of totally possible situations. In that time programmer can use ST2600B stand alone mode with running external ROM. In order to only measure the current from IC, the power for External ROM should be independent. And then we can measure the current from IC only!!

## < Ways to save power consumption >

There are some factors which can effect current consumption...
(1) Main-frequency: Higher frequency needs more current
(2) DAC mode cost much current than PWM mode
(3) VIcd voltage level : Higher VIcd pays higher current.
(4) Using EPROM will cost more current than no use.
(5) Input without any connection will randomly cost power
(6) WAIT mode with considerable program can save lots of power
(7) Larger panel will pay more current.
(8) Un-ideal hardware connection will cause unknown current waste.

## <32KHz (OSCX) application circuit >

Below shows the application circuit of 32 KHz X'tal connection. Please follow it.
The original application circuit as below:


The modified circuit as follow:


## <ST26XX+ST8008 CASCADE MODE CONNECTION>



This interface is suitable for ST26xx series IC.
Notice: ST26xxB can only output common signal when cascade mode.
User can not mix the segment from ST26xxB and the segment from other LCD drivers. It's because the LCD driving ability of ST26xxB and other LCD drivers are not the same. If user mix them, the performance of LCD display may be bad. (Color block or cross-talk)

## < Standard flow for switching I/O and segment >

We know that there are many I/O which are shared with LCD segment.
And the configure is determined by LCFG register.
Here is the standard flow of configure I/O or segment, please follow up. Or programmer will not configure I/O possibly.
(1) Please configure LCFG first!!
(2) And then configure PCA/PCB/PCC/PCD/PCE/PCL
(3) Finally configure PA/PB/PC/PD/PE/PL

Sample code:

LDA	\#FFH	
STA	LCFG	; enable all I/O
STA	PCL	; configure PL as output
STA	PL	; PLO~PL7 high status

## < LCDCK=32K with cascade mode >

There has some limit when programmer use LCDCK=32K and cascade.
Programmer can use ST26 with LCD cascade mode, it's no doubt. Also, programmer can use cascade mode combine with LCDCK from $32 \mathrm{KHz}(\mathrm{OSCX})$.
But user should take care one thing as following:
We know ST26 can support Cascade 1/2/4-bit data bus mode, however, LCDCK=32K function can only support 8-bit mode!!
So, when programmer use these two functions in the same time, MCU will push 8-bit data per clock cause LCDCK=32K function, but cascade mode maximum push 4-bit data out to LCD driver per clock, so you will lose 4-bit data(bit4~bit7) and make display data wrong.
The solution is to modify the picture, let MCU push 8-bit every clock, and we separate it every 4 -bit data into 8 bit data as picture 2. and we can solve it. Mention that because LCDCK=32K can maximum load $36 \times 80$ dots picture, by above condition, we finally can push $36 \times 40$ dots picture to show on LCD since we only use half of data (first 4-bit).


Notice: ST26xxB can only output common signal when cascade mode.
User can not mix the segment from ST26xxB and the segment from other LCD drivers. It's because the LCD driving ability of ST26xxB and other LCD drivers are not the same. If user mix them, the performance of LCD display may be bad. (Color block or cross-talk)

## < User Manual for ST2600B external bus usage > [Description]

Since users may use external memory bus to access external ROM, FLASH, or LCD driver, we draw this manual to tell the
details and notice when using external bus by ST2600B in two mode: (1)Stand alone mode (2) ICE-mode
(1) When using ST2600B Stand alone mode:

External memory bus can be output directly by ST2600B DVB (PCB-300) J22 pin-1 to pin-32
(2) When using ST2600B ICE mode:

Because external data can be controlled by PC through ST-ICE, so the external bus will be shared with ICE connector pins (PCB-300-J15)
(a) Please first amount 74 hc 32 on U11 and U12.
(b) PCB-300 J15 pins allocation as following:

J15

2 | $V C C$ | $A 18$ | $A 19$ | $A 20$ | $A 21$ | $A 22$ | $A 23$ | $D 0$ | $D 1$ | $D 2$ | $D 3$ | $D 4$ | $D 5$ | $D 6$ | $D 7$ | $W R$ | $R D$ | $g n d$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $A 0$ | $A 1$ | $A 2$ | $A 3$ | $A 4$ | $A 5$ | $A 6$ | $A 7$ | $A 8$ | $A 9$ | $A 10$ | $A 11$ | $A 12$ | $A 13$ | $A 14$ | $A 15$ | $A 16$ |

(c) ST2600B DVB should be connected to ST-ICE by J15, and also be connected to external bus by above table

## < Pull-up resistance of D0~D7 for current issue when using ST75xx >

Description: When entering sleep mode, D0~D7 of ST75xx will be floating, and make current consumption (about 120uA). It can be solved by adding 81 M -ohm resistance on D0~D7.


Note: The pull up resister of D7~ D0 are necessary to avoid the current issue.

## 11 REVISIONS

REVISION	DESCRIPTION	PAGE	DATE
1.00	First Release		$2006 / 11$
1.15	Add ST26xx application note	22	$2009 / 5 / 7$

