

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M306V8FJFP are single-chip microcomputers using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 116-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. They also feature a built-in OSD display function and data slicer, making them ideal for closed caption and ID1 for TV control.

Applications

ΤV

-----Table of Contents-----

DESCRIPTION	1
Central Processing Unit (CPU)	9
Reset	22
Processor Mode	28
Clock Generating Circuit	50
Protection	67
Interrupts	68
Watchdog Timer	89
DMAC	91
Timer	101
Serial I/O	123

A/D Converter	156
Multi-master I ² C-BUS Interface	170
Data Slicer	190
HSYNC Counter	203
OSD Functions	204
Programmable I/O Ports	260
ELECTRICAL CHARACTERISTICS	295
Flash Memory Version	316
Usage Precaution	348
PACKAGE OUTLINE	363

REJ03B0082-0131 Rev.1.31 Apr 18, 2005

Performance Outline

Table 1.1. Performance outline of M306V8FJFP

	Item	Performance		
Number of basic instructions		91 instructions		
Shortest instruction execution time		62.5 ns (f(BCLK)= 16MHz		
Memory	ROM	(See the product list)		
capacity	RAM	(See the product list)		
I/O port	P0 to P10	75		
Multifunction	TA0, TA1, TA2, TA3, TA4	16 bits output x 5 channels		
timer	TB0, TB1, TB2, TB3, TB4, TB5	16 bits input x 6 channels		
Serial I/O	UART0, UART1, UART2	(UART, clock sync. serial I/O, IEBus (Note 2)) x 3		
A/D converter	•	8 bits x 13 channels		
Data slicer		2 circuits		
Hsync counte	r	1 circuit 2 lines		
OSD function		1 circuit		
Multi-master I	² Cbus interface (Note 1)	3 circuits 4 lines		
DMAC		2 channels (trigger: 29 sources)		
Watchdog tim	er	15 bits x 1 (with prescaler)		
Interrupt		31 internal and 5 external sources, 4 software sources, 7 levels		
Clock genera	tion circuit	3 circuits		
		Main clock		
		Sub-clock (These circuits contain a built-in feedback		
		• OSD clock fresistor and external ceramic/quartz oscillator)		
Power supply w		3.15 to 3.45V		
Flash memory	Program/erase voltage	3.15 to 3.45V		
	Number of program/erase	100 times		
Power consur		500mW		
I/O	I/O withstand voltage	3.3V		
characteristics Output current		5mA		
Memory expa		Available (to 4M bytes)		
	bient temperature	-20 to 70°C		
Device config	uration	CMOS high performance silicon gate		
Package		116-pin plastic mold QFP		
lotes:				

Notes:

1. I²C bus is a registered trademark of Koninklijke Philips Electronics N. V.

2. IEBus is a trademark of NEC Electronics Corporation.

When you use option function, please specify that.

Block Diagram

Figure 1.1 is a block diagram of the M306V8FJFP.

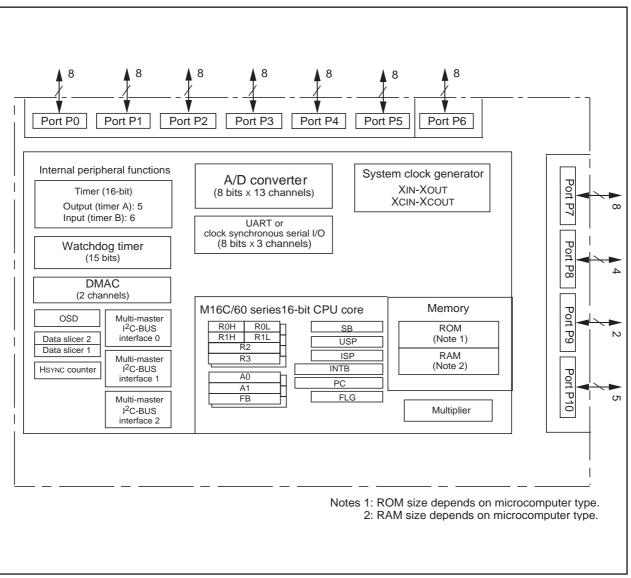


Figure 1.1. Block Diagram

Product List

Product list is show in Table 1.2 type No., memory size and package type are show in Figure 1.2.

Table 1.2. Product List

Type No.	ROM capacity	RAM capacity	Package type	Remarks
M306V8FJFP	512K bytes	16K bytes	116P6A-A	Flash memory version

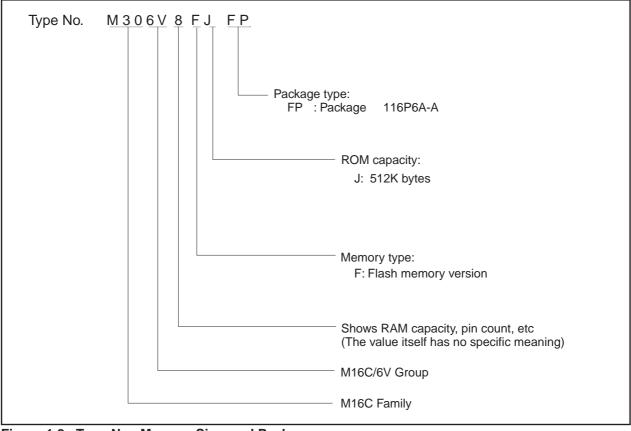


Figure 1.2. Type No., Memory Size, and Package

Pin Configuration

Figures 1.3 show the pin configuration.

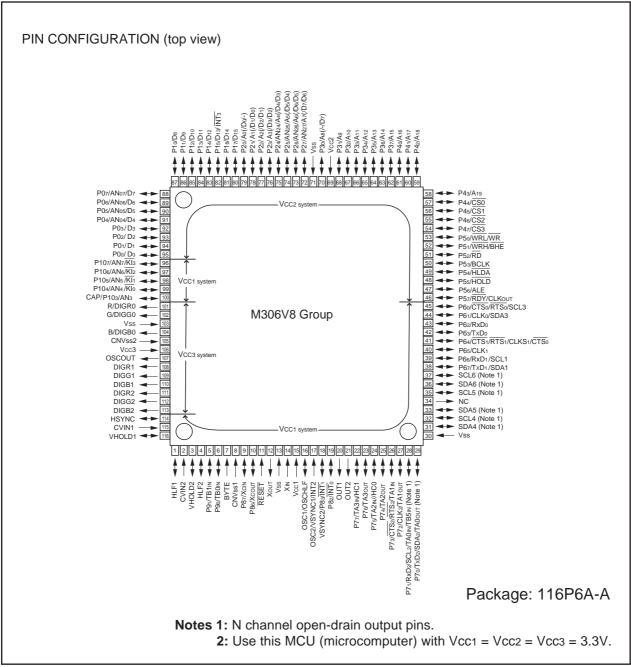


Figure 1.3. Pin Configuration (Top View)

RENESAS

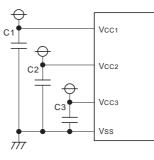

Pin Description

Table 1.3. Pin Description (1)

Pin name	Signal name	I/O type	Power supply	Function
VCC1, VCC2, VCC3, VSS	Power supply input			Apply 3.3 V to the VCc1, VCc2 and VCc3 pins and 0 V to the Vsspin. (Note 1) Insert a bypass capacitor between power supply and GND. (Note 2)
CNVss1, CNVss2	CNVSS1/ CNVSS2	Input	Vcc	CNVss1 pin switches between processor modes. Connect this pin to Vss pin when after a reset you want to start operation in single- chip mode (memory expansion mode) or the Vcc1 pin when starting operation in microprocessor mode. Always connect CNVss2 pin to Vss.
RESET	Reset input	Input	Vcc	"L" on this input resets the microcomputer.
Xin Xout	Clock input Clock output	Input Output	Vcc	These pins are provided for the main clock generating circuit input/ output. Connect a ceramic resonator or crystal between the XIN and the XOUT pins. To use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.
BYTE	External data bus width select input	Input	Vcc	This pin selects the width of an external data bus. A 16-bit width is selected when this input is "L"; an 8-bit width is selected when this input is "H". This input must be fixed to either "H" or "L". Connect this pin to the Vss pin when operating in single-chip mode.
P00 to P07	I/O port P0	I/O	Vcc	This is an 8-bit CMOS I/O port. This port has an I/O select direction register, allowing each pin in that port to be directed for input or output individually. If any port is set for input, selection can be made for it in a program whether or not to have a pull-up resistor in 4 bit units. This selection is unavailable in memory extension and microprocessor modes. This port can function as input pins for the A/D converter when so selected in a program.
Do to D7		I/O	-	When set as a separate bus, these pins input and output data (D0 $-D7$).
P10 to P17	I/O port P1	I/O	Vcc	This is an 8-bit I/O port equivalent to P0. P15 also function as INT interrupt input pins as selected by a program.
D8 to D15		I/O		When set as a separate bus, these pins input and output data (D8 $-\text{D15}).$
P20 to P27	I/O port P2	I/O	Vcc	This is an 8-bit I/O port equivalent to P0. This port can function as input pins for the A/D converter when so selected in a program.
Ao to A7		Output		These pins output 8 low-order address bits (Ao to A7).
Ao/Do to A7/D7		I/O		If the external bus is set as an 8-bit wide multiplexed bus, these pins input and output data (Do to D7) and output 8 low-order address bits (A0 to A7) separated in time by multiplexing.
A0 A1/D0 to A7/D6		Output I/O	-	If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (Do to D6) and output address (A1 to A7) separated in time by multiplexing. They also output address (A 0).
P30 to P37	I/O port P3	I/O	Vcc	This is an 8-bit I/O port equivalent to P0.
A8 to A15		Output		These pins output 8 middle-order address bits (A8 to A15).
A8/D7, A9 to A15		I/O Output		If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D7) and output address (A8) separated in time by multiplexing. They also output address (A 9 to A15).
P40 to P47	I/O port P4	I/O	Vcc	This is an 8-bit I/O port equivalent to P0.
$\frac{A_{16}}{CS_0} \text{ to } \frac{A_{19,}}{CS_3}$		Output Output		These pins output A16 to A19 and CS0 to CS3 signals. A16 to A19 are 4 high- order address bits. CS0 to CS3 are chip select signals used to specify an access space.

- Notes 1: In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.
 - 2: Insert capacitors between each power supply pin and GND to prevent errors or latch-up by noise.

Also, use thick and shortest possible wiring to connect capacitors.

C1 ≧0.1∝F, C2 ≧0.1∝F, C3 ≧0.1∝F (reference value)

Table 1.4. Pin Description (2)

Pin name	Signal name	I/O type	Power supply	unction
P50 to P57	I/O port P5	I/O	Vcc	This is an 8-bit I/O port equivalent to P0. In single-chip mode, P57 in this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of the same frequency as XCIN as selected by program.
WRL / WR, WRH / BHE, RD, BCLK, HLDA, HOLD, ALE, RDY		Output Output Output Output Input Output Input		Output WRL/WRH, (BHE/WR), RD, BCLK, HLDA, and ALE signals. WRL/WRH and BHE/WR are switch able in a program. Note that WRL and WRH are always used as a pair, so as WR and BHE. WRL, WRH, and RD selected If the external data bus is 16 bits wide, data are written to even addresses when the WRL signal is low, and written to odd addresses when the WRH signal is low. Data are read out when the RD signal is low. WR, BHE, and RD selected Data are written when the WR signal is low, or read out when the RD signal is low. Odd addresses are accessed when the BHE signal is low. Use this mode when the external data bus is 8 bits wide. The microcomputer goes to a hold state when input to the HOLD pin is held low. While in the hold state, HLDA outputs a low level. ALE is used to latch the address. While the input level of the RDY pin is low, the bus of the microcomputer goes to a wait state.
P60 to P67	I/O port P6	I/O	Vcc	This is an 8-bit I/O port equivalent to P0. Pins in this port also function as UART0, UART1 and multi-master I ² C bus I/O pins as selected by program.
P70 to P77	I/O port P7	I/O	Vcc	This is an 8-bit I/O port equivalent to P0. (However, P70 and P71 are the pins of N-channel opendrain output) This port can function as I/O pins for timers A0 to A3 and B5 by selecting in a program. And, UART2, I^2C bus I/O pin, P75 and P77 can also function as input pin for Hsync conter.
P82, P84, P86, P87,	I/O port P8	I/O	Vcc	They are I/O ports with the same functions as P0. When so selected in a program, they can function as I/O pins for INT interrupt, Vsync input pins and the sub clock oscillator circuit. In that case, connect a crystal resonator between P86 (XCOUT pin) and P87 (XCIN pin).
P90, P91	I/O port P9	I/O	Vcc	This is an 8-bit I/O port equivalent to P0. Pins in this port also function as timer B0 and B1 input pins as selected by program.
P103 to P107	I/O port P10	I/O	Vcc	This is an I/O port equivalent to P0. Pins in this port also function as A/D converter input pins and the capacitor connection pin for analog RGB operation.
SCL4 to 6, SDA4 to 6	Multi-master I ² C-bus interface	I/O		These are exclusive pins for multi-master I ² C-bus interface (N- channel open drain output.)
Hsync	Hsync input	Input	Vcc	OSD function Hsync input pins.
R/DIGR0, B/DIGB0, G/DIGG0, OUT1, OUT2, DIGR1, DIGB1, DIGG1, DIGG2, DIGG2, OSCOUT	OSD function output pin	Output	Vcc	These are exclusive pins for OSD functions.
CVin1, VHOLD1, HLF1, CVin2, VHOLD2, HLF2	Data slicer function I/O pin	I/O	Vcc	These are exclusive pins for data slicer function.
OSC1/ OSDHLF, OSC2	Oscillation pin for OSD function	I/O	Vcc	These are oscillation pins for OSD function. Using the same pins as external interrupt and Vsync input pin.

Memory

Figure 1.4 is a memory map of the M306V8FJFP. The address space extends the 1M bytes from address 0000016 to FFFF16.

The internal ROM is allocated in a lower address direction beginning with address FFFFF16. For example, a 64 Kbytes internal ROM is allocated to the addresses from F000016 to FFFF16.

The fixed interrupt vector table is allocated to the addresses from FFFDC16 to FFFFF16. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 0040016. For example, a 10 Kbytes internal RAM is allocated to the addresses from 0040016 to 02BFF16. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SRF is allocated to the addresses from 0000016 to 003FF16. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE0016 to FFFDB16. This vector is used by the JMPS or JSRS instruction. For details, refer to the "M16C/60 and M16C/20 Series Software Manual." In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users.

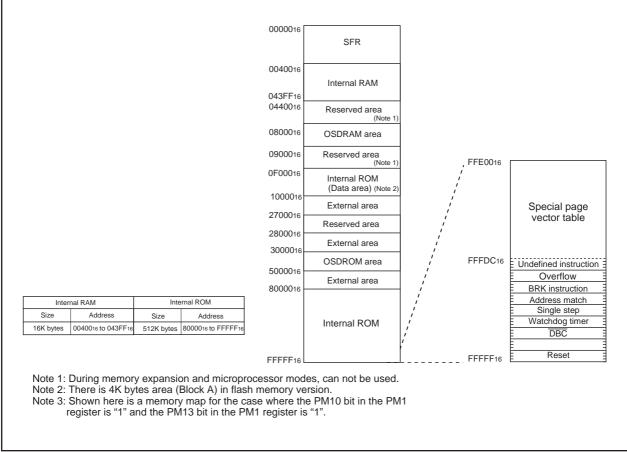


Figure 1.4. Memory Map

Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

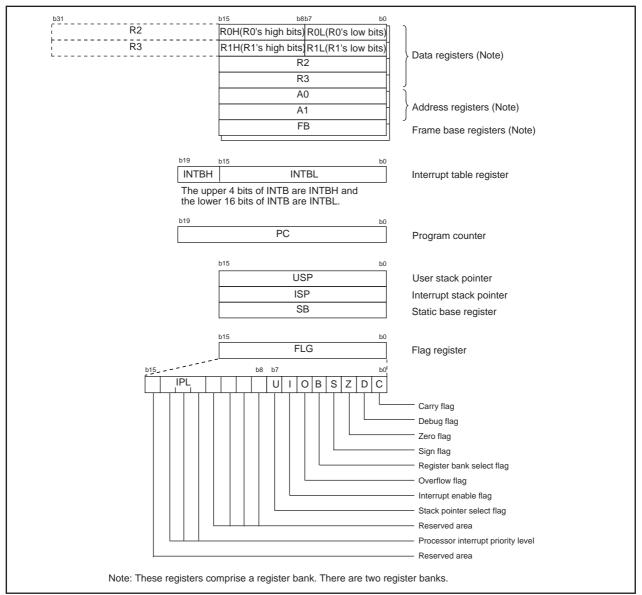


Figure 2.1. CPU registers

(1) Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

(2) Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0.

In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

(3) Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

(4) Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

(5) Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

(6) User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

(7) Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

(8) Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

• Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

• Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

• Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

• Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

• Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

• Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

• Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is "0"; USP is selected when the U flag is "1".

The U flag is cleared to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

• Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt is enabled.

Reserved Area

When write to this bit, write "0". When read, its content is indeterminate.

SFR

Address	Register	Symbol	After reset
000016			
000116			
000216			
000316			
000416	Processor mode register 0 (N	ote 2) PM0	000000002(CNVss1 pin is "L" 000000112(CNVss1 pin is "H")
000516	Processor mode register 1	PM1	000010002
000616	System clock control register 0	CM0	010010002
000716	System clock control register 1	CM1	001000002
000816	Chip select control register	CSR	00000012
000916	Address match interrupt enable register	AIER	XXXXXX002
000A16	Protect register	PRCR	XX000002
000B16	Data bank register	DBR	0016
000C16	System clock control register 2	CM2	0000X0002
000D16		01112	0000/0002
000E16	Watchdog timer start register	WDTS	??16
000F16	Watchdog timer control register	WDC	00?????2
001016	Address match interrupt register 0	RMAD0	0016
001116	Address match interrupt register o	RinAbo	0016
001216			X016
001216			N010
001316	Addross match interrupt register 1	RMAD1	0016
001416	Address match interrupt register 1	RIVIAUT	0016
001516			
001616			X016
001716			
	Reserved register	RSVREG0019	000010002
001916	Reserved register	RSVREG0019	
001A16		CSE	0016
001B16	Chip select expansion control register 2 Reserved register	RSVREG001C	
001C16		KSVRLG001C	000170102
001D16	Deserved as vistan		
001E16	Reserved register	RSVREG001E	
001F16	Reserved register	RSVREG001F	
002016	DMA0 source pointer	SAR0	??16
002116			??16
002216			X?16
002316			
002416	DMA0 destination pointer	DAR0	??16
002516			??16
002616			X?16
002716			
002816	DMA0 transfer counter	TCR0	??16
002916			??16
002A16			
002B16			
002C16	DMA0 control register	DM0CON	00000?002
002D16			
002E16			
002F16			
003016	DMA1 source pointer	SAR1	??16
003116			??16
003216			X?16
003316			,
003416	DMA1 destination pointer	DAR1	??16
003516			??16
003616			X?16
003716		TCR1	??16
003816	DMA1 transfer counter		2216
003816 003916			??16
003816 003916 003A16			??16
003816 003916 003A16 003B16			
003816 003916 003A16 003B16 003C16	DMA1 transfer counter DMA1 control register	DM1CON	??16 00000?002
003816 003916 003A16 003B16		DM1CON	

Note 1: The blank areas are reserved and cannot be accessed by users. Note 2: The PM00 and PM01 bits do not change at software reset, watchdog timer reset and oscillation stop detection reset.

Address	Register	Symbol	After reset
004016			
004116			
004216			
004316			20100000
004416	INT3 interrupt control register	INT3IC	XX00?0002
004516 004616	Timer B5 interrupt control register Timer B4 interrupt control register	TB5IC TB4IC	XXXX?0002 XXXX?0002
004016	Timer B3 interrupt control register	TB3IC	XXXX?0002
004716	Slicer 1 interrupt control register	DSC1IC	XX00?0002
004916	Slicer 2 interrupt control register	DSC2IC	XX00?0002
004A16	Bus collision detection interrupt control register	BCNIC	XXXX?0002
004B16	DMA0 interrupt control register	DM0IC	XXXX?0002
004C16	DMA1 interrupt control register	DM1IC	XXXX?0002
004D16	Key input interrupt control register	KUPIC	XXXX?0002
004E16	A/D conversion interrupt control register	ADIC	XXXX?0002
004F16	UART2 transmit interrupt control register	S2TIC	XXXX?0002
005016	UART2 receive interrupt control register	S2RIC	XXXX?0002
005116	UART0 transmit interrupt control register	SOTIC	XXXX?0002
005216	UART0 receive interrupt control register	SORIC	XXXX?0002
005316 005416	UART1 transmit interrupt control register	S1TIC	XXXX?0002
005416	UART1 receive interrupt control register Timer A0 interrupt control register	S1RIC TA0IC	XXXX?0002 XXXX?0002
005516	Timer A1 interrupt control register	TAIIC	XXXX?0002
005716	Timer A2 interrupt control register	TA1C	XXXX?0002
005816	Timer A3 interrupt control register	TA3IC	XXXX?0002
005916	Timer A4 interrupt control register	TA4IC	XXXX?0002
005A16	Timer B0 interrupt control register	TB0IC	XXXX?0002
005B16	Timer B1 interrupt control register	TB1IC	XXXX?0002
005C16	Timer B2 interrupt control register	TB2IC	XXXX?0002
005D16	INT0 interrupt control register	INTOIC	XX00?0002
005E16	INT1 interrupt control register	INT1IC	XX00?0002
005F16	INT2 interrupt control register	INT2IC	XX00?0002
006016			
006116			
006216 006316			
006316			
006516			
006616			
006716			
006816			
006916			
006A16			
006B16			
006C16			
006D16			
006E16			
006F16 007016			
007016			
007116			
007216			
007416			
007516			
007616			
007716			
007816			
007916			
007A16			
007B16			
007C16			
007D16 007E16			
007E16			

Address	Register		Symbol	After reset
008016	rogioloi		Cymbol	,
008116				
008216				
008316				
008416				
008516				
008616				
~ ≈ _				~ ≈
01B016				
01B116				
01B216				
01B316		- 1		
01B416		ote 2)	FIDR	XXXXXX002
01B516	Flash memory control register 1 (N	ote 2)	FMR1	0?00??0?2
01B616		ata O`	EMDO	00000046
01B716		ote 2)	FMR0	??0000012
01B816	Address match interrupt register 2		RMAD2	0016
01B916				0016
01BA16	Address metals interment another states 2			X016
01BB16	Address match interrupt enable register 2		AIER2	XXXXXX002
01BC16 01BD16	Address match interrupt register 3		RMAD3	0016
01BD16 01BE16				0016 X016
01BE16 01BF16				X016
01C016				
01C016				
01C216				
≈				≈
01E016				
01E116				
01E216				
01E316				
01E416 01E516				
01E516 01E616				
01E016				
01E718 01E816				
01E016				
01E316				
01EB16				
01EC16				
01ED16				
01EE16				
01EF16				
01F016				
01F116				
01F216				
01F316				
01F416				
01F516				
01F616				
01F716				
01F816				
01F916				
01FA16				
01FB16				
01FC16				
01FD16				
01FE16 01FF16				
Note 1: T	he blank areas are reserved and cannot be accessed by users.			

Note 1: The blank areas are reserved and cannot be accessed by users. Note 2: This register is included in the flash memory version.

Address	Register	Symbol	After reset
020016			
020116	Sprite OSD control register	SC	XXX000002
020216	OSD control register 1	OC1	0016
020316	OSD control register 2	OC2	0016
020416	Horizontal position register	HP	0016
020516	Clock control register 1	CS	0016
020616	I/O polarity control register	PC	10000002
020716	OSD control register 3	OC3	0016
020816			0016
020916	Raster color register	RSC	0016
020A16	OSD reserved register 5	OR5	0016
020B16	Clock control register 2	CG	0016
020C16			
020D16	Top border control register	TBR	??16
020E16			
020F16	Bottom border control register	BBR	??16
021016	Block control register 1	BC1	??16
021116	Block control register 2	BC2	??16
021216	Block control register 3	BC3	??16
021216	Block control register 4	BC3 BC4	??16
021316	Block control register 5		??16
	Block control register 5	BC5 BC6	
021516			??16
021616	Block control register 7	BC7	??16
021716	Block control register 8	BC8	??16
021816	Block control register 9	BC9	??16
021916	Block control register 10	BC10	??16
021A16	Block control register 11	BC11	??16
021B ₁₆	Block control register 12	BC12	??16
021C ₁₆	Block control register 13	BC13	??16
021D ₁₆	Block control register 14	BC14	??16
021E16	Block control register 15	BC15	??16
021F16	Block control register 16	BC16	??16
022016	Vertical position register 1	VP1	??16
022116			??16
022216	Vertical position register 2	VP2	??16
022316		VFZ	??16
022416	Vertical position register 3	VP3	??16
022516	Ventical position register 5	VP3	??16
022616	Vertical position register 4		??16
022716	Vertical position register 4	VP4	??16
022816			??16
022916	Vertical position register 5	VP5	??16
022A16			??16
022B16	Vertical position register 6	VP6	??16
022D16			
022016 022D16	Vertical position register 7	VP7	??16 ??16
022E16	Vertical position register 8	VP8	??16
022F16			??16 ??16
023016	Vertical position register 9	VP9	??16
023116			
023216	Vertical position register 10	VP10	??16
023316			??16
023416	Vertical position register 11	VP11	??16
023516			??16
023616	Vertical position register 12	VP12	??16
023716		VI 12	??16
023816	Vertical position register 13	VP13	??16
023916		VP13	??16
023A16	Vertical position register 14		??16
023B16		VP14	??16
023C16	Vertical position register 15	VD45	??16
023D16	Vertical position register 15	VP15	??16
023E16	Vertical position register 16	VP16	??16
023E16			

Address	Register	Symbol	After reset
0240 ₁₆ 0241 ₁₆	Color palette register 1	CR1	??16 ??16
024116			
024216 024316	Color palette register 2	CR2	??16 ??16
0244 ₁₆ 0245 ₁₆	Color palette register 3	CR3	??16 ??16
0246 ₁₆ 0247 ₁₆	Color palette register 4	CR4	??16 ??16
0248 ₁₆ 0249 ₁₆	Color palette register 5	CR5	??16 ??16
024A ₁₆ 024B ₁₆	Color palette register 6	CR6	??16 ??16
024C ₁₆ 024D ₁₆	Color palette register 7	CR7	??16 ??16
024E ₁₆ 024F ₁₆	Color palette register 9	CR9	??16 ??16
025016 025116	Color palette register 10	CR10	??16 ??16
0252 ₁₆ 0253 ₁₆	Color palette register 11	CR11	??16 ??16
0254 ₁₆ 0255 ₁₆	Color palette register 12	CR12	??16 ??16
0256 ₁₆ 0257 ₁₆	Color palette register 13	CR13	??16 ??16
0258 ₁₆ 0259 ₁₆	Color palette register 14	CR14	??16 ??16
025A ₁₆ 025B ₁₆	Color palette register 15	CR15	??16 ??16
025C16			
025D16	OSD reserved register 1	OR1	0016
025E16	Peripheral clock selection register	PCLKR	0316
025F16	OSD control register 4	OC4	XXXXXX002
026016	Data slicer 0 control register 1	DSC01	0016
026116	Data slicer 0 control register 2	DSC02	?0?0??0?2
0262 ₁₆ 0263 ₁₆	Caption data register 01	CD01	???????2 ???????2
0264 ₁₆ 0265 ₁₆	Caption data register 02	CD02	???????2 ???????2
026616	Caption position register 0	CPS0	00?000002
026716	Slice standard voltage selection register	SBV0	0016
026816	Data slicer 0 reserved register 1	DR01	0016
026916	Clock run-in detection register 0	CRD0	0016
026A16	Data clock position register 0	DPS0	X0000002
026B16	ID1 control register 0	IDC0	0016
026C16	Standard clock detection register 0	BCD0	XX?????2
026D16	CRCC data register 0	CRC0	XX0000002
026E16	Test reservation register 0	IDT0	0016
026F16	Reserved register	RSVREG026F	XXXXXXX02
0270 ₁₆ 0271 ₁₆	Left border control register	LBR	XXXXX0002 0016
027216 027316	Right border control register	RBR	0016 XXXXX0002
027316 027416 027516	Sprite vertical position register 1	VS1	??16 ??16
027516 027616 027716	Sprite vertical position register 2	VS2	??16 ??16
0278 ₁₆ 0279 ₁₆	Sprite horizontal position register	HS	??16 XXXXX0002
027916 027A16	OSD reserved register 4	OR4	X0000002
027A16 027B16	OSD reserved register 3	OR3	0016
	OSD reserved register 3	OR2	0016
027C ₁₆		PM	00016 000XXXX2
027D ₁₆	Peripheral mode register		
027E ₁₆	HSYNC counter register	HC	XXX00X002
027F ₁₆	HSYNC counter latch		??16

X : Nothing is mapped to this bit

? : This bit is indeterminate.

Address	Register	Symbol	After reset
028016	Internal oscillation control register 1	DIV0	0016
028116	Internal oscillation control register 2	DIV1	0016
028216	Internal oscillation control register 3	VCO	0016
028316			
028416			
028516			
028616 028716			
028716			
028916			
0288A16			
028B16			
028C16			
028D16			
028E16			
028F16			
029016			
029116			
029216			
029316			
0294 ₁₆ 0295 ₁₆			
029516			
029016			
029816			
029916			
029A16			
029B16			
029C16			
029D16			
029E16			
029F16			
02A016	Flash memory (USER/OSD) change register	FMSEL	0016
02A1 ₁₆ 02A2 ₁₆			
02A216 02A316	Flash memory OSD1 control register 4	FMOSA4	X0XXXX002
02A316 02A416		T MOSA4	<u></u>
02A516	Flash memory OSD1 control register 1	FMOSA1	XXXXXX0X2
02A616			700000000
02A716	Flash memory OSD1 control register 0	FMOSA0	XX0000012
02A816			
02A916			
02AA16			
02AB16			
02AC16			
02AD16			
02AE16 02AF16			
02AF16 02B016			
02B016 02B116			
02B116			
02B316	Flash memory OSD2 control register 4	FMOSB4	X0XXXX002
02B416			
02B516	Flash memory OSD2 control register 1	FMOSB1	XXXXXX0X2
02B616			
02B716	Flash memory OSD2 control register 0	FMOSB0	XX0000012
02B816			
02B916			
02BA16			
02BB16 02BC16			
02BC16 02BD16			
02BD16 02BE16			
02BE16			

X : Nothing is mapped to this bit ? : This bit is indeterminate.

RENESAS

Address	Register	Symbol	After reset
02C016	Extended register 00	EXTREG02C0	0016
02C116	Extended register 01	EXTREG02C1	0016
02C216	Extended register 02	EXTREG02C2	0016
02C316	Extended register 03	EXTREG02C3	0016
02C416	Extended register 04	EXTREG02C4	0016
02C516	Extended register 05	EXTREG02C5	0016
02C616	Extended register 06	EXTREG02C6	0016
02C016	Extended register 07		0016
02C716 02C816	Extended register 08	EXTREG02C7	0016
02C816 02C916		EXTREG02C8	
	Extended register 09	EXTREG02C9	0016
02CA16	Extended register 0A	EXTREG02CA	0016
02CB16	Extended register 0B	EXTREG02CB	0016
02CC16	Extended register 0C	EXTREG02CC	0016
02CD16	Extended register 0D	EXTREG02CD	0016
02CE16	Extended register 0E	EXTREG02CE	0016
02CF16	Extended register 0F	EXTREG02CF	0016
02D016	Extended register 10	EXTREG02D0	0016
02D116	Extended register 11	EXTREG02D1	0016
02D216	Extended register 12	EXTREG02D2	0016
02D316	Extended register 13	EXTREG02D3	0016
02D416	Extended register 14	EXTREG02D4	0016
02D516	Extended register 15	EXTREG02D5	0016
02D616	Extended register 16	EXTREG02D6	0016
02D716	Extended register 17	EXTREG02D7	0016
02D816	Extended register 18	EXTREG02D8	0016
02D916	Extended register 19	EXTREG02D9	0016
02DA16	Extended register 1A	EXTREG02DA	0016
02DB16	Extended register 1B	EXTREG02DA EXTREG02DB	0016
02DD16	Extended register 1C	EXTREG02DD EXTREG02DC	0016
02DC16	Extended register 1D		0016
		EXTREG02DD	
02DE16	Extended register 1E	EXTREG02DE	0016
02DF16	Extended register 1F	EXTREG02DF	0016
02E016	I ² C0 data shift register	IICOSO	??16
02E116	I ² C0 address register	IICOSOD	0016
02E216	I2C0 status register	IIC0S1	0001000?2
02E316	I2C0 control register	IIC0S1D	0016
02E416	I ² C0 clock control register	IIC0S2	0016
02E516	Reserved register	RSVREG02E5	00?000002
02E616	I ² C0 transmitting buffer register	IICOSOS	??16
02E716			
02E816	I ² C1 data shift register	IIC1S0	??16
02E916	I ² C1 address register	IIC1S0D	0016
02EA16	I ² C1 status register	IIC1S1	0001000?2
02EB16	I ² C1 control register	IIC1S1D	0016
02EC16	I ² C1 clock control register	IIC1S2	0016
02ED16	Reserved register	RSVREG02ED	00?000002
02EE16	I ² C1 transmitting buffer register	IIC1S0S	??16
02EE16			
02EF16 02F016	I ² C2 data shift register	IIC2S0	??16
02F016 02F116	I ² C2 address register	IIC2S0D	0016
02F116 02F216	I ² C2 status register	IIC2S0D	0001000?2
	I ² C2 status register		0001000?2
02F316		IIC2S1D IIC2S2	
02F4 ₁₆	I ² C2 clock control register		0016
02F516	Reserved register	RSVREG02F5	00?000002
02F616	I ² C2 transmitting buffer register	IIC2S0S	??16
02F7 ₁₆			
02F816			
02F9 ₁₆			
02FA16			
02FB16			
02FC16			
02FD16			
02FD16 02FE16			

X : Nothing is mapped to this bit ? : This bit is indeterminate.

RENESAS

Address	Register	Symbol	After reset
030016	Data slicer 1 control register 1	DSC11	0016
030116	Data slicer 1 control register 2	DSC12	?0?0??0?2
030216 030316	Caption data register 11	CD11	???????? ????????2
0304 ₁₆ 0305 ₁₆	Caption data register 12	CD12	????????? ????????2
030516	Caption position register 1	CPS1	00?000002
030716	Slice standard voltage selection register	SBV1	0016
030816	Data slicer 1 reserved register 1	DR11	0016
030916	Clock run-in detection register 1	CRD1	0016
030A16	Data clock position register 1	DPS1	X0000002
030B16	ID1 control register 1	IDC1	0016
030C16	Standard clock detection register 1	BCD1	XX?????2
030D16	CRCC data register 1	CRC1	XX000002
030E16	Test reservation register 1	IDT1	0016
030F16	Reserved register	RSVREG030F	XXXXXXX02
031016			
031116			
031216 031316			
031316			
031516			
031616			
031716			
031816			
031916			
031A16			
031B16			
031C ₁₆	ID1 reserved register 0	IRSV0	00?????2
031D16	ID1 reserved register 1	IRSV1	00?????2
031E16			
031F16 032016			
032016			
032216			
032316			
032416			
032516			
032616			
032716			
032816			
032916 032A16			
032A16 032B16			
032D16			
032D16			
032E16			
032F16			
033016			
033116			
033216			
033316			
033416			
033516 033616			
033716			
033816			
033916			
033A16			
033B16			
033C16			
033D16			
033E16			
033F16			

Address	Register	Symbol	After reset
034016	Timer B3, 4, 5 count start flag	TBSR	000XXXXX2
034116			
034216	Reserved register	RSVREG0342	??16
034316	Reserved register	RSVREG0343	??16
034416	Reserved register	RSVREG0344	??16
034516	Reserved register	RSVREG0345	??16
034616	Reserved register	RSVREG0346	??16
034716	Reserved register	RSVREG0347	??16
034816	Reserved register	RSVREG0348	0016
034916	Reserved register	RSVREG0349	0016
034A16	Reserved register	RSVREG034A	0016
034B16	Reserved register	RSVREG034B	0016
034C16	Reserved register	RSVREG034C	??16
034D16	Reserved register	RSVREG034D	??16
034E16 034F16			
034616	Timen DO no sisten		0040
035016	Timer B3 register	ТВЗ	??16
035216	Timen D4 no sister		??16
035216	Timer B4 register	TB4	??16 ??16
035416	Timor B5 register	TB5	??16
035516	Timer B5 register	COL	??16 ??16
035616			::10
035716			
035816			
035916			
035A16			
035B16	Timer B3 mode register	TB3MR	00??00002
035C16	Timer B4 mode register	TB4MR	00?X00002
035D16	Timer B5 mode register	TB5MR	00?X00002
035E16	Interrupt cause select register 2	IFSR2A	00XXXXXX2
035F16	Interrupt cause select register	IFSR	0016
036016	Reserved register	RSVREG0360	??16
036116			
036216	Reserved register	RSVREG0362	01000002
036316	Reserved register	RSVREG0363	??16
036416	Reserved register	RSVREG0364	??16
036516			
036616	Reserved register	RSVREG0366	01000002
036716	Reserved register	RSVREG0367	??16
036816			
036916			
036A16			
036B16			
036C16	UARTO special mode register 4	U0SMR4	0016
036D16	UARTO special mode register 3	U0SMR3	000X0X0X2
036E16	UARTO special mode register 2	U0SMR2	X0000002
036F16	UARTO special mode register	UOSMR	X0000002
037016	UART1 special mode register 4	U1SMR4	0016
037116	UART1 special mode register 3 UART1 special mode register 2	U1SMR3 U1SMR2	000X0X0X2 X0000002
037216			
037316 037416	UART1 special mode register UART2 special mode register 4	U1SMR U2SMR4	X0000002 0016
037416	UART2 special mode register 4	U2SMR4	0016 000X0X0X2
037516	UART2 special mode register 3	U2SMR3	X0000002
037616	UART2 special mode register	U2SMR	X00000002 X00000002
037816	UART2 transmit/receive mode register	U2MR	0016
037816	UART2 transmit/receive mode register	U2BRG	??16
037916 037A16	UART2 transmit buffer register	U2TB	????????2
037B16		UZIB	XXXXXXXX?2
037C16	UART2 transmit/receive control register 0	U2C0	000010002
037D16	UART2 transmit/receive control register 0	U2C1	000000102
037E16	UART2 receive buffer register	U2RB	???????2

 Note : The blank areas are reserved and cannot be accessed by users.

 X : Nothing is mapped to this bit
 ? : This bit is indeterminate.

Address	Register	Symbol	After reset
038016		TABSR	0016
038116		CPSRF	0XXXXXXX2
038216		ONSF	0016
038316		TRGSR	0016
038416		UDF	0016
038516			
038616	Timer A0 register	TA0	??16
038716			??16
038816	Timer A1 register	TA1	??16
038916			??16
038A16	Timer A2 register	TA2	??16
038B16		17.2	??16
038C16	Timer A3 register	TA3	??16
038D16		IA3	??16
038E16	Timer A4 register	TA4	??16
038F16		174	??16
039016	Timer B0 register	ТВО	??16
039016	Timer B0 register	IDU	
		TD4	??16
039216	Timer B1 register	TB1	??16
039316			??16
039416	Timer B2 register	TB2	??16
039516		-	??16
039616	· · · · · · · · · · · · · · · · · · ·	TAOMR	0016
039716		TA1MR	0016
039816		TA2MR	0016
039916		TA3MR	0016
039A16	Timer A4 mode register	TA4MR	0016
039B16	Timer B0 mode register	TB0MR	00??00002
039C16	Timer B1 mode register	TB1MR	00?X00002
039D16	Timer B2 mode register	TB2MR	00?X00002
039E16	Reserved register RS	SVREG039E	XXXXXX002
039F16			
03A016	UART0 transmit/receive mode register	U0MR	0016
03A116		U0BRG	??16
03A216		U0TB	???????2
03A316		0010	XXXXXXX?2
03A416	UART0 transmit/receive control register 0	U0C0	000010002
03A516		U0C1	000000102
03A616	V	UORB	????????2
03A716		00.12	?????XX?2
03A816	UART1 transmit/receive mode register	U1MR	0016
03A916		U1BRG	??16
03AA16	V	U1TB	????????2
03AB16		OTID	
03AC16	UART1 transmit/receive control register 0	U1C0	XXXXXXX?2 000010002
03AD16		U1C1	0000000102
03AE16		U1RB	77777772
03AE16			
03AF16 03B016	UART transmit/receive control register 2	UCON	????XX?2
			X0000002
03B116			
03B216			
03B316			
03B416			
03B516			
03B616			
03B716			
03B816	DMA0 request cause select register	DM0SL	0016
03B916			
03BA16	DMA1 request cause select register	DM1SL	0016
03BB16			
	Reserved register RS	SVREG03BC	??16
03BC16			
		SVREG03BD	??16
03BC16	Reserved register RS	SVREG03BD SVREG03BE	<u>??16</u> ??16

Note : The blank areas are reserved and cannot be accessed by users. X : Nothing is mapped to this bit ? : This bit is indeterminate.

Address	Register	Symbol	After reset
03C016	Reserved register	RSVREG03C0	???????2
03C116	Reserved register	RSVREG03C1	XXXXXX??2
03C216	Reserved register	RSVREG03C2	???????2
03C316	Reserved register	RSVREG03C3	XXXXXX??2
03C416	Reserved register	RSVREG03C4	???????2
03C516	Reserved register	RSVREG03C5	XXXXXX??2
03C616	A/D register 3	AD3	???????2
03C716			XXXXXX??2
03C816	A/D register 4	AD4	???????2
03C916			XXXXXX??2
03CA16	A/D register 5	AD5	???????2
03CB16			XXXXXX??2
03CC16	A/D register 6	AD6	???????2
03CD16			XXXXXX??2
03CE16	A/D register 7	AD7	????????2
03CF16			XXXXXX??2
03D016			
03D116			
03D216			
03D316			
03D416	A/D control register 2	ADCON2	0016
03D516			
03D616	A/D control register 0	ADCON0	00000???2
03D716	A/D control register 1	ADCON1	0016
03D816	Reserved register	RSVREG03D8	??16
03D916			
03DA16	Reserved register	RSVREG03DA	??16
03DB16			
03DC16	Reserved register	RSVREG03DC	0016
03DD16			
03DE16	Reserved register	RSVREG03DE	XX00XXXX2
03DF16	Reserved register	RSVREG03DF	0016
03E016	Port P0 register	P0	??16
03E116	Port P1 register	P1	??16
03E216	Port P0 direction register	PD0	0016
03E316	Port P1 direction register	PD1	0016
03E416	Port P2 register	P2	??16
03E516	Port P3 register	P3	??16
03E616	Port P2 direction register	PD2	0016
03E716	Port P3 direction register	PD3	0016
03E816	Port P4 register	P4	?? 16
03E916	Port P5 register	P5	??16
03EA16	Port P4 direction register	PD4	0016
03EB16	Port P5 direction register	PD4 PD5	0016
03EC16	Port P6 register	P6	??16
03EC16	Port P6 register	P7	??16
03ED16	Port P7 register	PD6	
03EE16 03EF16	Port P6 direction register Port P7 direction register	PD6 PD7	0016
			0016
03F016	Port P8 register	P8 P9	??16
03F116	Port P9 register		??16
03F216	Port P8 direction register	PD8	00X000002
03F316	Port P9 direction register	PD9	0016
03F416	Port P10 register	P10	??16
03F516	Rserved register	RSVREG03F5	??16
03F616	Port P10 direction register	PD10	0016
03F716	Reserved register	RSVREG03F7	0016
03F816	Reserved register	RSVREG03F8	??16
03F916	Reserved register	RSVREG03F9	??16
03FA16	Reserved register	RSVREG03FA	0016
03FB16	Reserved register	RSVREG03FB	0016
03FC16	Pull-up control register 0	PUR0	0016
031016		PUR1	00000002 (Nata 0)
03FD16	Pull-up control register 1	FUNI	00000002 (Note 2) 000000102
	Pull-up control register 1 Pull-up control register 2	PUR2	

2: At hardware reset 1 or hardware reset 2, the register is as follows • "00000002" where "L" is inputted to the CNVss1 pin • "00000102" where "H" is inputted to the CNVss1 pin

• 00000002 where this inputted to the crystsr pin as follows:
• "000000002" where the PM01 to PM00 bits in the PM0 register are "002" (single-chip mode)
• "000000102" where the PM01 to PM00 bits in the PM0 register are "002" (memory expansion mode) or "112" (microprocessor mode)

X : Nothing is mapped to this bit

? : This bit is indeterminate.

Reset

There are three types of resets: a hardware reset, a software reset, and an watchdog timer reset.

Hardware Reset

A reset is applied using the RESET pin. When an "L" signal is applied to the RESET pin while the power supply voltage is within the recommended operating condition, the pins are initialized (see Table 3.1. Pin Status When RESET Pin Level is "L"). The oscillation circuit is initialized and the main clock starts oscillating. When the input level at the RESET pin is released from "L" to "H", the CPU and SFR are initialized, and the program is executed starting from the address indicated by the reset vector. The internal RAM is not initialized. If the RESET pin is pulled "L" while writing to the internal RAM, the internal RAM becomes indeterminate.

Figure 3.1 shows the example reset circuit. Figure 3.2 shows the reset sequence. Table 3.1 shows the status of the other pins while the $\overrightarrow{\text{RESET}}$ pin is "L". Figure 3.3 shows the CPU register status after reset. Refer to "SFR" for SFR status after reset.

- 1. When the power supply is stable
- (1) Apply an "L" signal to the $\overline{\text{RESET}}$ pin.
- (2) Supply a clock for 20 cycles or more to the XIN pin.
- (3) Apply an "H" signal to the RESET pin.
- 2. Power on
- (1) Apply an "L" signal to the $\overline{\text{RESET}}$ pin.
- (2) Let the power supply voltage increase until it meets the recommended operating condition.
- (3) Wait td(P-R) or more until the internal power supply stabilizes.
- (4) Supply a clock for 20 cycles or more to the XIN pin.
- (5) Apply an "H" signal to the $\overline{\text{RESET}}$ pin.

Software Reset

When the PM03 bit in the PM0 register is set to "1" (microcomputer reset), the microcomputer has its pins, CPU, and SFR initialized. Then the program is executed starting from the address indicated by the reset vector.

Select the main clock for the CPU clock source, and set the PM03 bit to "1" with main clock oscillation satisfactorily stable.

At software reset, some SFR's are not initialized. Refer to "SFR". Also, since the PM01 to PM00 bits in the PM0 register are not initialized, the processor mode remains unchanged.

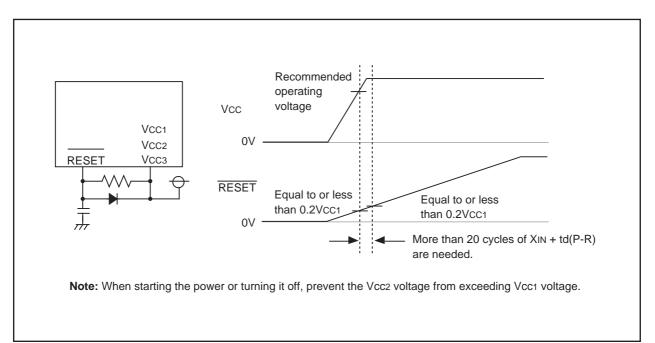


Figure 3.1 shows the example reset circuit

Watchdog Timer Reset

Where the PM12 bit in the PM1 register is "1" (reset when watchdog timer underflows), the microcomputer initializes its pins, CPU and SFR if the watchdog timer underflows. Then the program is executed starting from the address indicated by the reset vector.

At watchdog timer reset, some SFR 's are not initialized. Refer to "SFR". Also, since the PM01 to PM00 bits in the PM0 register are not initialized, the processor mode remains unchanged.

	1000008880000000000000000	וחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחח			
td(P-R)	More than				
	20 cycles are needed				
Microprocessor mode BYTE = "H"					
RESET		BCLK 28cycles			
BCLK					Content of reset vect
Address			FFFFC16	FFFFD16	FFFE16
RD					
WR					
CS0			1		
Microprocessor mode BYTE = "L"					Content of reset vector
Address			FFFFC16	FFFE16	_XXXXXXXX
RD					
WR					
CS0					
Single chip mode	I		FFFFC16	Content of reset vecto	or
Address				E16	

Figure 3.2. Reset sequence

	Status				
Pin name		CNVss1 = Vcc1			
	CNVss1 = Vss	BYTE = Vss	BYTE = VCC		
P0	Input port	Data input	Data input		
P1	Input port	Data input	Input port		
P2, P3, P40 to P43	Input port	Address output (undefined)	Address output (undefined)		
P44	Input port	CS0 output ("H" is output)	CS0 output ("H" is output)		
P45 to P47	Input port	Input port (Pulled high)	Input port (Pulled high)		
P50	Input port	WR output ("H" is output)	WR output ("H" is output)		
P51	Input port	BHE output (indeterminate)	BHE output (indeterminate)		
P52	Input port	RD output ("H" is output)	RD output ("H" is output)		
P53	Input port	BCLK output	BCLK output		
P54	Input port	HLDA output (The output value depends on the input to the HOLD pin)	HLDA output (The output value depends on the input to the HOLD pin)		
P55	Input port	HOLD input	HOLD input		
P56	Input port	ALE output ("L" is output)	ALE output ("L" is output)		
P57	Input port	RDY input	RDY input		
P6, P7, P8, P9, P10	Input port	Input port	Input port		
OSC2/VSYNC1, OSCOUT, DIGR1, HSYNC SCL4, SDA4, SCL5 SDA5, SCL6, SDA6	Output state	·			
DIGR1, DIGG1 DIGB1, DIGR2, DIGG2 DIGB2	Output state (undefi	ined)			
R/DIGR0, G/DIGG0, B/DIGB0, OUT1, OUT2, OSC1/OSCHLF, CVIN1 VHOLD1, HLF1, CVIN2, VHOLD2, HLF2	Input state				

Table 3.1. Pin Status When RESET Pin Level is "L"

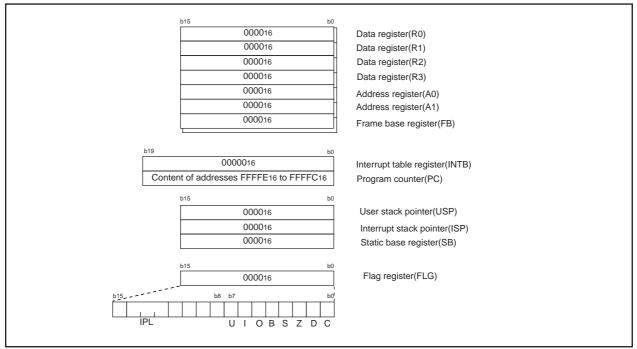


Figure 3.3. CPU Register Status After Reset

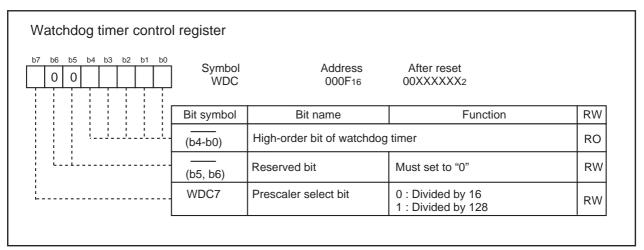


Figure 3.4. WDC Register

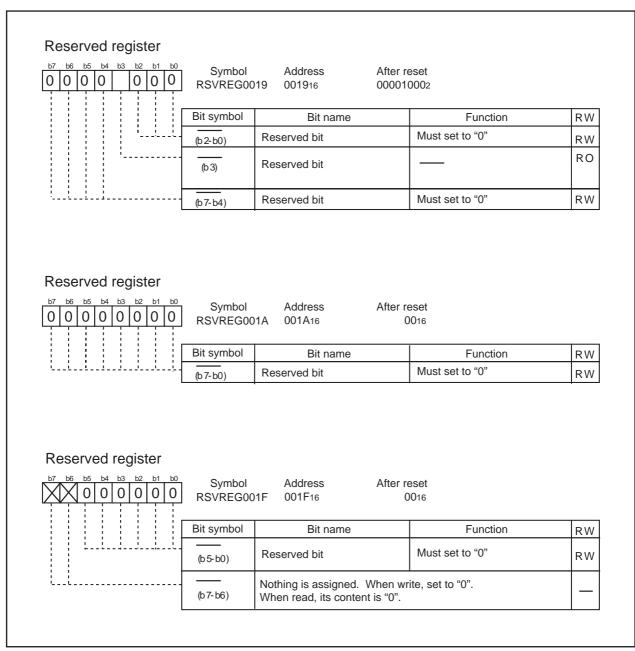


Figure 3.5. Reserved register

Processor Mode

(1) Types of Processor Mode

Three processor modes are available to choose from: single-chip mode, memory expansion mode, and microprocessor mode. Table 4.1 shows the features of these processor modes.

Table 4.1.	Features	of Processor	Modes
------------	----------	--------------	-------

Processor modes	Access space	Pins which are assigned I/O ports
Single-chip mode	SFR, internal RAM, internal ROM, OSDRAM, OSDROM	All pins are I/O ports or peripheral function I/O pins
Memory expansion mode	SFR, internal RAM, internal ROM, external area (Note), OSDRAM, OSDROM	Some pins serve as bus control pins (Note)
Microprocessor mode	SFR, internal RAM, external area (Note), OSDRAM, OSDROM	Some pins serve as bus control pins (Note)

Note : Refer to "Bus".

(2) Setting Processor Modes

Processor mode is set by using the CNVss1 pin and the PM01 to PM00 bits in the PM0 register. Table 4.2 shows the processor mode after hardware reset. Table 4.3 shows the PM01 to PM00 bit set values and processor modes.

Table 4.2. Processor Mode After Hardware Reset

CNVss1 pin input level	Processor mode
Vss	Single-chip mode
Vcc1 (Note 1, Note 2)	Microprocessor mode

Note 1: If the microcomputer is reset in hardware by applying VCC1 to the CNVSS1 pin (hardware reset 1 or hardware reset 2), the internal ROM cannot be accessed regardless of PM01 to PM00 bits.

Note 2: The multiplexed bus cannot be assigned to the entire CS space.

Table 4.3. PM01 to PM00 Bits Set Values and Processor Modes

PM01 to PM00 bits	Processor modes
002	Single-chip mode
012	Memory expansion mode
102	Must not be set
112	Microprocessor mode

Rewriting the PM01 to PM00 bits places the microcomputer in the corresponding processor mode regardless of whether the input level on the CNVss1 pin is "H" or "L". Note, however, that the PM01 to PM00 bits cannot be rewritten to "012" (memory expansion mode) or "112" (microprocessor mode) at the same time the PM07 to PM02 bits are rewritten. Note also that these bits cannot be rewritten to enter microprocessor mode in the internal ROM, nor can they be rewritten to exit microprocessor mode in areas overlapping the internal ROM.

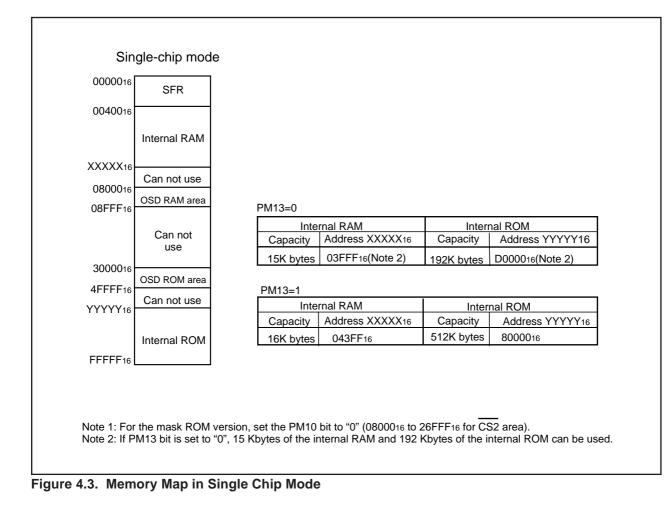
If the microcomputer is reset in hardware by applying Vcc1 to the CNVss1 pin (hardware reset 1 or hardware reset 2), the internal ROM cannot be accessed regardless of PM01 to PM00 bits.

Figures 4.1 and 4.2 show the registers associated with processor modes. Figure 4.3 show the memory map in single chip mode.

Г

b6 b5 b4 b	3 b2 b1 b0	Symbol PM0		After reset (Note 4) 0000002 (CNVss1 pin = "L") 0000112 (CNVss1 pin = "H")	
		Bit symbol	Bit name	Function	R٧
		PM00	Processor mode bit (Note 4)	0 0: Single-chip mode 0 1: Memory expansion mode	R٧
		PM01		1 0: Must not be set 1 1: Microprocessor mode	RW
		PM02	R/W mode select bit (Note 2)	0 : <u>RD,BHE,WR</u> 1 : RD,WRH,WRL	R٧
		PM03	Software reset bit	Setting this bit to "1" resets the microcomputer. When read, its content is "0".	RV
· · · · · · · · · · · · · · · · · · ·		PM04	Multiplexed bus space select bit (Note 2)	0 0 : Multiplexed bus is unused (Separate bus in the entire CS space)	RV
		PM05		0 1 : Allocated to <u>CS2</u> space 1 0 : Allocated to CS1 space 1 1 : Allocated to the entire <u>CS</u> space (Note 3)	RV
ļ		PM06	Port P40 to P43 function select bit (Note 2)	0 : Address output 1 : Port function (Address is not output)	RV
		PM07	BCLK output disable bit (Note 2)	0 : BCLK is output 1 : BCLK is not output (Pin is left high-impedance)	RV
Note 2: Effecti mode)	ve when the	PM01 to PM00	D bits are set to "012" (memo	egister to "1" (write enable). ory expansion mode) or "112" (microp 04 bits are "112" (multiplexed bus ass	

Note 4: The PM01 to PM00 bits do not change at software reset and watchdog timer reset.


Figure 4.1. PM0 Register

0	b4 b3	b2 b	b1 b0	Symbol PM1		After reset X0010002	
				Bit symbol	Bit name	Function	RW
				PM10	CS2 area switch bit (data block enable bit) (Note 2)	0: 0900016 to 26FFF16 (block A disable) 1: 1000016 to 26FFF16 (block A enable)	RW
				PM11	Port P37 to P34 function select bit (Note 3)	0 : Address output 1 : Port function	RW
		¦		PM12	Watchdog timer function select bit	0 : Watchdog timer interrupt 1 : Watchdog timer reset (Note 4)	RW
				PM13	Internal reserved area expansion bit	See Note 6	RW
				PM14	Memory area expansion bit (Note 3)	 b5 b4 0 0 : 1 Mbyte mode (Do not expand) 0 1 : Must not be set 1 0 : Must not be set 1 1 : 4 Mbyte mode 	RW
				PM15			RW
· · · · · ·				(b6)	Reserved bit	Should be set to "0".	RW
				PM17	Wait bit (Note 5)	0 : No wait state 1 : With wait state (1 wait)	RW
lote 2: Fc co 1 l lote 3: Ef mi lote 4: Pl lote 5: W <u>int</u> C	or the montrols b bit in the fective ode). M12 bit hen PM ternal R Si area here the ne PM1	hask R block / e FMF when is set 117 bit COM, o is <u>alw</u> e RD 3 bit is	COM v A by e R0 reg the P to "1" t is se or an e vays a Y sign s auto	ersion, this bit nabling or disa jister is "1" (CF M01 to PM00 I by writing a "1 to "1" (with w external area. ccessed with c al is used or m matically set to	abling it. However, the PM10 PU rewrite mode). Dits are set to "012" (memory " in a program. (Writing a "0" ait state), one wait state is in If the CSiW bit (i = 0 to 3) in t one or more wait states regar ultiplex bus is used, set the 0	lash memory version, the PM10 bit a bit is automatically set to "1" when the expansion mode) or "112" (micropro i has no effect.) serted when accessing the internal F the CSR register is "0" (with wait statt dless of whether the PM17 bit is set CSiW bit to "0" (with wait state). the FMR0 register is "1" (CPU rewrite	te FMI cessor RAM, e), the or not.
lote 6: Th	le acce						
lote 6: Th				PM13=0)	PM13=1	
lote 6: Th lote 7: Th		Up to	o addi		·	PM13=1	

Figure 4.2. PM1 Register

Bus

During memory expansion or microprocessor mode, some pins serve as the bus control pins to perform data input/output to and from external devices. These bus control pins include A0 to A19, D0 to D15, $\overline{CS0}$ to $\overline{CS3}$, \overline{RD} , $\overline{WRL/WR}$, $\overline{WRH/BHE}$, ALE, \overline{RDY} , \overline{HOLD} , \overline{HLDA} and BCLK.

Bus Mode

The bus mode, either multiplexed or separate, can be selected using the PM05 to PM04 bits in the PM0 register.

Separate Bus

In this bus mode, data and address are separate.

Multiplexed Bus

Do to D7 and A1 to A8 are multiplexed. D8 to D15 are not multiplexed. Do not use D8 to D15. External buses connecting to a multiplexed bus are allocated to only the even addresses of the micro-computer. Odd addresses cannot be accessed.

Bus Control

The following describes the signals needed for accessing external devices and the functionality of software wait.

(1) Address Bus

The address bus consists of 20 lines, A0 to A19. The address bus width can be chosen to be 12, 16 or 20 bits by using the PM06 bit in the PM0 register and the PM11 bit in the PM1 register. Table 4.4 shows the PM06 and PM11 bit set values and address bus widths.

Set value(Note)	Pin function	Address bus wide	
PM11=1	P34 to P37	12 bits	
PM06=1	P40 to P43	12 bits	
PM11=0	A12 to A15		
PM06=1	P40 to P43	16 bits	
PM11=0	A12 to A15	00 h #-	
PM06=0	A16 to A19	20 bits	

Table 4.4. PM06 and PM11 Bits Set Value and Address Bus Width

Note 1: No values other than those shown above can be set.

When processor mode is changed from single-chip mode to memory extension mode, the address bus is indeterminate until any external area is accessed.

(2) Data Bus

16 lines D0 to D15 comprise the data bus.

Do not change the input level on the BYTE pin while in operation.

(3) Chip Select Signal

The chip select (hereafter referred to as the \overline{CS}) signals are output from the \overline{CSi} (i = 0 to 3) pins. These pins can be chosen to function as I/O ports or as \overline{CS} by using the CSi bit in the CSR register. Figure 4.4 shows the CSR register.

During 1 Mbyte mode, the external area can be separated into up to 4 by the \overline{CSi} signal which is output from the \overline{CSi} pin. During 4 Mbyte mode, \overline{CSi} signal or bank number is output from the \overline{CSi} pin. Refer to "Memory space expansion function". Figure 4.5 shows the example of address bus and \overline{CSi} signal output in 1 Mbyte mode.

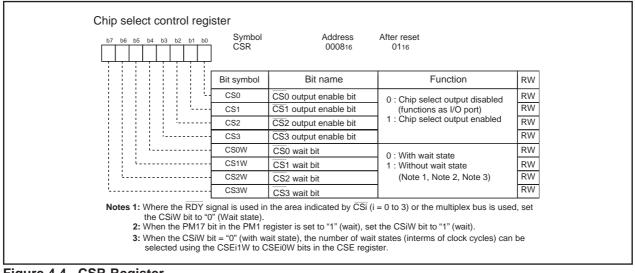
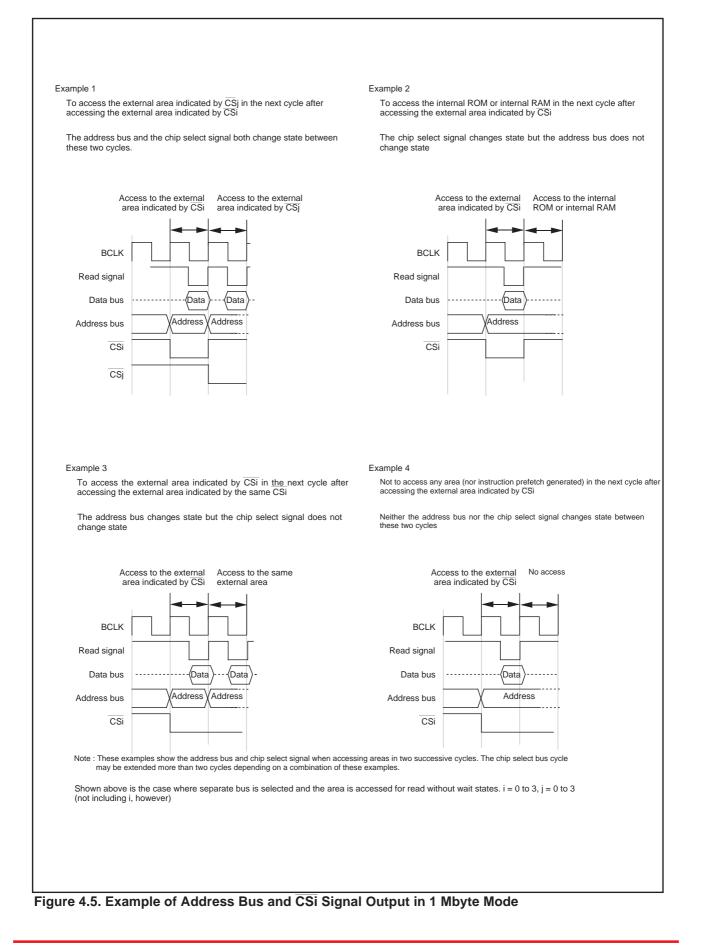



Figure 4.4. CSR Register

RENESAS

(4) Read and Write Signals

When the data bus is 16 bits wide, the read and write signals can be chosen to be a combination of RD, BHE and WR or a combination of RD, WRL and WRH by using the PM02 bit in the PM0 register. When the data bus is 8 bits wide, use a combination of \overline{RD} , \overline{WR} and \overline{BHE} .

Table 4.5 shows the operation of RD, WRL, and WRH signals. Table 4.6 shows the operation of operation of RD, WR, and BHE signals.

Table 4.5. Operation of RD, WRL and WRH Signals

Data bus width	RD	WRL	WRH	Status of external data bus
40 1.1	L	H H Read data		Read data
16-bit (BYTE pin input	Н	L	Н	Write 1 byte of data to an even address
= "L")	Н	Н	L	Write 1 byte of data to an odd address
	Н	L	L	Write data to both even and odd addresses

Table 4.6. Operation of RD, WR and BHE Signals

Data bus width	RD	WR	BHE	A0	Status of external data bus
16-bit (BYTE pin input = "L")	Н	L	L	Н	Write 1 byte of data to an odd address
	L	Н	L	Н	Read 1 byte of data from an odd address
	Н	L	Н	L	Write 1 byte of data to an even address
	L	Н	Н	L	Read 1 byte of data from an even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses

(5) ALE Signal

The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the ALE signal falls.

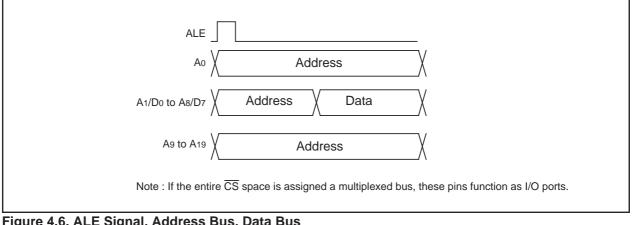


Figure 4.6. ALE Signal, Address Bus, Data Bus

(6) The RDY Signal

This signal is provided for accessing external devices which need to be accessed at low speed. If input on the $\overline{\text{RDY}}$ pin is asserted low at the last falling edge of BCLK of the bus cycle, one wait state is inserted in the bus cycle. While in a wait state, the following signals retain the state in which they were when the $\overline{\text{RDY}}$ signal was acknowledged.

A0 to A19, D0 to D15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{RD}}$, $\overline{\text{WRL}}$, $\overline{\text{WRH}}$, $\overline{\text{WR}}$, $\overline{\text{BHE}}$, ALE, $\overline{\text{HLDA}}$

Then, when the input on the $\overline{\text{RDY}}$ pin is detected high at the falling edge of BCLK, the remaining bus cycle is executed. Figure 4.7 shows example in which the wait state was inserted into the read cycle by the $\overline{\text{RDY}}$ signal. To use the $\overline{\text{RDY}}$ signal, set the corresponding bit (CS3W to CS0W bits) in the CSR register to "0" (with wait state). When not using the $\overline{\text{RDY}}$ signal, process the $\overline{\text{RDY}}$ pin as an unused pin.

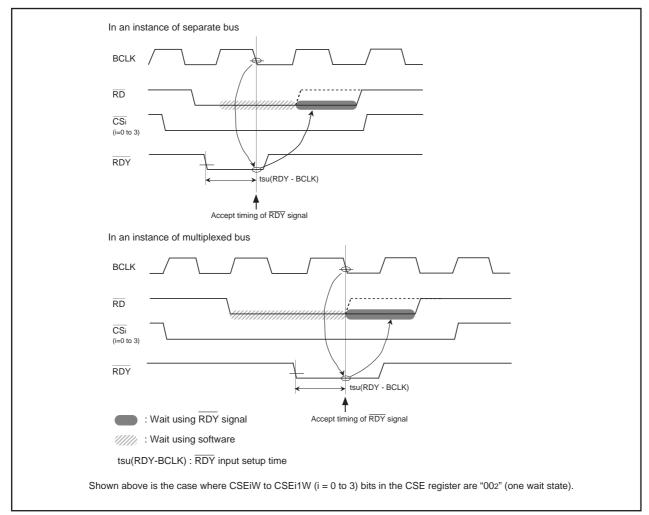


Figure 4.7. Example in which Wait State was Inserted into Read Cycle by RDY Signal

(7) HOLD Signal

This signal is used to transfer control of the bus from the CPU or DMAC to an external circuit. When the input on \overline{HOLD} pin is pulled low, the microcomputer is placed in a hold state after the bus access then in process finishes. The microcomputer remains in the hold state while the \overline{HOLD} pin is held low, during which time the \overline{HLDA} pin outputs a low-level signal.

Table 4.7 shows the microcomputer status in the hold state.

Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence. However, if the CPU is accessing an odd address in word units, the DMAC cannot gain control of the bus during two separate accesses.

\overline{HOLD} > DMAC > CPU

Figure 4.8. Bus-using Priorities

Table 4.7. Microcomputer Status in Hold State

Ite	m	Status		
BCLK		Output		
A ₀ to A ₁₉ , D ₀ to D ₁₅ , $\overline{CS0}$ to $\overline{CS3}$,	RD, WRL, WRH, WR, BHE	High-impedance		
I/O ports	P0, P1, P3, P4(Note 1)	High-impedance		
	P6 to P10	Maintains status when hold signal is received		
HLDA		Output "L"		
Internal peripheral circuits		ON (but watchdog timer stops)		
ALE signal		Indeterminate		

Note 1: When I/O port function is selected.

(8) BCLK Output

If the PM07 bit in the PM0 register is set to "0" (output enable), a clock with the same frequency as that of the CPU clock is output as BCLK from the BCLK pin.

Processor mode		Memory expansion	n mode or microprocessor mode				
PM05-PM0	4 bits	002(separate bus)	012(CS2 is for multiplexed bus and others are for separate bus) 102(CS1 is for multiplexed bus and others are for separate bus)				
Data bus wi	idth	16 bits	16 bits				
BYTE pin		"L"	"L"				
P00 to P07		Do to D7	Do to D7(Note)				
P10 to P17		D8 to D15	D8 to D15(Note)				
P20		Ao	Ao				
P21 to P27		A1 to A7	A1 to A7/D0 to D6 (Note 2)				
P30		A8	A8/D7(Note 2)				
P31 to P33		A9 to A11					
P34 to P37	PM11=0	A12 to A15					
	PM11=1	I/O ports					
P40 to P43	PM06=0	A16 to A19					
	PM06=1	I/O ports					
P44	CS0=0	I/O ports					
	CS0=1	CS0					
P45	CS1=0	I/O ports					
	CS1=1	CS1					
P46	CS2=0	I/O ports					
	CS2=1	CS2					
P47	CS3=0	I/O ports					
	CS3=1	CS3					
P50	PM02=0	WR					
	PM02=1	WRL	WRL				
P51	PM02=0	BHE					
	PM02=1	WRH	WRH				
P52		RD	•				
P53		BCLK					
P54		HLDA					
P55		HOLD					
P56		ALE					
P57		RDY					

Table 4.8. Pin Functions for Each Processor Mode

I/O ports: Function as I/O ports or peripheral function I/O pins.

Note 1: When Vcc1 is inputted into CNVss1 pin, do not set bits PM05 and PM04 to "112" after reset. Since P31 to P37, and P40 to P43 become I/O ports when bits PM05 snd PM04 are set to "112" in memory extension mode, the area which can be accessed is 256 bytes per CS.

Note 2: In separate bus mode, these pins serve as the address bus. Note 3: When accessing the area that uses a multiplexed bus, these pins output an indeterminate value during a write.

(9) External Bus Status When Internal Area Accessed

Table 4.9 shows the external bus status when the internal area is accessed.

Table 4.9.	External Bus	Status When	Internal Area	Accessed
------------	--------------	--------------------	---------------	----------

Item		SFR accessed	Internal ROM, RAM accessed
A0 to A19		Address output	Maintain status before accessed
			address of external area or SFR
Do to D15	When read	High-impedance	High-impedance
	When write	Output data	Undefined
RD, WR, WF	RL, WRH	$\overline{RD}, \overline{WR}, \overline{WRL}, \overline{WRH}$ output	Output "H"
BHE		BHE output	Maintain status before accessed
			status of external area or SFR
$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$		Output "H"	Output "H"
ALE		Output "L"	Output "L"

(10) Software Wait

Software wait states can be inserted by using the PM17 bit in the PM1 register, the CS0W to CS3W bits in the CSR register, and the CSE register. The SFR area is unaffected by these control bits. This area is always accessed in 2 BCLK.

To use the RDY signal, set the corresponding CS0W to CS3W bit to "0" (with wait state). Figure 4.9 shows the CSE register. Table 4.10 shows the software wait related bits and bus cycles. Figure 4.10 and 4.11 show the typical bus timings using software wait.

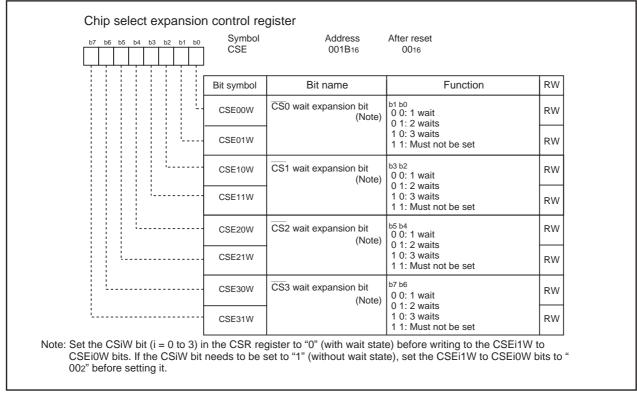
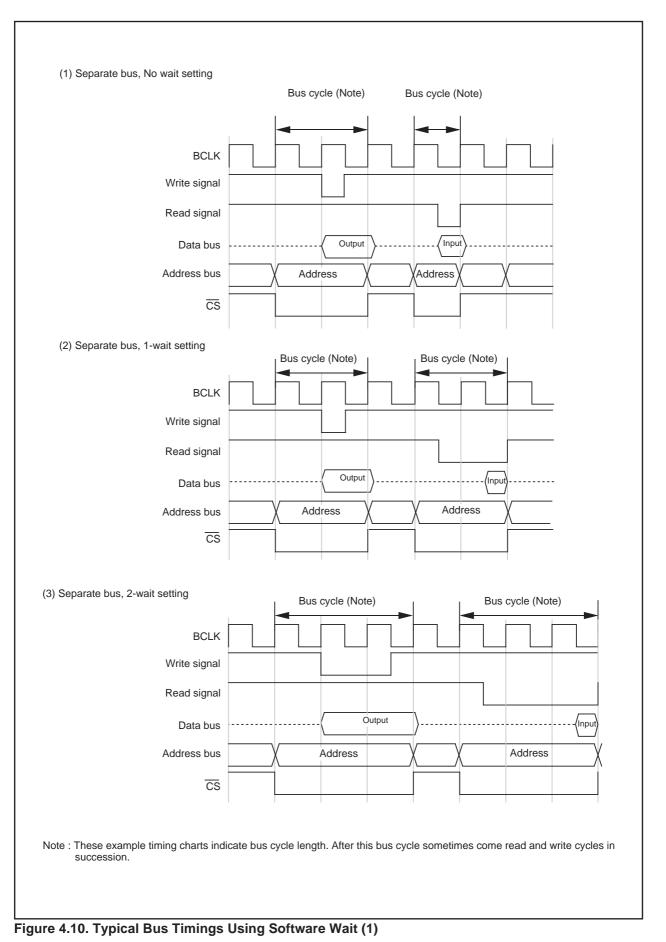
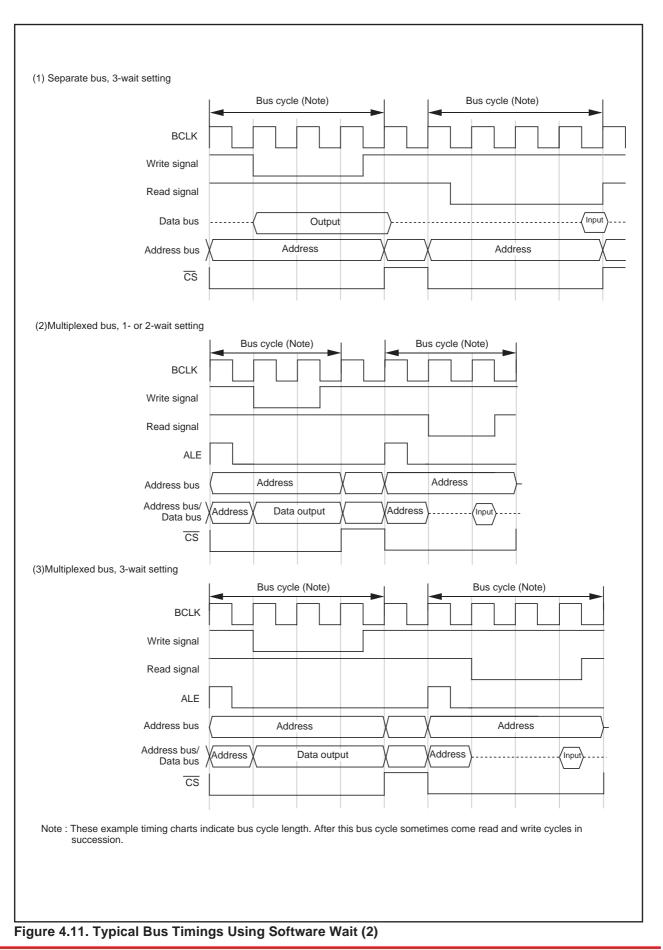


Figure 4.9. CSE Register

Area	Bus mode	PM1 register PM17 bit	CSR register CS3W bit (Note 1) CS2W bit (Note 1) CS1W bit (Note 1) CS0W bit (Note 1)	CSE register CSE31W to CSE30W bit CSE21W to CSE20W bit CSE11W to CSE10W bit CSE01W to CSE00W bit	Software wait	Bus cycle		
SFR						2 BCLK cycle		
Internal		0			No wait	1 BCLK cycle (Note 3)		
RAM, ROM		1			1 wait	2 BCLK cycles		
	Separate bus	0	1	002	No wait	1 BCLK cycle (read)		
		Separate bus	Separate bus	0	I	002	NO wait	2 BCLK cycles (write)
					0	002	1 wait	2 BCLK cycles (Note 3)
			0	012	2 waits	3 BCLK cycles		
External area			0	102	3 waits	4 BCLK cycles		
area		1	1	002	1 wait	2 BCLK cycles		
			0	002	1 wait	3 BCLK cycles		
	Multiplexed		0	012	2 waits	3 BCLK cycles		
	bus (Note 2)		0	102	3 waits	4 BCLK cycles		
		1	0	002	1 wait	3 BCLK cycles		


Table 4.10. Bit and Bus Cycle Related to Software Wait


Notes 1: To use the RDY signal, set this bit to "0".

 To access in multiplexed bus mode, set the corresponding bit of CS0W to CS3W to "0" (with wait state).
 After reset, the PM17 bit is set to "0" (without wait state), all of the CS0W to CS3W bits are set to "0" (with wait state), and the CSE register is set to "0016" (one wait state for CS0 to CS3). Therefore, the internal RAM and internal ROM are accessed with no wait states, and all external areas are accessed with no wait states, and all external areas are accessed with no wait states. accessed with one wait state.

4: When the PM17 bit is set to "1" and accessing external area, set the CSiW bit (0 to 3) in the CSR register to "0" (wait).

Memory Space Expansion Function

The following describes a memory space extension function.

During memory expansion or microprocessor mode, the memory space expansion function allows the access space to be expanded using the appropriate register bits.

Table 4.11 shows the way of setting memory space expansion function, memory spaces.

Table 4.11. The Way of Setting Memory Space Expansion Function, Memory Space

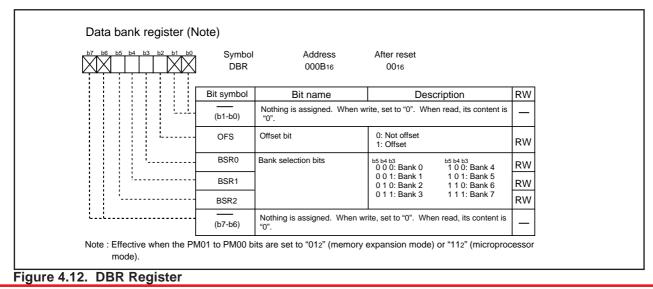
Memory space expansion function	How to set (PM15 to PM14)	Memory space
1 Mbytes mode	002	1 Mbytes (no expansion)
4 Mbytes mode	112	4 Mbytes

(1) 1 Mbyte Mode

In this mode, the memory space is 1 Mbytes. In 1 Mbyte mode, the external area to be accessed is specified using the \overline{CSi} (i = 0 to 3) signals (hereafter referred to as the \overline{CSi} area). Figures 4.13 to 4.14 show the memory mapping and \overline{CS} area in 1 Mbyte mode.

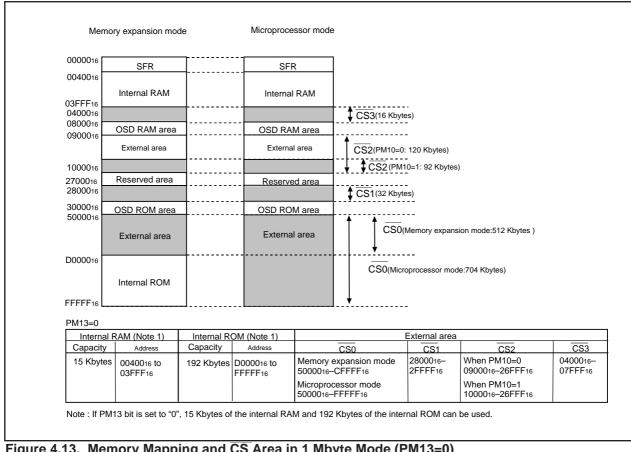
(2) 4 Mbyte Mode

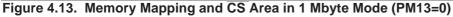
In this mode, the memory space is 4 Mbytes. Figure 4.12 shows the DBR register. The BSR2 to BSR0 bits in the DBR register select a bank number which is to be accessed to read or write data. Setting the OFS bit to "1" (with offset) allows the accessed address to be offset by 4000016.


In 4 Mbyte mode, the \overline{CSi} (i=0 to 3) pin functions differently for each area to be accessed. Addresses 0400016 to 3FFFF16, C000016 to FFFFF16

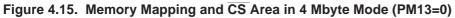
• The CSi signal is output from the CSi pin (same operation as 1 Mbyte mode. However the last address of CS1 area is 3FFFF16)

Addresses 4000016 to BFFFF16


- The CS0 pin outputs "L"
- The CS1 to CS3 pins output the value of setting as the BSR2 to BSR0 bits (bank number)


Figures 4.15 to 4.16 show the memory mapping and \overline{CS} area in 4 Mbyte mode. Note that banks 0 to 6 are data-only areas. Locate the program in bank 7 or the \overline{CSi} area.

Г



0000016	SFR]	SF	R				
0040016	Internal RAM		Interna	IRAM				
043FF16 0440016		+						
0800016 0900016	OSD RAM area		OSD RA	M area		-		
0900016	External area		Externa	al area	CS2(PM10=0	: 120 Kbytes)		
1000016		+				 10=1: 92 Kbyte	s)	
2700016	Reserved area]	Reserve	ed area		- 1	,	
2800016					CS1(32 Kbyt	es)		
3000016	OSD ROM area	1	OSD RO	M area				
5000016	External area		Externa	al area	CSO(Memory expansion mode:192 Kbytes)			
8000016	Internal ROM				CS0(Mici	roprocessor mo	ode:704 Kbytes)	
FFFFF16					· - *	-		
PM13=1								
	nternal RAM		nal ROM			External area		
Capacity		Capacity	Address	1	CS0	CS1	CS2	CS
16 Kbyte	es 0040016 to 043FF16	512 Kbytes	8000016 to FFFFF16	Memory ex 5000016-7	pansion mode	2800016- 2FFFF16	When PM10=0 0900016-26FFF16	No are
				Microproce 5000016-F	essor mode		When PM10=1 1000016-26FFF16	

Figure 4.14. Memory Mapping and CS Area in 1 Mbyte Mode (PM13=1)

Г

mory expansion			Microprocessor mode					
SFR			SFR					
Internal R	АМ		Internal RAM					
				CS3(16 H	(bytes)			
OSD ROM	area		OSD ROM area					
External a	area		External area		10-0: 120 Kbytes)			
Reserved	area		Reserved area					
				CS1(32)	(bytes)			
OSD ROM	area		OSD ROM area					
			External area	CSO(Memory expansion mode:448 Kbytes)				
				···•				
					S2(PM10=1: 64 Kbytes)			
Internal R	.OM			CS0(M	licroprocessor mode:256 Kb	oytes)		
				Ļ				
A.M. (Alasta O)	Internal D		1	F . (
		Address	<u></u>		CS2	CS3	Other than the CS area (Note 1)	
0040016 to 03FFF16			Memory expansion mode C000016-CFFFF16	2800016- 2FFFF16	When PM10=0 0900016-26FFF16	0400016- 07FFF16	5000016-BFFFF16	
			Microprocessor mode C000016-FFFFF16		When PM10=1 1000016-26FFF16			
	SFR Internal R OSD ROM External a OSD ROM External a Internal R Internal R	Internal RAM OSD ROM area External area OSD ROM area Cost Rom area External area External area Internal ROM CAM (Note 2) Internal R Address Capacity 0040016 to 192 Kbytes	SFR Internal RAM OSD ROM area External area OSD ROM area External area Internal ROM (Note 2) Address Capacity Address 0040016 to 192 Kbytes D000016 to	SFR SFR Internal RAM Internal RAM OSD ROM area OSD ROM area External area External area Reserved area Reserved area OSD ROM area OSD ROM area OSD ROM area OSD ROM area OSD ROM area External area OSD ROM area OSD ROM area Internal area External area Internal ROM Internal ROM Internal ROM Internal ROM Internal ROM Internal ROM (Note 2) Internal ROM Internal ROM	SFR SFR Internal RAM Internal RAM OSD ROM area OSD ROM area External area External area External area Reserved area OSD ROM area Image: CS3 (16 Processing area OSD ROM area OSD ROM area External area Image: CS3 (16 Processing area OSD ROM area Image: CS3 (16 Processing area OSD ROM area Image: CS3 (16 Processing area OSD ROM area Image: CS3 (16 Processing area Internal area Image: CS3 (16 Processing area Internal area Image: CS3 (16 Processing area Internal ROM Image: CS3 (16 Processing area Internal ROM Image: CS3 (16 Processing area Internal ROM Image: CS3 (16 Processing area Address CS3 (16 Processing area Output Image: CS3 (16 Processing area Image: CS3 (16 Processing area Image: CS3 (16 Processing area Internal ROM Image: CS3 (16 Processing area Image: CS3 (16 Processing area Image: CS3 (16 Processing area Image: CS3 (16 Processing area Image: CS3 (16 Processing area Image: CS3 (16 Processing area Image	SFR SFR Internal RAM Internal RAM OSD ROM area OSD ROM area External area External area External area External area OSD ROM area CS2(PM10=0: 120 Kbytes) Reserved area Reserved area OSD ROM area CS2(PM10=1: 92 Kbytes) Reserved area CS1(32 Kbytes) OSD ROM area OSD ROM area External area CS0(Memory expansion mode:448 K Internal ROM CS0(Microprocessor mode:256 Kt Internal ROM CS0 CS1 CS2 O40016 to 192 Kbytes	SFR SFR Internal RAM Internal RAM OSD ROM area OSD ROM area External area External area External area External area CS2(PM10=0: 120 Kbytes) CS2(PM10=1: 92 Kbytes) Reserved area CS1(32 Kbytes) OSD ROM area CS1(32 Kbytes) OSD ROM area CS2(PM10=1: 92 Kbytes) External area CS0(Memory expansion mode:448 Kbytes) CS2(PM10=1: 64 Kbytes) CS0(Microprocessor mode:256 Kbytes) Internal ROM CS0 CS1 CS1 CS2 CS2(Microprocessor mode:256 Kbytes) CS0(Microprocessor mode:256 Kbytes) CS0(Microprocessor mode:256 Kbytes) CS0(Microprocessor mode:256 Kbytes)	

	Memory expans	sion mode		Microprocessor mode	_				
0000016	SFR			SFR	1				
0040016	Internal I	RAM		Internal RAM					
043FF16					-				
0800016	OSD RON	/l area		OSD ROM area	1				
0900016	External	area		External area		110=0: 120 Kbytes)			
1000016									
2700016 2800016	Reserve	d area		Reserved area	CS1(32				
3000016	OSD ROM	l area		OSD ROM area	+	· , · · · ·			
5000016	External			External area	Other than the CS area (Memory expansion mode:192 Kbytes X 8 banks)* "Two 192 Kbytes X 8 banks can be used by changing the offset.				
8000016								0 0	
C000016 -					Other than	n the CS area(Microprocesso	r mode:448 Kb	ytes λ ö banks)	
	Internal I	ROM				licroprocessor mode:256 K	bytes)		
					↓ ↓				
°M13=1									
-	ernal RAM	Inter	nal ROM		External area	a			
Capacity	Address	Capacity	Address	CS0	CS1	CS2	CS3	Other than the CS area (Note 1)	
16 Kbytes	0040016 to 043FF16	512 Kbytes	8000016 to FFFFF16	Microprocessor mode C000016-FFFFF16	2800016- 2FFFF16	When PM10=0 0900016-26FFF16	No area	Memory expansion mode 5000016–7FFFF16	
	1					When PM10=1 1000016-26FFF16		Microprocessor mode 5000016-BFFFF16	

Figure 4.16. Memory Mapping and CS Area in 4 Mbyte Mode (PM13=1)

Figure 4.17 shows the external memory connect example in 4 Mbyte mode.

In this example, the \overline{CS} pin of 4-Mbyte ROM is connected to the $\overline{CS0}$ pin of microcomputer. The 4 Mbyte ROM address input AD21, AD20 and AD19 pins are connected to the $\overline{CS3}$, $\overline{CS2}$ and $\overline{CS1}$ pins of micro-computer, respectively. The address input AD18 pin is connected to the A19 pin of microcomputer. Figures 4.18 to 4.20 show the relationship of addresses between the 4-Mbyte ROM and the microcomputer for the case of a connection example in Figure 4.17.

In microprocessor mode, or in memory expansion mode where the PM13 bit in the PM1 register is "0", banks are located every 512 Kbytes. Setting the OFS bit in the DBR register to "1"(offset) allows the accessed address to be offset by 4000016, so that even the data overlapping a bank boundary can be accessed in succession.

In memory expansion mode where the PM13 bit is "1", each 512-Kbyte bank can be accessed in 256 Kbyte units by switching them over with the OFS bit.

Because the SRAM can be accessed on condition that the chip select signals S2 = "H" and $\overline{S1}$ ="L", $\overline{CS0}$ and $\overline{CS2}$ can be connected to S2 and $\overline{S1}$, respectively. If the SRAM does not have the input pins to accept "H" active and "L" active chip select signals($\overline{S1}$, S2), $\overline{CS0}$ and $\overline{CS2}$ should be decoded external to the chip.

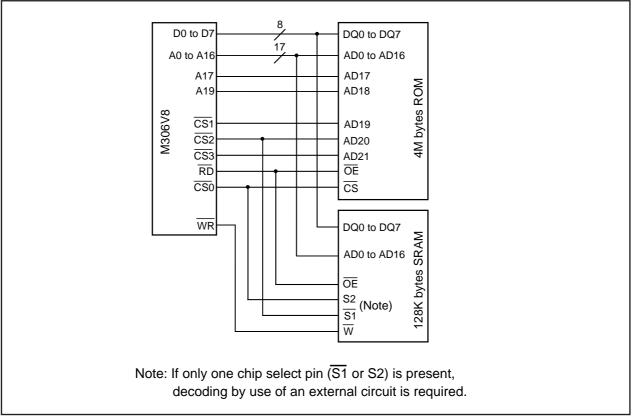
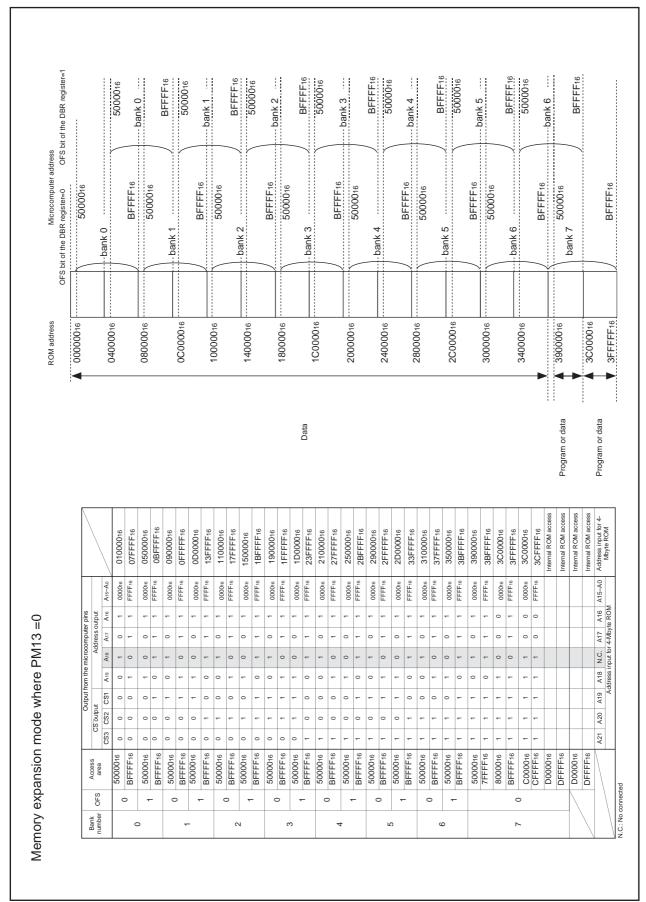
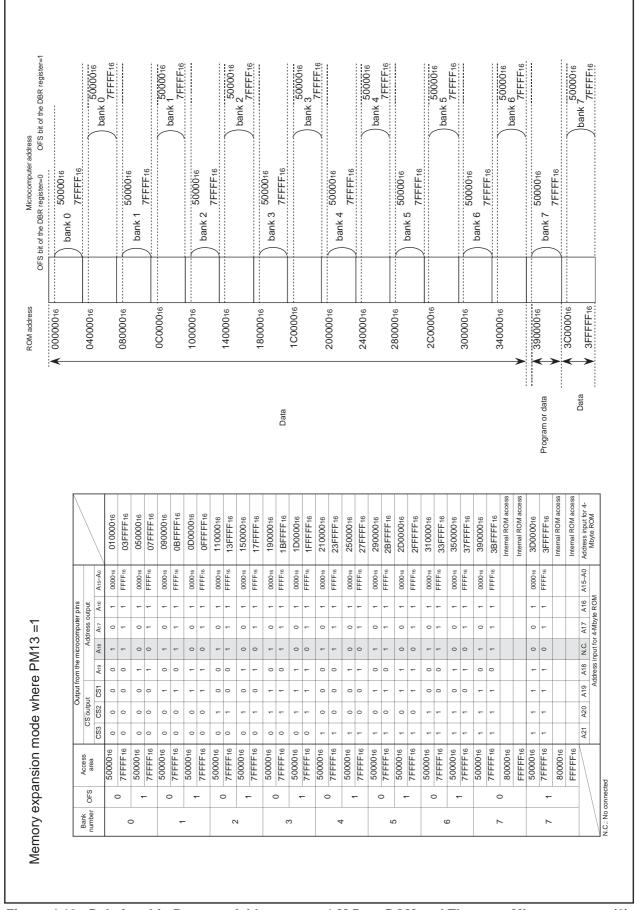




Figure 4.17. External Memory Connect Example in 4M Byte Mode

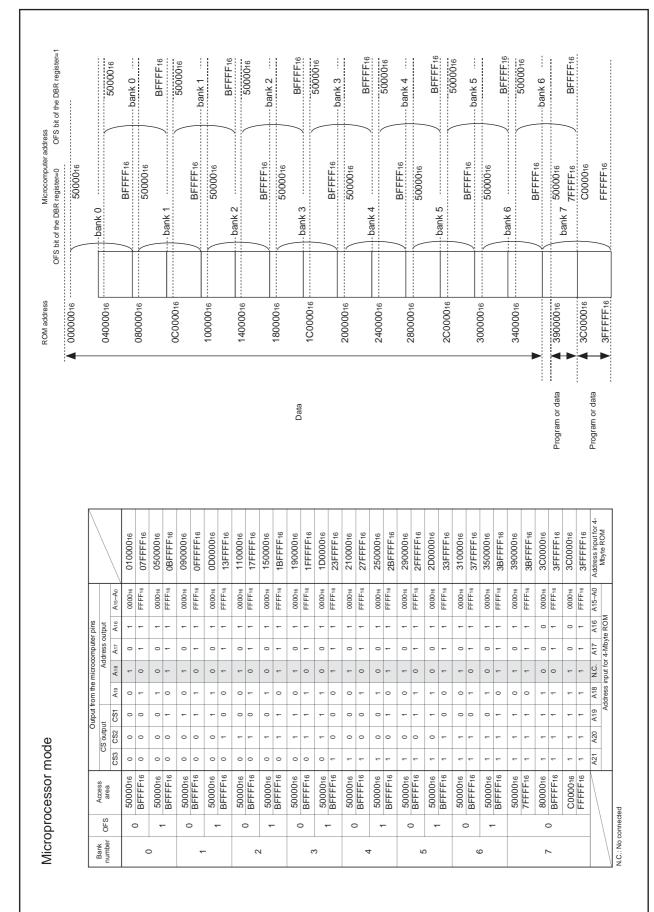


Figure 4.20. Relationship Between Addresses on 4-M Byte ROM and Those on Microcomputer (3)

Clock Generation Circuit

The clock generation circuit contains two oscillator circuits as follows:

- (1) Main clock oscillation circuit
- (2) Sub clock oscillation circuit

Table 5.1 lists the clock generation circuit specifications. Figure 5.1 shows the clock generation circuit. Figures 5.2 to 5.6 show the clock-related registers.

Item	Main clock oscillation circuit	Sub clock oscillation circuit			
Use of clock	CPU clock source Peripheral function clock source	•CPU clock source • Timer A, B's clock source			
Clock frequency	16 MHz	32.768 kHz			
Usable oscillator	 Ceramic oscillator Crystal oscillator 	 Crystal oscillator 			
Pins to connect oscillator	Xin, Xout	XCIN, XCOUT			
Oscillation stop, restart function	Presence	Presence			
Oscillator status after reset	Oscillating	Stopped			
Other	Externally derived clock can be input				

Table 5.1. Clock Generation Circuit Specifications

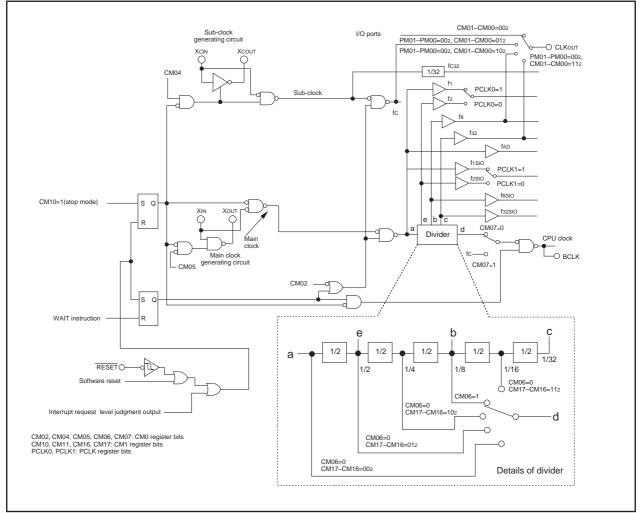


Figure 5.1. Clock Generation Circuit

is required: (1) Set the CM (2) Set the CM Note 4: During external chosen as a CP Note 5: When CM05 bit the XIN pin is pu Note 6: After setting the the CM07 bit fro Note 7: When entering s	Bit symbol CM00 CM01	Bit name Clock output function select bit	Function	RW
Note 2: The CM03 bit is Note 3: This bit is provid This bit cannot h is required: (1) Set the CM (2) Set the CM Note 4: During external chosen as a CP Note 5: When CM05 bit the XIN pin is pu Note 6: After setting the the CM07 bit fro Note 7: When entering s		select bit		
Note 2: The CM03 bit is Note 3: This bit is provid This bit cannot h is required: (1) Set the CM (2) Set the CM Note 4: During external chosen as a CP Note 5: When CM05 bit the XIN pin is pu Note 6: After setting the the CM07 bit fro Note 7: When entering s	CM01		0 0 : I/O port P57 0 1 : fc output	RW
Note 2: The CM03 bit is Note 3: This bit is provid This bit cannot h is required: (1) Set the CM (2) Set the CM Note 4: During external chosen as a CP Note 5: When CM05 bit the XIN pin is pu Note 6: After setting the the CM07 bit fro Note 7: When entering s		(Valid only in single-chip mode)	1 0 : f8 output 1 1 : f32 output	RW
Note 2: The CM03 bit is Note 3: This bit is provid This bit cannot h is required: (1) Set the CM (2) Set the CM (2) Set the CM Note 4: During external chosen as a CP Note 5: When CM05 bit the XIN pin is pu Note 6: After setting the the CM07 bit fro Note 7: When entering s	CM02	WAIT peripheral function clock stop bit	0 : Do not stop peripheral function clock in wait mode 1 : Stop peripheral function clock in wait mode (Note 8)	RW
Note 2: The CM03 bit is Note 3: This bit is provid This bit cannot h is required: (1) Set the CM (2) Set the CM (2) Set the CM Note 4: During external chosen as a CP Note 5: When CM05 bit the XIN pin is pu Note 6: After setting the the CM07 bit fro Note 7: When entering s	CM03	XCIN-XCOUT drive capacity select bit (Note 2)	0 : LOW 1 : HIGH	RW
Note 2: The CM03 bit is Note 3: This bit is provid This bit cannot h is required: (1) Set the CM (2) Set the CM (2) Set the CM Note 4: During external chosen as a CP Note 5: When CM05 bit the XIN pin is pu Note 6: After setting the the CM07 bit fro Note 7: When entering s	CM04	Port Xc select bit (Note 2)	0 : I/O port P86, P87 1 : XCIN-XCOUT generation function(Note 9)	RW
Note 2: The CM03 bit is Note 3: This bit is provid This bit cannot h is required: (1) Set the CM (2) Set the CM Note 4: During external chosen as a CP Note 5: When CM05 bit the XIN pin is pu Note 6: After setting the the CM07 bit fro Note 7: When entering s	CM05	Main clock stop bit (Notes 3, 11, 12)	0 : On 1 : Off (Note 4, Note5)	RW
Note 2: The CM03 bit is Note 3: This bit is provid This bit cannot h is required: (1) Set the CM (2) Set the CM Note 4: During external chosen as a CP Note 5: When CM05 bit the XIN pin is pu Note 6: After setting the the CM07 bit fro Note 7: When entering s	CM06	Main clock division select bit 0 (Notes 7, 11)	0 : CM16 and CM17 valid 1 : Division by 8 mode	RW
Note 2: The CM03 bit is Note 3: This bit is provid This bit cannot h is required: (1) Set the CM (2) Set the CM (2) Set the CM Note 4: During external chosen as a CP Note 5: When CM05 bit the XIN pin is pu Note 6: After setting the the CM07 bit fro Note 7: When entering s	CM07	System clock select bit (Notes 6, 10)	0 : Main clock 1 : Sub-clock	RW
turned off when Note 9: To use a sub-clo Note 10: To use the ma (1) Set the CM0	t be used for detec M07 bit to "1" (Sub M05 bit to "1" (Stop al clock input, only PU clock. bit is set to "1, the X bulled "H" to the same the CM04 bit to "1" (rom "0" to "1" (sub- stop mode from h does not stop. Dur n in wait mode). clock, set this bit to iain clock as the cli 105 bit to "0" (oscilla	tion as to whether the main c -clock select) with the sub-clo b). the clock oscillation buffer is KOUT pin goes "H". Furthermo me level as XOUT via the feed XCIN-XCOUT oscillator functio clock). igh or middle speed mode, the ring low speed or low power of "1". Also make sure ports Pa ock source for the CPU clock ate). the main clock oscillation stat	clock stopped or not. To stop the main clock, the following bock stably oscillating. turned off and clock input is accepted if the sub clock is r re, because the internal feedback resistor remains conner dback resistor. n), wait until the sub-clock oscillates stably before switch ne CM06 bit is set to "1" (divide-by-8 mode). dissipation mode, do not set this bit to "1" (peripheral cloc 86 and P87 are directed for input, with no pull-ups. , follow the procedure below. bilizes, whichever is longer.	not ected ing ck

Figure 5.2. CM0 Register

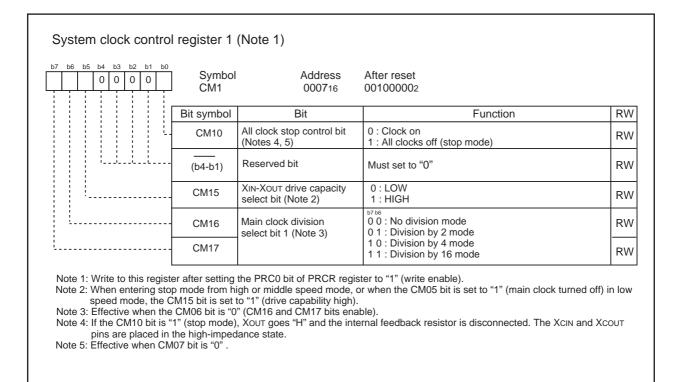


Figure 5.3. CM1 Register

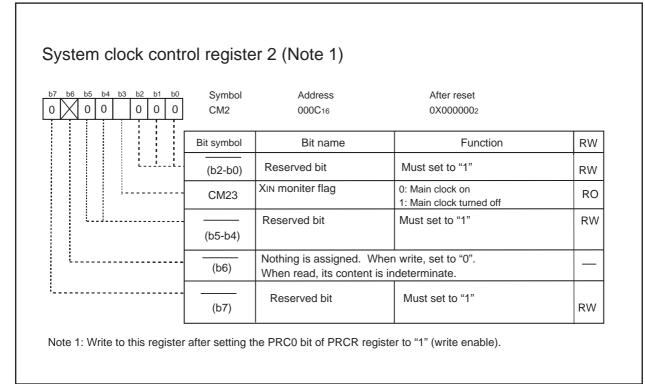


Figure 5.4. CM2 Register

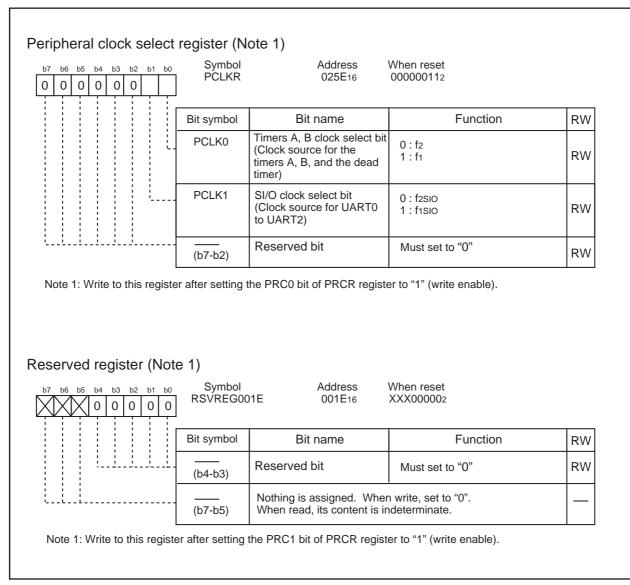


Figure 5.5. PCLKR Register and PM2 Register

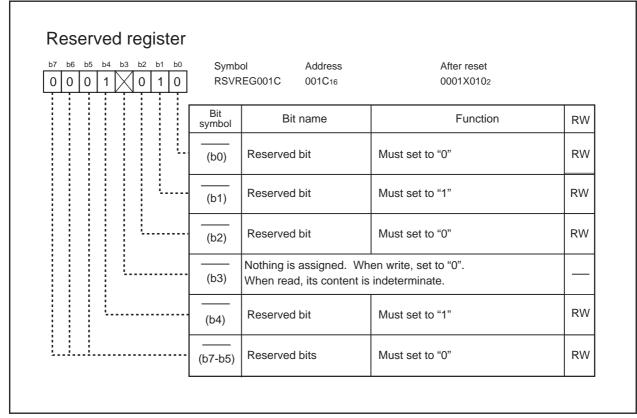


Figure 5.6. PLC0 Register

The following describes the clocks generated by the clock generation circuit.

(1) Main Clock

This clock is used as the clock source for the CPU and peripheral function clocks. This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillator circuit is configured by connecting a resonator between the XIN and XOUT pins. The main clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The main clock oscillator circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 5.7 shows the examples of main clock connection circuit.

After reset, the main clock divided by 8 is selected for the CPU clock.

The power consumption in the chip can be reduced by setting the CM05 bit of CM0 register to "1" (main clock oscillator circuit turned off) after switching the clock source for the CPU clock to a sub clock. In this case, XOUT goes "H". Furthermore, because the internal feedback resistor remains on, XIN is pulled "H" to XOUT via the feedback resistor. Note that if an externally generated clock is fed into the XIN pin, the main clock cannot be turned off by setting the CM05 bit to "1", unless the sub clock is chosen as a CPU clock. If necessary, use an external circuit to turn off the clock.

During stop mode, all clocks including the main clock are turned off. Refer to "power control".

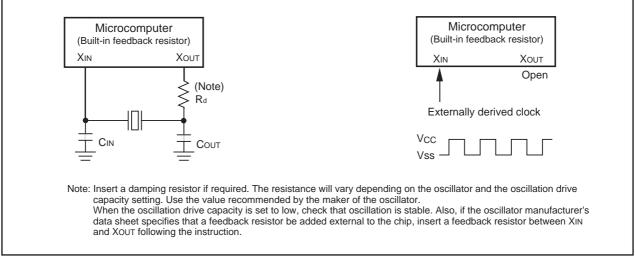


Figure 5.7. Examples of Main Clock Connection Circuit

(2) Sub Clock

The sub clock is generated by the sub clock oscillation circuit. This clock is used as the clock source for the CPU clock, as well as the timer A and timer B count sources. In addition, an fc clock with the same frequency as that of the sub clock can be output from the CLKOUT pin.

The sub clock oscillator circuit is configured by connecting a crystal resonator between the XCIN and XCOUT pins. The sub clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The sub clock oscillator circuit may also be configured by feeding an externally generated clock to the XCIN pin. Figure 5.8 shows the examples of sub clock connection circuit.

After reset, the sub clock is turned off. At this time, the feedback resistor is disconnected from the oscillator circuit.

To use the sub clock for the CPU clock, set the CM07 bit of CM0 register to "1 " (sub clock) after the sub clock becomes oscillating stably.

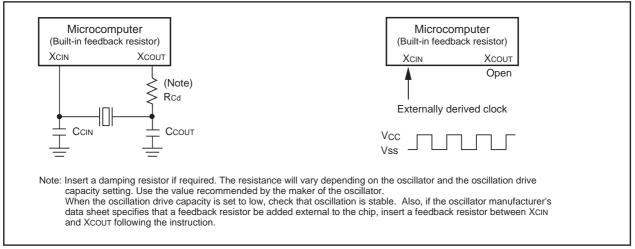


Figure 5.8. Examples of Sub Clock Connection Circuit

OSD Oscillation Circuit

The OSD clock oscillation circuit can be chosen to be an external oscillator circuit comprised of an LC oscillator or a ceramic resonator (or a quartz-crystal oscillator) connected between the OSC1 and OSC2 pins, or an internal oscillator circuit with a filter connected to the OSC1 pin. Which of LC oscillator or a ceramic resonator (or a quartz-crystal oscillator) is selected by setting bits 0, 1 and 2 of the clock control register (address 020516) and bit 1 of the extended register 1C (address 02DC16).

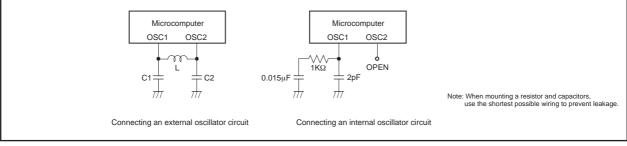


Figure 5.9. OSD clock connection example

CPU Clock and Peripheral Function Clock

Two type clocks: CPU clock to operate the CPU and peripheral function clocks to operate the peripheral functions.

(1) CPU Clock and BCLK

These are operating clocks for the CPU and watchdog timer.

The clock source for the CPU clock can be chosen to be the main clock or sub clock.

If the main clock is selected as the clock source for the CPU clock, the selected clock source can be divided by 1 (undivided), 2, 4, 8 or 16 to produce the CPU clock. Use the CM06 bit in CM0 register and the CM17 to CM16 bits in CM1 register to select the divide-by-n value.

After reset, the main clock divided by 8 provides the CPU clock.

During memory expansion or microprocessor mode, a BCLK signal with the same frequency as the CPU clock can be output from the BCLK pin by setting the PM07 bit of PM0 register to "0" (output enabled).

Note that when entering stop mode from high or middle speed mode, or when the CM05 bit of CM0 register is set to "1" (main clock turned off) in low-speed mode, the CM06 bit of CM0 register is set to "1" (divide-by-8 mode).

(2) Peripheral Function Clock(f1, f2, f8, f32, f1SIO, f2SIO, f8SIO, f32SIO, fAD, fC32)

These are operating clocks for the peripheral functions.

Of these, fi (i = 1, 2, 8, 32) and fisio are derived from the main clock. The clock fi is used for timers A and B, and fisio is used for serial I/O. The f8 and f32 clocks can be output from the CLKOUT pin.

The fAD clock is produced from the main clock, and is used for the A/D converter.

When the WAIT instruction is executed after setting the CM02 bit of CM0 register to "1" (peripheral function clock turned off during wait mode), or when the microcomputer is in low power dissipation mode, the fi, fiSIO and fAD clocks are turned off.

The fC32 clock is produced from the sub clock, and is used for timers A and B. This clock can be used when the sub clock is on.

Clock Output Function

During single-chip mode, the f8, f32 or fC clock can be output from the CLKOUT pin. Use the CM01 to CM00 bits of CM0 register to select.

Power Control

There are three power control modes. For convenience' sake, all modes other than wait and stop modes are referred to as normal operation mode here.

(1) Normal Operation Mode

Normal operation mode is further classified into four modes.

In normal operation mode, because the CPU clock and the peripheral function clocks both are on, the CPU and the peripheral functions are operating. Power control is exercised by controlling the CPU clock frequency. The higher the CPU clock frequency, the greater the processing capability. The lower the CPU clock frequency, the smaller the power consumption in the chip. If the unnecessary oscillator circuits are turned off, the power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source to which switched must be oscillating stably. If the new clock source is the main clock or sub clock, allow a sufficient wait time in a program until it becomes oscillating stably.

• High-speed Mode

The main clock divided by 1 provides the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B.

• Medium-speed Mode

The main clock divided by 2, 4, 8 or 16 provides the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B.

Low-speed Mode

The sub clock provides the CPU clock.

The fC32 clock can be used as the count source for timers A and B.

• Low Power Dissipation Mode

In this mode, the main clock is turned off after being placed in low speed mode. The sub clock provides the CPU clock. The fc32 clock can be used as the count source for timers A and B.

Simultaneously when this mode is selected, the CM06 bit of CM0 register becomes "1" (divided by 8 mode). In the low power dissipation mode, do not change the CM06 bit. Consequently, the medium speed (divided by 8) mode is to be selected when the main clock is operated next.

Modes		CM1 register		CM0 re	gister	
wodes		CM17, CM16	CM07	CM07 CM06 CM05 CM04		
High-speed mode		002	0	0	0	
Medium-	divided by 2	012	0	0	0	
speed mode	divided by 4	102	0	0	0	
	divided by 8		0	1	0	
	divided by 16	112	0	0	0	
Low-speed r	node		1		0	1
Low power of	dissipation mode		1	1(Note 1)	1(Note 1)	1

Table 5.2. Setting Clock Related Bit and Modes

Note 1: When the CM05 bit is set to "1" (main clock turned off) in low-speed mode, the mode goes to low power dissipation mode and CM06 bit is set to "1" (divided by 8 mode) simultaneously.

(2) Wait Mode

In wait mode, the CPU clock is turned off, so are the CPU (because operated by the CPU clock) and the watchdog timer. Because the main clock and sub clock, all are on, the peripheral functions using these clocks keep operating.

• Peripheral Function Clock Stop Function

If the CM02 bit is "1" (peripheral function clocks turned off during wait mode), the f1, f2, f8, f32, f1SIO, f8SIO, f32SIO and fAD clocks are turned off when in wait mode, with the power consumption reduced that much. However, fC32 remains on.

• Entering Wait Mode

The microcomputer is placed into wait mode by executing the WAIT instruction.

• Pin Status During Wait Mode

Table 5.3 lists pin status during wait mode

• Exiting Wait Mode

The microcomputer is moved out of wait mode by a hardware reset or peripheral function interrupt. If the microcomputer is to be moved out of exit wait mode by a hardware reset, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "0002" (interrupts disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. If CM02 bit is "0" (peripheral function clocks not turned off during wait mode), all peripheral function interrupts can be used to exit wait mode. If CM02 bit is "1" (peripheral function clocks turned off during wait mode), the peripheral functions using the peripheral function clocks stop operating, so that only the peripheral functions clocked by external signals can be used to exit wait mode.

Table	5.3. I	Pin	Status	During	Wait	Mode
TUDIC	0.0.1		olulus	During	TT GIL	mouc

Pin		Memory expansion mode	Single-chip mode	
		Microprocessor mode		
Ao to A19, Do to D	15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$,	Retains status before wait mode		
BHE				
RD, WR, WRL, V	VRH	"H"		
HLDA,BCLK		"H"		
ALE		"L"		
I/O ports		Retains status before wait mode	Retains status before wait mode	
CLKOUT	When fC selected		Does not stop	
	When f8, f32 selected		Does not stop when the CM02	
			bit is "0".	
			When the CM02 bit is "1", the	
			status immediately prior to	
			entering wait mode is main-	
			tained.	

Table 5.4. Interrupts to Exit Wait Mode

Interrupt	CM02=0	CM02=1
Serial I/O interrupt	Can be used when operating with internal or external clock	Can be used when operating with external clock
key input interrupt	Can be used	Can be used
A/D conversion interrupt	Can be used in one-shot mode or single sweep mode	— (Do not use)
Timer A interrupt Timer B interrupt	Can be used in all modes	Can be used in event counter mode or when the count source is fC32
INT interrupt	Can be used	Can be used

Table 5.4 lists the interrupts to exit wait mode.

If the microcomputer is to be moved out of wait mode by a peripheral function interrupt, set up the following before executing the WAIT instruction.

1. In the ILVL2 to ILVL0 bits of interrupt control register, set the interrupt priority level of the periph eral function interrupt to be used to exit wait mode.

Also, for all of the peripheral function interrupts not used to exit wait mode, set the ILVL2 to ILVL0 bits to "0002" (interrupt disable).

- 2. Set the I flag to "1".
- 3. Enable the peripheral function whose interrupt is to be used to exit wait mode.

In this case, when an interrupt request is generated and the CPU clock is thereby turned on, an interrupt routine is executed.

The CPU clock turned on when exiting wait mode by a peripheral function interrupt is the same CPU clock that was on when the WAIT instruction was executed.

(3) Stop Mode

In stop mode, all oscillator circuits are turned off, so are the CPU clock and the peripheral function clocks. Therefore, the CPU and the peripheral functions clocked by these clocks stop operating. The least amount of power is consumed in this mode.

However, the peripheral functions clocked by external signals keep operating. The following interrupts can be used to exit stop mode.

- Key interrupt
- INT interrupt
- Timer A, Timer B interrupt (when counting external pulses in event counter mode)
- Serial I/O interrupt (when external clock is selected)

• Entering Stop Mode

The microcomputer is placed into stop mode by setting the CM10 bit of CM1 register to "1" (all clocks turned off). At the same time, the CM06 bit of CM0 register is set to "1" (divide-by-8 mode) and the CM15 bit of CM1 register is set to "1" (main clock oscillator circuit drive capability high).

• Pin Status in Stop Mode

Table 5.5 lists pin status during stop mode

• Exiting Stop Mode

The microcomputer is moved out of stop mode by a hardware reset, or peripheral function interrupt. If the microcomputer is to be moved out of stop mode by a hardware reset or, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "0002" (interrupts disable) before setting the CM10 bit to "1".

If the microcomputer is to be moved out of stop mode by a peripheral function interrupt, set up the following before setting the CM10 bit to "1".

1. In the ILVL2 to ILVL0 bits of interrupt control register, set the interrupt priority level of the peripheral function interrupt to be used to exit stop mode.

Also, for all of the peripheral function interrupts not used to exit stop mode, set the ILVL2 to ILVL0 bits to "0002".

- 2. Set the I flag to "1".
- 3. Enable the peripheral function whose interrupt is to be used to exit stop mode.

In this case, when an interrupt request is generated and the CPU clock is thereby turned on, an interrupt service routine is executed.

Which CPU clock will be used after exiting stop mode by a peripheral function is determined by the CPU clock that was on when the microcomputer was placed into stop mode as follows: If the CPU clock before entering stop mode was derived from the sub clock: sub clock

If the CPU clock before entering stop mode was derived from the main clock: main clock divide-by-8

Table 5.5.	Pin Status	in Stop Mode
------------	------------	--------------

Pin		Memory expansion mode Microprocessor mode	Single-chip mode
A ₀ to A ₁₉ , D ₀ to D ₁₅ , $\overline{CS0}$ to $\overline{CS3}$,		Retains status before stop mode	
BHE			
RD, WR, WRL, WRH		"H"	
HLDA, BCLK		"H"	
ALE		undefined	
I/O ports		Retains status before stop mode	Retains status before stop mode
CLKOUT	When fc selected		"H"
	When f8, f32 selected		Retains status before stop mode

Figure 5.10 shows the state transition from normal operation mode to stop mode and wait mode. Figure 5.11 shows the state transition in normal operation mode.

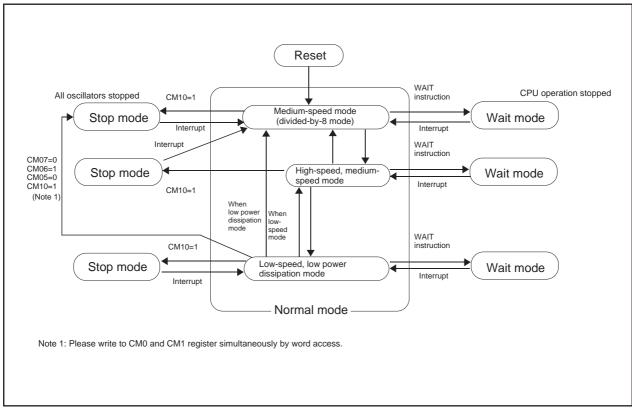


Figure 5.10. State Transition to Stop Mode and Wait Mode

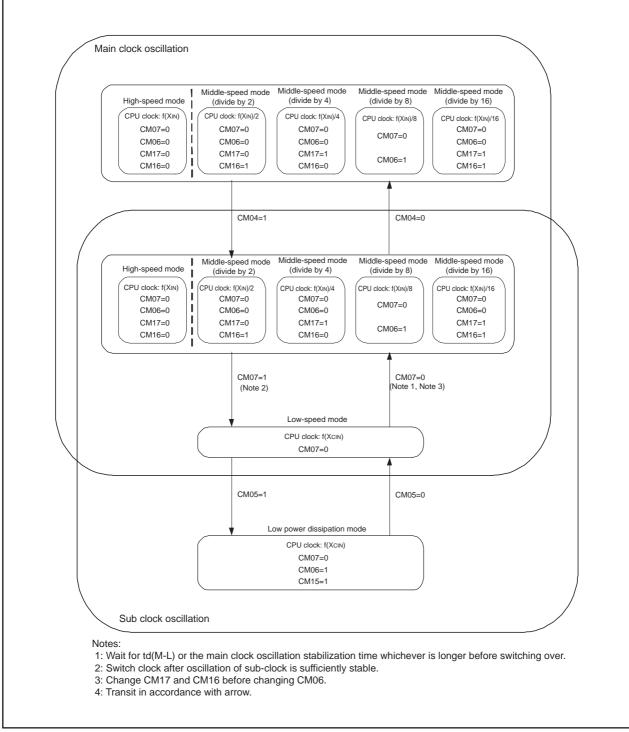


Figure 5.11. State Transition in Normal Mode

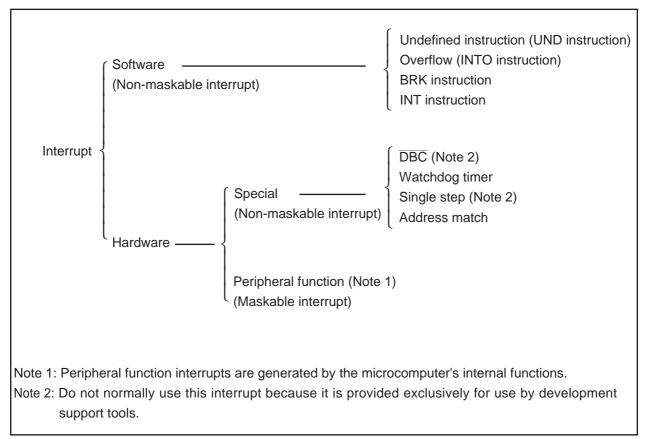
Protection

In the event that a program runs out of control, this function protects the important registers so that they will not be rewritten easily. Figure 6.1 shows the PRCR register. The following lists the registers protected by the PRCR register.

- Registers protected by PRC0 bit: CM0, CM1, CM2 and PCLKR registers, reserved register address 001C16.
- Registers protected by PRC1 bit: PM0 and PM1 registers, reserved registers address 001E16, 039E16, 034816, and 034916
- Registers protected by PRC2 bit: PD9 register, reserved registers address 036216 and 036616

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be cleared to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction. The PRC0, PRC1 and PRC3 bits are not automatically cleared to "0" by writing to any address. They can only be cleared in a program.

b7 b6 b5 b4 b3 b2 b1 b0	Symbol PRCR		ter reset (0000002	
	Bit symbol	Bit name	Function	RW
	PRC0	Protect bit 0	Enable write to CM0, CM1, CM2, PCLKR and register 001C16	RW
			0 : Write protected 1 : Write enabled	K VV
·	PRC1	Protect bit 1	Enable write to PM0, PM1 registers 001E16, 039E16, 034816 and 034916	RW
			0 : Write protected 1 : Write enabled	
	PRC2	Protect bit 2	Enable write to PD9, registers 036216 and 036616	RW
			0 : Write protected 1 : Write enabled (Note)	
	(b5-b3)	Reserved bits	Must set to "0"	RW
	(b7-b6)	Nothing is assigned. When wr content is indeterminate.	rite, set to "0". When read, its	—


Figure 6.1. PRCR Register

Interrupts

Type of Interrupts

Figure 7.1 shows types of interrupts.

Figure 7.1. Interrupts

- Maskable Interrupt: An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or
 whose interrupt priority <u>can be changed</u> by priority level.
- Non-maskable Interrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority <u>cannot be changed</u> by priority level.

Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

• Undefined Instruction Interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

Overflow Interrupt

An overflow interrupt occurs when executing the INTO instruction with the O flag set to "1" (the operation resulted in an overflow). The following are instructions whose O flag changes by arithmetic: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

BRK Interrupt

A BRK interrupt occurs when executing the BRK instruction.

• INT Instruction Interrupt

An INT instruction interrupt occurs when executing the INT instruction. Software interrupt Nos. 0 to 63 can be specified for the INT instruction. Because software interrupt Nos. 4 to 31 are assigned to peripheral function interrupts, the same interrupt routine as for peripheral function interrupts can be executed by executing the INT instruction.

In software interrupt Nos. 0 to 31, the U flag is saved to the stack during instruction execution and is cleared to "0" (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. In software interrupt Nos. 32 to 63, the U flag does not change state during instruction execution, and the SP then selected is used.

Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral function interrupts.

(1) Special Interrupts

Special interrupts are non-maskable interrupts.

DBC Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development support tools.

Watchdog Timer Interrupt

Generated by the watchdog timer. Once a watchdog timer interrupt is generated, be sure to initialize the watchdog timer. For details about the watchdog timer, refer to the section "watchdog timer".

Single-step Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development support tools.

Address Match Interrupt

An address match interrupt is generated immediately before executing the instruction at the address indicated by the RMAD0 to RMAD3 register that corresponds to one of the AIER register's AIER0 or AIER1 bit or the AIER2 register's AIER20 or AIER21 bit which is "1" (address match interrupt enabled). For details about the address match interrupt, refer to the section "address match interrupt".

(2) Peripheral Function Interrupts

Peripheral function interrupts are maskable interrupts and generated by the microcomputer's internal functions. The interrupt sources for peripheral function interrupts are listed in "Table 7.2. Relocatable Vector Tables". For details about the peripheral functions, refer to the description of each peripheral function in this manual.

Interrupts and Interrupt Vector

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 7.2 shows the interrupt vector.

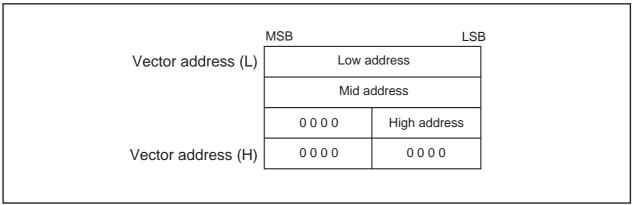


Figure 7.2. Interrupt Vector

• Fixed Vector Tables

The fixed vector tables are allocated to the addresses from FFFDC16 to FFFFF16. Table 7.1 lists the fixed vector tables. In the flash memory version of microcomputer, the vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to the section "flash memory rewrite disabling function".

Table 7.1. Fixed Vector Tables

Interrupt source	Vector table addresses Address (L) to address (H)	Remarks	Reference
Undefined instruction	, ,	Interrupt on UND instruction	M16C/60, M16C/20
Overflow	FFFE016 to FFFE316	Interrupt on INTO instruction	serise software
BRK instruction	FFFE416 to FFFE716	If the contents of address FFFE716 is FF16, program ex- ecution starts from the address shown by the vector in the relocatable vector table.	maual
Address match	FFFE816 to FFFEB16		Address match interrupt
Single step (Note)	FFFEC16 to FFFEF16		
Watchdog timer	FFFF016 to FFFF316		Watchdog timer
DBC (Note)	FFFF416 to FFFF716		
Reset	FFFFC16 to FFFFF16		Reset

Note: Do not normally use this interrupt because it is provided exclusively for use by development support tools.

• Relocatable Vector Tables

The 256 bytes beginning with the start address set in the INTB register comprise a reloacatable vector table area. Table 7.2 lists the relocatable vector tables. Setting an even address in the INTB register results in the interrupt sequence being executed faster than in the case of odd addresses.

Table 7.2. Relocatable Vector Tables

Interrupt source	Vector address (Note 1) Address (L) to address (H)	Software interrupt number	Reference	
BRK instruction (Note 3)	+0 to +3 (000016 to 000316)	0	M16C/60, M16C/20	
(Reserved)		1 to 3	series software manual	
ĪNT3	+16 to +19 (001016 to 001316)	4		
Timer B5/OSD1	+20 to +23 (001416 to 001716)	5	Timer	
(Note 2) Timer B4, UART1 bus collision detect	+24 to +27 (001816 to 001B16)	6	Timer	
(Note 2) Timer B3, UART0 bus collision detect	+28 to +31 (001C16 to 001F16)	7	Serial I/O	
Data slicer 1	+32 to +35 (002016 to 002316)	8	Data aliaar	
Data slicer 2	+36 to +39 (002416 to 002716)	9	Data slicer	
UART 2 bus collision detection/I ² C-bus0	+40 to +43 (002816 to 002B16)	10	Serial I/O/I ² C-bus	
DMA0	+44 to +47 (002C16 to 002F16)	11	DULLO	
DMA1	+48 to +51 (003016 to 003316)	12	DMAC	
Key input interrupt/VSYNC	+52 to +55 (003416 to 003716)	13	Key input interrupt, OSD	
A/D/I ² C-bus1NACK	+56 to +59 (003816 to 003B16)	14	A/D convertor/I ² C-bus	
UART2 transmit	+60 to +63 (003C16 to 003F16)	15		
UART2 receive	+64 to +67 (004016 to 004316)	16	Serial I/O	
UART0 transmit	+68 to +71 (004416 to 004716)	17		
UART0 receive	+72 to +75 (004816 to 004B16)	18		
UART1 transmit	+76 to +79 (004C16 to 004F16)	19		
UART1 receive	+80 to +83 (005016 to 005316)	20		
Timer A0/I ² C-bus0	+84 to +87 (005416 to 005716)	21		
Timer A1/I ² C-bus1	+88 to +91 (005816 to 005B16)	22		
Timer A2/OSD2	+92 to +95 (005C16 to 005F16)	23		
Timer A3/VSYNC	+96 to +99 (006016 to 006316)	24		
Timer A4/I ² C-bus0NACK	+100 to +103 (006416 to 006716)	25	Timer/I ² C-bus	
Timer B0/I ² C-bus1NACK	+104 to +107 (006816 to 006B16)	26		
Timer B1/I ² C-bus2NACK	+108 to +111 (006C16 to 006F16)	27		
Timer B2/I ² C-bus2	+112 to +115 (007016 to 007316)	28		
INTO	+116 to +119 (007416 to 007716)	29		
INT1	+120 to +123 (007816 to 007B16)	30	INT interrupt, OSD	
INT2/OSD2	+124 to +127 (007C16 to 007F16)	31	ini interiupt, OSD	
Software interrupt (Note 3)	+128 to +131 (008016 to 008316) to +252 to +255 (00FC16 to 00FF16)	32 to 63	M16C/60, M16C/20 series software manual	

Notes 1: Address relative to address in INTB

2: Use the IFSR2A register's IFSR26 and IFSR27 bits to select

3: These interrupts cannot be disabled using the I flag

Interrupt Control

The following describes how to enable/disable the maskable interrupts, and how to set the priority in which order they are accepted. What is explained here does not apply to nonmaskable interrupts.

Use the FLG register's I flag, IPL, and each interrupt control register's ILVL2 to ILVL0 bits to enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in each interrupt control register.

Figure 7.3 shows the interrupt control registers.

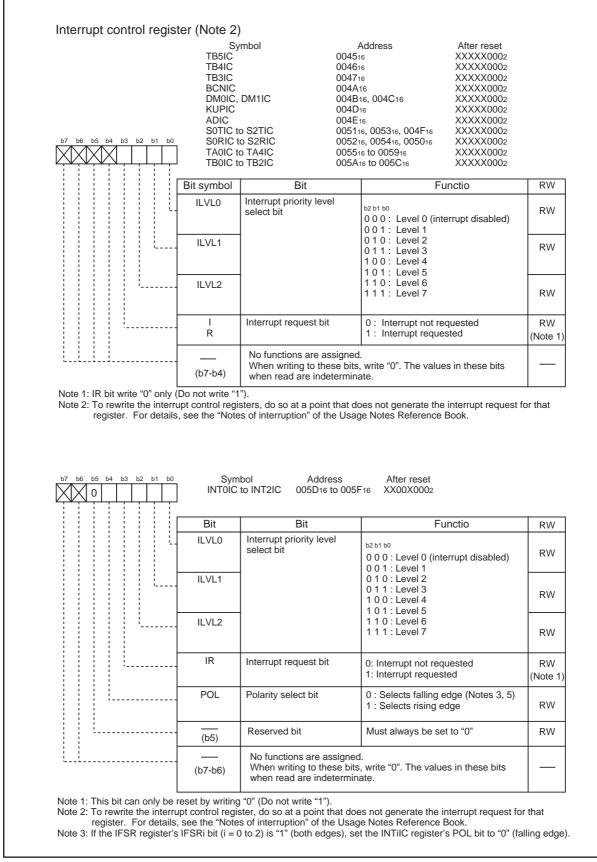
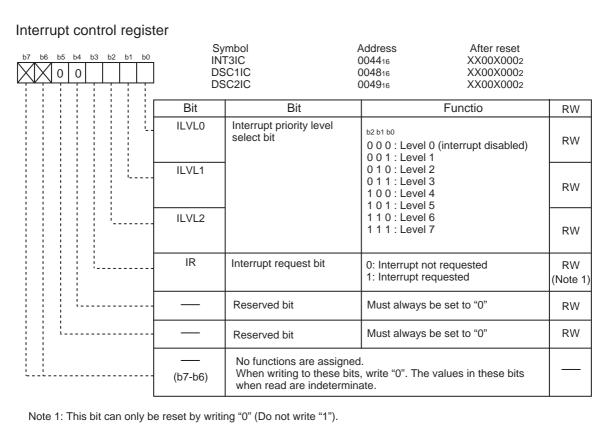



Figure 7.3. Interrupt Control Registers

Note 1: This bit can only be reset by writing 0 (Do not write 1). Note 2: To rewrite the interrupt control registers, do so at a point that does not generate the interrupt request for that

register. For details, see the "precautions for interrupts" of the Usage Notes Reference Book.

Figure 7.4. Interrupt Control Registers

I Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to "1" (= enabled) enables the maskable interrupt. Setting the I flag to "0" (= disabled) disables all maskable interrupts.

IR Bit

The IR bit is set to "1" (= interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is cleared to "0" (= interrupt not requested).

The IR bit can be cleared to "0" in a program. Note that do not write "1" to this bit.

ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using the ILVL2 to ILVL0 bits.

Table 7.3 shows the settings of interrupt priority levels and Table 7.4 shows the interrupt priority levels enabled by the IPL.

The following are conditions under which an interrupt is accepted:

- I flag = "1"
- IR bit = "1"
- · interrupt priority level > IPL

The I flag, IR bit, ILVL2 to ILVL0 bits and IPL are independent of each other. In no case do they affect one another.

ILVL2 to ILVL0 bits	Interrupt priority level	Priority order
0002	Level 0 (interrupt disabled)	
0012	Level 1	Low
0102	Level 2	
0112	Level 3	
1002	Level 4	
1012	Level 5	
1102	Level 6	
1112	Level 7	High

Table 7.3. Settings of Interrupt Priority Levels

Table 7.4. Interrupt Priority Levels Enabled by IPL

IPL	Enabled interrupt priority levels
0002	Interrupt levels 1 and above are enabled
0012	Interrupt levels 2 and above are enabled
0102	Interrupt levels 3 and above are enabled
0112	Interrupt levels 4 and above are enabled
1002	Interrupt levels 5 and above are enabled
1012	Interrupt levels 6 and above are enabled
1102	Interrupt levels 7 and above are enabled
1112	All maskable interrupts are disabled

Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

The CPU behavior during the interrupt sequence is described below. Figure 7.5 shows time required for executing the interrupt sequence.

- (1) The CPU gets interrupt information (interrupt number and interrupt request priority level) by reading the address 0000016. Then it clears the IR bit for the corresponding interrupt to "0" (interrupt not requested).
- (2) The FLG register immediately before entering the interrupt sequence is saved to the CPU's internal temporary register^(Note 1).
- (3) The I, D and U flags in the FLG register become as follows:

The I flag is cleared to "0" (interrupts disabled).

The D flag is cleared to "0" (single-step interrupt disabled).

The U flag is cleared to "0" (ISP selected).

However, the U flag does not change state if an INT instruction for software interrupt Nos. 32 to 63 is executed.

- (4) The CPU's internal temporary register (Note 1) is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the accepted interrupt is set in the IPL.
- (7) The start address of the relevant interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, the processor resumes executing instructions from the start address of the interrupt routine.

Note: This register cannot be used by user.

CPU clock	
Address bus	Address Indeterminate (Note 1) SP-2 SP-4 vec vec+2 PC
Data bus	Interrupt information Indeterminate (Note 1) SP-2 contents SP-4 contents vec contents vec contents
RD	Indeterminate (Note 1)
WR (Note 2)	
	 1 : The indeterminate state depends on the instruction queue buffer. A read cycle occurs when the instruction queue buffer is ready to accept instructions. 2 : The WR signal timing shown here is for the case where the stack is located in the internal RAM.

Figure 7.5. Time Required for Executing Interrupt Sequence

Interrupt Response Time

Figure 7.6 shows the interrupt response time. The interrupt response or interrupt acknowledge time denotes a time from when an interrupt request is generated till when the first instruction in the interrupt routine is executed. Specifically, it consists of a time from when an interrupt request is generated till when the instruction then executing is completed ((a) in Figure 7.6) and a time during which the interrupt sequence is executed ((b) in Figure 7.6).

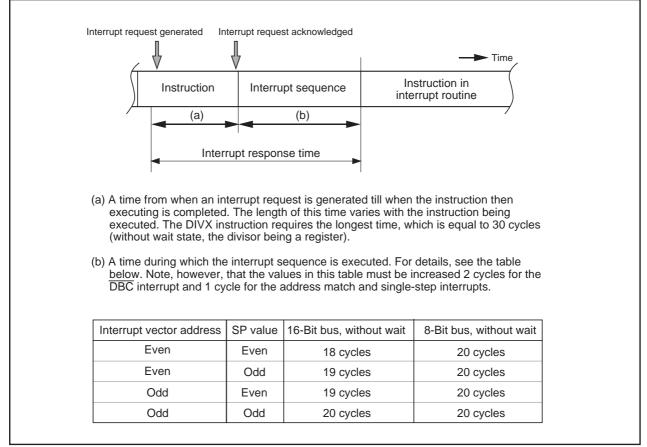


Figure 7.6. Interrupt response time

Variation of IPL when Interrupt Request is Accepted

When a maskable interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.

When a software interrupt or special interrupt request is accepted, one of the interrupt priority levels listed in Table 7.5 is set in the IPL. Shown in Table 7.5 are the IPL values of software and special interrupts when they are accepted.

Table 7.5. IPL Level That is Set to IPL When A Software or S	Special Interrupt Is Accepted
--	-------------------------------

Interrupt sources	Level that is set to IPL
Watchdog timer	7
Software, address match, DBC, single-step	Not changed

Saving Registers

In the interrupt sequence, the FLG register and PC are saved to the stack.

At this time, the 4 high-order bits of the PC and the 4 high-order (IPL) and 8 low-order bits of the FLG register, 16 bits in total, are saved to the stack first. Next, the 16 low-order bits of the PC are saved. Figure 7.7 shows the stack status before and after an interrupt request is accepted.

The other necessary registers must be saved in a program at the beginning of the interrupt routine. Use the PUSHM instruction, and all registers except SP can be saved with a single instruction.

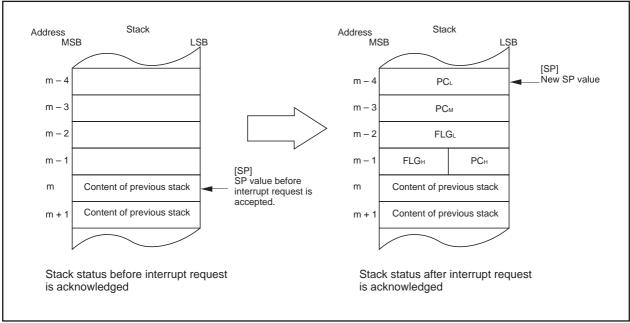


Figure 7.7. Stack Status Before and After Acceptance of Interrupt Request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the $SP^{(Note)}$, at the time of acceptance of an interrupt request, is even or odd. If the stack pointer ^(Note) is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. Figure 7.8 shows the operation of the saving registers.

Note: When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

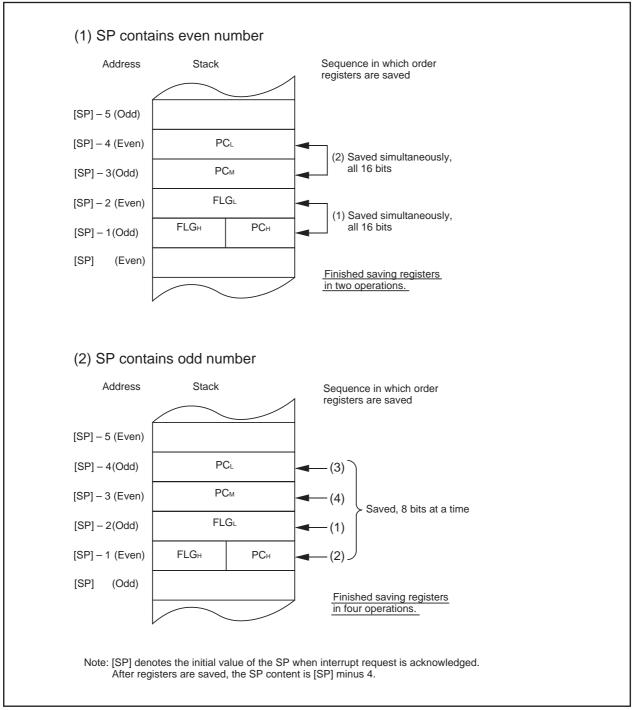


Figure 7.8. Operation of Saving Register

Returning from an Interrupt Routine

The FLG register and PC in the state in which they were immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine. Thereafter the CPU returns to the program which was being executed before accepting the interrupt request.

Return the other registers saved by a program within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

Interrupt Priority

If two or more interrupt requests are generated while executing one instruction, the interrupt request that has the highest priority is accepted.

For maskable interrupts (peripheral functions), any desired priority level can be selected using the ILVL2 to ILVL0 bits. However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the highest priority interrupt accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware. Figure 7.9 shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

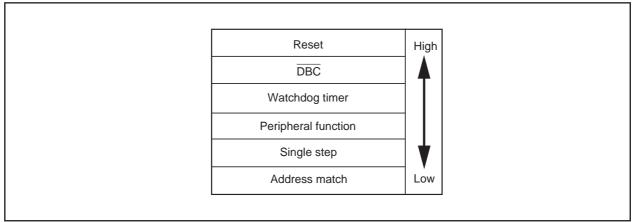


Figure 7.9. Hardware Interrupt Priority

Interrupt Priority Resolution Circuit

The interrupt priority resolution circuit is used to select the interrupt with the highest priority among those requested.

Figure 7.10 shows the circuit that judges the interrupt priority level.

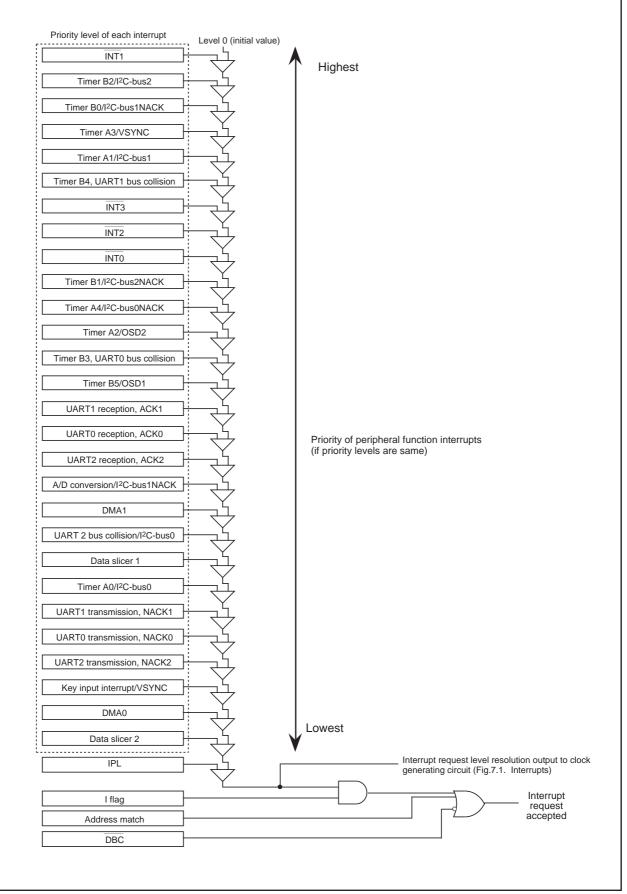


Figure 7.10. Interrupts Priority Select Circuit

INT Interrupt

INTi interrupt (i=0 to 3) is triggered by the edges of external inputs. The edge polarity is selected using the IFSR register's IFSRi bit.

Figure 7.11 shows the IFSR and IFSR2A registers.

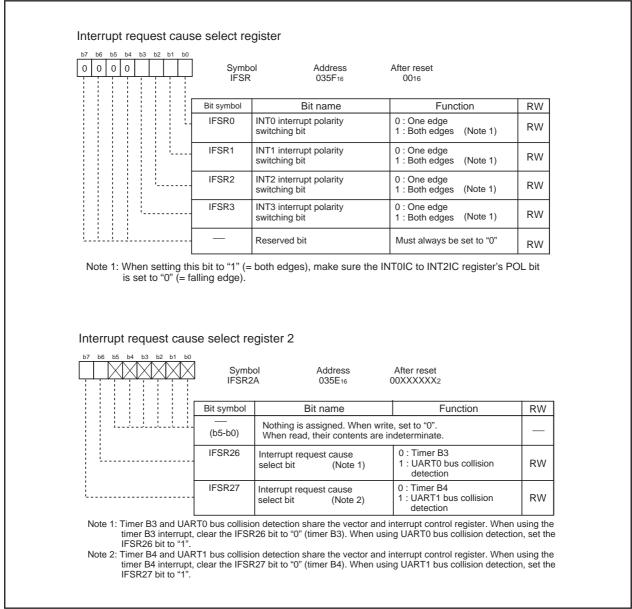


Figure 7.11. IFSR Register and IFSR2A Register

Key Input Interrupt

Of P104 to P107, a key input interrupt is generated when input on any of the P104 to P107 pins which has had the PD10 register's PD10_4 to PD10_7 bits set to "0" (= input) goes low. Key input interrupts can be used as a key-on wakeup function, the function which gets the microcomputer out of wait or stop mode. However, if you intend to use the key input interrupt, do not use P104 to P107 as analog input ports. Figure 7.12 shows the block diagram of the key input interrupt. Note, however, that while input on any pin which has had the PD10_4 to PD10_7 bits set to "0" (= input mode) is pulled low, inputs on all other pins of the port are not detected as interrupts.

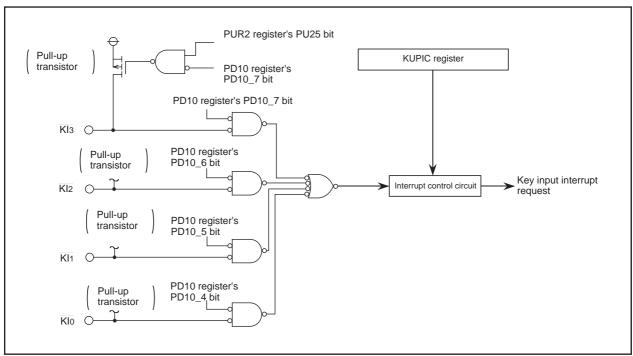


Figure 7.12. Key Input Interrupt

Address Match Interrupt

An address match interrupt request is generated immediately before executing the instruction at the address indicated by the RMADi register (i=0 to 3). Set the start address of any instruction in the RMADi register. Use the AIER register's AIER0 and AIER1 bits and the AIER2 register's AIER20 and AIER21 bits to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL. For address match interrupts, the value of the PC that is saved to the stack area varies depending on the instruction being executed (refer to "Saving Registers").

(The value of the PC that is saved to the stack area is not the correct return address.) Therefore, follow one of the methods described below to return from the address match interrupt.

• Rewrite the content of the stack and then use the REIT instruction to return.

• Restore the stack to its previous state before the interrupt request was accepted by using the POP or similar other instruction and then use a jump instruction to return.

Table 7.6 shows the value of the PC that is saved to the stack area when an address match interrupt request is accepted.

Note that when using the external bus in 8 bits width, no address match interrupts can be used for external areas.

Figure 7.13 shows the AIER, AIER2, and RMAD0 to RMAD3 registers.

Table 7.6. Value of the PC that is saved to the stack area when an address match interrupt request is accepted.

	Instruction a	at the addres	ss indicated by the RM	/IADi regist	er	Value of the PC that is saved to the stack area
16-bit op-cod Instruction sh ADD.B:S OR.B:S STNZ.B:S CMP.B:S JMPS MOV.B:S		SUB.B:S MOV.B:S STZX.B:S PUSHM JSRS	ation code instructions #IMM8,dest #IMM8,dest #IMM81,#IMM82,dest src #IMM8 =A0 or A1)	AND.B:S STZ.B:S POPM de	#IMM8,dest #IMM8,dest st	The address indicated by the RMADi register +2
Instructions oth	ner than the abo	ve				The address indicated by the RMADi register +1

Value of the PC that is saved to the stack area : Refer to "Saving Registers".

Table 7.7. Relationship Between Address Match Interrupt Sources and Associated Registers

Address match interrupt sources	Address match interrupt enable bit	Address match interrupt register
Address match interrupt 0	AIER0	RMAD0
Address match interrupt 1	AIER1	RMAD1
Address match interrupt 2	AIER20	RMAD2
Address match interrupt 3	AIER21	RMAD3

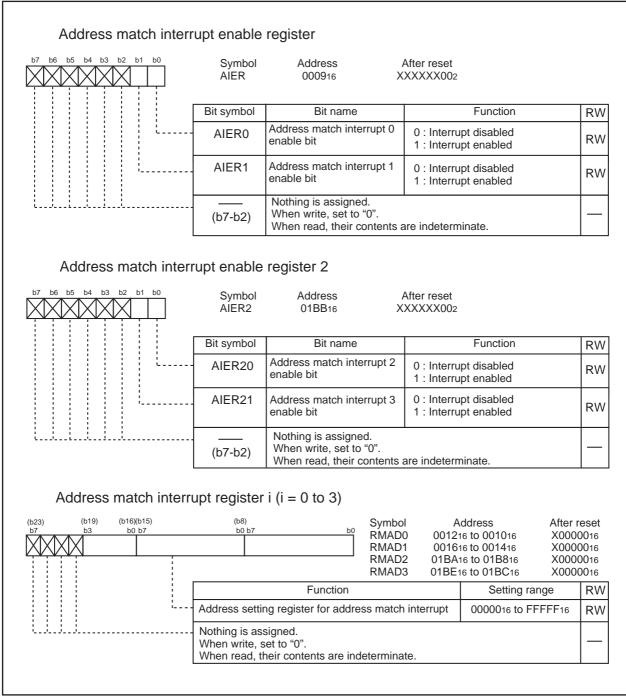


Figure 7.13. AIER Register, AIER2 Register and RMAD0 to RMAD3 Registers

Notes of interruption

(1) Address 0000016 read-out

Please do not read address 0000016 by the program. When the interruption demand of maskable interruption is received, CPU interrupts in an interruption sequence and reads information (it interrupts with an interruption number and is a demand level) from address 0000016.IR bit of received interruption is set to "0" at this time.If address 0000016 is read by the program, IR bit of high interruption of a priority will be most set to "0" among interruption permitted.Therefore, interruption may be canceled or unexpected interruption may occur.

(2) Setting of SP

• Please assign a value to SP before receiving interruption. After reset, SP is "000016." Therefore, if interruption is received before assigning a value to SP, it will become the factor of a reckless run.

(3) INT interrupt

- Regardless of CPU clock, "L" width or "H" width for 250ns or more is required for the signal inputted into pins INTo to INT3.
- IR bit may be set to "1" (those with an interruption demand) when changing the polarity of pins INTo to INT3. Please set IR bit to "0" (with no interruption demand) after changing. The example of a change procedure of an INT interruption generating factor is shown in Fig. 7.14.

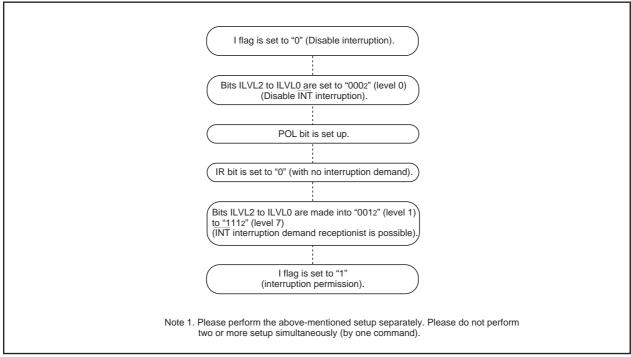


Figure 7.14. The example of change procedure of INT interruption generating factor

(4) Watchdog timer interruption

After watchdog timer interruption generating should initialize watchdog timer.

(5) Change of an interrupt control register

• Please make a change of an interrupt control register in the part which the interruption demand corresponding to the register does not generate. When an interruption demand may occur, please change after forbidding interruption. The example of a reference program is shown below.

<The example of program which rewrites an interruption control register>

-	ple 1: _SWITCH FCLR AND.B	I	; Disable interrupts. ; TA0IC register is set to "0016."
	NOP NOP	#0011, 003011	; Four NOP instructions are required when using HOLD function.
	FSET	I	; Enable interrupts.
-	_SWITCH FCLR AND.B	l #00H, 0055H MEM, R0	; Disable interrupts. ; TA0IC register is set to "0016." ; <u>Dummy read.</u> ; Enable interrupts.
-	_SWITCH PUSHC FCLR	FLG I #00H, 0055H	; Disable interrupts. ; TA0IC register is set to "0016." ; Enable interrupts.
HOLD fr commar Under th	<u>unctional</u> nd.	use) and an F	lead in Example 1 before two pieces (they are four pieces at the time of SET I command in Example 2 of an NOP command before an FSET I and cue buffer, before writing to an interruption control register, it prevents

When you forbid interruption, you interrupt and you change a control register, be careful of the command to be used.

Change of bits other than IR bit

During execution of a command, when the interruption demand corresponding to the register occurs, IR bit is not set to "1" (those with an interruption demand), but interruption may be disregarded. The target command : AND, OR, BCLR, BSET

Change of IR bit

When setting IR bit to "0" (with no interruption demand), IR bit may not be set to "0" depending on the command to be used. Please set IR bit to "0" using MOV command.

Watchdog Timer

The watchdog timer is the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer contains a 15-bit counter which counts down the clock derived by dividing the CPU clock using the prescaler. Whether to generate a watchdog timer interrupt request or apply a watchdog timer reset as an operation to be performed when the watchdog timer underflows after reaching the terminal count can be selected using the PM12 bit of PM1 register. The PM12 bit can only be set to "1" (reset). Once this bit is set to "1", it cannot be set to "0" (watchdog timer interrupt) in a program. Refer to "Watchdog Timer Reset" for the details of watchdog timer reset.

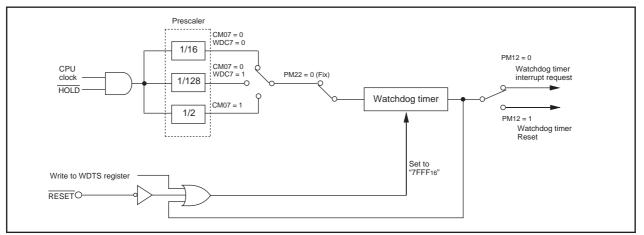
When the main clock source is selected for CPU clock, the divide-by-N value for the prescaler can be chosen to be 16 or 128. If a sub-clock is selected for CPU clock, the divide-by-N value for the prescaler is always 2 no matter how the WDC7 bit is set. The period of watchdog timer can be calculated as given below. The period of watchdog timer is, however, subject to an error due to the prescaler.

With main clock source chosen for CPU clock

Watchdog timer period =	Prescaler dividing (16 or 128) X Watchdog timer count (32768)
	CPU clock

With sub-clock chosen for CPU clock

Watchdog timer period = Prescaler dividing (2) X Watchdog timer count (32768) CPU clock


For example, when CPU clock = 16 MHz and the divide-by-N value for the prescaler= 16, the watchdog timer period is approx. 32.8 ms.

The watchdog timer is initialized by writing to the WDTS register. The prescaler is initialized after reset. Note that the watchdog timer and the prescaler both are inactive after reset, so that the watchdog timer is activated to start counting by writing to the WDTS register.

In stop mode, wait mode and hold state, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released.

Figure 8.1 shows the block diagram of the watchdog timer. Figure 8.2 shows the watchdog timer-related registers.

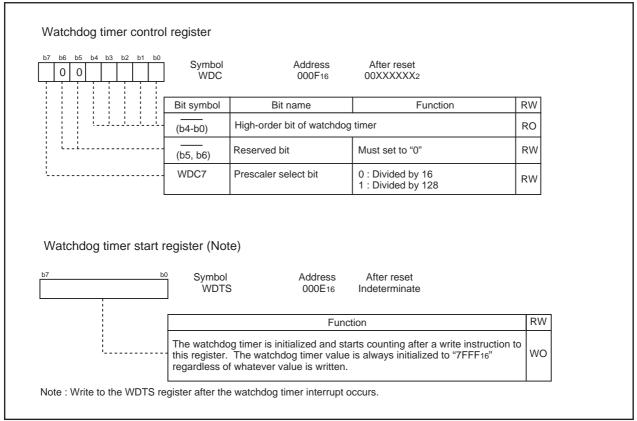


Figure 8.2. WDC Register and WDTS Register

DMAC

The DMAC (Direct Memory Access Controller) allows data to be transferred without the CPU intervention. Two DMAC channels are included. Each time a DMA request occurs, the DMAC transfers one (8 or 16-bit) data from the source address to the destination address. The DMAC uses the same data bus as used by the CPU. Because the DMAC has higher priority of bus control than the CPU and because it makes use of a cycle steal method, it can transfer one word (16 bits) or one byte (8 bits) of data within a very short time after a DMA request is generated. Figure 9.1 shows the block diagram of the DMAC. Table 9.1 shows the DMAC specifications. Figures 9.2 to 9.4 show the DMAC-related registers.

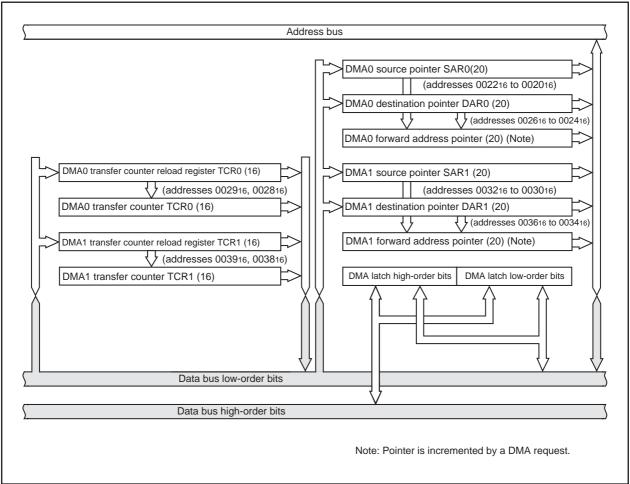


Figure 9.1. DMAC Block Diagram

A DMA request is generated by a write to the DMiSL register (i = 0-1)'s DSR bit, as well as by an interrupt request which is generated by any function specified by the DMiSL register's DMS and DSEL3–DSEL0 bits. However, unlike in the case of interrupt requests, DMA requests are not affected by the I flag and the interrupt control register, so that even when interrupt requests are disabled and no interrupt request can be accepted, DMA requests are always accepted. Furthermore, because the DMAC does not affect interrupts, the interrupt control register's IR bit does not change state due to a DMA transfer.

A data transfer is initiated each time a DMA request is generated when the DMiCON register's DMAE bit = "1" (DMA enabled). However, if the cycle in which a DMA request is generated is faster than the DMA transfer cycle, the number of transfer requests generated and the number of times data is transferred may not match. For details, refer to "DMA Requests".

Ite	m	Specification
No. of channels	3	2 (cycle steal method)
Transfer memo	ry space	 From any address in the 1M bytes space to a fixed address
		 From a fixed address to any address in the 1M bytes space
		 From a fixed address to a fixed address
Maximum No. of	bytes transferred	128K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)
DMA request fa	actors	Falling edge of INT0 or INT1
(Note 1, Note 2	2)	Both edge of INT0 or INT1
		Timer A0 to timer A4 interrupt requests
		Timer B0 to timer B5 interrupt requests
		UART0 transfer, UART0 reception interrupt requests
		UART1 transfer, UART1 reception interrupt requests
		UART2 transfer, UART2 reception interrupt requests
		A/D conversion interrupt requests
		Software triggers
		OSD1, OSD2 interrupt
		VSYNC interrupt
		Multi-master I ² C-bus interface 0, 1, 2 interrupt
		I ² C-bus 0, 1, 2 NACK interrupt
Channel priority	/	DMA0 > DMA1 (DMA0 takes precedence)
Transfer unit		8 bits or 16 bits
Transfer addres	ss direction	forward or fixed (The source and destination addresses cannot both be
		in the forward direction.)
Transfer mode	•Single transfer	Transfer is completed when the DMAi transfer counter ($i = 0-1$)
		underflows after reaching the terminal count.
	•Repeat transfer	When the DMAi transfer counter underflows, it is reloaded with the value
		of the DMAi transfer counter reload register and a DMA transfer is con
		tinued with it.
DMA interrupt requ	est generation timing	When the DMAi transfer counter underflowed
DMA startup		Data transfer is initiated each time a DMA request is generated when the
		DMAiCON register's DMAE bit = "1" (enabled).
DMA shutdown	•Single transfer	When the DMAE bit is set to "0" (disabled)
	•Repeat transfer	 After the DMAi transfer counter underflows
		 When the DMAE bit is set to "0" (disabled)
Reload timing	for forward ad-	When a data transfer is started after setting the DMAE bit to "1" (en
dress pointer a	nd transfer	abled), the forward address pointer is reloaded with the value of the
counter		SARi or the DARi pointer whichever is specified to be in the forward
		direction and the DMAi transfer counter is reloaded with the value of the
		DMAi transfer counter reload register.

Table 9.1. DMAC Specifications

Notes:

- 1. DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the I flag nor by the interrupt control register.
- 2. The selectable causes of DMA requests differ with each channel.
- 3. Make sure that no DMAC-related registers (addresses 002016–003F16) are accessed by the DMAC.

	b3 b2 b1 b0	Symbol DM0SL		Addres 03B81			
		Bit symbol	Bit	name	Function	n	RW
		DSEL0	DMA requ	est cause	Refer to note		RW
		DSEL1	select bit				RW
		DSEL2	-				RW
		DSEL3	-				RW
		 (b5-b4)	Nothing is When read	assigned. W d, its content i	hen write, set to "0". s "0".		
		DMS	DMA reque		0: Basic cause of requ 1: Extended cause of		RW
			Software D		A DMA request is gen		
		DSR	request bit		A DMA request is gen setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w	hen the DMS and the are "00012"	RW
manner de	escribed belo	equests can b w. sic cause of requ	request bit	y a combinati	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger).	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02	escribed belo DMS=0(bas Falling edge	equests can b w. sic cause of requ e of INT0 pin	request bit	y a combinati DMS=1(exte	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSE	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 0 12	escribed belo	equests can b w. ic cause of requ a of INT0 pin	request bit	y a combinati	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSE	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 0 12 0 0 1 02 0 0 1 12	 DMS=0(bas DMS=0(bas Falling edge Software tri Timer A0/l²(Timer A1/l²(equests can be w. ic cause of requ a of INTO pin gger 2-bus0 2-bus1	request bit	y a combinati DMS=1(exte - - -	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSE	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 1 12 0 0 1 12 0 1 0 02	 DMS=0(bas Falling edge Software tri Timer A0/l² Timer A1/l² Timer A2/O 	equests can be w. sic cause of requ of INTO pin gger C-bus0 C-bus1 SD2	request bit	y a combinati DMS=1(exte - - - -	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSE	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 1 12 0 0 1 12 0 1 12 0 1 0 02 0 1 0 12	D DMS=0(bas Falling edge Software tri Timer A0/l2 Timer A1/l2 Timer A2/O Timer A3/V3	equests can b w. bic cause of requ e of INTO pin gger 2-bus0 2-bus1 SD2 SYNC	request bit	y a combinati DMS=1(exte - - - - - -	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSEI	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 1 02 0 0 1 12 0 1 0 02 0 1 0 02 0 1 0 12 0 1 0 12 0 1 1 02	escribed belo DMS=0(bas Falling edge Software trii Timer A0//2 Timer A1//2 Timer A3//2 Timer A4//24	equests can b w. sic cause of requ e of INTO pin gger 2-bus0 2-bus1 SD2 SYNC 2-bus0NACK	request bit	y a combinati DMS=1(exte - - - - - Two edges of	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSEI	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 1 12 0 1 12 0 1 02 0 1 02 0 1 02 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12	escribed belo DMS=0(bas Falling edge Software tri Timer A0/l ² Timer A1/l ² Timer A3/V Timer A3/V Timer A4/l ² Timer A9/l ²	equests can be w. e of INTO pin gger 2-bus0 2-bus1 SD2 SYNC 2-bus0NACK 2-bus1NACK	request bit	y a combinati DMS=1(exte - - - - - Two edges of Timer B3	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSEI	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 12 0 0 1 02 0 1 12 0 1 02 0 1 02 0 1 02 0 1 02 0 1 02 0 1 12 0 1 02 0 1 12 1 0 0 02	escribed belo DMS=0(bas Falling edge Software tri Timer A0/l20 Timer A1/l20 Timer A2/O Timer A3/V3 Timer A4/l20 Timer B0/l20	equests can b w. ic cause of requ of INTO pin gger 2-bus0 2-bus1 SD2 SYNC 2-bus0NACK 2-bus0NACK 2-bus2NACK	request bit	y a combinati DMS=1(exte - - - - - Two edges of Timer B3 Timer B4	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSEI ended cause of request)	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 12 0 0 1 02 0 1 02 0 1 0 02 0 1 0 12 0 1 0 12 0 1 0 12 0 1 1 02 0 1 1 12 1 0 0 02 1 0 0 12	escribed belo DMS=0(bas Falling edge Software tri Timer A0/l20 Timer A1/l20 Timer A3/V3 Timer A3/V3 Timer A3/V3 Timer B0/l20 Timer B1/l20 Timer B2/l20	equests can b w. iic cause of requ a of INTO pin gger 2-bus0 2-bus1 SD2 SYNC 2-bus0NACK 2-bus2NACK 2-bus2NACK	e selected b	y a combinati DMS=1(exte - - - - - Two edges of Timer B3	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSEI ended cause of request)	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 12 0 0 1 02 0 1 12 0 1 0 02 0 1 0 12 0 1 1 02 0 1 1 12 0 1 1 02 0 1 1 12 1 0 02 1 1 02 0 1 1 12 1 0 0 02 1 0 0 12 1 0 1 02	 DMS=0(bas Falling edge Software tri Timer A0/l²⁴ Timer A1/l²⁴ Timer A2/O Timer A3/V³ Timer A4/l²⁴ Timer B0/l²⁴ Timer B1/l²⁴ Timer B2/l²⁴ UART0 transplace 	equests can be w. sic cause of reque of INTO pin gger C-bus0 C-bus1 SD2 SYNC C-bus1NACK C-bus1NACK C-bus2NACK C-bus2NACK C-bus2	request bit	y a combinati DMS=1(exte - - - - Two edges o Timer B3 Timer B4 Timer B5/OS	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSEI ended cause of request)	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 1 02 0 0 1 12 0 1 02 0 1 02 0 1 12 0 1 02 0 1 12 0 1 02 0 1 1 02 0 1 1 12 1 0 0 02 1 0 0 12 1 0 102 1 0 12 1 0 12 1 0 12	escribed belo DMS=0(bas Falling edge Software tri- Timer A0//2 Timer A1//2 Timer A3//3 Timer A3//3 Timer A4//2 Timer B0//2 Timer B1//2 UART0 tran UART0 rece	equests can be w. sic cause of reque of INTO pin gger 2-bus0 2-bus0 2-bus1 SD2 2-bus0NACK 2-bus0NACK 2-bus2NACK 2-bus2 2-bus2 2-bus2 simit eive	e selected b	y a combinati DMS=1(exte - - - - - Two edges of Timer B3 Timer B4	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSEI ended cause of request)	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 1 02 0 0 1 12 0 1 0 12 0 1 0 12 0 1 0 12 0 1 0 12 0 1 1 12 0 1 1 12 1 0 0 02 1 0 0 12 1 0 1 02	 DMS=0(bas Falling edge Software tri Timer A0/l²⁴ Timer A1/l²⁴ Timer A2/O Timer A3/V³ Timer A4/l²⁴ Timer B0/l²⁴ Timer B1/l²⁴ Timer B2/l²⁴ UART0 transplace 	equests can be w. ic cause of reque e of INTO pin gger 2-bus0 C-bus0 C-bus1 SD2 SYNC 2-bus0NACK 2-bus0NACK 2-bus2NACK 2-bus2 Ismit sive simit	e selected b	y a combinati DMS=1(exte - - - - Two edges o Timer B3 Timer B4 Timer B5/OS	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSEI ended cause of request)	hen the DMS and the are "00012" hen read is "0" .	
manner de DSEL3 to DSEL0 0 0 0 02 0 0 1 12 0 1 02 0 1 02 0 1 02 0 1 02 0 1 02 0 1 1 2 0 1 02 0 1 1 12 1 0 0 02 1 0 0 12 1 0 1 02 1 0 1 02	escribed belo DMS=0(bas Falling edge Software trii Timer A0/124 Timer A1/124 Timer A2/00 Timer A3/02 Timer A4/124 Timer B0/124 Timer B1/124 Timer B2/124 UART0 tran UART0 recc UART2 tran	equests can be w. ic cause of requ of INTO pin gger 2-bus0 2-bus0 2-bus1 SD2 SYNC 2-bus1NACK 2-bus2NACK 2-bus2NACK 2-bus2 smit eive ssmit eive	e selected b	y a combinati DMS=1(exte - - - Two edges of Timer B3 Timer B4 Timer B5/OS -	setting this bit to "1" w bit is "0" (basic cause) DSEL3 to DSEL0 bits (software trigger). The value of this bit w on of DMS bit and DSEI ended cause of request)	hen the DMS and the are "00012" hen read is "0" .	

Figure 9.2. DM0SL Register

7 b6 b5 b4 b3 b2	b1 b0	Symbol DM1SL	Address 03BA16		
		Bit symbol	Bit name	Function	RW
		DSEL0			RW
		DSEL1	DMA request cause select bit	Refer to note	
		DSEL1			RW
					RW
		DSEL3			RW
		(b5-b4)	Nothing is assigned. Wh When read, its content is		
		DMS	DMA request cause expansion select bit	0: Basic cause of request 1: Extended cause of request	RW
		DSR	Software DMA request bit	A DMA request is generated by setting this bit to "1" when the DMS bit is "0" (basic cause) and the DSEL3 to DSEL0 bits are "00012" (software trigger). The value of this bit when read is "0	RW
ote: The causes of	DMA1	requests can b	e selected by a combination	on of DMS bit and DSEL3 to DSEL0	bits in the
manner descri		ow. asic cause of req	uest) DMS=1 (exte	ended cause of request)	
0 0 02 Fa	Illing edg	e of INT1 pin	-		
	oftware tr mer A0/I ²				
	mer A1/l ²		_		
	mer A2/C		-		
	ner A3/V	² C-bus0NACK			
		² C-bus1NACK	Two edges o	f INT1 pin	
		² C-bus2NACK	-		
		¹² C-bus2	-		
	ART0 tra	ceive/ACK0			
1 0 02 UA	ART2 tra	nsmit	-		
	ART2 rec D convei	ceive/ACK2			
		ceive/ACK1	-		
		=0,1) Symbol DM0CO1 DM1CO1		00000X002	
		Bit symbol	Bit name	F unction	RW
		DMBIT	Transfer unit bit select bit	0 : 16 bits 1 : 8 bits	RW
		DMASL	Repeat transfer mode select bit	0 : Single transfer 1 : Repeat transfer	RW
		DMAS	DMA request bit	0 : DMA not requested 1 : DMA requested	RW (Note 1)
		DMAE	DMA enable bit	0 : Disabled 1 : Enabled	RW
		DSD	Source address direction select bit (Note 2)	0 : Fixed 1 : Forward	RW
		DAD	Destination address direction select bit (Note 2	2) 0 : Fixed 1 : Forward	RW
			Nothing is assigned. V	Vhen write, set to "0". When	
		(b7-b6)	read, its content is "0".		

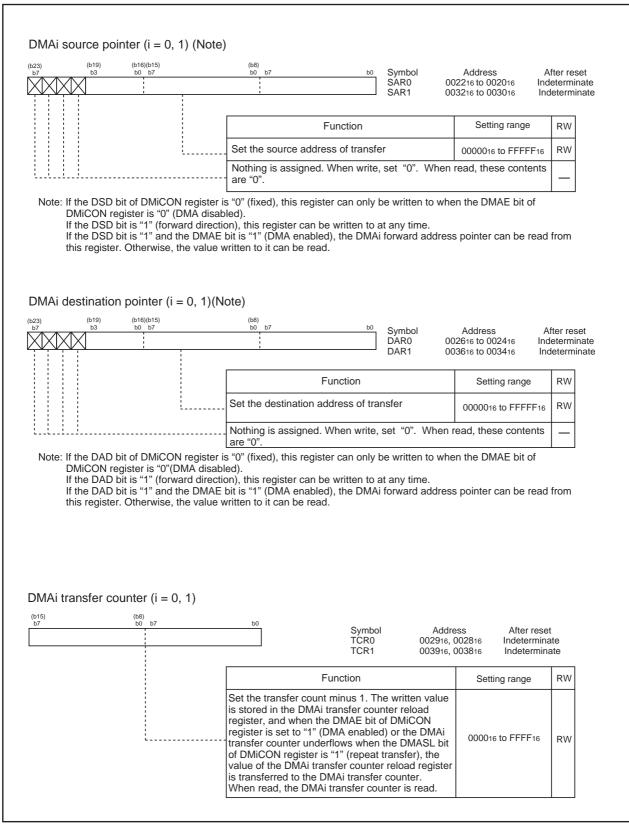


Figure 9.4. SAR0, SAR1, DAR0, DAR1, TCR0, and TCR1 Registers

1. Transfer Cycles

The transfer cycle consists of a memory or SFR read (source read) bus cycle and a write (destination write) bus cycle. The number of read and write bus cycles is affected by the source and destination addresses of transfer. During memory extension and microprocessor modes, it is also affected by the BYTE pin level. Furthermore, the bus cycle itself is extended by a software wait or RDY signal.

(a) Effect of Source and Destination Addresses

If the transfer unit and data bus both are 16 bits and the source address of transfer begins with an odd address, the source read cycle consists of one more bus cycle than when the source address of transfer begins with an even address.

Similarly, if the transfer unit and data bus both are 16 bits and the destination address of transfer begins with an odd address, the destination write cycle consists of one more bus cycle than when the destination address of transfer begins with an even address.

(b) Effect of BYTE Pin Level

During memory extension and microprocessor modes, if 16 bits of data are to be transferred on an 8bit data bus (input on the BYTE pin = high), the operation is accomplished by transferring 8 bits of data twice. Therefore, this operation requires two bus cycles to read data and two bus cycles to write data. Furthermore, if the DMAC is to access the internal area (internal ROM, internal RAM, or SFR), unlike in the case of the CPU, the DMAC does it through the data bus width selected by the BYTE pin.

(c) Effect of Software Wait

For memory or SFR accesses in which one or more software wait states are inserted, the number of bus cycles required for that access increases by an amount equal to software wait states.

(d) Effect of RDY Signal

During memory extension and microprocessor modes, DMA transfers to and from an external area are affected by the $\overline{\text{RDY}}$ signal. Refer to " $\overline{\text{RDY}}$ signal".

Figure 9.5 shows the example of the cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating transfer cycles, take into consideration each condition for the source read and the destination write cycle, respectively. For example, when data is transferred in 16 bit units using an 8-bit bus ((2) in Figure 9.5), two source read bus cycles and two destination write bus cycles are required.

BCLK	
Address bus	CPU use Source Destination CPU use CPU use
RD signal	
 WR signal	
Data bus	CPU use Source Destination CPU use CPU use
	e transfer unit is 16 bits and the source address of transfer is an odd address, or when the unit is 16 bits and an 8-bit bus is used
BCLK	
Address bus	CPU use Source Source + 1 Destination CPU use CPU use
RD signal	
WR signal	
Data bus	CPU use
BCLK	CPU use Source Destination CPU use
- WR signal	
Data bus _	CPU use Source Destination CPU use CPU use
) When the	e source read cycle under condition (2) has one wait state inserted
BCLK	
Address bus	CPU use Source Source + 1 Destination Dummy cycle
RD signal	
WR signal	
_	CPU use Source Source + 1 Destination CPU use

2. DMA Transfer Cycles

Any combination of even or odd transfer read and write addresses is possible. Table 9.2 shows the number of DMA transfer cycles. Table 9.3 shows the Coefficient j, k. The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k

			Single-ch	nip mode	Memory expa	ansion mode
Transfer unit	Bus width	Access address			Microproce	essor mode
			No. of read	No. of write	No. of read	No. of write
			cycles	cycles	cycles	cycles
	16-bit	Even	1	1	1	1
8-bit transfers	(BYTE= "L")	Odd	1	1	1	1
(DMBIT= "1")	8-bit	Even	_	_	1	1
	(BYTE = "H")	Odd	_	_	1	1
	16-bit	Even	1	1	1	1
16-bit transfers	(BYTE = "L")	Odd	2	2	2	2
(DMBIT= "0")	8-bit	Even	_	_	2	2
	(BYTE = "H")	Odd	_		2	2

Table 9.2. DMA Transfer Cycles

Table 9.3. Coefficient j, k

		Internal	area		External				l area			
	Internal ROM, RAM SFR			Separate bus			Multiplex bus					
	No wait	With wait	1-wait ²	2-wait ²	No wait	No wait With wait ¹				With wait ¹		
						1 wait	2 waits	3 waits	1wait	2 waits	3 waits	
j	1	2	2	3	1	2	3	4	3	3	4	
k	1	2	2	3	2	2	3	4	3	3	4	

Notes:

Depends on the set value of CSE register.
 Depends on the set value of PM20 bit in PM2 register.

3. DMA Enable

When a data transfer starts after setting the DMAE bit in DMiCON register (i = 0, 1) to "1" (enabled), the DMAC operates as follows:

- (1) Reload the forward address pointer with the SARi register value when the DSD bit in DMiCON register is "1" (forward) or the DARi register value when the DAD bit of DMiCON register is "1" (forward).
- (2) Reload the DMAi transfer counter with the DMAi transfer counter reload register value.

If the DMAE bit is set to "1" again while it remains set, the DMAC performs the above operation. However, if a DMA request may occur simultaneously when the DMAE bit is being written, follow the steps below. Step 1: Write "1" to the DMAE bit and DMAS bit in DMiCON register simultaneously.

Step 2: Make sure that the DMAi is in an initial state as described above (1) and (2) in a program. If the DMAi is not in an initial state, the above steps should be repeated.

4. DMA Request

The DMAC can generate a DMA request as triggered by the cause of request that is selected with the DMS and DSEL3 to DSEL0 bits of DMiSL register (i = 0, 1) on either channel. Table 9.4 shows the timing at which the DMAS bit changes state.

Whenever a DMA request is generated, the DMAS bit is set to "1" (DMA requested) regardless of whether or not the DMAE bit is set. If the DMAE bit was set to "1" (enabled) when this occurred, the DMAS bit is set to "0" (DMA not requested) immediately before a data transfer starts. This bit cannot be set to "1" in a program (it can only be set to "0").

The DMAS bit may be set to "1" when the DMS or the DSEL3 to DSEL0 bits change state. Therefore, always be sure to set the DMAS bit to "0" after changing the DMS or the DSEL3 to DSEL0 bits.

Because if the DMAE bit is "1", a data transfer starts immediately after a DMA request is generated, the DMAS bit in almost all cases is "0" when read in a program. Read the DMAE bit to determine whether the DMAC is enabled.

DMA factor	DMAS bit of the DMiCON register				
	Timing at which the bit is set to "1"	Timing at which the bit is set to "0"			
Software trigger	When the DSR bit of DMiCON register is set to "1"	Immediately before a data transfer startsWhen set by writing "0" in a program			
Peripheral function	When the interrupt control register for the peripheral function that is selected by the DSEL3 to DSEL0 and DMS bits of DMiCON register has its IR bit set to "1"				

Table 9.4. Timing at Which the DMAS Bit Changes State

5. Channel Priority and DMA Transfer Timing

If both DMA0 and DMA1 are enabled and DMA transfer request signals from DMA0 and DMA1 are detected active in the same sampling period (one period from a falling edge to the next falling edge of BCLK), the DMAS bit on each channel is set to "1" (DMA requested) at the same time. In this case, the DMA requests are arbitrated according to the channel priority, DMA0 > DMA1. The following describes DMAC operation when DMA0 and DMA1 requests are detected active in the same sampling period. Figure 9.6 shows an example of DMA transfer effected by external factors.

DMA0 request having priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, a bus arbitration is returned to the CPU. When the CPU has completed one bus access, a DMA1 transfer starts. After one DMA1 transfer is completed, the bus arbitration is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DMAS bit. Therefore, when DMA requests, as DMA1 in Figure 9.6, occurs more than one time, the DMAS bit is set to "0" as soon as getting the bus arbitration. The bus arbitration is returned to the CPU when one transfer is completed. Refer to "(7) HOLD Signal in Bus Control" for details about bus arbitration between the CPU and DMA.

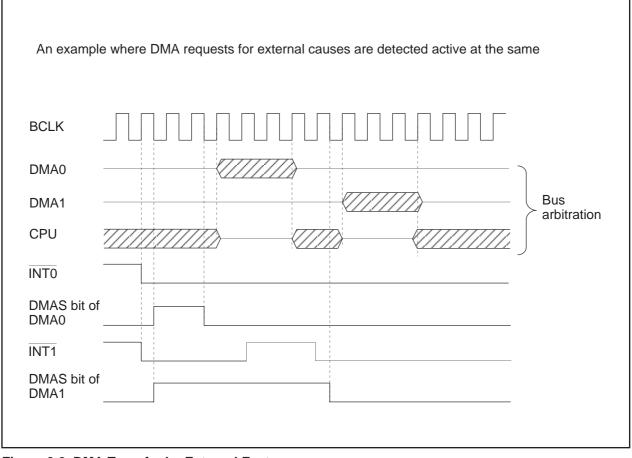


Figure 9.6. DMA Transfer by External Factors

Timers

Eleven 16-bit timers, each capable of operating independently of the others, can be classified by function as either timer A (five) and timer B (six). The count source for each timer acts as a clock, to control such timer operations as counting, reloading, etc. Figures 10.1 and 10.2 show block diagrams of timer A and timer B configuration, respectively.

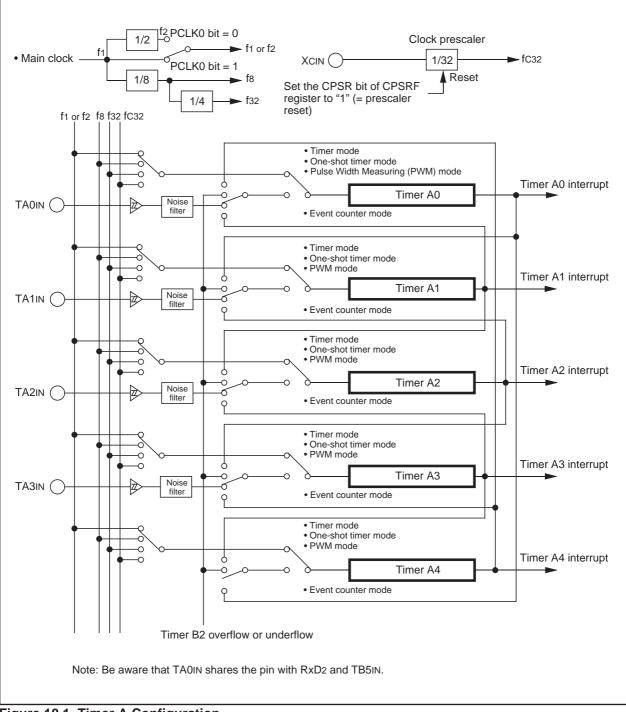


Figure 10.1. Timer A Configuration

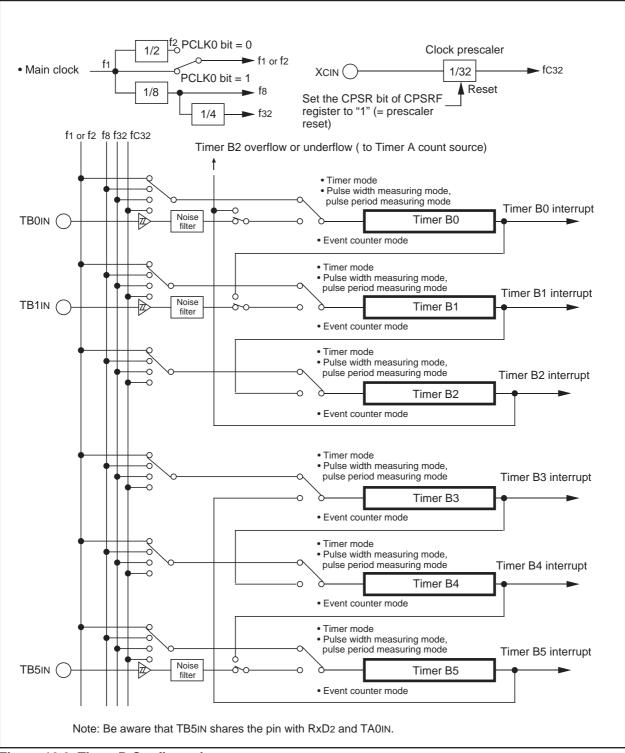


Figure 10.2. Timer B Configuration

Timer A

Figure 10.3 shows a block diagram of the timer A. Figures 10.4 to 10.6 show registers related to the timer A.

The timer A supports the following four modes. Except in event counter mode, timers A0 to A4 all have the same function. Use the TMOD1 to TMOD0 bits of TAiMR register (i = 0 to 4) to select the desired mode.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external device or overflows and underflows of other timers.
- One-shot timer mode: The timer outputs a pulse only once before it reaches the minimum count "000016."
- Pulse width modulation (PWM) mode: The timer outputs pulses in a given width successively.

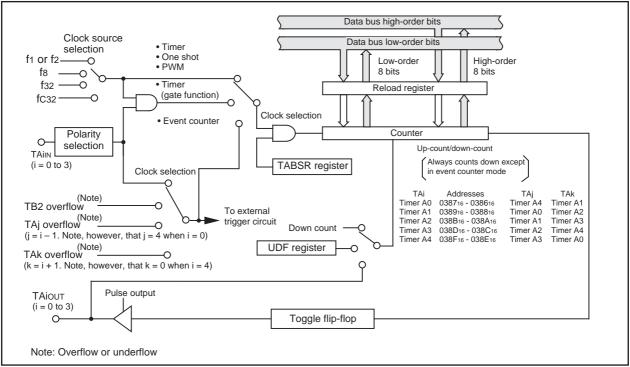


Figure 10.3. Timer A Block Diagram

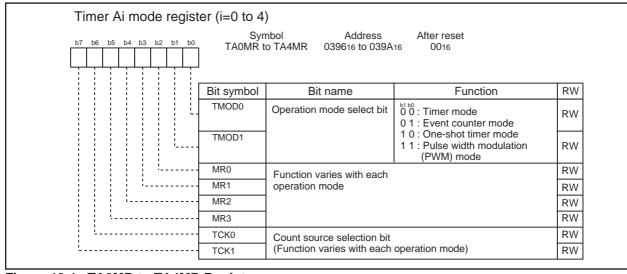
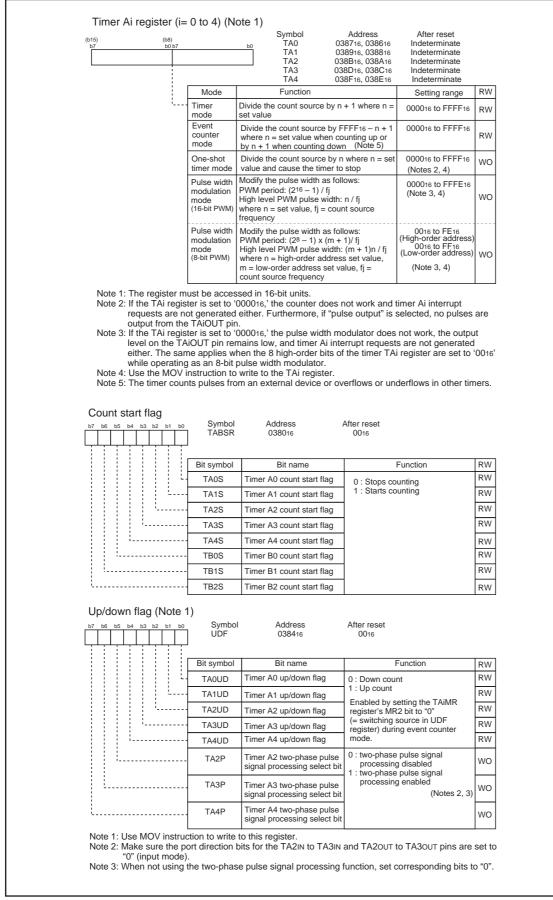



Figure 10.4. TA0MR to TA4MR Registers

Figure 10.5. TA0 to TA4 Registers, TABSR Register, and UDF Register

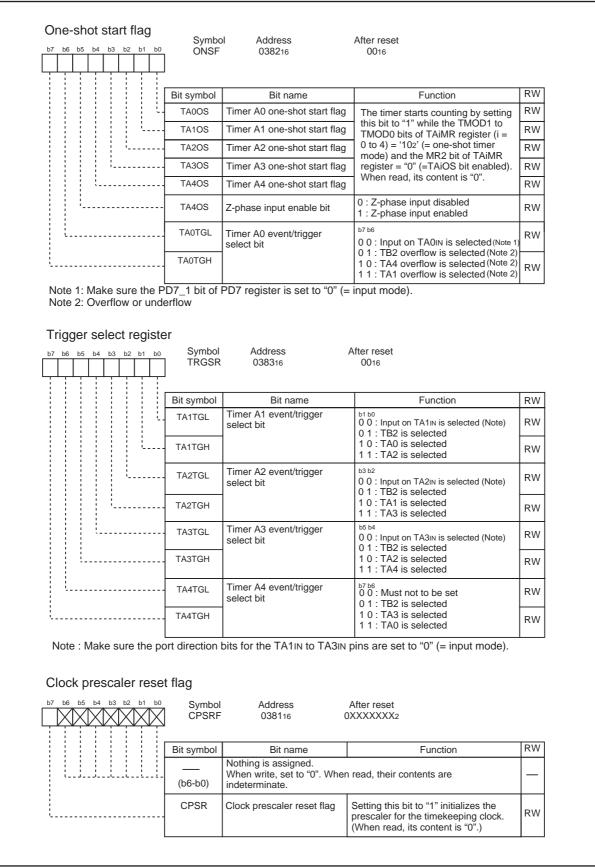


Figure 10.6. ONSF Register, TRGSR Register, and CPSRF Register

1. Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 10.1). Figure 10.7 shows TAiMR register in timer mode.

Table 10.1. Specifications in Timer Mode

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	Down-count
	• When the timer underflows, it reloads the reload register contents and continues counting
Divide ratio	1/(n+1) n: set value of TAiMR register (i= 0 to 4) 000016 to FFFF16
Count start condition	Set TAiS bit of TABSR register to "1" (= start counting)
Count stop condition	Set TAiS bit to "0" (= stop counting)
Interrupt request generation timing	At underflow
TAilN pin function	I/O port or gate input
TAiout pin function	I/O port or pulse output
Read from timer	Count value can be read by reading TAi register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select function	Gate function
	Counting can be started and stopped by an input signal to TAiIN pin
	Pulse output function
	Whenever the timer underflows, the output polarity of TAiOUT pin is inverted.
	While the TAiS bit is set to "0", the pin outputs an "L" level signal during the count stop.

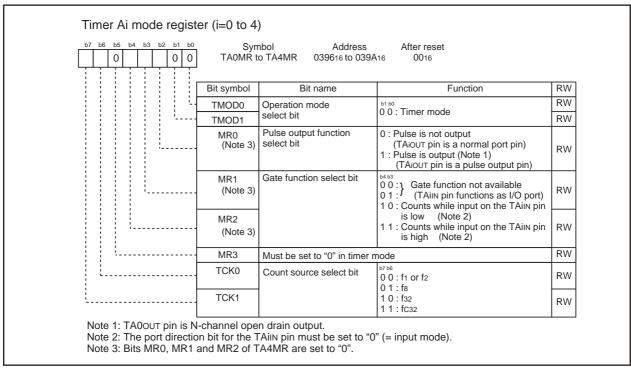


Figure 10.7. TAiMR Register in Timer Mode

2. Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timers A2, A3 and A4 can count two-phase external signals. Table 10.2 lists specifications in event counter mode (when <u>not</u> processing two-phase pulse signal). Figure 10.8 shows TAiMR register in event counter mode (when <u>not</u> processing two-phase pulse signal).

Item	Specification				
Count source	• External signals input to TAiIN pin (i=0 to 3) (effective edge can be selected				
	in program)				
	 Timer B2 overflows or underflows, 				
	timer Aj (j=i-1, except j=4 if i=0) overflows or underflows,				
	timer Ak (k=i+1, except k=0 if i=4) overflows or underflows				
Count operation	Up-count or down-count can be selected by external signal or program				
	• When the timer overflows or underflows, it reloads the reload register con-				
	tents and continues counting. When operating in free-running mode, the				
	timer continues counting without reloading.				
Divided ratio	1/ (FFFF16 - n + 1) for up-count				
	1/ (n + 1) for down-count n : set value of TAi register 000016 to FFF16				
Count start condition	Set TAiS bit of TABSR register to "1" (= start counting)				
Count stop condition	Set TAiS bit to "0" (= stop counting)				
Interrupt request generation timing	Timer overflow or underflow				
TAilN pin function	I/O port or count source input				
TAiout pin function	I/O port, pulse output, or up/down-count select input				
Read from timer	Count value can be read by reading TAi register				
Write to timer	• When not counting and until the 1st count source is input after counting start				
	Value written to TAi register is written to both reload register and counter				
	 When counting (after 1st count source input) 				
	Value written to TAi register is written to only reload register				
	(Transferred to counter when reloaded next)				
Select function	Free-run count function				
	Even when the timer overflows or underflows, the reload register content is				
	not reloaded to it				
	Pulse output function				
	Whenever the timer underflows or underflows, the output polarity of TAiOUT				
	pin is inverted . When not counting, the pin outputs a low.				

7 b6 b5 b4 b3 b2 b1 b0 0 0 1	TAC	Symbol Add DMR to TA4MR 039616 to		
	Bit symbol	Bit name	Function	RW
	TMOD0 TMOD1	Operation mode select bit	0 1 : Event counter mode (Note 1)	RW RW
	MR0 (Note 5)	Pulse output function select bit	 0 : Pulse is not output (TAio∪⊤ pin functions as I/O port) 1 : Pulse is output (Note 2) (TAio∪⊤ pin functions as pulse output pin) 	RW
	MR1 (Note 5)	Count polarity select bit (Note 3)	0 : Counts external signal's falling edge 1 : Counts external signal's rising edge	RW
	MR2 (Note 5)	Up/down switching cause select bit	0 : UDF register 1 : Input signal to TAio∪⊤ pin (Note 4)	RW
	MR3	Must be set to "0" in event counter mode		
	TCK0	Count operation type select bit	0 : Reload type 1 : Free-run type	RW
	TCK1	Can be "0" or "1" when not processing	using two-phase pulse signal	RW
lote 2: TA0OUT pin is N-0 lote 3: Effective when th lote 4: Count down when	channel oper e TAiTGH ar n input on TA	n drain output. nd TAiTGL bits of ONSF o	elected using the ONSF and TRGSR r or TRGSR register are '002' (TAiıN pin p when input on that pin is high. The p ode).	input

Figure 10.8. TAiMR Register in Event Counter Mode (when not using two-phase pulse signal processing)

Table 10.3 lists specifications in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4).

Figure 10.9 shows TA2MR to TA4MR registers in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4).

Item	Specification
Count source	• Two-phase pulse signals input to TAiIN or TAiOUT pins (i = 2 to 3)
Count operation	• Up-count or down-count can be selected by two-phase pulse signal
	• When the timer overflows or underflows, it reloads the reload register con-
	tents and continues counting. When operating in free-running mode, the
	timer continues counting without reloading.
Divide ratio	1/ (FFFF16 - n + 1) for up-count
	1/ (n + 1) for down-count n : set value of TAi register 000016 to FFF16
Count start condition	Set TAIS bit of TABSR register to "1" (= start counting)
Count stop condition	Set TAiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer overflow or underflow
TAilN pin function	Two-phase pulse input
TAIOUT pin function	Two-phase pulse input
Read from timer	Count value can be read by reading timer A2, A3 or A4 register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	When counting (after 1st count source input)
	Value written to TAi register is written to reload register
	(Transferred to counter when reloaded next)
Select function (Note)	Normal processing operation (timer A2 and timer A3)
	The timer counts up rising edges or counts down falling edges on TAjIN pir
	when input signals on TAjout pin is "H".
	(j=2,3) Up- Up- Up- Down- Down- count count count count count count
	Multiply-by-4 processing operation (timer A3 and timer A4)
	If the phase relationship is such that $TAkiN(k=3)$ pin goes "H" when the input
	signal on TAkOUT pin is "H", the timer counts up rising and falling edges or
	TAKOUT and TAKIN pins. If the phase relationship is such that TAKIN pir
	goes "L" when the input signal on TAkout pin is "H", the timer counts dowr
	rising and falling edges on TAkOUT and TAkIN pins.
	Count up all edges Count down all edges
	Count up all edges Count down all edges
	Counter initialization by Z-phase input (timer A3)
	The timer count value is initialized to 0 by Z-phase input.

to multiply-by-4 processing operation.

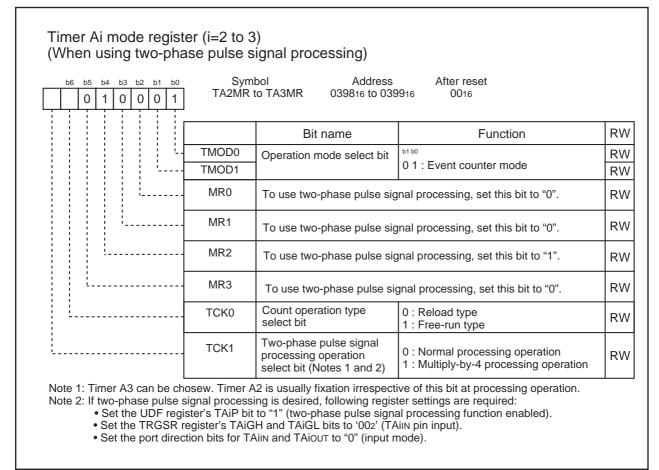


Figure 10.9. TA2MR to TA4MR Registers in Event Counter Mode (when using two-phase pulse signal processing with timer A2 or A3)

Counter Initialization by Two-Phase Pulse Signal Processing

This function initializes the timer count value to "0" by Z-phase (counter initialization) input during twophase pulse signal processing.

This function can only be used in timer A3 event counter mode during two-phase pulse signal processing, free-running type, x4 processing, with Z-phase entered from the INT2 pin.

Counter initialization by Z-phase input is enabled by writing "000016" to the TA3 register and setting the TAZIE bit in ONSF register to "1" (= Z-phase input enabled).

Counter initialization is accomplished by detecting Z-phase input edge. The active edge can be chosen to be the rising or falling edge by using the POL bit of INT2IC register. The Z-phase pulse width applied to the INT2 pin must be equal to or greater than one clock cycle of the timer A3 count source.

The counter is initialized at the next count timing after recognizing Z-phase input. Figure 10.10 shows the relationship between the two-phase pulse (A phase and B phase) and the Z phase.

If timer A3 overflow or underflow coincides with the counter initialization by Z-phase input, a timer A3 interrupt request is generated twice in succession. Do not use the timer A3 interrupt when using this function.



Figure 10.10. Two-phase Pulse (A phase and B phase) and the Z Phase

3. One-shot Timer Mode

In one-shot timer mode, the timer is activated only once by one trigger. (See Table 10.4.) When the trigger occurs, the timer starts up and continues operating for a given period. Figure 10.11 shows the TAiMR register in one-shot timer mode.

Table 10.4.	Specifications	in One-shot	Timer Mode
-------------	----------------	-------------	------------

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	Down-count
	• When the counter reaches 000016, it stops counting after reloading a new value
	• If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide ratio	1/n n : set value of TAi register 000016 to FFFF16
	However, the counter does not work if the divide-by-n value is set to 000016.
Count start condition	TAiS bit of TABSR register = "1" (start counting) and one of the following
	triggers occurs.
	 External trigger input from the TAiIN pin
	 Timer B2 overflow or underflow,
	timer Aj (j=i-1, except j=4 if i=0) overflow or underflow,
	timer Ak (k=i+1, except k=0 if i=4) overflow or underflow
	 The TAiOS bit of ONSF register is set to "1" (= timer starts)
Count stop condition	When the counter is reloaded after reaching "000016"
	• TAiS bit is set to "0" (= stop counting)
Interrupt request generation timing	When the counter reaches "000016"
TAilN pin function	I/O port or trigger input
TAiout pin function	I/O port or pulse output
Read from timer	An indeterminate value is read by reading TAi register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select function	Pulse output function
	The timer outputs a low when not counting and a high when counting.

b6 b5 b4 b3 b2 b1 b0 0 1 0 1 0 0 1 0<	Sym TA0MR t	bol Address o TA4MR 039616 to 039	After reset A16 0016	
	Bit symbol	Bit name	Function	RW
	TMOD0	Operation mode select bit	b1 b0	RW
[TMOD1		1 0 : One-shot timer mode	RW
· · · · · · · · · · · · · · · · · · ·	MR0 (Note 4)	Pulse output function select bit	0 : Pulse is not output (TAio∪⊤ pin functions as I/O port) 1 : Pulse is output (Note 1) (TAio∪⊤ pin functions as a pulse output pin)	RW
	MR1 (Note 4)	External trigger select bit (Note 2)	0 : Falling edge of input signal to TAiIN pin (Note 3) 1 : Rising edge of input signal to TAiIN pin (Note 3)	RW
	MR2	Trigger select bit	0 : TAiOS bit is enabled 1 : Selected by TAiTGH to TAiTGL bits	RW
	MR3	Must be set to "0" in one-s	hot timer mode	RW
	TCK0	Count source select bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
	TCK1		1 0 : f32 1 1 : fC32	RW

Figure 10.11. TAiMR Register in One-shot Timer Mode

4. Pulse Width Modulation (PWM) Mode

In PWM mode, the timer outputs pulses of a given width in succession (see Table 10.5). The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 10.12 shows TAiMR register in pulse width modulation mode. Figures 10.13 and 10.14 show examples of how a 16-bit pulse width modulator operates and how an 8-bit pulse width modulator operates.

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	Down-count (operating as an 8-bit or a 16-bit pulse width modulator)
	• The timer reloads a new value at a rising edge of PWM pulse and continues counting
	 The timer is not affected by a trigger that occurs during counting
16-bit PWM	High level width n / fj n : set value of TAi register (i=0 to 3)
	• Cycle time (2 ¹⁶ -1) / fj fixed fj: count source frequency (f1, f2, f8, f32, fC32)
8-bit PWM	• High level width n x (m+1) / fj n : set value of TAiMR register high-order address
	• Cycle time (2 ⁸ -1) x (m+1) / fj m : set value of TAiMR register low-order address
Count start condition	 TAiS bit of TABSR register is set to "1" (= start counting)
	 The TAiS bit = 1 and external trigger input from the TAiN pin
	 The TAiS bit = 1 and one of the following external triggers occurs
	Timer B2 overflow or underflow,
	timer Aj (j=i-1, except j=4 if i=0) overflow or underflow,
	timer Ak (k=i+1) overflow or underflow
Count stop condition	TAiS bit is set to "0" (= stop counting)
Interrupt request generation timing	PWM pulse goes "L"
TAilN pin function	I/O port or trigger input
TAIOUT pin function	Pulse output
Read from timer	An indeterminate value is read by reading TAi register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)

Table 10.5. Specifications in PWM Mode

	ymbol Adda /IR to TA3MR 039616 to		
Bit symbol	Bit name	Function	RW
TMOD0	Operation mode	b1 b0	RW
 TMOD1	select bit	1 1 : PWM mode (Note 1)	RW
 MR0	Must be set to "1" in PW	/ mode	RW
 MR1	External trigger select bit (Note 2)	0: Falling edge of input signal to TAin pin(Note 3) 1: Rising edge of input signal to TAin pin(Note 3)	RW
 MR2	Trigger select bit	0 : Write "1" to TAiS bit in the TASF register 1 : Selected by TAiTGH to TAiTGL bits	RW
 MR3	16/8-bit PWM mode select bit	0: Functions as a 16-bit pulse width modulator 1: Functions as an 8-bit pulse width modulator	RW
 TCK0	Count source select bit	^{b7b6} 0 0 : f1 or f2 0 1 : f8	RW
 TCK1		1 0 : f32 1 1 : fC32	RW

Figure 10.12. TAIMR Register in PWM Mode

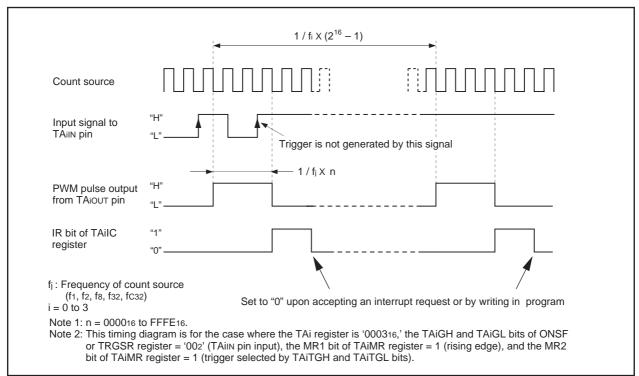
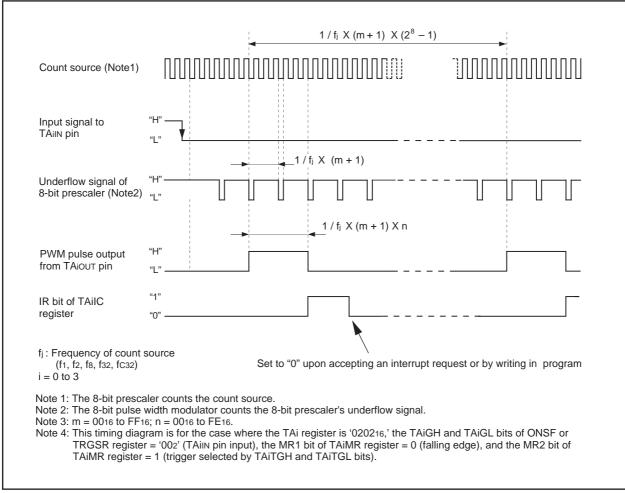
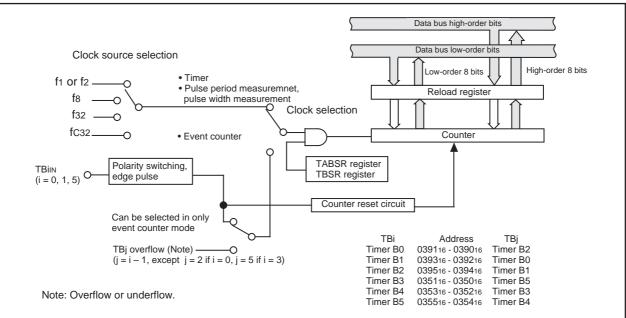
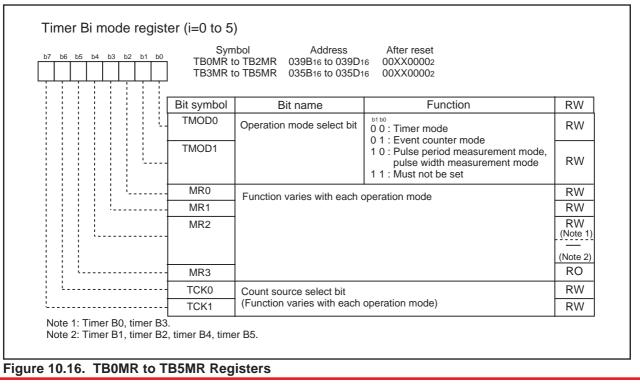


Figure 10.13. Example of 16-bit Pulse Width Modulator Operation




Figure 10.14. Example of 8-bit Pulse Width Modulator Operation

Timer B


Figure 10.15 shows a block diagram of the timer B. Figures 10.16 and 10.17 show registers related to the timer B.

Timer B supports the following three modes. Use the TMOD1 and TMOD0 bits of TBiMR register (i = 0 to 5) to select the desired mode.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external device or overflows or underflows of other timers.
- Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.

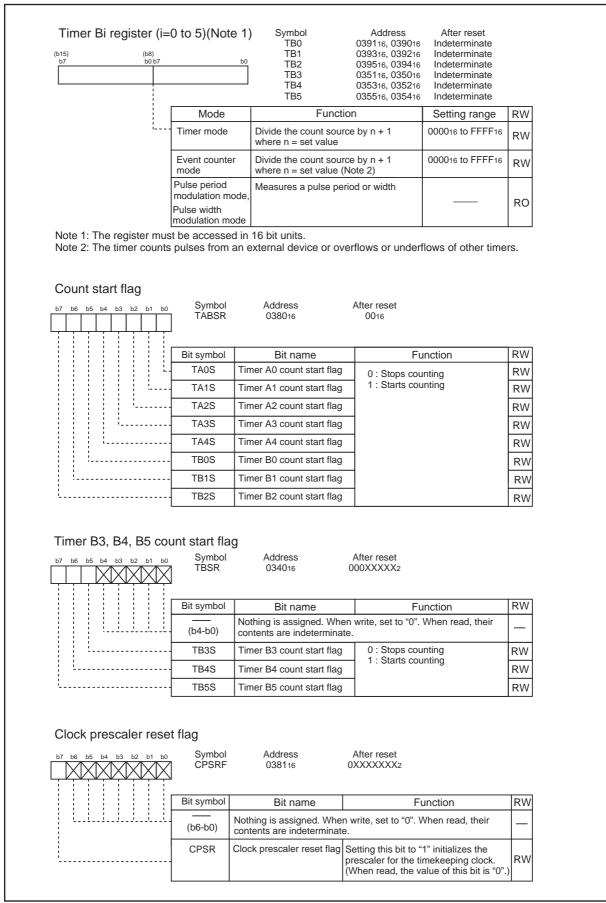


Figure 10.17. TB0 to TB5 Registers, TABSR Register, TBSR Register, CPSRF Register

1. Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 10.6). Figure 10.18 shows TBiMR register in timer mode.

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	Down-count
	• When the timer underflows, it reloads the reload register contents and
	continues counting
Divide ratio	1/(n+1) n: set value of TB register (i= 0 to 5) 000016 to FFF16
Count start condition	Set TBiS bit ^(Note) to "1" (= start counting)
Count stop condition	Set TBiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer underflow
TBilN pin function	I/O port
Read from timer	Count value can be read by reading TBi register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TBi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TBi register is written to only reload register
	(Transferred to counter when reloaded next)

Table 10.6. Specifications in Timer Mode

Note : The TB0S to TB2S bits are assigned to the TABSR register bit 5 to bit 7, and the TB3S to TB5S bits are assigned to the TBSR register bit 5 to bit 7.

7 b6 b5 b4 b3 b2 b1 b0 0 0	TB0MŔ t	hbol Address o TB2MR 039B16 to 039E o TB5MR 035B16 to 035E		
	Bit symbol	Bit name	Function	RW
	TMOD0	Operation mode select bit	0 0 : Timer mode	RW
	TMOD1		00. Timer mode	RW
	MR0	Has no effect in timer mode	2	RW
	MR1	Can be set to "0" or "1"		RW
	MR2	TB0MR, TB3MR registers Must be set to "0" in timer r	node	RW
		TB1MR, TB2MR, TB4MR, Nothing is assigned. When content is indeterminate	TB5MR registers write, set to "0". When read, its	
	MR3	When write in timer mode, content is indeterminate.	set to "0". When read in timer mode, its	RO
·[TCK0	Count source select bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
	TCK1		1 0 : f32 1 1 : fC32	RW

Figure 10.18. TBiMR Register in Timer Mode

2. Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers (see Table 10.7). Figure 10.19 shows TBiMR register in event counter mode.

Table 10.7.	Specifications in Event Counter Mode
-------------	--------------------------------------

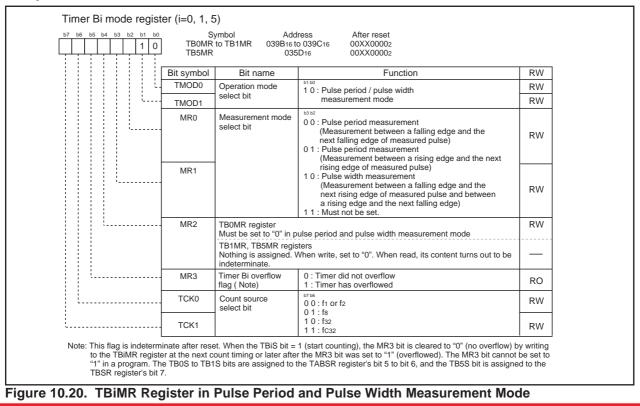
Item	Specification
Count source	• External signals input to TBiIN pin (i=0, 1, 5) (effective edge can be selected
	in program)
	 Timer Bj overflow or underflow (j=i-1, except j=2 if i=0, j=5 if i=3)
Count operation	Down-count
	 When the timer underflows, it reloads the reload register contents and
	continues counting
Divide ratio	1/(n+1) n: set value of TBi register 000016 to FFFF16
Count start condition	Set TBiS bit ¹ to "1" (= start counting)
Count stop condition	Set TBiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer underflow
TBilN pin function	Count source input
Read from timer	Count value can be read by reading TBi register
Write to timer	• When not counting and until the 1st count source is input after counting start
	Value written to TBi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to TBi register is written to only reload register
	(Transferred to counter when reloaded next)

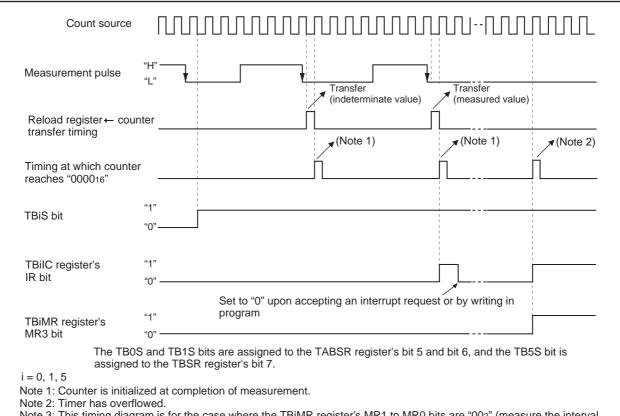
Note: The TB0S to TB2S bits are assigned to the TABSR register bit 5 to bit 7, and the TB3S to TB5S bits are assigned to the TBSR register bit 5 to bit 7.

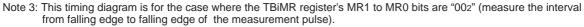
7 b6 b5 b4 b3 b2 b1 b0 1 1 1 0 1		hbol Address o TB2MR 039B16 to 039D o TB5MR 035B16 to 035D		
	Bit symbol	Bit name	Function	RW
	TMOD0	Operation mode select bit	b1 b0	RW
	TMOD1		01: Event counter mode	RW
	MR0	Count polarity select bit (Note 1)	 b3 b2 0 0 : Counts external signal's falling edges 0 1 : Counts external signal's 	RW
	MR1		rising edges 1 0 : Counts external signal's falling and rising edges 1 1 : Must not be set	RW
	MR2	TB0MR, TB3MR registers Must be set to "0" in timer	node	RW
		TB1MR, TB2MR, TB4MR, Nothing is assigned. When content is indeterminate.	TB5MR registers write, set to "0". When read, its	
	MR3	When write in event counter counter mode, its content	er mode, set to "0". When read in event is indeterminate.	RO
	TCK0	Has no effect in event cour Can be set to "0" or "1".	nter mode.	RW
	TCK1 (Note 3)	Event clock select	0 : Input from TBiN pin (Note 2) 1 : TBj overflow or underflow (j = i − 1, except j = 2 if i = 0, j = 5 if i = 3)	RW
bits can be set to "	0" or "1." bit for the TBiın	pin must be set to "0" (= inp	TCK1 bit = "1" (TBj overflow or underflow ut mode).	w), these

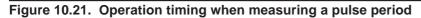
Figure 10.19. TBiMR Register in Event Counter Mode

3. Pulse Period and Pulse Width Measurement Mode


In pulse period and pulse width measurement mode, the timer measures pulse period or pulse width of an external signal (see Table 10.8). Figure 10.20 shows TBiMR register in pulse period and pulse width measurement mode. Figure 10.21 shows the operation timing when measuring a pulse period. Figure 10.22 shows the operation timing when measuring a pulse width.


Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	• Up-count
	• Counter value is transferred to reload register at an effective edge of mea-
	surement pulse. The counter value is set to "000016" to continue counting.
Count start condition	Set TBiS (i=0, 1, 5) bit (Note 3) to "1" (= start counting)
Count stop condition	Set TBiS bit to "0" (= stop counting)
Interrupt request generation timing	When an effective edge of measurement pulse is input (Note 1)
	• Timer overflow. When an overflow occurs, MR3 bit of TBiMR register is set
	to "1" (overflowed) simultaneously. MR3 bit is cleared to "0" (no overflow) by
	writing to TBiMR register at the next count timing or later after MR3 bit was
	set to "1". At this time, make sure TBiS bit is set to "1" (start counting).
TBilN pin function	Measurement pulse input
Read from timer	Contents of the reload register (measurement result) can be read by reading
	TBi register (Note 2)
Write to timer	Value written to TBi register is written to neither reload register nor counter


Table 10.8. Specifications in Pulse Period and Pulse Width Measurement Mode


Notes:

- 1. Interrupt request is not generated when the first effective edge is input after the timer started counting.
- 2. Value read from TBi register is indeterminate until the second valid edge is input after the timer starts counting.
- 3. The TB0S to TB1S bits are assigned to the TABSR register bit 5 to bit 6, and the TB5S bit is assigned to the TBSR register bit 7.

Count source	ບບບໍ່ນົມບໍ່ເປັນບໍ່ມີການບໍ່ມີການບໍ່ມີການເປັນການ
Measurement pulse	"H" "L" Transfer Transfer Transfer (measured value) (indeterminate (measured value) (measured value)
Reload register ← c transfer timing	
Timing at which course reaches "000016"	unter
TBiS bit	"1" "0"
TBiIC register's IR bit	"1" "0"
TBiMR register's MR3 bit	Set to "0" upon accepting an interrupt request or by "1" writing in program
	he TB0S and TB1S bits are assigned to the TABSR register's bit 5 and bit 6, and the TB5S bit is ssigned to the TBSR register's bit 7.
Note 2: Timer has ov Note 3: This timing di	agram is for the case where the TBiMR register's MR1 to MR0 bits are "102" (measure the interval edge to the next rising edge and the interval from a rising edge to the next falling edge of the

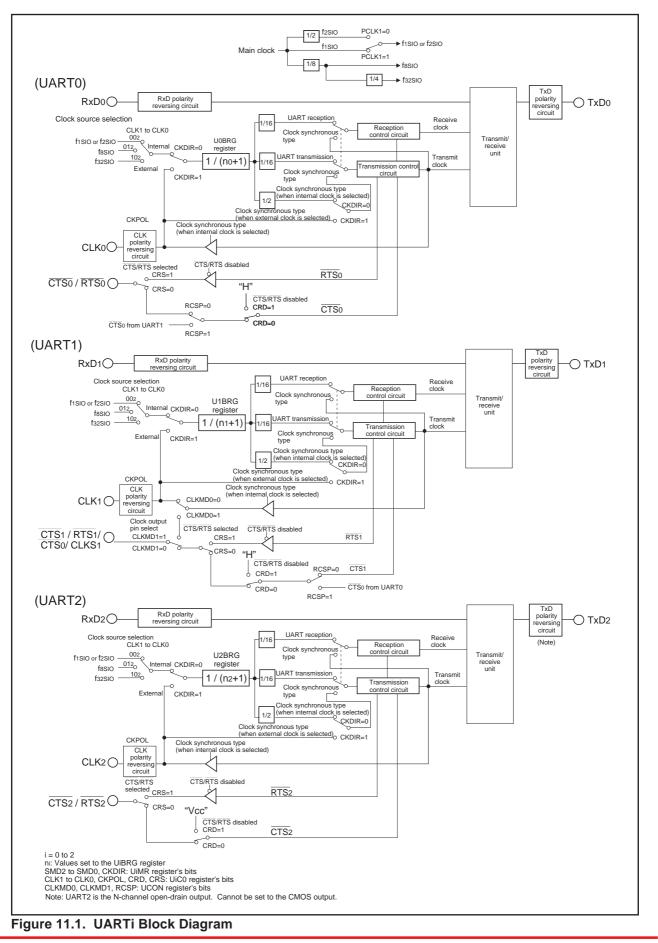
Figure 10.22. Operation timing when measuring a pulse width

Serial I/O

Serial I/O is configured with 3 channels: UART0 to UART2. Each is explained below.

UARTi (i=0 to 2)

UARTi each have an exclusive timer to generate a transfer clock, so they operate independently of each other.


Figure 11.1 shows the block diagram of UARTi. Figures 11.2 shows the block diagram of the UARTi transmit/receive.

UARTi has the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode).
- Special mode 2
- Special mode 1 (Bus collision detection function, IE mode) : UART0, UART1

Figures 11.3 to 11.8 show the UARTi-related registers. Refer to tables listing each mode for register setting.

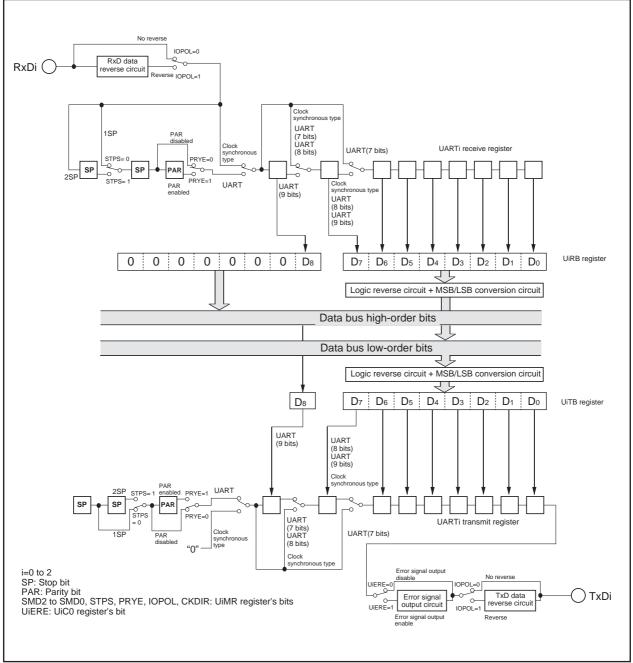


Figure 11.2. UARTi Transmit/Receive Unit

b15) b7	ለ ለ ለ ለ /	(b8) b0 b7	b0	Symbol Addre U0TB 03A316-0 U1TB 03AB16-0	3A216 Indeterminate		
	IXXXXX			U2TB 037B16-0			
					Function		RW
		!	- Transm	it data			WO
				g is assigned. ttempt to write to these bits,	write "0". The value, if read, turi	ns out to be indeterminate.	-
Note: Use	e MOV instructi	on to write to this regist	er.				_
			\sim				
	receive but	fer register (i=0 to	02)	Symbol Addre	After reset		
(b15) b7		(b8) b0 b7	b0	U0RB 03A716-0 U1RB 03AF16-0	3A616 Indeterminate		
				U2RB 037F16-0			
			Dit				—
			Bit symbol	Bit name	Fun	ction	RW
			(b7-b0)		Receive data (D7 to D0)		RC
			(b8)		Receive data (D8)		RC
				Nothing is assigned.			1_
			(b10-b9)		ese bits, write "0". The value, if	read, turns out to be "0".	+
	(- ABT	Arbitration lost detecting flag (Note 2)	0 : Not detected 1 : Detected		RW
			. OER	Overrun error flag (Note 1)	0 : No overrun error 1 : Overrun error found		RO
							+
			FER	Framing error flag (Note 1)	0 : No framing error 1 : Framing error found		RO
			- PER	Parity error flag (Note 1)	0 : No parity error 1 : Parity error found		RO
			. SUM	Error sum flag (Note 1)	0 : No error		+
				Lifer sum hag (Note 1)	1 : Error found		RO
					the UiC1 register's RE bit = "0		
A	Also, the PER a	and FER bits are set to	"0" by read	ing the lower byte of the UiR	error) when all of the PER, FEI B register.	R and OER bits = "0" (no error	.).
Note 2: I	I NE AB I DIT IS S	set to "0" by writing "0" i	n a progran	n. (Writing "1" has no effect.)			
			<i>(</i>) – ·				
	baud rate (generation registe	r (i=0 to				
07		<u></u>		U0BRG 03A	I 16 Indeterminate		
				U1BRG 03A U2BRG 037			
				Function		Setting range	RW
			Assumi	ng that set value = n, UiBRG	divides the count source	0016 to FF16	wc
Note 1 · W/	rite to this regio	ster while serial I/O is n					
		tion to write to this regi					

		UO	Symbol Add MR to U2MR 03A016, 03		
		Bit symbol	Bit name	Function	RW
		SMD0	Serial I/O mode select bit (Note 2)	0 0 0 : Serial I/O disabled 0 0 1 : Clock synchronous serial I/O mode	RW
		SMD1		0 1 0 : Must not be set 1 0 0 : UART mode transfer data 7 bits long 1 0 1 : UART mode transfer data 8 bits long	RW
		SMD2		1 1 0 : UART mode transfer data 9 bits long Must not be set except above	RW
	¦	CKDIR	Internal/external clock select bit	0 : Internal clock 1 : External clock (Note 1)	RW
-		STPS	Stop bit length select bit	0 : One stop bit 1 : Two stop bits	RW
		PRY	Odd/even parity select bit	Effective when PRYE = 1 0 : Odd parity 1 : Even parity	RW
i		PRYE	Parity enable bit	0 : Parity disabled 1 : Parity enabled	RW
		IOPOL	TxD, RxD I/O polarity reverse bit	0 : No reverse 1 : Reverse	RW
		U0	rol register 0 (i=0 to Symbol Add C0 to U2C0 03A416, 03A	ress After reset C16, 037C16 000010002	
		Bit	Symbol Add C0 to U2C0 03A416, 03A	ress After reset C16, 037C16 000010002	RW
		U0	Symbol Add C0 to U2C0 03A416, 03A Bit name BRG count source	ress After reset C16, 037C16 000010002 Function	RW
		Bit symbol	Symbol Add C0 to U2C0 03A416, 03A Bit name	ress After reset C16, 037C16 000010002 Function	RW
		Bit symbol CLK0	Symbol Add C0 to U2C0 03A416, 03A Bit name BRG count source	ress After reset C16, 037C16 000010002 Function b1 b0 0 0 : f1SIO or f2SIO is selected 0 1 : f8SIO is selected 1 0 : f32SIO is selected	
		Bit symbol CLK0 CLK1	Symbol Add C0 to U2C0 03A416, 03A Bit name BRG count source select bit CTS/RTS function select bit	Function Function Function bib0 0 0 : f1SIO or f2SIO is selected 0 1 : f8SIO is selected 1 0 : f2SIO is selected 1 1 : Must not be set Effective when CRD = 0 0 : CTS function is selected (Note 1)	RW
		Bit symbol CLK0 CLK1 CRS	Symbol Add C0 to U2C0 03A416, 03A Bit name BRG count source select bit CTS/RTS function select bit (Note 4) Transmit register empty	Function b1b0 0 0 : f1SIO or f2SIO is selected 0 1 : f8SIO is selected 1 0 : f32SIO is selected 1 1 : Must not be set Effective when CRD = 0 0 : CTS function is selected 1 : RTS function is selected 0 : Data present in transmit register (during transmission) 1 : No data present in transmit register	RW RW RW
		Bit symbol CLK0 CLK1 CRS TXEPT	Symbol Add C0 to U2C0 03A416, 03A Bit name BRG count source select bit CTS/RTS function select bit (Note 4) Transmit register empty flag	ress After reset $C_{16}, 037C_{16} 000010002$ Function $0 0 : f_{1510} \text{ or } f_{2510} \text{ is selected}$ $0 : f_{1520} \text{ is selected}$ $1 : f_{25210} \text{ is selected}$ $1 : f_{25210} \text{ is selected}$ 1 : Must not be set Effective when CRD = 0 $0 : CTS$ function is selected (Note 1) 1 : RTS function is selected 0 : Data present in transmit register (during transmission) 1 : No data present in transmit register (transmission completed) 0 : CTS/RTS function enabled 1 : CTS/RTS function disabled	RW RW RW
		Bit symbol CLK0 CLK1 CRS TXEPT CRD	Symbol Add C0 to U2C0 03A416, 03A Bit name BRG count source select bit CTS/RTS function select bit (Note 4) Transmit register empty flag CTS/RTS disable bit Data output select bit	ress After reset C16, 037C16 000010002 Function Function b1b0 0 : f1SIO or f2SIO is selected 0 0 : f1SIO is selected 1 : f8SIO is selected 1 0 : f2SIO is selected 1 : Must not be set Effective when CRD = 0 0 : CTS function is selected 0 : Data present in transmit register (during transmission) 1 : No data present in transmit register (transmission completed) 0 : CTS/RTS function enabled 1 : CTS/RTS function disabled (P60, P64 and P73 can be used as I/O ports) 0 : TxDi/SDAi and SCLi pins are CMOS output	RW RW RW RO RO
		Bit symbol CLK0 CLK1 CRS TXEPT CRD	Symbol Add C0 to U2C0 03A416, 03A Bit name BRG count source select bit CTS/RTS function select bit (Note 4) Transmit register empty flag CTS/RTS disable bit Data output select bit (Note 2)	Image: system is a set of the set is a set of the s	RW RW RW RO RO RW

Figure 11.4. U0MR to U2MR Register and U0C0 to U2C0 Register

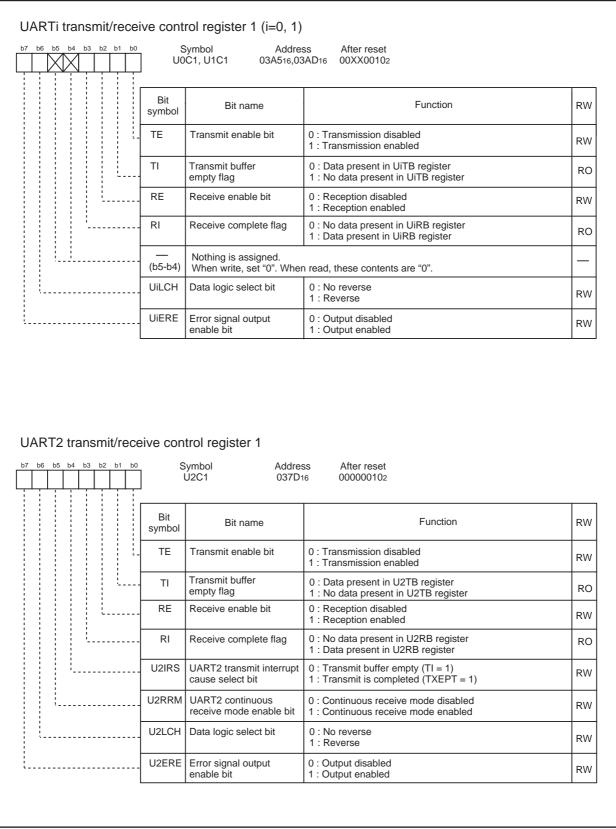


Figure 11.5. U0C1 to U2C1 Registers

	b4 b3 b2 b1	T	Symbol Addre JCON 03B0		
		Bit symbol	Bit name	Function	RW
		U0IRS	UART0 transmit interrupt cause select bit	0 : Transmit buffer empty (TI = 1) 1 : Transmission completed (TXEPT = 1)	RW
	_	U1IRS	UART1 transmit interrupt cause select bit	0 : Transmit buffer empty (TI = 1) 1 : Transmission completed (TXEPT = 1)	RW
		UORRM	UART0 continuous receive mode enable bit	0 : Continuous receive mode disabled 1 : Continuous receive mode enable	RW
		U1RRM	UART1 continuous receive mode enable bit	0 : Continuous receive mode disabled 1 : Continuous receive mode enabled	RW
		CLKMD0	UART1 CLK/CLKS select bit 0	Effective when CLKMD1 = "1" 0 : Clock output from CLK1 1 : Clock output from CLKS1	RW
		CLKMD1	UART1 CLK/CLKS select bit 1 (Note)	0 : CLK output is only CLK1 1 : Transfer clock output from multiple pins function selected	RW
		RCSP	<u>Sep</u> a <u>rate</u> UART0 CTS/RTS bit	0 : CTS/RTS shared pin 1 : CTS/RTS separated (CTSo supplied from the P64 pin)	RW
U1M	MR register's	s ĊKDIR bit = "	lock output pins, make sur 0" (internal clock)	e the following conditions are met:	_
U1M ARTi sp	MR register's	tiple transfer of s CKDIR bit = " bode register	lock output pins, make sur 0" (internal clock)	e the following conditions are met: ddress After reset	_
U1M ARTi sp	MR register's pecial mo	tiple transfer of s CKDIR bit = " bode register	lock output pins, make sur 0" (internal clock) • (i=0 to 2) Symbol A SMR to U2SMR 036F16, 0 Bit	e the following conditions are met: ddress After reset	RW
U1M ARTi sp	MR register's pecial mo	bode register $b_{0}^{b_{0}}$ U0	lock output pins, make sur 0" (internal clock) • (i=0 to 2) Symbol A SMR to U2SMR 036F16, 0 Bit name	e the following conditions are met: ddress After reset 037316, 037716 X0000002	RW
U1M NRTi sp	MR register's pecial mo	b0 b0 b0 b0 b0 b0 b0 b0 b0 b0	lock output pins, make sur 0" (internal clock) • (i=0 to 2) Symbol A SMR to U2SMR 036F16, 0 Bit name	e the following conditions are met: ddress After reset 037316, 037716 X0000002 Function	
U1M NRTi sp	MR register's pecial mo	bo bode register 0 U03 Bit symbol Reserve	lock output pins, make sur 0" (internal clock) • (i=0 to 2) Symbol A SMR to U2SMR 036F16, 0 Bit name ed bits Bus collision detect	e the following conditions are met: address After reset 037316, 037716 X0000002 Function Set to "0" 0 : Rising edge of transfer clock	RW
U1M ARTi sp	MR register's pecial mo	bo bo bo bo bo bo bo bo bo bo bo bo bo b	lock output pins, make sur 0" (internal clock) • (i=0 to 2) Symbol A SMR to U2SMR 036F16, 0 Bit name ed bits Bus collision detect sampling clock select bit Auto clear function select bit of transmit	e the following conditions are met: ddress After reset 037316, 037716 X0000002 Function Set to "0" 0 : Rising edge of transfer clock 1 : Underflow signal of timer Aj (Note 1) 0 : No auto clear function	RW
U1M ARTi sp	MR register's pecial mo	bo bo bo bo bo bo bo bo bo bo	lock output pins, make sur 0" (internal clock) • (i=0 to 2) Symbol A SMR to U2SMR 036F16, 0 Bit name ed bits Bus collision detect sampling clock select bit Auto clear function select bit of transmit enable bit Transmit start condition select bit	e the following conditions are met: ddress After reset 037316, 037716 X0000002 Function Set to "0" 0 : Rising edge of transfer clock 1 : Underflow signal of timer Aj (Note 1) 0 : No auto clear function 1 : Auto clear at occurrence of bus collision 0 : Not synchronized to RxDi	RW RW RW

b4 b3 b2 b1 b0 0 0 0 0 0 0	UO	Symbol SMR2 to U2SMR2 036E	Address After reset 16, 037216, 037616 X00000002	
	Bit symbol	Bit name	Function	
	Reserve	ed bits	Set to "0"	
	(b7)	Nothing is assigned. Whe indeterminate.	en write, set "0". When read, its content is	
special mode	•	Symbol SMR3 to U2SMR3 036	Address After reset 6D16, 037116, 037516 000X0X0X2	
	UO	Symbol SMR3 to U2SMR3 036 Bit name		
	U0 Bit	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned.	5D16, 037116, 037516 000X0X0X2	
•	U0 Bit symbol	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned.	5D16, 037116, 037516 000X0X0X2 Function	
	U0 Bit symbol (b0)	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned. When write, set "0". Whe Clock phase set bit Nothing is assigned.	SD16, 037116, 037516 000X0X0X2 Function en read, its content is indeterminate. 0 : Without clock delay	
	U0 Bit symbol (b0) CKPH	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned. When write, set "0". Whe Clock phase set bit Nothing is assigned.	5D16, 037116, 037516 000X0X0X2 Function en read, its content is indeterminate. 0 : Without clock delay 1 : With clock delay	
	U0 Bit symbol (b0) CKPH (b2)	Symbol SMR3 to U2SMR3 036 Bit name Nothing is assigned. When write, set "0". Whe Clock phase set bit Nothing is assigned. When write, set "0". Whe Clock output select bit	SD16, 037116, 037516 000X0X0X2 Function en read, its content is indeterminate. 0 : Without clock delay 1 : With clock delay en read, its content is indeterminate. 0 : CLKi is CMOS output	

Figure 11.7. U0SMR2 to U2SMR2 Registers and U0SMR3 to U2SMR3 Registers

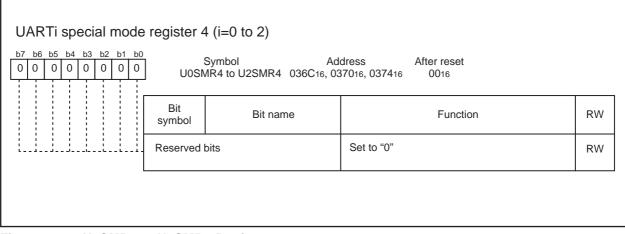


Figure 11.8. U0SMR4 to U2SMR4 Registers

Clock Synchronous serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 11.1 lists the specifications of the clock synchronous serial I/O mode. Table 11.2 lists the registers used in clock synchronous serial I/O mode and the register values set.

Table 11.1. Clock Synchronous Serial I/O Mode Specifications

Item	Specification			
Transfer data format	Transfer data length: 8 bits			
Transfer clock	• UiMR(i=0 to 2) register's CKDIR bit = "0" (internal clock) : fj/ 2(n+1)			
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16			
	• CKDIR bit = "1" (external clock) : Input from CLKi pin			
Transmission, reception control	Selectable from CTS function, RTS function or CTS/RTS function disable			
Transmission start condition	Before transmission can start, the following requirements must be met (Note 1)			
	• The TE bit of UiC1 register= 1 (transmission enabled)			
	• The TI bit of UiC1 register = 0 (data present in UiTB register)			
	• If \overline{CTS} function is selected, input on the \overline{CTS} i pin = "L"			
Reception start condition	Before reception can start, the following requirements must be met (Note 1)			
	• The RE bit of UiC1 register= 1 (reception enabled)			
	• The TE bit of UiC1 register= 1 (transmission enabled)			
	• The TI bit of UiC1 register= 0 (data present in the UiTB register)			
Interrupt request	• For transmission, one of the following conditions can be selected			
generation timing	• The UiIRS bit (Note 3) = 0 (transmit buffer empty): when transferring data from the			
	UiTB register to the UARTi transmit register (at start of transmission)			
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from			
	the UARTi transmit register			
	• For reception			
	When transferring data from the UARTi receive register to the UiRB register (at			
	completion of reception)			
Error detection	Overrun error (Note 2)			
	This error occurs if the serial I/O started receiving the next data before reading the			
	UiRB register and received the 7th bit of the next data			
Select function	CLK polarity selection			
	Transfer data input/output can be chosen to occur synchronously with the rising or			
	the falling edge of the transfer clock			
	LSB first, MSB first selection			
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7			
	can be selected			
	Continuous receive mode selection			
	Reception is enabled immediately by reading the UiRB register			
	Switching serial data logic			
	• Switching serial data logic This function reverses the logic value of the transmit/receive data			
	Transfer clock output from multiple pins selection (UART1)			
	The output pin can be selected in a program from two UART1 transfer clock pins that			
	have been set			
	Separate CTS/RTS pins (UART0)			
	CTSo and RTSo are input/output from separate pins			
ote 1. When an external clo	ck is selected, the conditions must be met while if the UiC0 register's CKPOL bit = "0"			

(transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the UiC0 register's CKPOL bit = "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.
 Note 2: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change.
 Note 3: The U0IRS and U1IRS bits respectively are the UCON register bits 0 and 1; the U2IRS bit is the U2C1 register bit 4.

Register	Bit	Function
UiTB(Note3)	0 to 7	Set transmission data
UiRB(Note3)	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set a transfer rate
UiMR(Note3)	SMD2 to SMD0	Set to "0012"
	CKDIR	Select the internal clock or external clock
	IOPOL	Set to "0"
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register
	CRS	Select CTS or RTS to use
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function
	NCH	Select TxDi pin output mode (Note 2)
	CKPOL	Select the transfer clock polarity
	UFORM	Select the LSB first or MSB first
UiC1	TE	Set this bit to "1" to enable transmission/reception
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (Note 1)	Select the source of UART2 transmit interrupt
	U2RRM (Note 1)	Set this bit to "1" to use continuous receive mode
	UiLCH	Set this bit to "1" to use inverted data logic
	UiERE	Set to "0"
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 2	Set to "0"
	NODC	Select clock output mode
	4 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set this bit to "1" to use continuous receive mode
	CLKMD0	Select the transfer clock output pin when CLKMD1 = 1
	CLKMD1	Set this bit to "1" to output UART1 transfer clock from two pins
	RCSP	Set this bit to "1" to accept as input the UART0 CTS0 signal from the P64 pin
	7	Set to "0"

Table 11. 2. Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode

Note 1: Set the U0C1 and U1C1 register bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Note 2: TxD2 pin is N channel open-drain output. Set the U2C0 register's NCH bit to "0".

Note 3: Not all register bits are described above. Set those bits to "0" when writing to the registers in clock synchronous serial I/O mode.

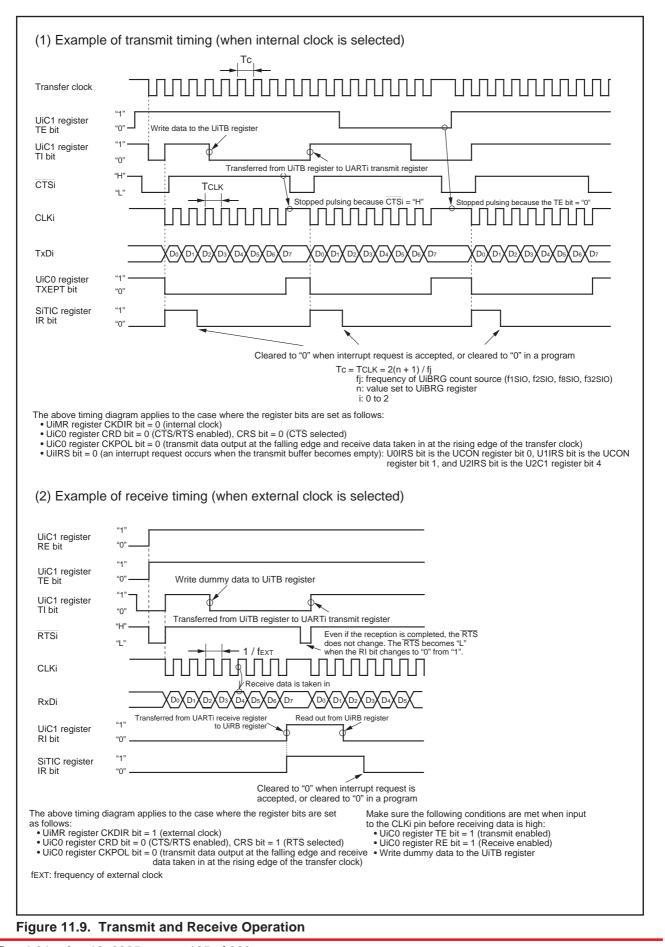
i=0 to 2

Table 11.3 lists the functions of the input/output pins during clock synchronous serial I/O mode. Table 11.3 shows pin functions for the case where the multiple transfer clock output pin select function is deselected. Table 11.4 lists the P64 pin functions during clock synchronous serial I/O mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Pin name Function Method of selection TxDi (i = 0 to 2) Serial data output (Outputs dummy data when performing reception only) (P63, P67, P70) RxDi Serial data input PD6 register's PD6_2 bit=0, PD6_6 bit=0, PD7 register's PD7_1 bit=0 (P62, P66, P71) (Can be used as an input port when performing transmission only) CLKi Transfer clock output UiMR register's CKDIR bit=0 (P61, P65, P72) UiMR register's CKDIR bit=1 Transfer clock input PD6 register's PD6_1 bit=0, PD6_5 bit=0, PD7 register's PD7_2 bit=0 CTSi/RTSi CTS input UiC0 register's CRD bit=0 (P60, P64, P73) UiC0 register's CRS bit=0 PD6 register's PD6_0 bit=0, PD6_4 bit=0, PD7 register's PD7_3 bit=0 **RTS** output UiC0 register's CRD bit=0 UiC0 register's CRS bit=1 I/O port UiC0 register's CRD bit=1

 Table 11.3. Pin Functions (When Not Select Multiple Transfer Clock Output Pin Function)

 Table 11.4.
 P64 Pin Functions


Pin function	Bit set value					
	U1C0 register		UCON register			PD6 register
	CRD	CRS	RCSP	CLKMD1	CLKMD0	PD6_4
P64	1		0	0		Input: 0, Output: 1
CTS1	0	0	0	0		0
RTS1	0	1	0	0		
CTS ₀ (Note1)	0	0	1	0		0
CLKS1				1(Note 2)	1	

Note 1: In addition to this, set the U0C0 register's CRD bit to "0" (CTS0/RTS0 enabled) and the U0 C0 register's CRS bit to "1" (RTS0 selected).

Note 2: When the CLKMD1 bit = 1 and the CLKMD0 bit = 0, the following logic levels are output: • High if the U1C0 register's CKPOL bit = 0

• Low if the U1C0 register's CKPOL bit = 1

Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below.

- Resetting the UiRB register (i=0 to 2)
 - (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (Serial I/O disabled)
 - (3) Set the SMD2 to SMD0 bits in the UiMR register to "001b" (Clock synchronous serial I/O mode)
 - (4) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i=0 to 2)
 - (1) Set the SMD2 to SMD0 bits in the UiMR register "000b" (Serial I/O disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register "001b" (Clock synchronous serial I/O mode)
 - (3) "1" is written to RE bit in the UiC1 register (reception enabled), regardless of the TE bit in the UiCi register

(a) CLK Polarity Select Function

Use the UiC0 register (i = 0 to 2)'s CKPOL bit to select the transfer clock polarity. Figure 11.10 shows the polarity of the transfer clock.

(1) When the UiC0 register's CKPOL bit = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock)
CLKi (Note 2)
TxDi D0 0 D1 02 D3 04 05 06 07
RXDi $D0$ $D1$ $D2$ $D3$ $D4$ $D5$ $D6$ $D7$
(2) When the UiC0 register's CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock)
CLKi (Note 3)
TxDi D0 0 D1 0 D2 03 04 05 06 07
RXDi $D0$ $D1$ $D2$ $D3$ $D4$ $D5$ $D6$ $D7$
Note 1: This applies to the case where the UiC0 register's UFORM bit = 0 (LSB first) and UiC1 register's UiLCH bit = 0 (no reverse).
Note 2: When not transferring, the CLKi pin outputs a high signal. Note 3: When not transferring, the CLKi pin outputs a low signal. i = 0 to 2

Figure 11.10. Transfer Clock Polarity

(b) LSB First/MSB First Select Function

Use the UiC0 register (i = 0 to 2)'s UFORM bit to select the transfer format. Figure 11.11 shows the transfer format.

(1) When UiC0 register's UFORM bit = 0 (LSB first)
TxDi D0 D1 D2 D3 D4 D5 D6 D7
RXDi D0 \ D1 \ D2 \ D3 \ D4 \ D5 \ D6 \ D7
(2) When UiC0 register's UFORM bit = 1 (MSB first)
TXDi D7 D6 D5 D4 D3 D2 D1 D0
RXDi D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0
Note: This applies to the case where the UiC0 register's CKPOL bit = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock) and the UiC1 register's UiLCH bit = 0 (no reverse). i = 0 to 2
igure 11 11 Transfer Format

Figure 11.11. Transfer Format

(c) Continuous Receive Mode

In continuous receive mode, receive operation becomes enable when the receive buffer register is read. It is not necessary to write dummy data into the transmit buffer register to enable receive operation in this mode. However, a dummy read of the receive buffer register is required when starting the operation mode.

When the UiRRM bit (i = 0 to 2) = 1 (continuous receive mode), the UiC1 register's TI bit is set to "0" (data present in the UiTB register) by reading the UiRB register. In this case, i.e., UiRRM bit = 1, do not write dummy data to the UiTB register in a program. The U0RRM and U1RRM bits are the UCON register bit 2 and bit 3, respectively, and the U2RRM bit is the U2C1 register bit 4.

(d) Serial Data Logic Switching Function

When the UiC1 register (i = 0 to 2)'s UiLCH bit = 1 (reverse), the data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 11.12 shows serial data logic.

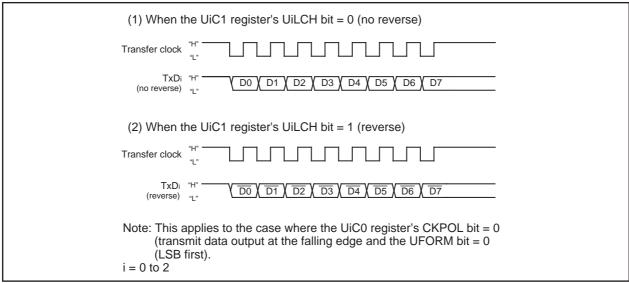


Figure 11.12. Serial Data Logic Switching

(e) Transfer Clock Output From Multiple Pins (UART1)

Use the UCON register's CLKMD1 to CLKMD0 bits to select one of the two transfer clock output pins. (See Figure 11.13.) This function can be used when the selected transfer clock for UART1 is an internal clock.

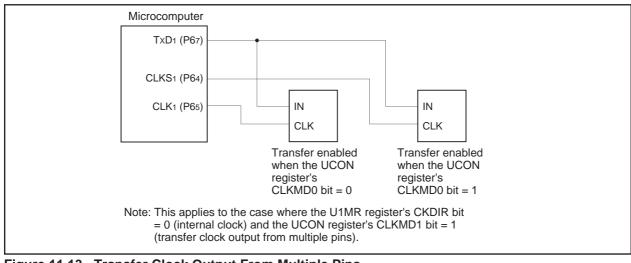


Figure 11.13. Transfer Clock Output From Multiple Pins

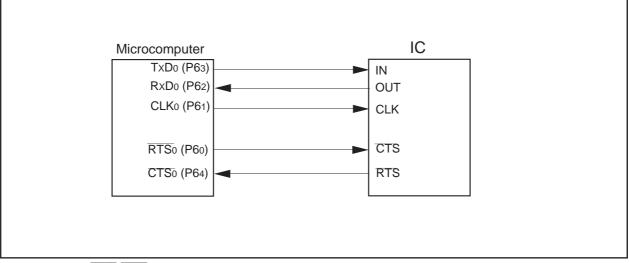
(f) CTS/RTS Function

When the $\overline{\text{CTS}}$ function is used transmit and receive operation start when "L" is applied to the $\overline{\text{CTSi}}/\overline{\text{RTSi}}$ (i=0 to 2) pin. Transmit and receive operation begins when the $\overline{\text{CTSi}}/\overline{\text{RTSi}}$ pin is held "L". If the "L" signal is switched to "H" during a transmit or receive operation, the operation stops before the next data.

When the RTS function is used, the CTSi/RTSi pin outputs on "L" signal when the microcomputer is ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

• CRD bit in UiC0 register = 1 (CTS/RTS function disabled)

CTSi/RTSi pin is programmable I/O function


- CRD bit = 0, CRS bit = 0 (\overline{CTS} function is selected) $\overline{CTSi}/\overline{RTSi}$ pin is \overline{CTS} function
- CRD bit = 0, CRS bit = 1 (\overline{RTS} function is selected) $\overline{CTSi}/\overline{RTSi}$ pin is \overline{RTS} function

(g) CTS/RTS Separate Function (UART0)

This function separates $\overline{CTS_0/RTS_0}$, outputs $\overline{RTS_0}$ from the P60 pin, and accepts as input the $\overline{CTS_0}$ from the P64 pin. To use this function, set the register bits as shown below.

- U0C0 register's CRD bit = 0 (enables UART0 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- U0C0 register's CRS bit = 1 (outputs UART0 RTS)
- U1C0 register's CRD bit = 0 (enables UART1 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- U1C0 register's CRS bit = 0 (inputs UART1 $\overline{\text{CTS}}$)
- UCON register's RCSP bit = 1 (inputs $\overline{\text{CTS}}_0$ from the P64 pin)
- UCON register's CLKMD1 bit = 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, UART1 CTS/RTS separate function cannot be used.

Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Tables 11.5 lists the specifications of the UART mode.

Item	Specification
Transfer data format	 Character bit (transfer data): Selectable from 7, 8 or 9 bits
	Start bit: 1 bit
	 Parity bit: Selectable from odd, even, or none
	 Stop bit: Selectable from 1 or 2 bits
Transfer clock	 UiMR(i=0 to 2) register's CKDIR bit = 0 (internal clock) : fj/ 16(n+1)
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16
	• CKDIR bit = "1" (external clock) : fEXT/16(n+1)
	fEXT: Input from CLKi pin. n :Setting value of UiBRG register 0016 to FF16
Transmission, reception control	Selectable from CTS function, RTS function or CTS/RTS function disable
Transmission start condition	 Before transmission can start, the following requirements must be met
	• The TE bit of UiC1 register= 1 (transmission enabled)
	• The TI bit of UiC1 register = 0 (data present in UiTB register)
	• If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin = "L"
Reception start condition	Before reception can start, the following requirements must be met
	• The RE bit of UiC1 register= 1 (reception enabled)
	Start bit detection
	• For transmission, one of the following conditions can be selected
Interrupt request	• The UiIRS bit (Note 2) = 0 (transmit buffer empty): when transferring data from the
generation timing	UiTB register to the UARTi transmit register (at start of transmission)
generation and g	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from
	the UARTi transmit register
	-
	• For reception
	When transferring data from the UARTi receive register to the UIRB register (at
F	completion of reception)
Error detection	• Overrun error (Note 1)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the bit one before the last stop bit of the next data
	• Framing error (Note 3)
	This error occurs when the number of stop bits set is not detected
	Parity error (Note 3)
	This error occurs when if parity is enabled, the number of 1's in parity and
	character bits does not match the number of 1's set
	● Error sum flag
	This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered
Select function	 LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Serial data logic switch
	This function reverses the logic of the transmit/receive data. The start and stop bits
	are not reversed.
	• TxD, RxD I/O polarity switch
	This function reverses the polarities of hte TxD pin output and RxD pin input. The
	logic levels of all I/O data is reversed.
	• Separate CTS/RTS pins (UART0)
	$\overline{\text{CTS0}}$ and $\overline{\text{RTS0}}$ are input/output from separate pins

Table 11.5. UART Mode Specifications

Notes 1: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change.

2: The U0IRS and U1IRS bits respectively are the UCON register bits 0 and 1; the U2IRS bit is the U2C1 register bit 4.

3: The timing when the framing error flag or parity flag are generated is detected when the data is transferred

from the UARTi receive register to the UiRB register.

Register	Bit	Function			
UiTB	0 to 8	Set transmission data (Note 1)			
UiRB	0 to 8	Reception data can be read (Note 1)			
	OER,FER,PER,SUM	Error flag			
UiBRG	-	Set a transfer rate			
UiMR	SMD2 to SMD0	Set these bits to '1002' when transfer data is 7 bits long			
		Set these bits to '1012' when transfer data is 8 bits long			
		Set these bits to '1102' when transfer data is 9 bits long			
	CKDIR	Select the internal clock or external clock			
	STPS	Select the stop bit			
	PRY, PRYE	Select whether parity is included and whether odd or even			
	IOPOL	Select the TxD/RxD I/O polarity			
UiC0	CLK0, CLK1	Select the count source for the UiBRG register			
	CRS	Select CTS or RTS to use			
	TXEPT	Transmit register empty flag			
	CRD	Enable or disable the CTS or RTS function			
	NCH	Select TxDi pin output mode (Note 3)			
	CKPOL	Set to "0"			
	UFORM	LSB first or MSB first can be selected when transfer data is 8 bits long. Set this			
		bit to "0" when transfer data is 7 or 9 bits long.			
UiC1	TE	Set this bit to "1" to enable transmission			
	TI	Transmit buffer empty flag			
	RE	Set this bit to "1" to enable reception			
	RI	Reception complete flag			
	U2IRS (Note 2)	Select the source of UART2 transmit interrupt			
	U2RRM (Note 2)	Set to "0"			
	UiLCH	Set this bit to "1" to use inverted data logic			
	UiERE	Set to "0"			
UiSMR	0 to 7	Set to "0"			
UiSMR2	0 to 7	Set to "0"			
UiSMR3	0 to 7	Set to "0"			
UiSMR4	0 to 7	Set to "0"			
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt			
	U0RRM, U1RRM	Set to "0"			
	CLKMD0	Invalid because CLKMD1 = 0			
		Invalid because CLKMD1 = 0 Set to "0"			
	CLKMD0				

Table 11. 6. Registers to Be Used and Settings in UART Mode

Note 1: The bits used for transmit/receive data are as follows: Bit 0 to bit 6 when transfer data is 7 bits long; bit 0 to bit 7 when transfer data is 8 bits long; bit 0 to bit 8 when transfer data is 9 bits long.

Note 2: Set the U0C1 and U1C1 registers bit 4 to bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are included in the UCON register.

Note 3: TxD2 pin is N channel open-drain output. Set the U2C0 register's NCH bit to "0". i=0 to 2

Table 11.7 lists the functions of the input/output pins during UART mode. Table 11.8 lists the P64 pin functions during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Pin name	Function	Method of selection			
TxDi (i = 0 to 2) (P63, P67, P70)	Serial data output	(Outputs dummy data when performing reception only)			
RxDi (P62, P66, P71)	Serial data input	PD6 register's PD6_2 bit=0, PD6_6 bit=0, PD7 register's PD7_1 bit=0 (Can be used as an input port when performing transmission only)			
CLKi	Input/output port	UiMR register's CKDIR bit=0			
(P61, P65, P72)	Transfer clock input	UiMR register's CKDIR bit=1 PD6 register's PD6_1 bit=0, PD6_5 bit=0, PD7 register's PD7_2 bit=0			
CTSi/RTSi (P60, P64, P73)	CTS input	UiC0 register's CRD bit=0 UiC0 register's CRS bit=0 PD6 register's PD6_0 bit=0, PD6_4 bit=0, PD7 register's PD7_3 bit=0			
	RTS output	UiC0 register's CRD bit=0 UiC0 register's CRS bit=1			
	Input/output port	UiC0 register's CRD bit=1			

Table 11.7. I/O Pin Functions

Table 11.8. P64 Pin Functions

Pin function	Bit set value					
	U1C0 register		UCON register		PD6 register	
	CRD	CRS	RCSP	CLKMD1	PD6_4	
P64	1		0	0	Input: 0, Output: 1	
CTS1	0	0	0	0	0	
RTS1	0	1	0	0		
CTS ₀ (Note)	0	0	1	0	0	

Note: In addition to this, set the U0C0 register's CRD bit to "0" (CTS0/RTS0 enabled) and the U0C0 register's CRS bit to "1" (RTS0 selected).

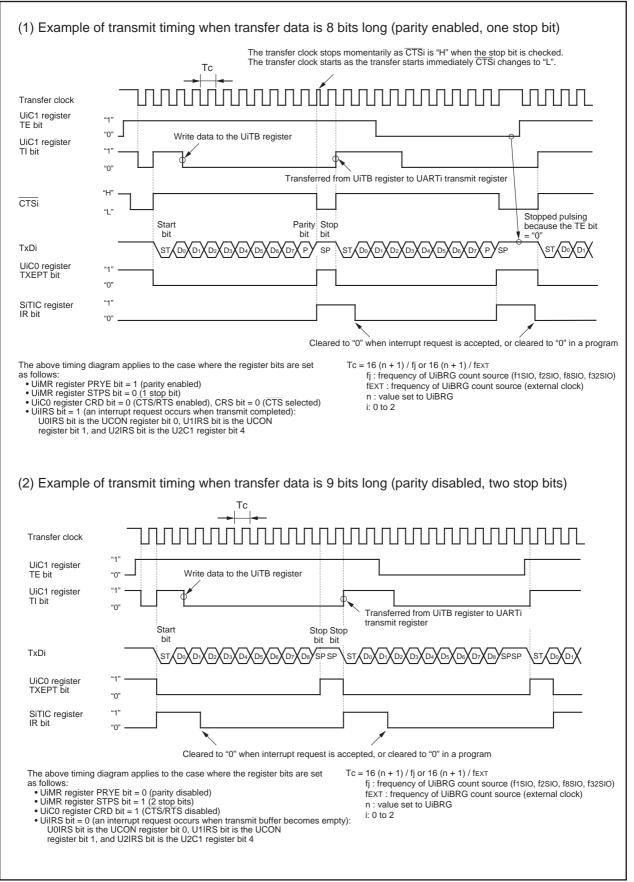


Figure 11.15. Transmit Operation

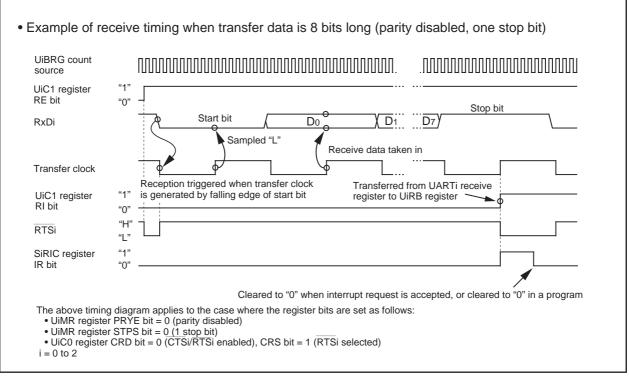


Figure 11.16. Receive Operation

(a) Bit Rates

In UART mode, the frequency set by the UiBRG register (i=0 to 2) divided by 16 become the bit rates. Table 11.9 lists example of bit rates and settings.

Table 11.9 Ex	ample of Bit Rate	es and Settings

Bit Rate (bps)	Count Source of BRG	Peripheral Functio	n Clock : 16MHz	Peripheral Function Clock : 24MHz	
		Set Value of BRG : n	Actual Time (bps)	Set value of BRG : n	Actual Time (bps)
1200	f8	103 (67h)	1202	155 (96h)	1202
2400	f8	51 (33h)	2404	77 (46h)	2404
4800	f8	25 (19h)	4808	38 (26h)	4808
9600	f1	103 (67h)	9615	155 (96h)	9615
14400	f1	68 (44h)	14493	103 (67h)	14423
19200	f1	51 (33h)	19231	77 (46h)	19231
28800	f1	34 (22h)	28571	51 (33h)	28846
31250	f1	31 (1Fh)	31250	47 (2Fh)	31250
38400	f1	25 (19h)	38462	38 (26h)	38462
51200	f1	19 (13h)	50000	28 (1Ch)	51724

(b) Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in UART mode, follow the procedures below.

- Resetting the UiRB register (i=0 to 2)
- (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
- (2) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i=0 to 2)
 - (1) Set the SMD2 to SMD0 bits in the UiMR register "000b" (Serial I/O disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register "001b", "101b", "110b".
 - (3) "1" is written to RE bit in the UiC1 register (reception enabled), regardless of the TE bit in the UiCi register

(c) LSB First/MSB First Select Function

As shown in Figure 11.17, use the UiC0 register's UFORM bit to select the transfer format. This function is valid when transfer data is 8 bits long.

(1) When UiC0 register's UFORM bit = 0 (LSB first)	
СЬКІ	
TxDi ST D0 D1 D2 D3 D4 D5 I	D6 D7 P SP
RXDi ST D0 D1 D2 D3 D4 D5 I	D6 D7 P SP
(2) When UiC0 register's UFORM bit = 1 (MSB first)	
TxDi ST D7 D6 D5 D4 D2	D1 D0 P SP
RXDi ST D7 D6 D5 D4 D3 D2	D1 D0 P SP
Note: This applies to the case where the UiC0 register's CKPO (transmit data output at the falling edge and the receive of in at the rising edge of the transfer clock), the UiC1 regist bit = 0 (no reverse), UiMR register's STPS bit = 0 (1 stop UiMR register's PRYE bit = 1 (parity enabled).	data taken P : Parity bit ter's UiLCH SP : Stop bit

Figure 11.17. Transfer Format

(d) Serial Data Logic Switching Function

The data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 11.18 shows serial data logic.

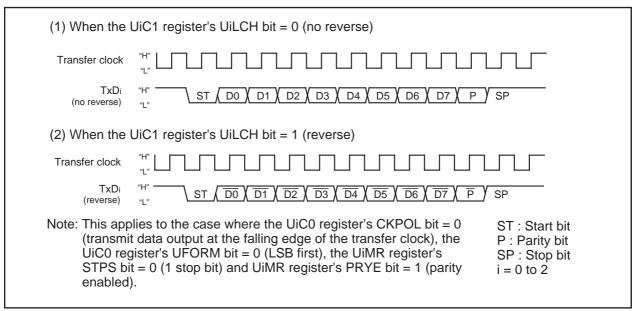


Figure 11.18. Serial Data Logic Switching

(e) TxD and RxD I/O Polarity Inverse Function

This function inverses the polarities of the TxDi pin output and RxDi pin input. The logic levels of all input/output data (including the start, stop and parity bits) are inversed. Figure 11.19 shows the TxD pin output and RxD pin input polarity inverse.

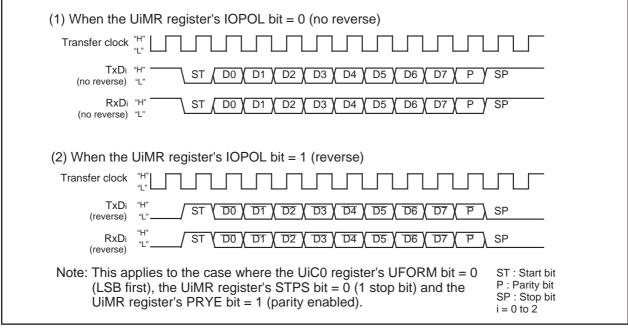


Figure 11.19. TxD and RxD I/O Polarity Inverse

(f) CTS/RTS Function

When the $\overline{\text{CTS}}$ function is used transmit operation start when "L" is applied to the $\overline{\text{CTSi}/\text{RTSi}}$ (i=0 to 2) pin. Transmit operation begins when the $\overline{\text{CTSi}/\text{RTSi}}$ pin is held "L". If the "L" signal is switched to "H" during a transmit operation, the operation stops before the next data.

When the RTS function is used, the CTSi/RTSi pin outputs on "L" signal when the microcomputer is ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

• CRD bit in UiC0 register = 1 (disable $\overline{CTS}/\overline{RTS}$ function of UART0)

CTSi/RTSi pin is programmable I/O function

- CRD bit = 0, CRS bit = 0 (\overline{CTS} function is selected) $\overline{CTSi}/\overline{RTSi}$ pin is \overline{CTS} function
 - CRD bit = 0, CRS bit = 1 (\overline{RTS} function is selected) $\overline{CTSi}/\overline{RTSi}$ pin is \overline{RTS} function

(g) CTS/RTS Separate Function (UART0)

This function separates $\overline{CTS}_0/\overline{RTS}_0$, outputs \overline{RTS}_0 from the P60 pin, and accepts as input the \overline{CTS}_0 from the P64 pin. To use this function, set the register bits as shown below.

- U0C0 register's CRD bit = 0 (enables UART0 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- U0C0 register's CRS bit = 1 (outputs UART0 RTS)
- U1C0 register's CRD bit = 0 (enables UART1 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- U1C0 register's CRS bit = 0 (inputs UART1 $\overline{\text{CTS}}$)
- UCON register's RCSP bit = 1 (inputs $\overline{\text{CTS}}_0$ from the P64 pin)
- UCON register's CLKMD1 bit = 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, UART1 CTS/RTS separate function cannot be used.

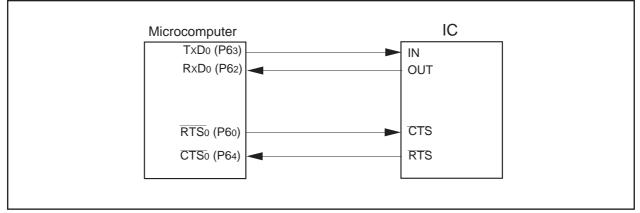


Figure 11.20. CTS/RTS Separate Function

Special Mode 2

Multiple slaves can be serially communicated from one master. Transfer clock polarity and phase are selectable. Table 11.10 lists the specifications of Special Mode 2. Table 11.11 lists the registers used in Special Mode 2 and the register values set. Figure 11.21 shows communication control example for Special Mode 2.

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	Master mode
	UiMR(i=0 to 2) register's CKDIR bit = "0" (internal clock) : fj/ 2(n+1)
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16
	Slave mode
	CKDIR bit = "1" (external clock selected) : Input from CLKi pin
Transmit/receive control	Controlled by input/output ports
Transmission start condition	• Before transmission can start, the following requirements must be met (Note 1)
	 The TE bit of UiC1 register= 1 (transmission enabled)
	 The TI bit of UiC1 register = 0 (data present in UiTB register)
Reception start condition	Before reception can start, the following requirements must be met (Note 1)
	 The RE bit of UiC1 register= 1 (reception enabled)
	 The TE bit of UiC1 register= 1 (transmission enabled)
	 The TI bit of UiC1 register= 0 (data present in the UiTB register)
Interrupt request	• For transmission, one of the following conditions can be selected
generation timing	• The UiIRS bit of UiC1 register = 0 (transmit buffer empty): when transferring data
	from the UiTB register to the UARTi transmit register (at start of transmission)
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from
	the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error (Note 2)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit of the next data
Select function	Clock phase setting
	Selectable from four combinations of transfer clock polarities and phases

Table 11.10. Special Mode 2 Specifications

Note 1: When an external clock is selected, the conditions must be met while if the UiC0 register's CKPOL bit = "0" (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the UiC0 register's CKPOL bit = "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the Jilling edge of the transfer clock), the external clock is in the high state in at the falling edge of the transfer clock), the external clock is in the low state.

Note 2: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change.

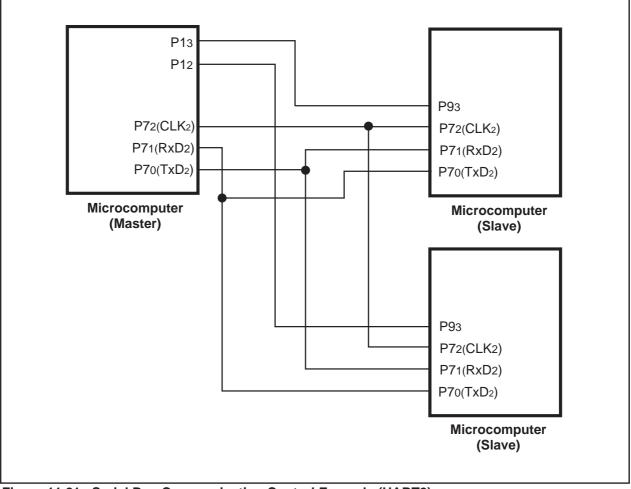


Figure 11.21. Serial Bus Communication Control Example (UART2)

Register	Bit	Function
UiTB(Note3)	0 to 7	Set transmission data
UiRB(Note3)	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set a transfer rate
UiMR(Note3)	SMD2 to SMD0	Set to '0012'
	CKDIR	Set this bit to "0" for master mode or "1" for slave mode
	IOPOL	Set to "0"
UiC0	CLK1, CLK0	Select the count source for the UiBRG register
	CRS	Invalid because CRD = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Select TxDi pin output format(Note 2)
	CKPOL	Clock phases can be set in combination with the UiSMR3 register's CKPH bit
	UFORM	Set to "0"
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (Note 1)	Select UART2 transmit interrupt cause
	U2RRM(Note 1),	Set to "0"
	U2LCH, UIERE	
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	СКРН	Clock phases can be set in combination with the UiC0 register's CKPOL bit
	NODC	Set to "0"
	0, 2, 4 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select UART0 and UART1 transmit interrupt cause
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because CLKMD1 = 0
	CLKMD1, RCSP, 7	Set to "0"

Table 11. 11. Registers to Be Used and Settings in Special Mode 2

Notes 1: Set the U0C0 and U1C1 register bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

2: TxD2 pin is N channel open-drain output. Nothing is assigned. When writing, set the NCH bit in the U2C0 register to "0".

3: Not all register bits are described above. Set those bits to "0" when writing to the registers in Special Mode 2.

i = 0 to 2

Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the UiSMR3 register's CKPH bit and the UiC0 register's CKPOL bit.

Make sure the transfer clock polarity and phase are the same for the master and salves to be communicated.

(a) Master (Internal Clock)

Figure 11.22 shows the transmission and reception timing in master (internal clock).

(b) Slave (External Clock)

Figure 11.23 shows the transmission and reception timing (CKPH=0) in slave (external clock) while Figure 11.24 shows the transmission and reception timing (CKPH=1) in slave (external clock).

Clock output "H" (CKPOL=0, CKPH=0) "L"	
(CKPOL=1, CKPH=0) "L"	
Clock output "H" (CKPOL=0, CKPH=1) "L"	
Clock output "H" (CKPOL=1, CKPH=1) "L"	
Data output timing "H" D0 \ D1 \ D2 \ D	D3 V D4 V D5 V D6 V D7
Data input timing	

Figure 11.22. Transmission and Reception Timing in Master Mode (Internal Clock)

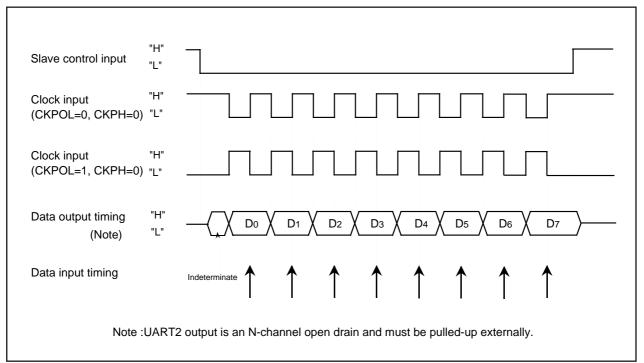


Figure 11.23. Transmission and Reception Timing (CKPH=0) in Slave Mode (External Clock)

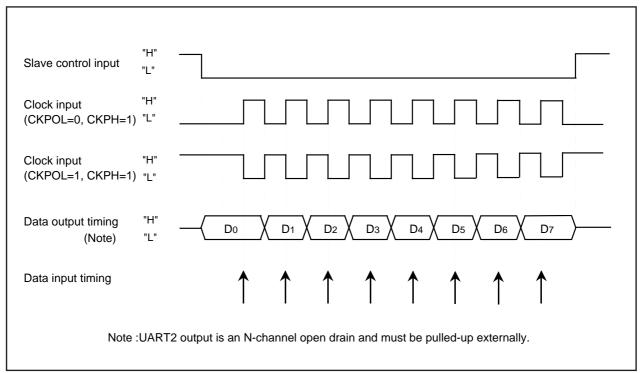


Figure 11.24. Transmission and Reception Timing (CKPH=1) in Slave Mode (External Clock)

Special Mode 3 (IE mode)

In this mode, one bit of IEBus is approximated with one byte of UART mode waveform.

Table 11.12 lists the registers used in IE mode and the register values set. Figure 11.25 shows the functions of bus collision detect function related bits.

If the TxDi pin (i = 0 to 2) output level and RxDi pin input level do not match, a UARTi bus collision detect interrupt request is generated.

Use the IFSR2A register's IFSR26 and IFSR27 bits to enable the UART0/UART1 bus collision detect function.

Register	Bit	Function
UiTB	0 to 8	Set transmission data
UiRB(Note3)	0 to 8	Reception data can be read
	OER,FER,PER,SUM	Error flag
UiBRG	0 to 7	Set a transfer rate
UiMR	SMD2 to SMD0	Set to '1102'
	CKDIR	Select the internal clock or external clock
-	STPS	Set to "0"
	PRY	Invalid because PRYE=0
	PRYE	Set to "0"
	IOPOL	Select the TxD/RxD input/output polarity
UiC0	CLK1, CLK0	Select the count source for the UiBRG register
	CRS	Invalid because CRD=1
	TXEPT	Transmit register empty flag
-	CRD	Set to "1"
	NCH	Select TxDi pin output mode (Note 2)
	CKPOL	Set to "0"
-	UFORM	Set to "0"
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
-	RI	Reception complete flag
	U2IRS (Note 1)	Select the source of UART2 transmit interrupt
	UiRRM (Note 1),	Set to "0"
	UILCH, UIERE	
UiSMR	0 to 3, 7	Set to "0"
	ABSCS	Select the sampling timing at which to detect a bus collision
-	ACSE	Set this bit to "1" to use the auto clear function of transmit enable bit
	SSS	Select the transmit start condition
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
IFSR2A	IFSR26, IFSR27	Set to "1"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because CLKMD1 = 0
1	CLKMD1,RCSP,7	Set to "0"

Table 11. 12. Registers to Be Used and Settings in IE Mode

Notes 1: Set the U0C0 and U1C1 registers bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

2: TxD2 pin is N channel open-drain output. Nothing is assigned. When writing, set the NCH bit in the U2C0 register to "0".

3: Not all register bits are described above. Set those bits to "0" when writing to the registers in IE mode.

i= 0 to 2

	If ABSCS=0, bus collision is determined at the rising edge of the transfer clock
Transfer clock	
TxDi	
RxDi	Input to TAjın
Timer Aj	
	! If ABSCS=1, bus collision is determined when timer Aj (one-shot timer mode) underflows.
Timer Aj: timer A3 whe	n UART0; timer A4 when UART1; timer A0 when UART2
(2) HiSMP register	ACSE bit (auto clear of transmit enable bit)
Transfer clock	L L L L L L L L L L L L L L L L L L ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TxDi	
RxDi	
UiBCNIC register IR bit (Note)	If ACSE bit = 1 (automatically clear when bus collision occurs)
	the TE bit is cleared to "0" (transmission disabled) when
UiC1 register TE bit	the UiBCNIC register's IR bit = 1 (unmatching detected).
Note: BCNIC register w	hen UART2.
Note: BCNIC register w	hen UART2.
-	
(3) UiSMR register	then UART2. SSS bit (Transmit start condition select) serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met.
(3) UiSMR register	SSS bit (Transmit start condition select)
(3) UiSMR register If SSS bit = 0, the s	SSS bit (Transmit start condition select)
(3) UiSMR register If SSS bit = 0, the s	SSS bit (Transmit start condition select) serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met.
(3) UiSMR register If SSS bit = 0, the s Transfer clock TxDi	SSS bit (Transmit start condition select) serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
(3) UISMR register If SSS bit = 0, the s Transfer clock TxDi Transm	SSS bit (Transmit start condition select) serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP the second starts sending data one transfer clock cycle after the transmission enable condition is met. starts sending data one transfer clock cycle after the transmission enable condition is met.
(3) UISMR register If SSS bit = 0, the s Transfer clock TxDi Transm	SSS bit (Transmit start condition select) serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
(3) UISMR register If SSS bit = 0, the s Transfer clock TxDi Transm	SSS bit (Transmit start condition select) serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP the second starts sending data one transfer clock cycle after the transmission enable condition is met. starts sending data one transfer clock cycle after the transmission enable condition is met.
(3) UISMR register If SSS bit = 0, the s Transfer clock TxDi Transm	SSS bit (Transmit start condition select) serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met.
(3) UISMR register If SSS bit = 0, the s Transfer clock TxDi Transm If SSS bit = 1, the s CLKi TxDi	SSS bit (Transmit start condition select) serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. $\underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
(3) UISMR register If SSS bit = 0, the s Transfer clock TxDi Transm If SSS bit = 1, the s CLKi TxDi RxDi	SSS bit (Transmit start condition select) serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. $I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
(3) UISMR register If SSS bit = 0, the s Transfer clock TxDi Transm If SSS bit = 1, the s CLKi TxDi RxDi Note 1: The falling edg	SSS bit (Transmit start condition select) serial I/O starts sending data one transfer clock cycle after the transmission enable condition is met. $\underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

A/D Converter

The microcomputer contains one A/D converter circuit based on 8-bit successive approximation method configured with a capacitive-coupling amplifier. The analog inputs share the pins with P103 to P107, P04 to P07, and P24 to P27.

When not using the A/D converter, set the VCUT bit to "0" (= Vref unconnected), so that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

The A/D conversion result is stored in the ADi register bits for ANi, AN0i, and AN2i pins (i = 0 to 7). Table 12.1 shows the performance of the A/D converter. Figure 12.1 shows the block diagram of the A/D converter, and Figures 12.2 and 12.3 show the A/D converter-related registers.

Item	Performance
Method of A/D conversion	Successive approximation (capacitive coupling amplifier)
Analog input voltage (Note 1)	0V to VCC1
Operating clock ϕ AD (Note 2)	fAD/divide-by-2 of fAD/divide-by-3 of fAD/divide-by-4 of fAD/divide-by-6 of
	fAD/divide-by-12 of fAD
Resolution	8-bit
Integral nonlinearity error	±5LSB
Operating modes	One-shot mode, repeat mode, single sweep mode and repeat sweep mode 0
Analog input pins	5 pins (AN3 to AN7) + 4 pins (AN04 to AN07) + 4 pins (AN24 to AN27)
A/D conversion start condition	Software trigger
	The ADCON0 register's ADST bit is set to "1" (A/D conversion starts)
Conversion speed per pin	Without sample and hold function
	49 ¢AD cycles
	 With sample and hold function
	28 ¢AD cycles

Table 12.1. Performance of A/D Converter

Note 1: Does not depend on use of sample and hold function.

Note 2: Operation clock frequency (ϕ AD frequency) must be 10 MHz or less.

A case without sample and hold function turn (ϕ AD frequency) into 250kHz or more .

A case with the sample and hold function turn (ϕ AD frequency) into 1MHz or more.

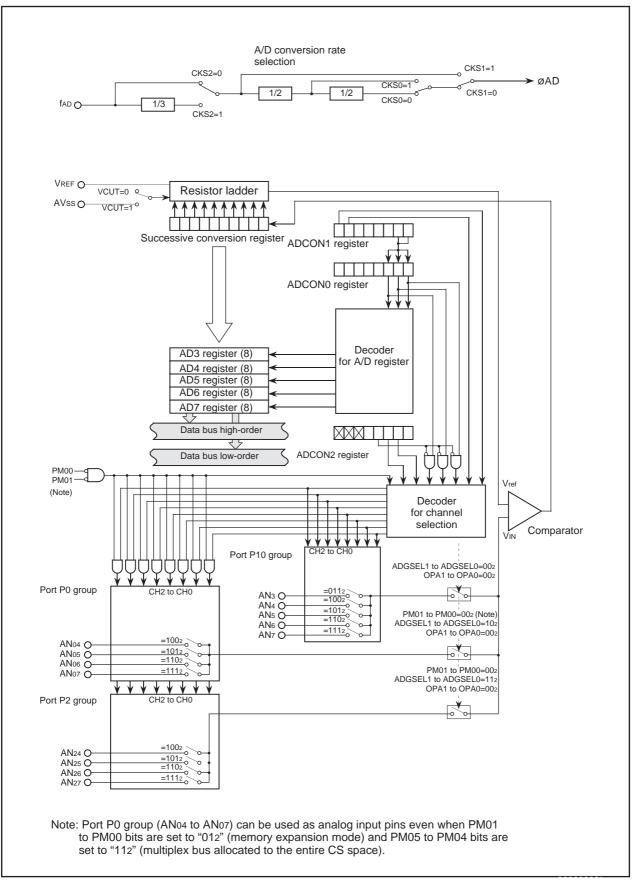


Figure 12.1. A/D Converter Block Diagram

b7 b6	6 b5 0	b4	b3	b2	b1 b0	Symbol ADCON		After reset 00000XXX2	
						Bit symbol	Bit name	Function	RW
						СН0	Analog input pin select bit	Function varies with each operation mode	RW
						CH1	-		RW
						CH2			RW
						MD0	A/D operation mode select bit 0	0 0 : One-shot mode 0 1 : Repeat mode	RW
						MD1		1 0 : Single sweep mode 1 1 : Repeat sweep mode 0	RW
						Reserved b	it	Must always be set to "0"	RW
						ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
ĺ						CKS0	Frequency select bit 0	See Note 2 for the ADCON2 register	RW
	COI		ol r		ster	1 (Note 1) Symbol		e conversion result will be indeterminate. After reset 0016	
A/D	COI		ol r	b2		Symbol ADCON	V1 03D716	After reset 0016	
A/D	COI		ol r	b2		J Symbol		After reset	RW
A/D	COI		ol r	b2		Symbol ADCON	I1 03D716 Bit name	After reset 0016 Function	
A/D	COI		ol r	b2	b1 b0	Symbol ADCON Bit symbol	I1 03D716 Bit name	After reset 0016 Function	RW
A/D	COI		ol r	b2	b1 b0	Symbol ADCON Bit symbol SCAN0	A/D sweep pin select bit	After reset 0016 Function	RW
A/D	COI		ol r	b2	b1 b0	Symbol ADCON Bit symbol SCAN0 SCAN1	Il 03D716 Bit name A/D sweep pin select bit	After reset 0016 Function Function varies with each operation mode	RW RW
A/D	COI		ol r	b2	b1 b0	Symbol ADCON Bit symbol SCAN0 SCAN1	Il 03D716 Bit name A/D sweep pin select bit	After reset 0016 Function Function varies with each operation mode	RW RW RW
A/D	COI		ol r	b2	b1 b0	Symbol ADCON Bit symbol SCAN0 SCAN1 Reserved b	I1 03D716 Bit name A/D sweep pin select bit it	After reset 0016 Function Function varies with each operation mode	RW RW RW RW RW

Figure 12.2. ADCON0 to ADCON1 Registers

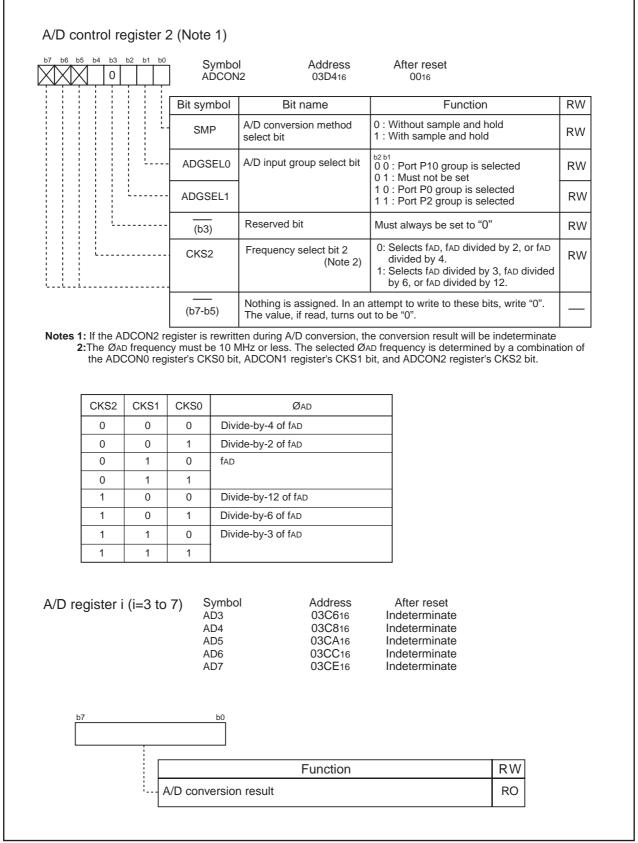


Figure 12.3. ADCON2 Register, and AD3 to AD7 Registers

(1) One-shot Mode

In this mode, the input voltage on one selected pin is A/D converted once. Table 12.2 shows the specifications of one-shot mode. Figure 12.4 shows the ADCON0 to ADCON1 registers in one-shot mode.

Item	Specification
Function	Bits CH2 to CH0 of ADCON0 register and bits ADGSEL1 to ADGSEL0 bit of
	ADCON2 register
Start condition	Writing "1" to ADST bit of ADCON0 register
Stop condition	• End of A/D conversion
	Writing "0" to ADST bit
Interrupt request generation timing	End of A/D conversion
Input pin	One of AN3 to AN7, AN04 to AN07, AN24 to AN27, as selected
Reading of result of A/D converter	Read AD3 to AD7 registers corresponding to selected pin

Table 12.2. One-shot Mode Specifications

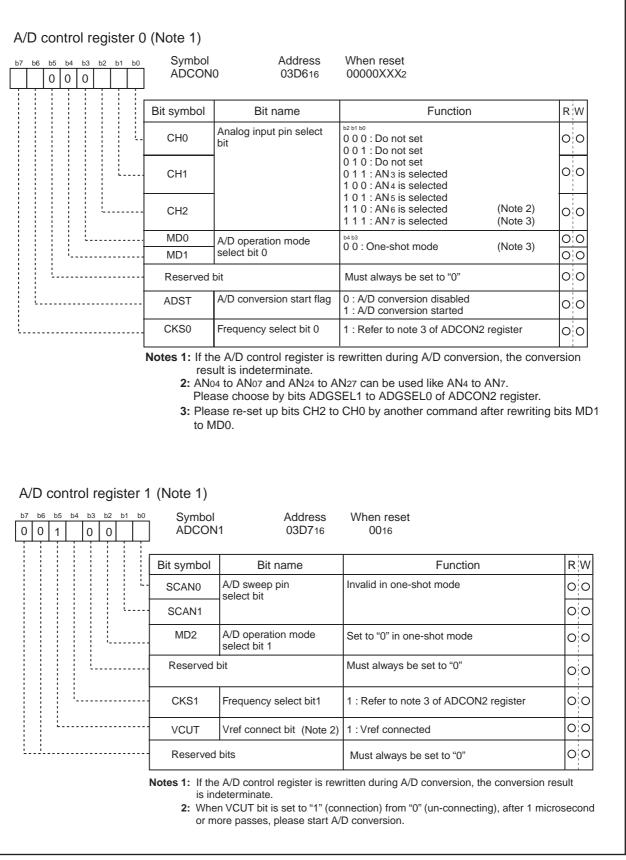


Figure 12.4 ADCON0 Register and ADCON1 Register (One-shot Mode)

(2) Repeat mode

In this mode, the input voltage on one selected pin is A/D converted repeatedly. Table 12.3 shows the specifications of repeat mode. Figure 12.5 shows the ADCON0 to ADCON1 registers in repeat mode.

Item	Specification
Function	Bits CH2 to CH0 of ADCON0 register and bits ADGSEL1 to ADGSEL0 of
	ADCON2 register.
A/D conversion start conditions	ADST bit of ADCON0 register is set to "1" (A/D conversion start).
A/D conversion stop conditions	ADST bit is set to "0" (A/D conversion stop).
Interruption demand generating timing	At the time of a A/D conversion end
Analog input pin	One pin is chosen from AN3 to AN7 and AN04 to AN07 and AN24 to AN27.
Read-out of A/D conversion value	Read out of registers AD3 to AD7 corresponding to the selected pin.

Table 12.3. Repeat Mode Specifications

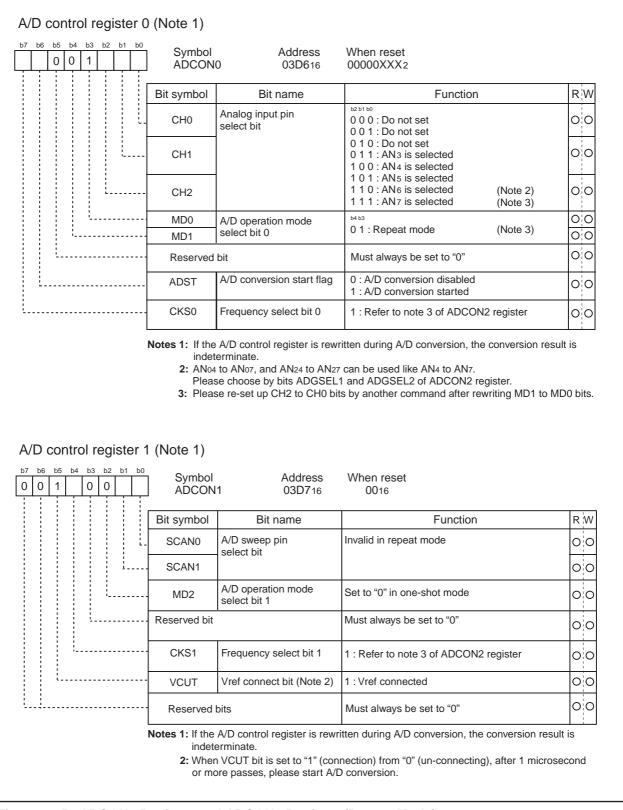


Figure 12.5. ADCON0 Register and ADCON1 Register (Repeat Mode)

(3) Single Sweep Mode

In this mode, the input voltages on selected pins are A/D converted, one pin at a time. Table 12.4 shows the specifications of single sweep mode. Figure 12.6 shows the ADCON0 to ADCON1 registers in single sweep mode.

Table 12.4.	Single Sweep	Mode	Specifications
-------------	--------------	------	-----------------------

Item	Specification
Function	A/D conversion of the input voltage of pin chosen by bits SCAN1 to SCAN0
	of ADCON1register and bits ADGSEL1 to ADGSEL0 of ADCON2 register
	is carried out by a unit of 1 time.
A/D conversion start conditions	ADST bit of ADCON0 register is set to "1" (A/D conversion start).
A/D conversion stop conditions	A/D conversion end
	 ADST bit is set to "0"
Interruption demand generating timing	At the time of a A/D conversion end
Analog input pin	From ANi4 to ANi5 (two pins), and ANi4 to ANi7 (four pins) to selection (i=0, 2) (Note 1)
Read-out of A/D conversion value	Read out of registers AD4 to AD7 corresponding to the selected pin.

Note: AN4 to AN7 can be used like AN04 to AN07, and AN24 to AN27. In this case, it becomes selection from AN4 to AN5 (two pins), and AN4 to AN7 (four pins).

Bit symbol CH0 CH1 CH2 MD0 MD1	Bit name Analog input pin select bit A/D operation mode	F unction Invalid in single sweep mode	RV RV
CH1 CH2 MD0	select bit	Invalid in single sweep mode	RW
CH2 MD0			
MD0	A/D operation mode		RV
-	A/D operation mode		RV
MD1		^{b4 b3} 1 0 : Single sweep mode	RV
	select bit 0		RV
Reserved bit	t	Must always be set to "0"	RV
ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
CKS0	Frequency select bit 0	See Note 3 for the ADCON2 register	RV
litourshal		Evention	
Symbol	Address	After reset	
litourshal		F unction	
Bit symbol	Bit name	Function	RV
SCAN0	Bit name A/D sweep pin select bit	When single sweep mode is selected	-
-		When single sweep mode is selected	-
-		When single sweep mode is selected	RV
SCAN0	A/D sweep pin select bit	When single sweep mode is selected ^{b1 b0} 0 0 : Must not be set 0 1 : Must not be set 1 0 : ANi4 to ANi5 (2 pins) (i=0, 2)	RV RV
SCAN0 SCAN1	A/D sweep pin select bit	When single sweep mode is selected ^{b1 b0} 0 0 : Must not be set 0 1 : Must not be set 1 0 : ANi4 to ANi5 (2 pins) (i=0, 2) 1 1 : ANi4 to ANi7 (4 pins) (Note 2)	RV RV RV RV
SCAN0 SCAN1 Reserved bit	A/D sweep pin select bit	When single sweep mode is selected ^{b1 b0} 0 0 : Must not be set 0 1 : Must not be set 1 0 : ANi4 to ANi5 (2 pins) (i=0, 2) 1 1 : ANi4 to ANi7 (4 pins) (Note 2) Must always be set to "0"	RV RV RV
SCAN0 SCAN1 Reserved bit	A/D sweep pin select bit	When single sweep mode is selected ^{b1 b0} 0 0 : Must not be set 0 1 : Must not be set 1 0 : ANia to ANis (2 pins) (i=0, 2) 1 1 : ANi4 to ANi7 (4 pins) (Note 2) Must always be set to "0" Must always be set to "0"	RV RV RV
	CKS0 r is rewritter lote 1) Symbol ADCON	CKS0 Frequency select bit 0 r is rewritten during A/D conversion, th lote 1) Symbol Address ADCON1 03D716	ADS1 AD conversion starting 1 : A/D conversion started CKS0 Frequency select bit 0 See Note 3 for the ADCON2 register r is rewritten during A/D conversion, the conversion result will be indeterminate. lote 1) Symbol Address

(4) Repeat Sweep Mode 0

In this mode, the input voltages on selected pins are A/D converted repeatedly. Table 12.5 shows the specifications of repeat sweep mode 0. Figure 12.7 shows the ADCON0 to ADCON1 registers in repeat sweep mode 0.

Table 12.5.	Repeat	Sweep	Mode 0	Specifications
-------------	--------	-------	--------	----------------

Item	Specification
Function	A/D conversion of the input voltage of pin chosen by bits SCAN1 to SCAN0 of ADCON1
	register and bits ADGSEL1 to ADGSEL0 of ADCON2 register is carried out by a unit of
	1 time.
A/D conversion start conditions	ADST bit of ADCON0 register is set to "1" (A/D conversion start).
A/D conversion stop conditions	ADST bit is set to "0" (A/D conversion stop).
Interruption demand generating timing	An interruption demand is not generated.
Analog input pin	From ANi4 to ANi5 (two pins), and ANi4 to ANi7 (four pins) to selection (i=0, 2) (Note 1)
Read-out of A/D conversion value	Read out of registers AD3 to AD7 corresponding to the selected pin.

Note: AN4 to AN7 can be used like AN04 to AN07, and AN24 to AN27. In this case, it becomes selection from AN4 to AN5 (two pins), and AN4 to AN7 (four pins).

b6 b5 b4 b3 b2 b1 b0 0 1<	Symbol ADCON	Address 0 03D616	After reset 00000XXX2	
	Bit symbol	Bit name	F unction	RW
	CH0	CH0 Analog input pin select bit	Invalid in repeat sweep mode 0	RW
	CH1			RW
	CH2			RW
	MD0	A/D operation mode select bit 0	1 1 : Repeat sweep mode 0 or Repeat sweep mode 1	RW
	MD1	Select bit 0		RW
	Reserved bit	t	Must always be set to "0"	
·····	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
	CKS0	Frequency select bit 0	See Note 3 for the ADCON2 register	RW
	Bit symbol	Bit name	Function	RW
b6 b5 b4 b3 b2 b1 b0 0 1 0 0 1<	Symbol ADCON	Address 1 03D716	After reset 0016	
	Bit symbol			RW
	SCAN0 A/D sweep pin select bit		When repeat sweep mode 0 is selected	
	00/110			RW
·	SCAN1			
			^{b1 b0} 0 0 : Must not be set 0 1 : Must not be set 1 0 : ANi4 to ANi5 (2 pins) (i=0, 2)	RW RW RW
	SCAN1		^{b1 b0} 0 0 : Must not be set 0 1 : Must not be set 1 0 : ANi4 to ANi5 (2 pins) (i=0, 2) 1 1 : ANi4 to ANi7 (4 pins) (Note 2)	RW
	SCAN1 Reserved bit		b1 b0 0 0 : Must not be set 0 1 : Must not be set 1 0 : ANi4 to ANi5 (2 pins) (i=0, 2) 1 1 : ANi4 to ANi7 (4 pins) (Note 2) Must always be set to "0"	RW
	SCAN1 Reserved bit		b1 b0 0 0 : Must not be set 1 0 : ANi4 to ANi5 (2 pins) (i=0, 2) 1 1 : ANi4 to ANi7 (4 pins) (Note 2) Must always be set to "0" Must always be set to "0"	RW RW RW
	SCAN1 Reserved bit Reserved bit CKS1	Frequency select bit 1 Vref connect bit (Note 3)	b1 b0 0 0 : Must not be set 0 1 : Must not be set 1 0 : ANi4 to ANi5 (2 pins) (i=0, 2) 1 1 : ANi4 to ANi7 (4 pins) (Note 2) Must always be set to "0" Must always be set to "0" See Note 3 for the ADCON2 register	RW RW RW RW

Figure 12.7. ADCON0 Register and ADCON1 Registers (Repeat Sweep Mode 0)

Sample and Hold

If the SMP bit of ADCON2 register is set to "1" (those with a sample & hold), the conversion speed per one pin will improve and it will become a 28 ϕ AD cycle. However, in all modes, be sure to specify before starting A/D conversion whether sample and hold is to be used.

Current Consumption Reducing Function

When not using the A/D converter, its resistor ladder and reference voltage input pin (VREF) can be separated using the ADCON1 register's VCUT bit. When separated, no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

To use the A/D converter, set the VCUT bit to "1" (VREF connected) and then set the ADCON0 register's ADST bit to "1" (A/D conversion start). The VCUT and ADST bits cannot be set to "1" at the same time. Nor can the VCUT bit be set to "0" (VREF unconnected) during A/D conversion.

Notes at the time of using A/D converter

- (1) Please set to "0" (input mode) the direction bit of a port corresponding to the pin used as an analog input pin.
- (2) When you use key input interruption, please do not use all of pins AN4 to AN7 as an analog input pin (if A/D input voltage is set to "L", a key input interruption demand will occur).
- (3) In order to reduce prevention of incorrect operation and the latch rise by the noise, and a conversion error, please insert a capacitor, respectively between VCC1 pin, VCC2 pin, an analog input pin (ANi (i=3 to 7), AN0i, AN2i), and a VSS pin. The example of processing of each pin is shown in Fig.12.8.
- (4) A/D conversion is completed, and the mistaken value is stored in an ADi register when CPU reads an ADi register to the timing which stores the result in an ADi register (i=0 to 7). This phenomenon is generated when the clock which divided the main clock, or a sub clock is chosen as a CPU clock.
- When using it in one-shot mode or single sweep mode Please read the target ADi register after checking that A/D conversion has been completed (completion of A/D conversion can be judged in IR bit of ADIC register).
- When using it in repeat mode, repeat sweep mode 0 or repeat sweep mode 1 Please use a CPU clock, without divide a main clock.
- (5) When the ADST bit of ADCON0 register is set to "0" (A/D conversion stop) and it forces by the program during A/D conversion operation to terminate, the conversion result of a A/D conversion machine becomes unfixed. Moreover, the ADi register which omits A/D conversion may also become unfixed. During A/D conversion operation, when an ADST bit is set to "0" by the program, please use no value of ADi registers.

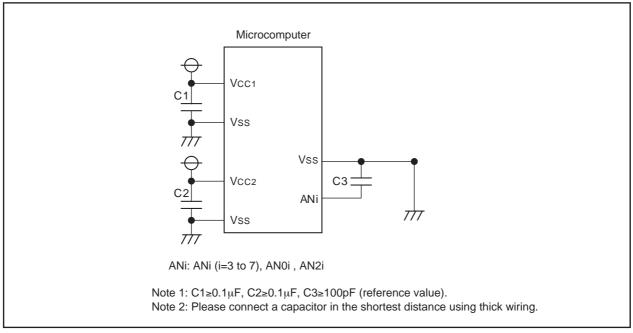


Figure 12.8. Example of noise measure processing of each pin

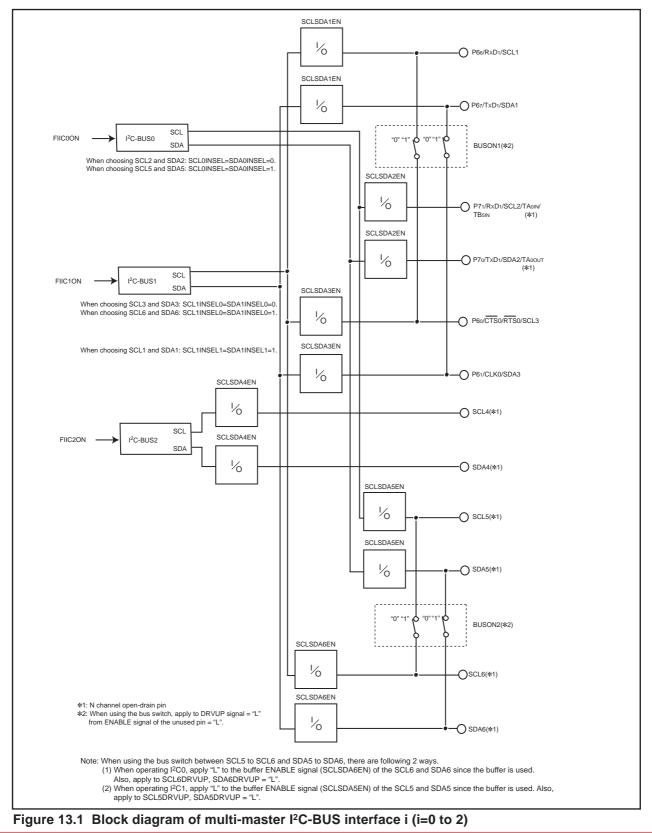
Multi-master I²C-BUS Interface 0 to 2

The multi-master I²C-BUS interface i (i=0 to 2) have each dedicated circuit and operate independently. The multi-master I²C-BUS interface i is a serial communications circuit, conforming to the Philips I²C-BUS data transfer format. This interface i, offering both arbitration lost detection and a synchronous functions, is useful for the multi-master serial communications.

Figures 13.1 and 13.2 show a block diagram of the multi-master I^2C -BUS interface i and Table 13.1 shows multi-master I^2C -BUS interface i functions.

This multi-master I²C-BUS interface i consists of the I²Ci address register, the I²Ci data shift register, the I²Ci clock control register, the I²Ci control register, the I²Ci status register, the I²Ci port selection register and other control circuits.

Item	Function
Format	In conformity with Philips I ² C-BUS standard:
	10-bit addressing format
	7-bit addressing format
	High-speed clock mode
	Standard clock mode
Communication mode	In conformity with Philips I ² C-BUS standard:
	Master transmission
	Master reception
	Slave transmission
	Slave reception
SCL clock frequency	16.1 kHz to 400 kHz (at BCLK = 16 MHz)
Power supply voltage on bus line	(SCL1/SDA1), (SCL3/SDA3), (SCL5/SDA5), (SCL6/SDA6) : 3.3V
	(SCL2/SDA2), (SCL4/SDA4) : 3.3V or 5V


Table 13.1 Multi-master I²C-BUS Interface Functions

Note : We are not responsible for any third party's infringement of patent rights or other rights attributable to the use of the control function (bits 1 and 0 of the I²C control register at address 02D916) for connections between the I²C-BUS interface 0, 1 and ports (SCL1, SCL3, SCL5, SCL6, SDA1, SDA3, SDA5, SDA6).

Multi-master I²C-BUS Interface Ports

Communication control is more possible for I^2 C-BUS0 to I^2 C-BUS2 than the following pin. Please choose the pin used by register set up.

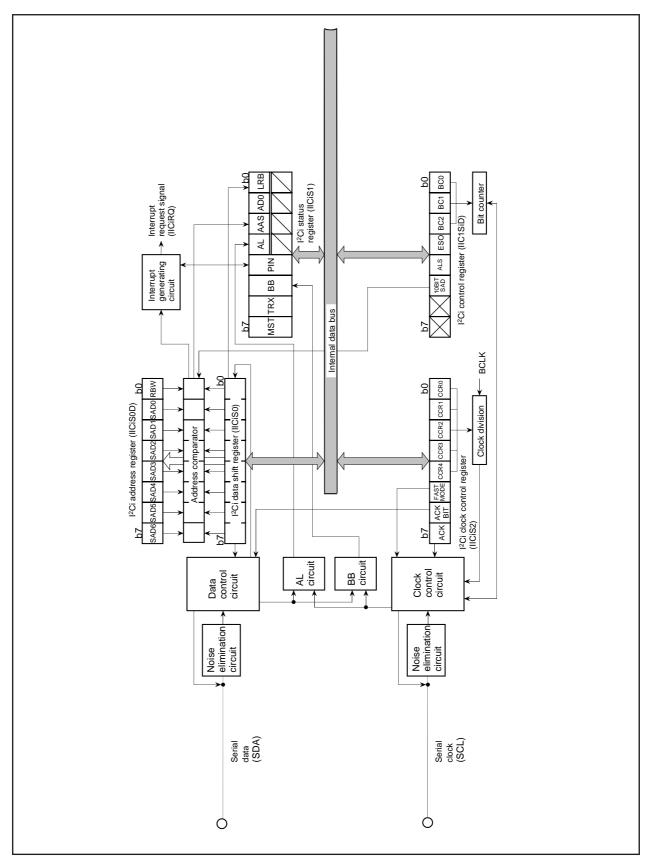


Fig. 13.2 Block Diagram of Multi-master I²C-BUS Interface i (i = 0 to 2)

(1) Reserved register

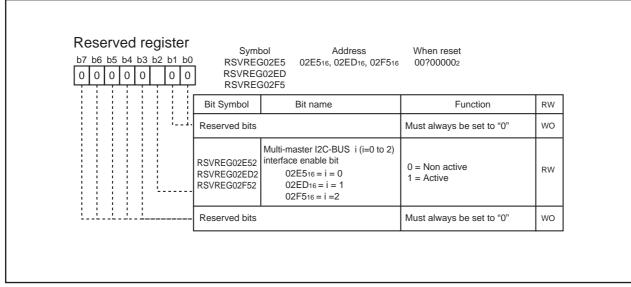


Fig. 13.3 Reserved register

(2) I²Ci data shift register, I²Ci transmit buffer register (i = 0 to 2)

The I²Ci data shift register is an 8-bit shift register to store receive data and write transmit data. When transmit data is written into this register, it is transferred to the outside from bit 7 in synchronization with the SCL clock, and each time one-bit data is output, the data of this register are shifted one bit to the left. When data is received, it is input to this register from bit 0 in synchronization with the SCL clock, and each time one-bit data of this register are shifted one bit to the left.

The l²Ci data shift register is in a write enable status only when the ESO bit of the l²Ci control register is "1." The bit counter is reset by a write instruction to the l²Ci data shift register. When both the ESO bit and the MST bit of the l²Ci status register are "1," the SCL is output by a write instruction to the l²Ci data shift register. Reading data from the l²Ci data shift register is always enabled regardless of the ESO bit value.

The I²Ci transmit buffer register is a register to store transmit data (slave address) to the I²Ci data shift register before RESTART condition generation. That is, in master, transmit data written to the I²Ci transmit buffer register is written to the I²Ci data shift register simultaneously. However, the SCL is not output. The I²Ci transmit buffer register can be written only when the ESO bit is "1," reading data from the I²Ci transmit buffer register is disabled regardless of the ESO bit value.

- **Notes 1:** To write data into the I²Ci data shift register or the I²Ci transmit buffer register after the MST bit value changes from "1" to "0" (slave mode), keep an interval of 20 BCLK or more.
 - **2:** To generate START/RESTART condition after the I²Ci data shift register or the I²Ci transmit buffer register is written, keep an interval of 4 BCLK or more.

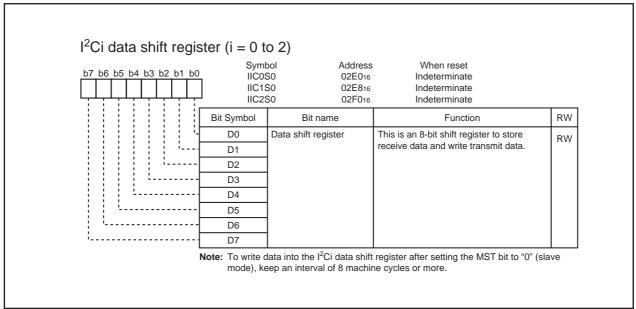
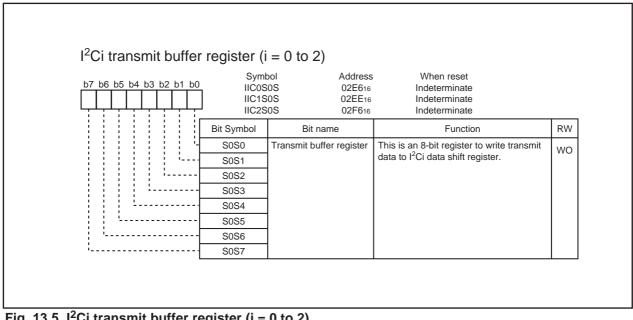
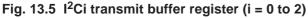




Fig. 13.4 I²Ci data shift register (i = 0 to 2)

(3) I^2Ci address register (i = 0 to 2)

The I²Ci address register consists of a 7-bit slave address and a read/write bit. In the addressing mode, the slave address written in this register is compared with the address data to be received immediately after the START condition are detected.

■ Bit 0: read/write bit (RBW)

Not used when comparing addresses, in the 7-bit addressing mode. In the 10-bit addressing mode, the first address data to be received is compared with the contents (SAD6 to SAD0 + RBW) of the I^2Ci address register.

The RBW bit is cleared to "0" automatically when the stop condition is detected.

■ Bits 1 to 7: slave address (SAD0 to SAD6)

These bits store slave addresses. Regardless of the 7-bit addressing mode and the 10-bit addressing mode, the address data transmitted from the master is compared with the contents of these bits.

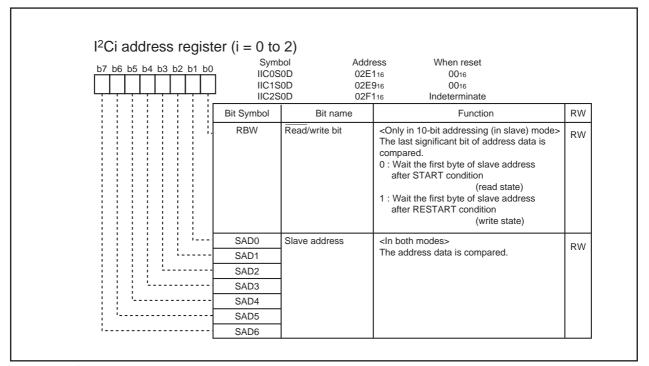


Fig. 13.6 I^2Ci address register (i = 0 to 2)

(4) I²Ci clock control register (i = 0 to 2)

The I²Ci clock control register is used to set ACK control, SCL mode and SCL frequency.

■ Bits 0 to 4: SCL frequency control bits (CCR0–CCR4)

These bits control the SCL frequency.

■ Bit 5: SCL mode specification bit (FAST MODE)

This bit specifies the SCL mode. When this bit is set to "0," the standard clock mode is set. When the bit is set to "1," the high-speed clock mode is set.

■ Bit 6: ACK bit (ACK BIT)

This bit sets the SDA status when an ACK clock* is generated. When this bit is set to "0," the ACK return mode is set and SDA goes to LOW at the occurrence of an ACK clock. When the bit is set to "1," the ACK non-return mode is set. The SDA is held in the HIGH status at the occurrence of an ACK clock.

However, when the slave address matches the address data in the reception of address data at ACK BIT = "0," the SDA is automatically made LOW (ACK is returned). If there is a mismatch between the slave address and the address data, the SDA is automatically made HIGH (ACK is not returned).

*ACK clock: Clock for acknowledgement

Bit 7: ACK clock bit (ACK)

This bit specifies a mode of acknowledgment which is an acknowledgment response of data transmission. When this bit is set to "0," the no ACK clock mode is set. In this case, no ACK clock occurs after data transmission. When the bit is set to "1," the ACK clock mode is set and the master generates an ACK clock upon completion of each 1-byte data transmission. The device for transmitting address data and control data releases the SDA at the occurrence of an ACK clock (make SDA HIGH) and receives the ACK bit generated by the data receiving device.

Note: Do not write data into the I²Ci clock control register during transmission. If data is written during transmission, the I²Ci clock generator is reset, so that data cannot be transmitted normally.

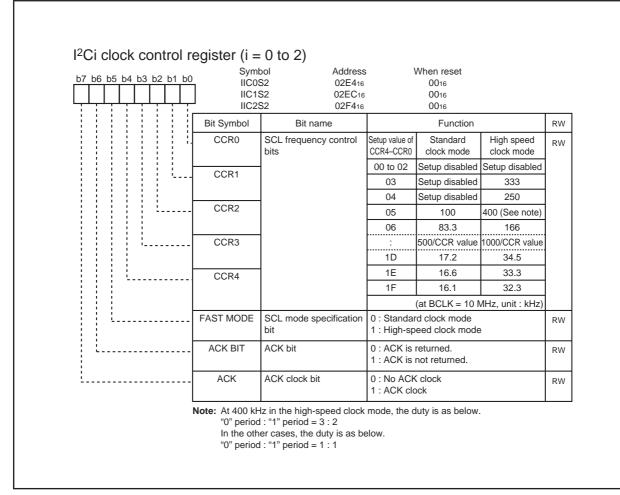


Fig. 13.7 I²Ci clock control register (i = 0 to 2)

(5) I²Ci control register (i = 0 to 2)

The I²Ci control register controls the data communication format.

■ Bits 0 to 2: bit counter (BC0–BC2)

These bits decide the number of bits for the next 1-byte data to be transmitted. An interrupt request signal occurs immediately after the number of bits specified with these bits are transmitted.

When a START condition is received, these bits become "0002" and the address data is always transmitted and received in 8 bits.

Note: When the bit counter value = "1112," a STOP condition and START condition cannot be waited.

Bit 3: I²C-BUS interface i use enable bit (ESO)

This bit enables usage of the multimaster I²C-BUS interface i. When this bit is set to "0," the use disable status is provided, so the SDA and the SCL become high-impedance. When the bit is set to "1," use of the interface is enabled.

When ESO = "0," the following is performed.

- PIN = "1," BB = "0" and AL = "0" are set (they are bits of the I^2Ci status register).
- Writing data to the I²Ci data shift register and the I²Ci transmit buffer register is disabled.

Bit 4: data format selection bit (ALS)

This bit decides whether or not to recognize slave addresses. When this bit is set to "0," the addressing format is selected, so that address data is recognized. When a match is found between a slave address and address data as a result of comparison or when a general call (refer to "(6) I²Ci status register," bit 1) is received, transmission processing can be performed. When this bit is set to "1," the free data format is selected, so that slave addresses are not recognized.

■ Bit 5: addressing format selection bit (10BIT SAD)

This bit selects a slave address specification format. When this bit is set to "0," the 7-bit addressing format is selected. In this case, only the high-order 7 bits (slave address) of the l^2Ci address register are compared with address data. When this bit is set to "1," the 10-bit addressing format is selected, all the bits of the l^2Ci address register are compared with address data.

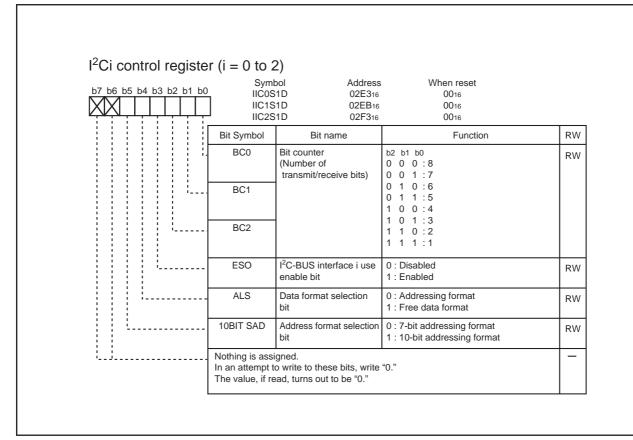


Fig. 13.8 I^2Ci control register (i = 0 to 2)

(6) I^2Ci status register (i = 0 to 2)

The I²Ci status register controls the I²C-BUS interface i status. Bits 0 to 3, 5 are read-only bits and bits 4, 6, 7 can be read out and written to.

Bit 0: last receive bit (LRB)

This bit stores the last bit value of received data and can also be used for ACK receive confirmation. If ACK is returned when an ACK clock occurs, the LRB bit is set to "0." If ACK is not returned, this bit is set to "1." Except in the ACK mode, the last bit value of received data is input. The state of this bit is changed from "1" to "0" by executing a write instruction to the I²Ci data shift register or the I²Ci transmit buffer register.

Bit 1: general call detecting flag (AD0)

This bit is set to "1" when a general call* whose address data is all "0" is received in the slave mode. By a general call of the master device, every slave device receives control data after the general call. The AD0 bit is set to "0" by detecting the STOP condition or START condition.

*General call: The master transmits the general call address "0016" to all slaves.

■ Bit 2: slave address comparison flag (AAS)

This flag indicates a comparison result of address data.

<<In the slave receive mode, when the 7-bit addressing format is selected, this bit is set to "1" in one of the following conditions.>>

- The address data immediately after occurrence of a START condition matches the slave address stored in the high-order 7 bits of the I²Ci address register.
- A general call is received.
- <<In the slave reception mode, when the 10-bit addressing format is selected, this bit is set to "1" with the following condition.>>
 - When the address data is compared with the I²Ci address register (8 bits consists of slave address and RBW), the first bytes match.
- <<The state of this bit is changed from "1" to "0" by executing a write instruction to the I²Ci data shift register or the I²Ci transmit buffer register.>>

■ Bit 3: arbitration lost* detecting flag (AL)

n the master transmission mode, when a device other than the microcomputer sets the SDA to "L,", arbitration is judged to have been lost, so that this bit is set to "1." At the same time, the TRX bit is set to "0," so that immediately after transmission of the byte whose arbitration was lost is completed, the MST bit is set to "0." When arbitration is lost during slave address transmission, the TRX bit is set to "0" and the reception mode is set. Consequently, it becomes possible to receive and recognize its own slave address transmitted by another master device.

<<This bit changes "1" to "0" by writing instruction to I²Ci data shift register or I²Ci transmit buffer register.>>

*Arbitration lost: The status in which communication as a master is disabled.

■ Bit 4: I²C-BUS interface i interrupt request bit (PIN)

This bit generates an interrupt request signal. Each time 1-byte data is transmitted, the state of the PIN bit changes from "1" to "0." At the same time, an interrupt request signal is sent to the CPU. The PIN bit is set to "0" in synchronization with a falling edge of the last clock (including the ACK clock) of an internal clock and an interrupt request signal occurs in synchronization with a falling edge of the PIN bit. When detecting the STOP condition in slave, the multi-master I²C-BUS interface interrupt request bit (IR) is set to "1" (interrupt requested) regardless of falling of PIN bit. When the PIN bit is "0," the SCL is kept in the "0" state and clock generation is disabled. Figure 13.10 shows an interrupt request signal generating timing chart.

The PIN bit is set to "1" in any one of the following conditions.

- Writing "1" to the PIN bit
- Executing a write instruction to the I²Ci data shift register or the I²Ci transmit buffer register (See note).
- When the ESO bit is "0"
- At reset
- **Note:** It takes 12 BCLK cycles or more until PIN bit becomes "1" after write instructions are executed to these registers.
- The conditions in which the PIN bit is set to "0" are shown below:
 - Immediately after completion of 1-byte data transmission (including when arbitration lost is detected)
 - Immediately after completion of 1-byte data reception
 - In the slave reception mode, with ALS = "0" and immediately after completion of slave address or general call address reception
 - In the slave reception mode, with ALS = "1" and immediately after completion of address data reception

■ Bit 5: bus busy flag (BB)

This bit indicates the status of use of the bus system. When this bit is set to "0," this bus system is not busy and a START condition can be generated. When this bit is set to "1," this bus system is busy and the occurrence of a START condition is disabled by the START condition duplication prevention function (See note).

This flag can be written by software only in the master transmission mode. In the other modes, this bit is set to "1" by detecting a START condition and set to "0" by detecting a STOP condition. When the ESO bit of the I²Ci control register is "0" and at reset, the BB flag is kept in the "0" state.

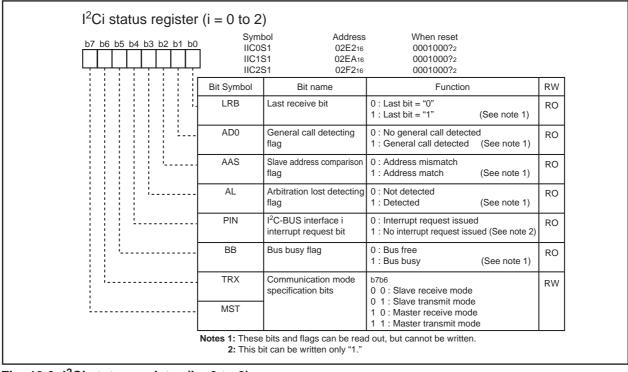
Bit 6: communication mode specification bit (transfer direction specification bit: TRX)

This bit decides the direction of transfer for data communication. When this bit is "0," the reception mode is selected and the data of a transmitting device is received. When the bit is "1," the transmission mode is selected and address data and control data are output into the SDA in synchronization with the clock generated on the SCL.

When the ALS bit of the l²Ci control register is "0" in the slave reception mode is selected, the TRX bit is set to "1" (transmit) if the least significant bit (R/W bit) of the address data transmitted by the master is "1." When the ALS bit is "0" and the R/W bit is "0," the TRX bit is cleared to "0" (receive).

The TRX bit is cleared to "0" in one of the following conditions.

- When arbitration lost is detected.
- When a STOP condition is detected.
- When occurrence of a START condition is disabled by the START condition duplication prevention function (Note).
- With MST = "0" and when a START condition is detected.
- With MST = "0" and when ACK non-return is detected.
- At reset



■ Bit 7: Communication mode specification bit (master/slave specification bit: MST)

This bit is used for master/slave specification for data communication. When this bit is "0," the slave is specified, so that a START condition and a STOP condition generated by the master are received, and data communication is performed in synchronization with the clock generated by the master. When this bit is "1," the master is specified and a START condition and a STOP condition are generated, and also the clocks required for data communication are generated on the SCL.

The MST bit is cleared to "0" in one of the following conditions.

- Immediately after completion of 1-byte data transmission when arbitration lost is detected
- When a STOP condition is detected.
- When occurrence of a START condition is disabled by the START condition duplication preventing function (See note).
- At reset
- **Note:** The START condition duplication prevention function disables the following: the START condition generation; bit counter reset, and SCL output with the generation. This bit is valid from setting of BB flag to the completion of 1-byte transmittion/reception (occurrence of transmission/ reception interrupt request) <IICIRQ>.

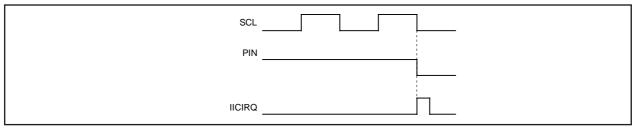


Fig. 13.10 Interrupt request signal generation timing

(7) START condition generation method

When the ESO bit of the I²Ci control register is "1," execute a write instruction to the I²Ci status register to set the MST, TRX and BB bits to "1." A START condition will then be generated. After that, the bit counter becomes "0002" and an SCL for 1 byte is output. The START condition generation timing and BB bit set timing are different in the standard clock mode and the high-speed clock mode. Refer to Figure 13.11 for the START condition generation timing table.

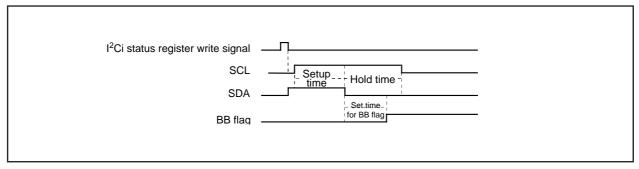


Fig. 13.11 START condition generation timing diagram

(8) STOP condition generation method

When the ESO bit of the I²Ci control register is "1," execute a write instruction to the I²Ci status register for setting the MST bit and the TRX bit to "1" and the BB bit to "0". A STOP condition will then be generated. The STOP condition generation timing and the BB flag reset timing are different in the standard clock mode and the high-speed clock mode. Refer to Figure 13.12 for the STOP condition generation timing diagram, and Table 13.2 for the START condition/STOP condition generation timing table.

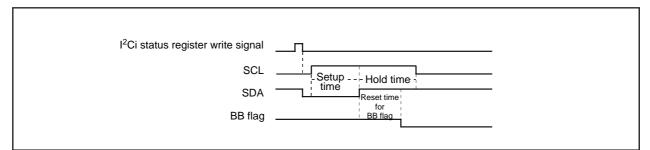


Fig. 13.12 STOP condition generation timing diagram

Table 13.2 START condition/STO	condition generation timing table
--------------------------------	-----------------------------------

Item	Standard Clock Mode	High-speed Clock Mode
Setup time (Min.)	5.6 µs	2.1 µs
Hold time (Min.)	4.8 µs	2.3 µs
Set/reset time for BB flag	3.5 µs	0.75 µs

(9) START/STOP condition detect conditions

The START/STOP condition detect conditions are shown in Figure 13.13 and Table 13.3. Only when the 3 conditions of Table 13.3 are satisfied, a START/STOP condition can be detected.

Note: When a STOP condition is detected in the slave mode (MST = 0), an interrupt request signal <IICIRQ> is generated to the CPU.

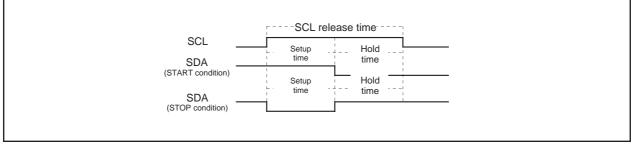


Fig. 13.13 START condition/STOP condition detect timing diagram

Table 13.3 START condition/STOP condition detect conditions

Standard Clock Mode	High-speed Clock Mode
6.5 μs < SCL release time	1.0 µs < SCL release time
3.25 µs < Setup time	0.5 μs < Setup time
3.25 µs < Hold time	0.5 μs < Hold time

(10) Address data communication

There are two address data communication formats, namely, 7-bit addressing format and 10-bit addressing format. The respective address communication formats is described below.

■ 7-bit addressing format

To meet the 7-bit addressing format, set the 10BIT SAD bit of the I²Ci control register to "0." The first 7-bit address data transmitted from the master is compared with the high-order 7-bit slave address stored in the I²Ci address register. At the time of this comparison, address comparison of the RBW bit of the I²Ci address register is not made. For the data transmission format when the 7-bit addressing format is selected, refer to Figure 13.14, (1) and (2).

10-bit addressing format

To meet the 10-bit addressing format, set the 10BIT SAD bit of the I^2Ci control register to "1." An address comparison is made between the first-byte address data transmitted from the master and the 7-bit slave address stored in the I^2Ci address register. At the time of this comparison, an address comparison between the RBW bit of the I^2Ci address register and the R/W bit which is the last bit of the address data transmitted from the master is made. In the 10-bit addressing mode, the R/W bit which is the last bit of the address data not only specifies the direction of communication for control data but also is processed as an address data bit.

When the first-byte address data matches the slave address, the AAS bit of the I^2Ci status register is set to "1." After the second-byte address data is stored into the I^2Ci data shift register, make an address comparison between the second-byte data and the slave address by software. When the address data of the 2nd bytes matches the slave address, set the RBW bit of the I^2Ci address register to "1" by software. This processing can match the 7-bit slave address and R/W data, which are received after a RESTART condition is detected, with the value of the I^2Ci address register. For the data transmission format when the 10-bit addressing format is selected, refer to Figure 13.14, (3) and (4).

(11) Example of Master Transmission

An example of master transmission in the standard clock mode, at the SCL frequency of 100 kHz and in the ACK return mode is shown below.

- ① Set a slave address in the high-order 7 bits of the I²Ci address register and "0" in the RBW bit.
- @ Set the ACK return mode and SCL = 100 kHz by setting "8516" in the I²Ci clock control register.
- ③ Set "1016" in the I²Ci status register and hold the SCL at the HIGH.
- ④ Set a communication enable status by setting "0816" in the I²Ci control register.
- ⑤ Set the address data of the destination of transmission in the high-order 7 bits of the I²Ci data shift register and set "0" in the least significant bit.
- (6) Set "F016" in the I²Ci status register to generate a START condition. At this time, an SCL for 1 byte and an ACK clock automatically occurs.
- ⑦ Set transmit data in the I²Ci data shift register. At this time, an SCL and an ACK clock automatically occurs.
- \circledast When transmitting control data of more than 1 byte, repeat step \oslash .
- Image: Image:

(12) Example of Slave Reception

An example of slave reception in the high-speed clock mode, at the SCL frequency of 400 kHz, in the ACK non-return mode, using the addressing format, is shown below.

① Set a slave address in the high-order 7 bits of the I²Ci address register and "0" in the RBW bit.

⁽²⁾ Set the no ACK clock mode and SCL = 400 kHz by setting "2516" in the I²Ci clock control register.

- ③ Set "1016" in the I²Ci status register and hold the SCL at the HIGH.
- ④ Set a communication enable status by setting "0816" in the I²Ci control register.
- ^⑤ When a START condition is received, an address comparison is made.

6

•When all transmitted address are"0" (general call):

AD0 of the I²Ci status register is set to "1" and an interrupt request signal occurs.

•When the transmitted addresses match the address set in \oplus :

ASS of the I²Ci status register is set to "1" and an interrupt request signal occurs.

- •In the cases other than the above:
 - AD0 and AAS of the I²Ci status register are set to "0" and no interrupt request signal occurs.
- ⑦ Set dummy data in the I²Ci data shift register.
- ® When receiving control data of more than 1 byte, repeat step ⑦.
- (9) When a STOP condition is detected, the communication ends.

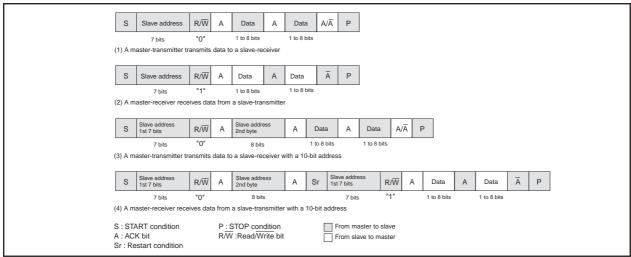


Fig. 13.14 Address data communication format

(13) Precautions when using multi-master I²C-BUS interface i

BCLK operation mode

Select the no-division mode.

Used instructions

Specify byte (.B) as data size to access multi-master I²C-BUS interface i-related registers.

Read-modify-write instruction

The precautions when the read-modify-write instruction such as BSET, BCLR etc. is executed for each register of the multi-master I^2C -BUS interface i are described below.

•I²Ci data shift register (IICiS0)

When executing the read-modify-write instruction for this register during transfer, data may become a value not intended.

•I²Ci address register (IICiS0D)

When the read-modify-write instruction is executed for this register at detecting the STOP condition, data may become a value not intended. It is because hardware changes the read/write bit (RBW) at the above timing.

•l²Ci status register (IICiS1)

Do not execute the read-modify-write instruction for this register because all bits of this register are changed by hardware.

•l²Ci control register (IICiS1D)

When the read-modify-write instruction is executed for this register at detecting the START condition or at completing the byte transfer, data may become a value not intended. Because hardware changes the bit counter (BC0–BC2) at the above timing.

•I²Ci clock control register (IICiS2)

The read-modify-write instruction can be executed for this register.

•I²Ci port selection register (IICiS2D)

Since the read value of high-order 4 bits is indeterminate, the read-modify-write instruction cannot be used.

•I²Ci transmit buffer register (IICiS0S)

Since the value of all bits is indeterminate, the read-modify-write instruction cannot be used.

RENESAS

		:			
	FCLR	1	(Interrupt disabled)		
	BTST	5, IICiS1	(BB flag confirming and branch process)		
	JC	BUSBUSY			
BUSF	REE:				
	MOV.B	SA, IICiS0	(Writing of slave address value <sa>)</sa>		
	NOP				
	NOP		D	ן ע	2
	NOP				
	NOP				
	MOV.B	#F0H, IICiS1	(Trigger of START condition generating)		
	FSET	1	(Interrupt enabled)		
		:			
BUSE	BUSY:				
	FSET	I	(Interrupt enabled)		

■ START condition generating procedure using multi-master

 Be sure to add NOP instruction X 4 between writing the slave address value and setting trigger of START condition generating shown the above procedure example.

2 When using multi-master system, disable interrupts during the following three process steps:

- BB flag confirming
- Writing of slave address value
- Trigger of START condition generating

When the condition of the BB flag is bus busy, enable interrupts immediately.

When using single-master system, it is not necessary to disable interrupts above.

RESTART condition generating procedure

SA, IICiS0S	(Writing of slave address value <sa>)</sa>
#F0H, IICiS1	(Trigger of RESTART condition generating)
	- ,

 \odot Use the I²Ci transmit buffer register to write the slave address value to the I²Ci data shift register. And also, be sure to add NOP instruction X 4.

Writing to I²Ci status register

Do not execute an instruction to set the PIN bit to "1" from "0" and an instruction to set the MST and TRX bits to "0" from "1" simultaneously. It is because it may enter the state that the SCL pin is released and the SDA pin is released after about one machine cycle. Do not execute an instruction to set the MST and TRX bits to "0" from "1" simultaneously when the PIN bit is "1." It is because it may become the same as above.

Process of after STOP condition generating

Do not write data in the I²Ci data shift register (IICiS0) and the I²Ci status register (IICiS1) until the bus busy flag BB becomes "0" after generating the STOP condition in the master mode. It is because the STOP condition waveform might not be normally generated. Reading to the above registers do not have the problem.

Data Slicer

This microcomputer includes the data slicer function for the closed caption decoder (referred to as the CCD) and video ID (referred to as the ID1). This function takes out CC and ID1 (note 1) superimposed in the vertical blanking interval of a composite video signal. A composite video signal which makes the sync. tip's polarity negative is input to the CVIN pin.

When the data slicer function is not used, the data slicer circuit and the timing signal generating circuit can be cut off by setting bit 0 of the data slicer control register 1 (address 026016/030016) to "0." These settings can realize the low-power dissipation.

Notes 1. 525i (480i)/525p (480p):ID1 data slice can be performed. No CC data slice at 525p (480p).

2. When there is no specification, it becomes the publication about 525i (480i) below.

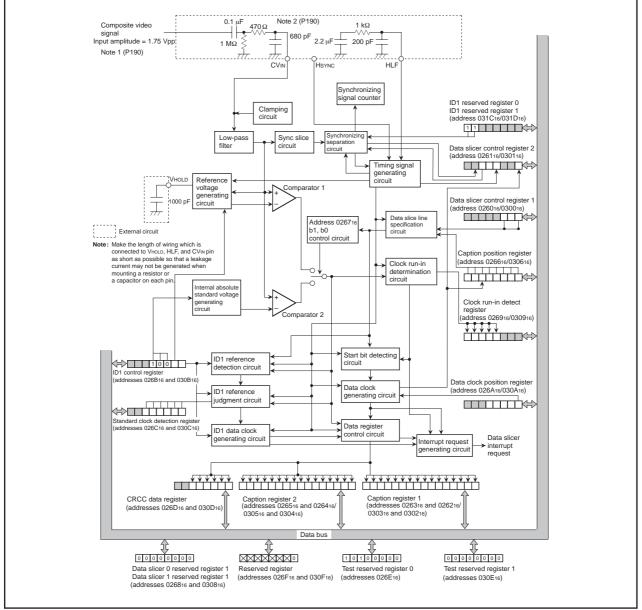


Figure 14.1 Data slicer block diagram

Note 1 : Set up the amplitude inputted from CVIN pin to satisfy the following conditions. (1) Set up as below :

input amplitude + synchronized chip clamp potential < VCCi + 0.3 V.

Vcci shows Vcci power supply pin voltage.

Sink tip clamp pin serves as (43/120) x VCCi .

Example) In the case of VCCi = 3.3V input amplitude = 2.0V

$$2.0V + 1.18 V = 3.18 V < 3.6 V = 3.3 V + 0.3 V$$

(2) Each signal level to input amplitude of CVIN pin is shown in Figure 14.2.

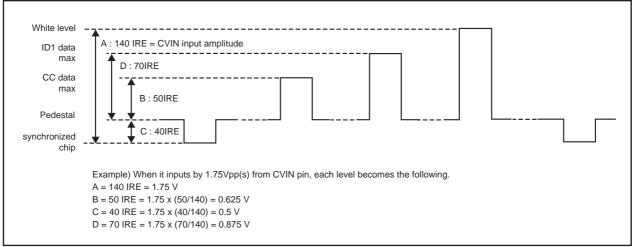


Figure 14.2 Each signal level to input amplitude of CVIN pin

Note 2 : External each constant shown in Figure 14.1 is an example, and is greatly influenced by video signal output impedance, substrate capacity, etc. on a system. Evaluate input amplitude and external each constant perfectly, and determine it.

Notes when not Using Data Slicer

When bit 0 of data slicer control register 1 (address 026016/030016) is "0," terminate the pins as shown in Figure 14.3

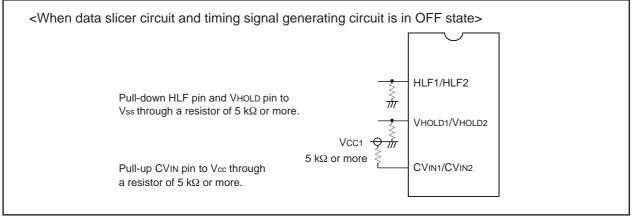
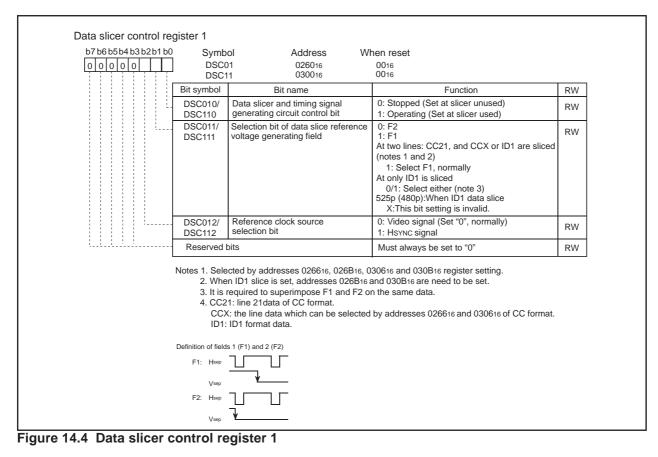
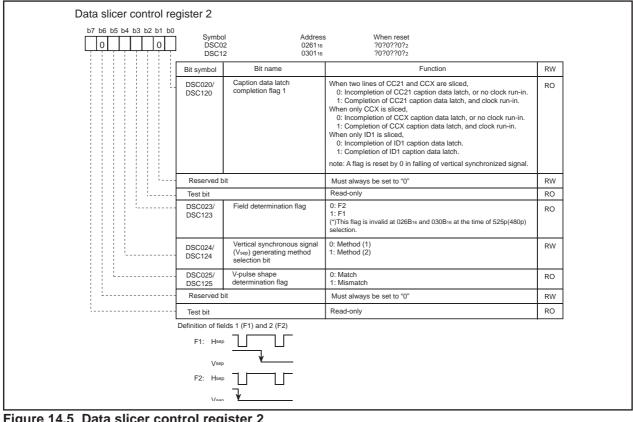




Figure 14.3 Termination of data slicer input/output pins when data slicer circuit and timing generating circuit is in OFF state

Figures 14.4 and 14.5 the data slicer control registers.

Clamping Circuit and Low-pass Filter

The clamp circuit clamps the sync. tip part of the composite video signal input from the CVIN pin. The lowpass filter attenuates the noise of clamped composite video signal. The CVIN pin to which composite video signal is input requires a capacitor (0.1 μ F) coupling outside. Pull down the CVIN pin with a resistor of hundreds of kiloohms to 1 M Ω . In addition, we recommend to install externally a simple low-pass filter using a resistor and a capacitor at the CVIN pin (refer to Figure 14.1 and notes).

Sync Slice Circuit

This circuit takes out a composite sync signal from the output signal of the low-pass filter.

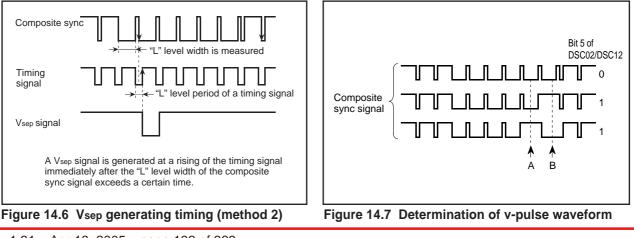
Set bit 6 and 7 to 11b of ID1 reserved register 0 and 1 (addresses 031C16 and 031D16) show in Fig 14.21.

Synchronous Signal Separation Circuit

This circuit separates a horizontal synchronous signal and a vertical synchronous signal from the composite sync signal taken out in the sync slice circuit.

(1) Horizontal synchronous signal (Hsep)

A one-shot horizontal synchronizing signal Hsep is generated at the falling edge of the composite sync signal.


(2) Vertical synchronous signal (Vsep)

As a Vsep signal generating method, it is possible to select one of the following 2 methods by using bit 4 of the data slicer control register 2 (address 026116/030116).

- •Method 1 The "L" level width of the composite sync signal is measured. If this width exceeds a certain time, a V_{sep} signal is generated in synchronization with the rising of the timing signal immediately after this "L" level.
- •Method 2 The "L" level width of the composite sync signal is measured. If this width exceeds a certain time, it is detected whether a falling of the composite sync signal exits or not in the "L" level period of the timing signal immediately after this "L" level. If a falling exists, a Vsep signal is generated in synchronization with the rising of the timing signal (refer to Figure 14.6).

Figure 14.6 shows a V_{sep} generating timing. The timing signal shown in the figure is generated from the reference clock which the timing generating circuit outputs.

Reading bit 5 of data slicer control register 2 permits determinating the shape of the V-pulse portion of the composite sync signal. As shown in Figure 14.7, when the A level matches the B level, this bit is "0." In the case of a mismatch, the bit is "1."

RENESAS

Timing Signal Generating Circuit

This circuit generates a reference clock which is 832 times as large as the horizontal synchronous signal frequency. It also generates various timing signals on the basis of the reference clock, horizontal synchronous signal and vertical synchronizing signal. The circuit operates by setting bit 0 of data slicer control register 1 (address 026016/030016) to "1."

The reference clock is the HSYNC signal can be used as a count source instead of the composite sync signal. However, when the HSYNC signal is selected, the data slicer cannot be used. A count source of the reference clock can be selected by bit 2 of data slicer control register 1 (address 026016/030016). For the pins HLF, connect a resistor and a capacitor as shown in Figure 14.1 Make the length of wiring which is connected to these pins as short as possible so that a leakage current may not be generated.

Note: It takes a few tens of milliseconds until the reference clock becomes stable after the data slicer and the timing signal generating circuit are started. In this period, various timing signals, H_{sep} signals and V_{sep} signals become unstable. For this reason, take stabilization time into consideration when programming.

Data Slice Line Specification Circuit

(1) Specification of data slice line

This circuit decides a line on which caption data is superimposed. The line 21 (fixed), 1 appropriate line for a period of 1 field (total 2 line for a period of 1 field), and both fields (F1 and F2) are sliced their data. The caption position register (address 026616/030616) is used for each setting (refer to Table 14.1).

The counter is reset at the falling edge of V_{sep} and is incremented by 1 every Hsep pulse. When the counter value matched the value specified by bits 4 to 0 of the caption position register, this H_{sep} is sliced.

The values of "0016" to "1F16" can be set in the caption position register (at setting only 1 appropriate line, refer to Table 14.1). Figure 14.8 shows the signals in the vertical blanking interval. Figure 14.9 shows the caption position register.

When slice ID1, set bits 0 to 4 of addresses 026616 and 030616 = 10000b.

525p (480p):When ID1 data slice, set up addresses 026616/030616 bit 4-0 = 00001b and the data clock position register (addresses 026A16 and 030A16) bit 6, and 5 = 01b.

(2) Specification of line to set slice voltage

When slice CC21 and CCX, the reference voltage for slicing (slice voltage) is generated for the clock run-in pulse in the particular line (refer to Table 14.1). The field to generate slice voltage is specified by bit 1 of data slicer control register 1. The line to generate slice voltage 1 field is specified by bits 6, 7 of the caption position register (refer to Table 14.1).

When slice ID1, set bit 6 and 7 of addresses 026616 and 030616 = 00b or 01b.

525p (480p): When ID1 data slice, set up the addresses 026616 and 030616 bit 7 and 6 = 01b.

(3) Field determination

The field determination flag can be read out by bit 3 of data slicer control register 2. This flag change at the falling edge of V_{sep}.

525p (480p): When ID1 data slice, this bit setting is invalid.

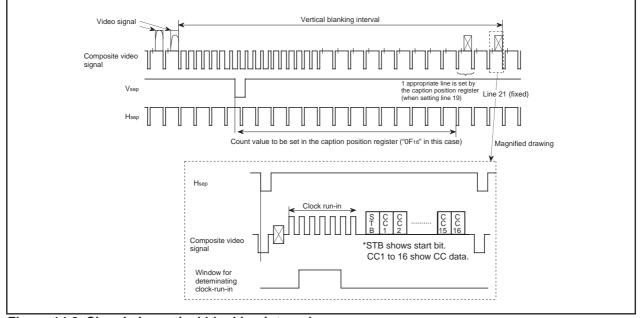
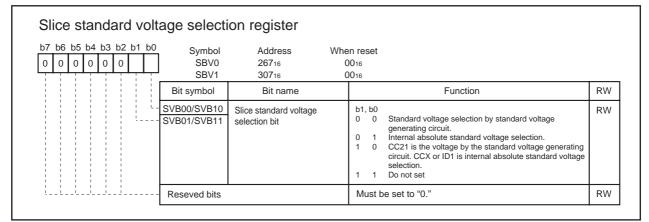


Figure 14.8 Signals in vertical blanking interval

aption position registe			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol CPS0 CPS1	Address When reset 026616 00?000002 030616 00?000002	
Ві	it symbol Bit name	Function	RW
	600/CPS10 Caption position b	ts Set caption position (CCX or ID1). For CCX, refer to Table 15.1. For ID1 slice, set bits 4 to 0 = 10000b (line 20 selection)	RW RW
CPS	502/CPS12	When 525p (480p) ID1 data slice,	RW
	503/CPS13	set up bit 4-0 = 00001b (line 41 selection). (*) addresses 026A16 and 030A16	RW
	504/CPS14	bit 6 and 5 = 01b need to be set up.	RW
CP5	S05/CPS15 Caption data latch completion flag 2	 When two lines of CC21 and CCX are sliced, 0: Incompletion of CCX caption data latch, or no clock run-in. 1: Completion of CCX caption data latch, and clock run-in. When two lines of CC21 and ID1 are sliced, 0: Incompletion of ID1 caption data latch. 1: Completion of ID1 caption data latch. This bit is invalid when slice only any one line of CC21, CCX and ID1. note: A flag is reset by 0 in rising of vertical synchronized signal. 	RO
	S06/CPS16 Slice line mode specification bits	Refer to Table 15.1 at slice CC21 or CCX. Set bits 6 and 7 = 00b or 01b when ID1 slice. When 525p (480p) ID1 data slice, set bit 7 and 6 = 01b.	RW RW

Figure 14.9 Caption position register

Table 14.1 Specification of data slice line


CPS0	/CPS1	Field and Line to Be Sliced Data	Field and Line to Generate Slice Voltage
b7	b6	Tield and Line to be Silced Data	
0	0	 Both fields of F1 and F2 Line 21 and a line specified by bits 4 to 0 of CPS0/ CPS1 (total 2 lines) (See note 2) 	Field specified by bit 1 of DSC01/DSC11 Line 21 (total 1 line)
0	1	 Both fields of F1 and F2 A line specified by bits 4 to 0 of CPS0/CPS1 (total 1 line) (See note 3) 	 Field specified by bit 1 of DSC01/DSC11 A line specified by bits 4 to 0 of CPS0/CPS1 (total 1 line) (See note 3)
1	0	Both fields of F1 and F2Line 21 (total 1 line)	 Field specified by bit 1 of DSC01/DSC11 Line 21 (total 1 line)
1	1	 Both fields of F1 and F2 Line 21 and a line specified by bits 4 to 0 of CPS0/ CPS1 (total 2 lines) (See note 2) 	 Field specified by bit 1 of DSC01/DSC11 Line 21 and a line specified by bits 4 to 0 of CPS0/ CPS1 (total 2 lines) (See note 2)

Notes 1: DSC01/DSC11 is data slicer control register 1.

CPS0/CPS1 is caption position register.

2: Set the value of "0016" - "1016" to bits 4 to 0 of CPS0/CPS1.

3: Set the value of "0016" - "1F16" to bits 4 to 0 of CPS0/CPS1.

Figure 14.10 Slice standard voltage selection register

Reference Voltage Generating Circuit and Comparator

The composite video signal clamped by the clamping circuit is input to the reference voltage generating circuit and the comparator 1 and 2.

(1) Reference voltage generating circuit

This circuit generates a reference voltage (slice voltage) by using the amplitude of the clock run-in pulse in line specified by the data slice line specification circuit. Connect a capacitor between the VHOLD pin and the Vss pin, and make the length of wiring as short as possible so that a leakage current may not be generated.

Note: It takes a few tens of lines to generate slice voltage until the slice voltage becomes stable after the data slicer is started. In this period, the slice data becomes unstable. For this reason, take stabilization time into consideration when programming.

(2) Comparator 1

The comparator 1 compares the voltage of the composite video signal with the voltage (reference voltage) generated in the reference voltage generating circuit, and converts the composite video signal into a digital value.

(3) Comparator 2

The comparator 2 compares the absolute standard voltage generated inside from the voltage and power supply voltage of a composite video signal, and converts the composite video signal into a digital value.

CC Start Bit • ID1 Reference Bit Detection Circuit

This circuit detects a CC start bit • ID1 reference bit at line decided in the data slice line specification circuit.

In the case of CC start bit

- 1) Detect a clock run impulse at counting the input pulse of a data slice line.
- 2) When a clock run impulse is detected, the sampling clock outputted from a timing generating circuit detects a start bit pattern, and judge CC start bit.

In the case of ID1 reference bit

1) Detect ID1 reference bit all over the window generated after fixed time from Hsep in a timing signal generating circuit.

Clock Run-in Determination Circuit • ID1 Reference Bit Detection Circuit

Clock run in judging

By counting the number of pulses all over the specific window of a data slice line, it judges that it is clock run in. When it judges with having no clock run in, the completion flag of a caption data latch is not set to 1. Moreover, the number of standard clocks counted in clock run impulse 1 cycle is stored in the bits 7-3 of a clock run in detection register (addresses 026916/030916).

ID1 reference bit judging

The number of standard clocks counted during fixed of ID1 reference bit is stored in the bits 5-0 of a standard clock detection register (addresses 026916/the 030C16). Read these bits after generating of data slicer interruption ("Interrupt Request Generating Circuit").

Clock run-in detection register is shown in Fig. 14.11, standard clock detection register is shown in Fig. 14.12.

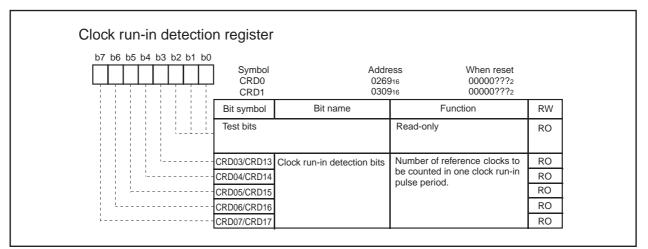


Figure 14.11 Clock run-in detection register

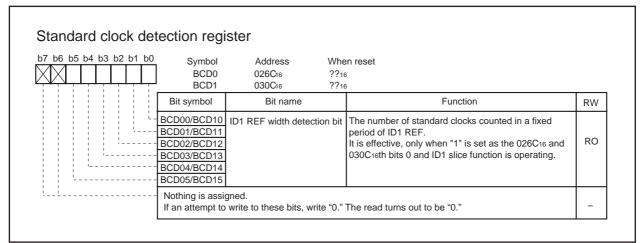


Figure 14.12 Standard clock detection register

Data Clock Generating Circuit

At the time of CC data slice

It synchronizes with CC start bit detected in CC start bit detection circuit, and a data clock is generated after the fixed offset set up by the data clock position register (addresses 026A16/030A16). A data clock is a clock for storing caption data in a caption register. When 16-bit data is stored in a caption register and judged in a clock run in judging circuit that has clock run in, the completion flag of a caption data latch is set.

A data clock position register is shown in Fig. 14.13.

At the time of ID1 data slice

The data clock which synchronized with ID1 reference bit is generated. With this data clock, the 6 bit data of the remaining CRCC is stored in a caption register for 14-bit data among 20-bit data at a CRCC data register (addresses 026D16/030D16). If 20-bit data is stored in each register, the completion flag of a caption data latch will be set.

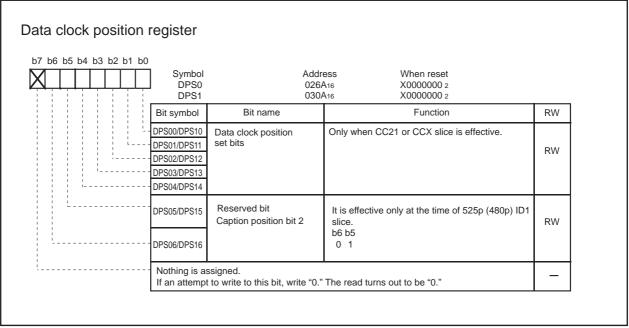
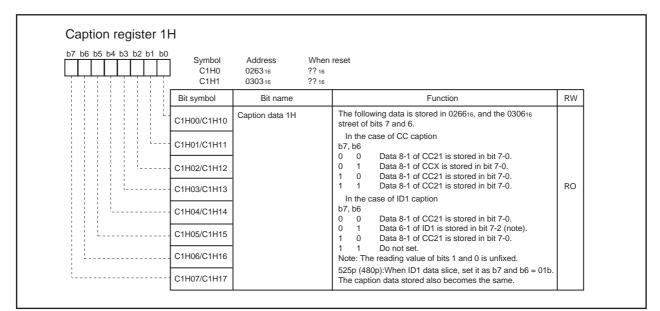


Figure 14.13 Data clock position register


Caption Register and CRCC Data Register

The caption data converted into a digital value by the comparator is stored into the caption register and CRCC data register in synchronization with the data clock. The contents of the stored caption data can be obtained by reading out the stored caption register and CRCC data register. These registers are reset to "0" at a falling edge of V_{sep}. Read out these registers after the occurrence of a data slicer interrupt.

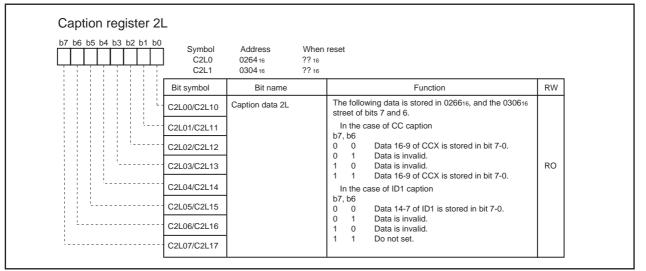

b7 b6 b5 b4 b3 b2 b1 b0	Symbol C1L0 C1L1	Address 0262 16 0302 16	When ?? 16 ?? 16	reset	
	Bit symbol	Bit name		Function	RW
L.	C1L00/C1L10	Caption data 1L		The following data is stored in 026616, and the 030616 street of bits 7 and 6.	
· · · · · · · · · · · · · · · · · · ·	C1L01/C1L11			In the case of CC caption b7, b6	
	C1L02/C1L12			0 0 Data 16-9 of CC21 is stored in bit 7-0. 0 1 Data 16-9 of CCX is stored in bit 7-0.	
	C1L03/C1L13			1 0 Data 16-9 of CC21 is stored in bit 7-0. 1 1 Data 16-9 of CC21 is stored in bit 7-0.	RO
	C1L04/C1L14			In the case of ID1 caption b7, b6	
	C1L05/C1L15			0 Data 16-9 of CC21 is stored in bit 7-0. 0 1 Data 14-7 of ID1 is stored in bit 7-0(*).	
· · · · · · · · · · · · · · · · · · ·	C1L06/C1L16			1 0 Data 16-9 of CC21 is stored in bit 7-0. 1 1 Do not set.	
 	C1L07/C1L17			(*)When 525p (480p) ID1 data slice, set it as b7 and b6 = 01b. The caption data stored also becomes the same.	

Figure 14.14 Caption register 1L

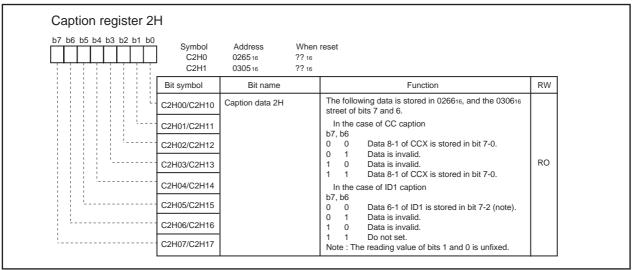


Figure 14.15 Caption register 1H

Figure 14.16 Caption register 2L

Figure 14.17 Caption register 2H

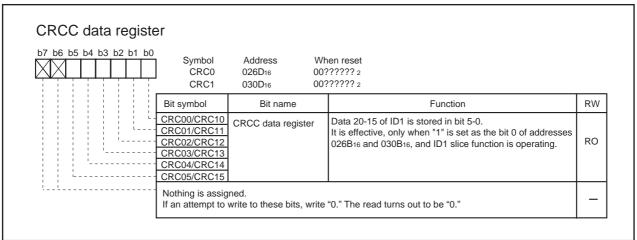


Figure 14.18 CRCC data register

Interrupt Request Generating Circuit

The interrupt requests as shown in Table 14.2 are generated by combination of the following bits; bits 6 and 7 of the caption position register (addresses 026616/030616). Read out the contents of caption data registers 1 and 2, CRCC data register, clock run-in detection register and standard clock detect register after the occurrence of a data slicer interrupt request.

Table 14.2	Occurrence	sources of	Interrupt request
------------	------------	------------	-------------------

CF	PS	Occurrence Sources of Interrupt Request at End of Data Slice Line
b7	b6	Occurrence Sources of Interrupt Nequest at Life of Data Silce Line
0	0	After slicing line 21
0	1	After a line specified by bits 4 to 0 of CPS (Note)
1	0	After slicing line 21
I	1	After slicing line 21

CPS: Caption position register

Note: When 525p (480p), it becomes the one-line back specified caption position register bits 4 to 0 and the data clock position register bits 6 and 5.

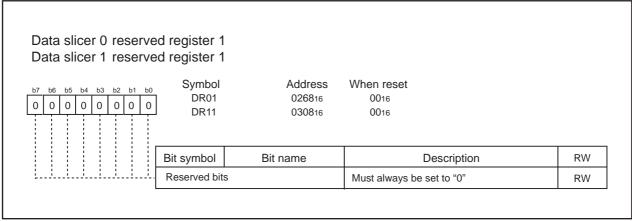


Figure 14.19 Data slicer i reserved register 1 (i = 1, 2)

ID1 data slice

When data slice ID1, ID1 control register of Fig 14.20 needs to be set.

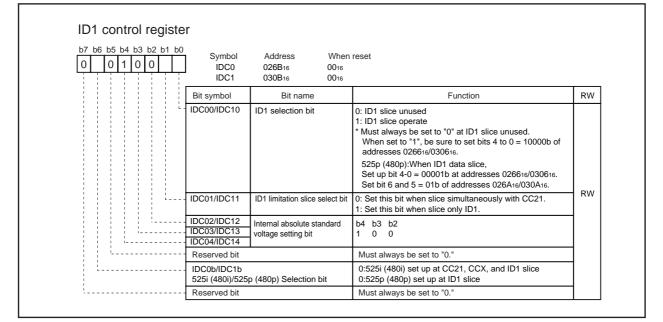
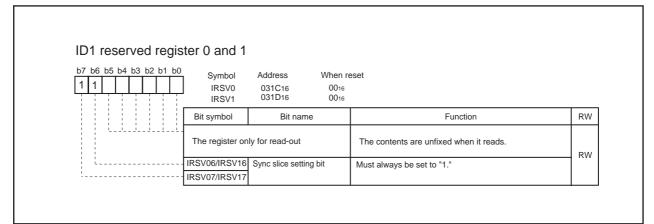



Figure 14.20 ID1 control register

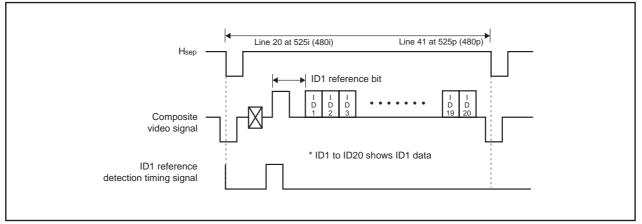


Figure 14.22 ID1 signal in vertial blanking interval

HSYNC Counter

The synchronous signal counter counts HSYNC from HSYNC count input pins (HC0 and HC1) as a count source.

The count value in a certain time (T time; 1024 μ s, 2048 μ s, 4096 μ s and 8192 μ s) divided system clock is stored into the 8-bit latch. Accordingly, the latch value changes in the cycle of T time. When the count value exceeds "FF16," "FF16" is stored into the latch.

The latch value can be obtained by reading out the HSYNC counter latch (address 027F16). A count source and count update cycle (T time) are selected by bits 0, 3 and 4 of the HSYNC counter register. Figure 15.1 shows the HSYNC counter and Figure 15.2 shows the synchronous signal counter block diagram.

Note: HSYNC counter latch is a register only for read-out.

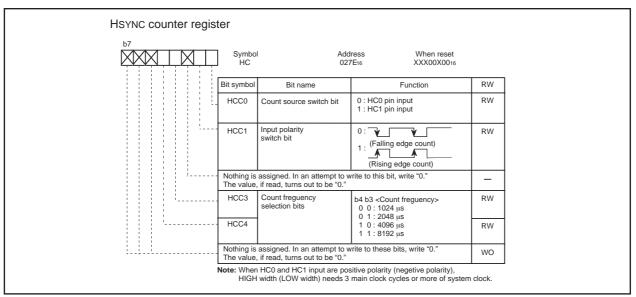
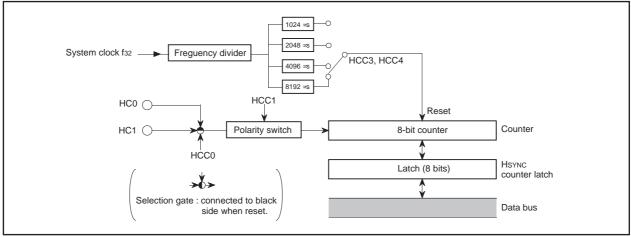



Figure 15.1 HSYNC counter register

OSD Functions

Table 16.1 outlines the OSD functions of this microcomputer. This OSD function can display the following: the block display (32 characters X 16 lines or 42 characters X 16 lines) and the SPRITE display, and can display the both display at the same time. There are 3 display modes and they are selected by a block unit. The display modes are selected by block control register i (i = 1 to 16). The features of each display are described below.

Note: When using OSD function, select "No-division mode" as BCLK operating mode and set the main clock frequency to f(XIN) = 16 MHz.

	and a second a			В	lock display		
	splay style	CC mode (Closed caption mode)	(On	OSD mode -screen display r	node)	CDOSD mode (Color dot on-screen	SPRITE display
Parameter		(******	OSDS mode	OSDP mode	OSDL mode	display mode)	
Number of di	splay characters	32 0	haracters X 16 li	nes/42 character	s X 16 lines		1 character X 2 lines
Dot structure		16 X 2	0 dots	16 X 20 dots 12 X 20 dots	24 X 32 dots	16 X 26 dots	32 X 20 dots
		(Character display area: 16 X 26 dots)		8 X 20 dots 4 X 20 dots			
Kinds of character	OSDL enable mode	254 kinds			254 kinds	126 kinds	2 kinds of RAM font
ROM	OSDL disable mode	508 kinds	254 kinds				
Kinds of cha	aracter sizes	4 kinds	14 kinds	12	kinds	14 kinds	8 kinds
(See note 1) Pre-divide ratio (Note) X 1, X 2		X 1, X 2	X 1, X 2, X 3			× 3	X 1, X 2
	Dot size	1Tc X 1/2H, 1Tc X 1H	1TC X 1/2H, 1TC X 1H, 1.5TC X 1/2H, 1.5TC X 1/2H, 2TC X 2H, 3TC X 3H	1TC	x 1/2H, x 1H, x 2H, x 3H	1TC X 1/2H, 1TC X 1H, 1.5TC X 1/2H, 1.5TC X 1/2H, 2TC X 2H, 3TC X 3H	1TC X 1/2H, 1TC X 1H, 2TC X 1H, 2TC X 2H
Attribute		Smooth italic, under line, flash	Border				
Character fo coloring	ont	1 screen: 8 kinds (a character unit) Max. 512 kinds	1 screen: 16 kin (a character unit Max. 512 kinds			1 screen: 16 kinds (a dot unit) (only specified dots are colored by a character unit) Max. 512 kinds	1 screen: 16 kinds (a dot unit) Max. 512 kinds
Character background coloring	1	Possible (a character unit, 1 screen: 4 kinds, Max. 512 kinds)	Possible (a character uni Max. 512 kinds)	it,1 screen: 16 kii)	nds,		
Display laye	ər	Layer 1	Layers 1, 2	Layer 1		Layers 1, 2	Layer 3 (with highest priority)
OSD output	t (See note 2)	Analog R,	G, B output (each	n 8 adjustment le	vels: 512 colors),	Digital OUT1, OUT2 output	
Raster colo	ring		Po	ssible (a screen	unit, max 512 kind	ds)	
Other functi (See note 3		Auto solid space function	Triple layer	OSD function, W	indow function, Bl	ank function	
Display exp (multiline di				Pos	sible		

Table 16.1 Features of each display style

Notes 1: The character size is specified with dot size and pre-divide ratio (refer to "Dot Size").

2: As for SPRITE display, OUT2 is not output.

3: As for SPRITE display, the window function does not operate.

The OSD circuit has an extended display mode. This mode allows multiple lines (16 lines or more) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.

Figure 16.1 shows the display-enable fonts for each display style. Figure 16.2 shows the block diagram of the OSD circuit. Figure 16.3 shows the OSD control register 1. Figure 16.4 shows the block control register i.

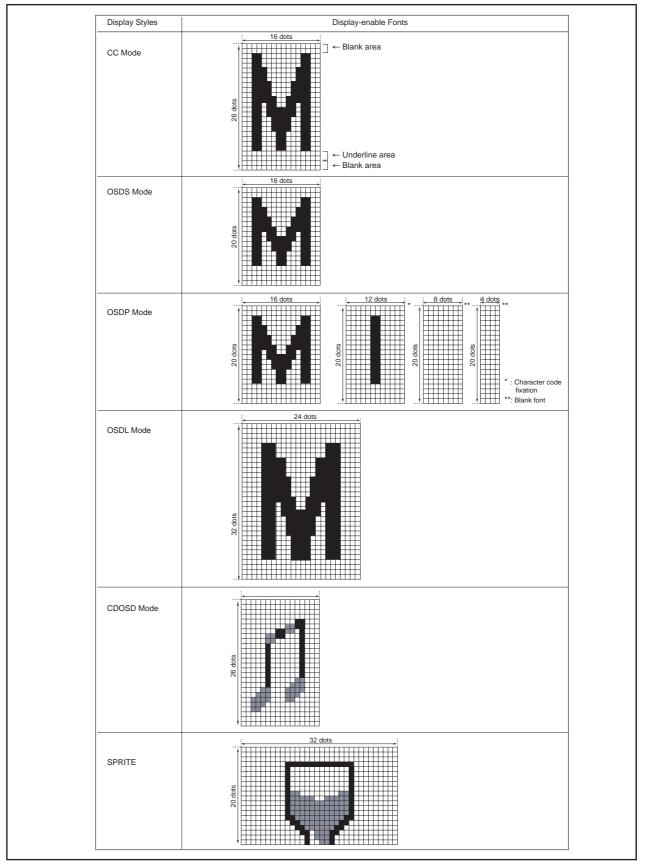
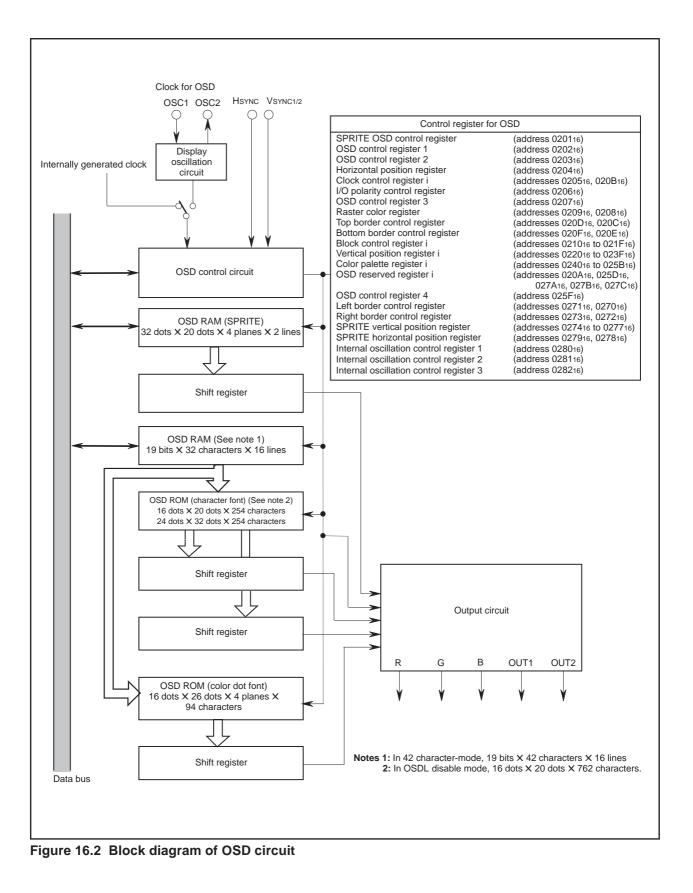



Figure 16.1 Display-enable fonts for each display style

Rev.1.31 Apr 18, 2005 page 207 of 363 REJ03B0082-0131

RENESAS

	Symbol OC1	Address 020216	When reset 0016	
	OC16 .	Bit name	Function	RW
	OC10	OSD control bit (See note 1)	0 : All-blocks and SPRITE display OFF 1 : All-blocks and SPRITE display ON	RW
· · · · · · · · · · · · · · · · · · ·	- OC11	Scan mode selection bit	0 : Normal scan mode 1 : Bi-scan mode	RW
	OC12	Border type selection bit	0 : All bordered 1 : Shadow bordered (See note 2)	RW
	- OC13	Flash mode selection bit	0 : Color signal of character background part does not flash1 : Color signal of character background part flashes	RW
	- OC14	Automatic solid space control bit	0 : OFF 1 : ON	RW
	OC15	Vertical window/blank control bit	0 : OFF 1 : ON	RW
	- OC16	Layer mixing control bits (See note 3)	b7 b6 0 0: Logic sum (OR) of layer 1's color and layer 2's color 0 1: Layer 1's color has priority	RW
L	- OC17		1 0: Layer 2's color has priority 1 1: Do not set.	RW
	uncha 2 : Shad	anged until a rising (falling)	and bottom side of the font.	

Figure 16.3 OSD control register 1

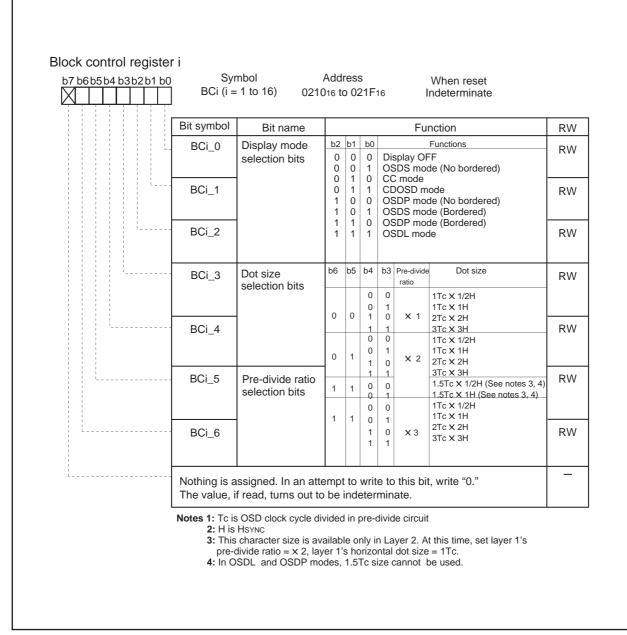


Figure 16.4 Block control register i (i = 1 to 16)

Triple Layer OSD

Three built-in layers of display screens accommodate triple display of channels, volume, etc., closed caption, and sprite displays within layers 1 to 3.

The layer to be displayed in each block is selected by bit 0 or 1 of the OSD control register 2 for each display mode (refer to Figure 16.7). Layer 3 always displays the sprite display.

When the layer 1 block and the layer 2 block overlay, the screen is composed with layer mixing by bit 6 or 7 of the OSD control register 1, as shown in Figure 16.5. Layer 3 always takes display priority of layers 1 and 2.

Notes 1: When mixing layer 1 and layer 2, note Table 16.2.

- 2: OSDP mode is always displayed on layer 1. And also, it cannot be overlapped with layer 2's block.
- **3:** OUT2 is always ORed, regardless of values of bits 6, 7 of the OSD control register 1. And besides, even when OUT2 (layer 1 and layer 2) overlaps with SPRITE display (layer 3), OUT2 is output without masking.

Block Parameter	Block in Layer 1	Block in Layer 2	
Display mode	CC, OSDS/L, CDOSD mode	OSDS/L, CDOSD mode	
Pre-divide ratio	X 1, X 2 (CC mode)	Same as layer 1 (See note)	
	X 1 to X 3 (OSD, CDOSD mode)		
Dot size	1Tc X 1/2H, 1Tc X 1H	Pre-divide ratio = X 1	Pre-divide ratio = X 2
	(CC mode)	1Tc × 1/2H	1Tc×1/2H,1.5Tc×1/2H
		1Tc X 1H	1Tc×1H, 1.5Tc×1H(Seenote)
	1Tc X 1H, 1Tc X 1/2H, 2Tc X 2H,	Same size as layer 1	
	3Tc 🗙 3H	•1.5Tc can be selected only when: layer 1's pre-divide ratio = X 2 AND layer 1's horizontal dot size = 1Tc. As this time, vertical dot size is the same as layer 1.	
	(OSDS/L, CDOSD mode)		
Horizontal display start position	Arbitrary	Same position as layer 1	
Vertical display start position	Arbitrary		
	However, when dot size is $2Tc \times 2H$ or $3Tc \times 3H$, set difference between vertical display position of layer 1 and that of layer 2 as follows.		
	•2Tc X 2H: 2H units		
	•3Tc X 3H: 3H units		

Table 16.2 Mixing layer 1 and layer 2

Note: In the OSDL mode, 1.5TC size cannot be used.

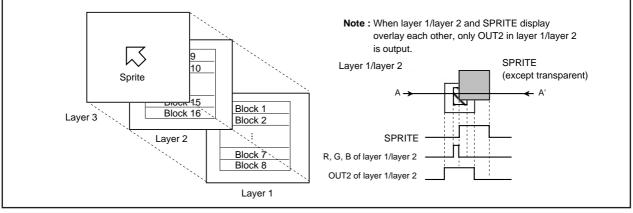


Figure 16.5 Triple layer OSD

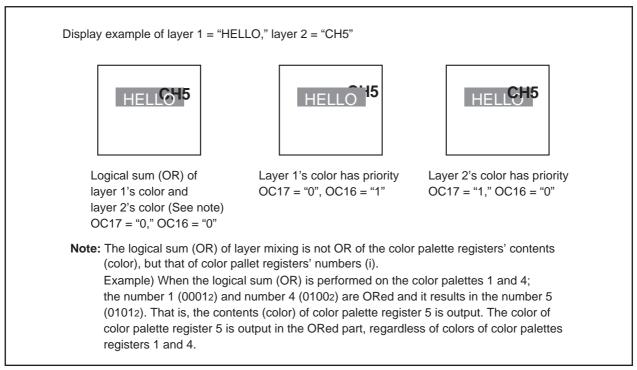


Figure 16.6 Display example of layer mixing OSD

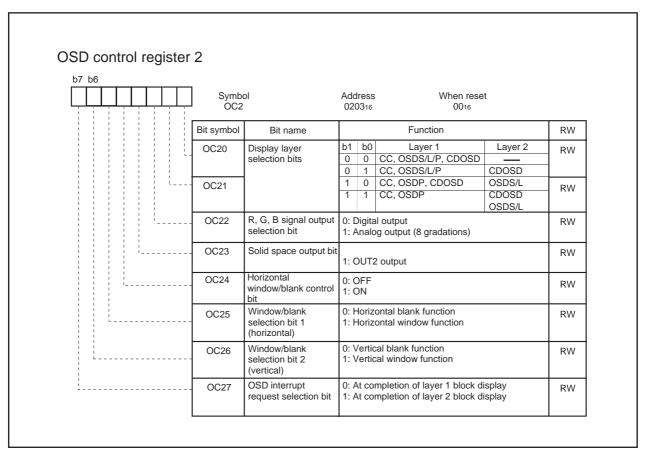


Figure 16.7 OSD control register 2

Display Position

The display positions of characters are specified by a block. There are 16 blocks, blocks 1 to 16. Up to 32 characters (32-character mode)/42 characters (42-character mode)/ can be displayed in each block (refer to Memory for OSD).

The display position of each block can be set in both horizontal and vertical directions by software.

The display position in the horizontal direction can be selected for all blocks in common from 256-step display positions in units of 4 Tosc (Tosc = OSD oscillation cycle).

The display position in the vertical direction for each block can be selected from 1024-step display positions in units of 1 TH (TH = HSYNC cycle).

Blocks are displayed in conformance with the following rules:

- When the display position is overlapped with another block in the same layer (Figure 16.8 (b)), a low block number (1 to 16) is displayed on the front.
- When another block display position appears while one block is displayed in the same layer (Figure 16.8 (c)), the block with a larger set value as the vertical display start position is displayed. However, do not display block with the dot size of 2Tc X 2H or 3Tc X 3H during display period (*) of another block.
 - * In the case of OSDS/P mode block: 20 dots in vertical from the vertical display start position.

* In the case of OSDL mode block: 32 dots in vertical from the vertical display start position.

* In the case of CC or CDOSD mode block: 26 dots in vertical from the vertical display start position.

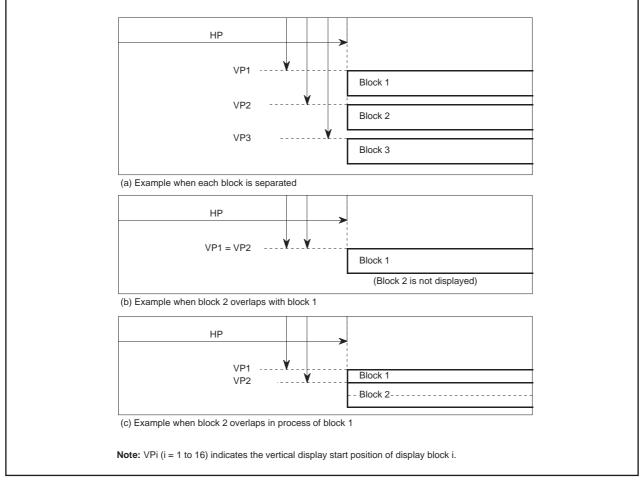


Figure 16.8 Display position

The display position in the vertical direction is determined by counting the horizontal sync signal (HSYNC). At this time, when VSYNC and HSYNC are positive polarity (negative polarity), it starts to count the rising edge (falling edge) of HSYNC signal from after fixed cycle of rising edge (falling edge) of VSYNC signal. So interval from rising edge (falling edge) of VSYNC signal to rising edge (falling edge) of HSYNC signal needs enough time (2 × BCLK cycles or more) for avoiding jitter. The polarity of HSYNC and VSYNC signals can select with the I/O polarity control register (address 020616).

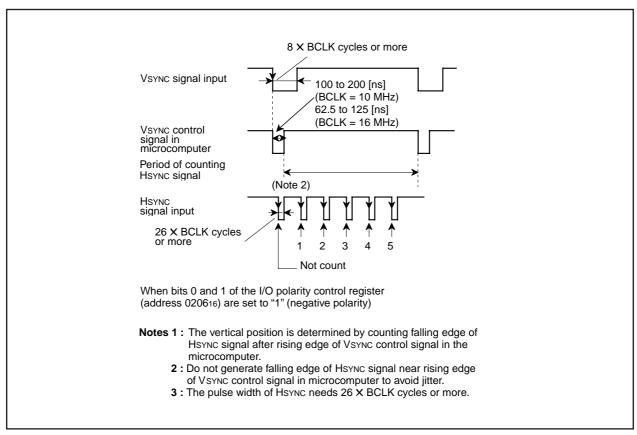


Figure 16.9 Supplement explanation for display position

The vertical position for each block can be set in 1024 steps (where each step is 1TH (TH: HSYNC cycle)) as values "00216" to "3FF16" in vertical position register i (i = 1 to 16) (addresses 022016 to 023F16). The vertical position register i is shown in Figure 16.10.

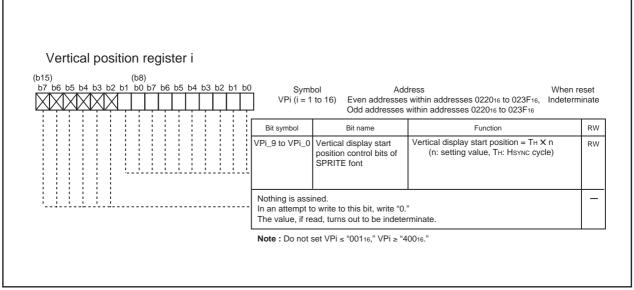


Figure 16.10 Vertical position register i (i = 1 to 16)

The horizontal position is common to all blocks, and can be set in 256 steps (where 1 step is 4Tosc, Tosc being OSD oscillation cycle) as values "0016" to "FF16" in bits 0 to 7 of the horizontal position register (address 020416). The horizontal position register is shown in Figure 16.11.

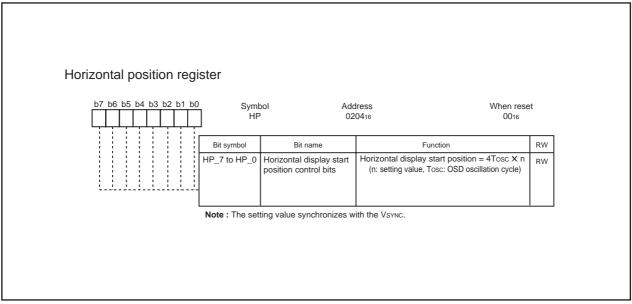


Figure 16.11 Horizontal position register

Note : 1Tc (Tc : OSD clock cycle divided in pre-divide circuit) gap occurs between the horizontal display start position set by the horizontal position register and the most left dot of the 1st block. Accordingly, when 2 blocks have different pre-divide ratios, their horizontal display start position will not match.

Ordinary, this gap is 1Tc regardless of character sizes, however, the gap is 1.5Tc only when the character size is 1.5Tc.

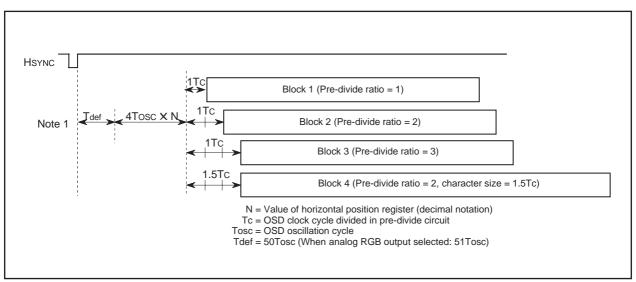
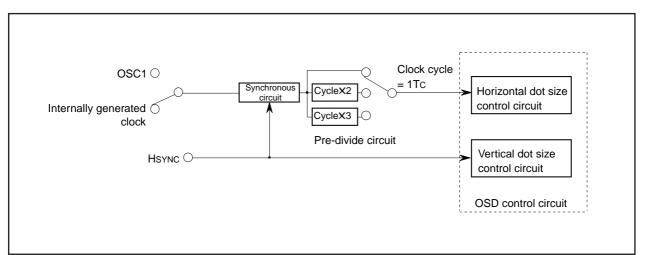
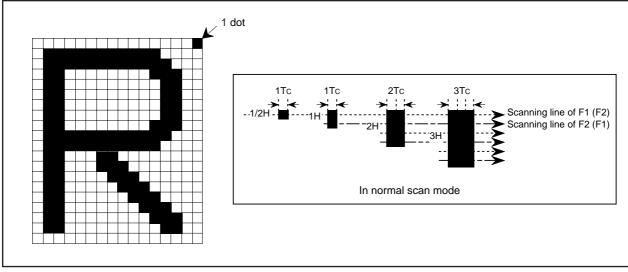


Figure 16.12 Notes on horizontal display start position

Dot Size


The dot size can be selected by a block unit. The dot size in vertical direction is determined by dividing HSYNC in the vertical dot size control circuit. The dot size in horizontal is determined by dividing the following clock in the horizontal dot size control circuit : the clock gained by dividing the OSD clock source (internally generated clock, OSC1, main clock) in the pre-divide circuit. The clock cycle divided in the pre-divide circuit is defined as 1Tc.

The dot size is specified by bits 3 to 6 of the block control register.


Refer to Figure 16.4 (the block control register i), refer to Figure 16.15 (the clock control register). The block diagram of dot size control circuit is shown in Figure 16.13.

Notes 1 : The pre-divide ratio = 3 cannot be used in the CC mode.

- **2**: The pre-divide ratio of the layer 2 must be same as that of the layer 1 by the block control register i.
- **3**: In the bi-scan mode, the dot size in the vertical direction is 2 times as compared with the normal mode. Refer to "Scan Mode" about the scan mode.

Clock for OSD

As a clock for display to be used for OSD, it is possible to select one of the following 3 types.

- Internally generated clock output by the internal oscillator
- Clock from the LC oscillator supplied from the pin OSC1
- Clock from the ceramic resonator (or the quartz-crystal oscillator) from the pin OSC1

When the clock control register i (i=1-2) is set to choose an internally generated clock for the OSD clock, use the internal oscillation control register i (i=1-3) to select the oscillation frequency.

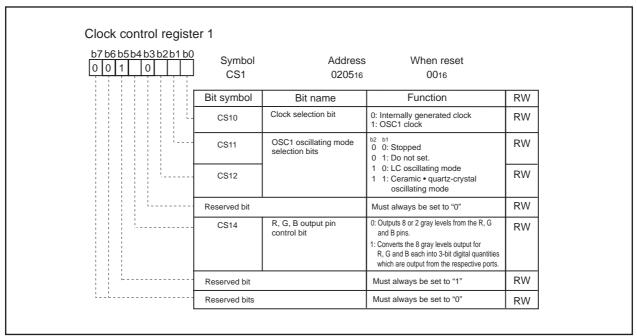


Figure 16.15 Clock control register 1

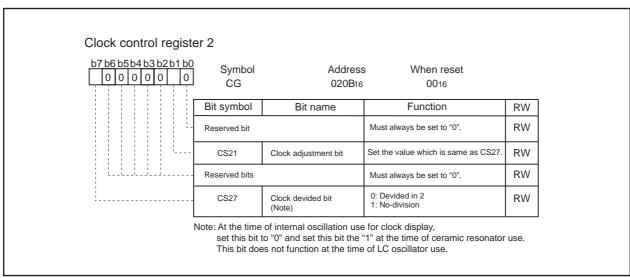


Figure 16.16 Clock control register 2

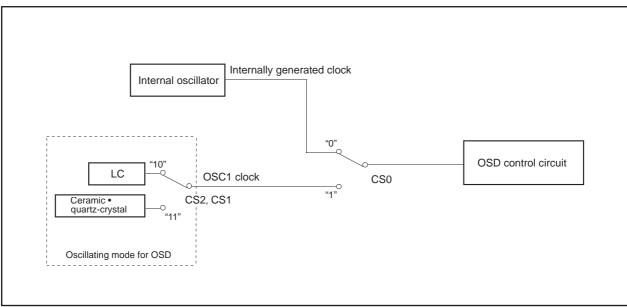


Figure 16.17 Block Diagram of OSD selection circuit

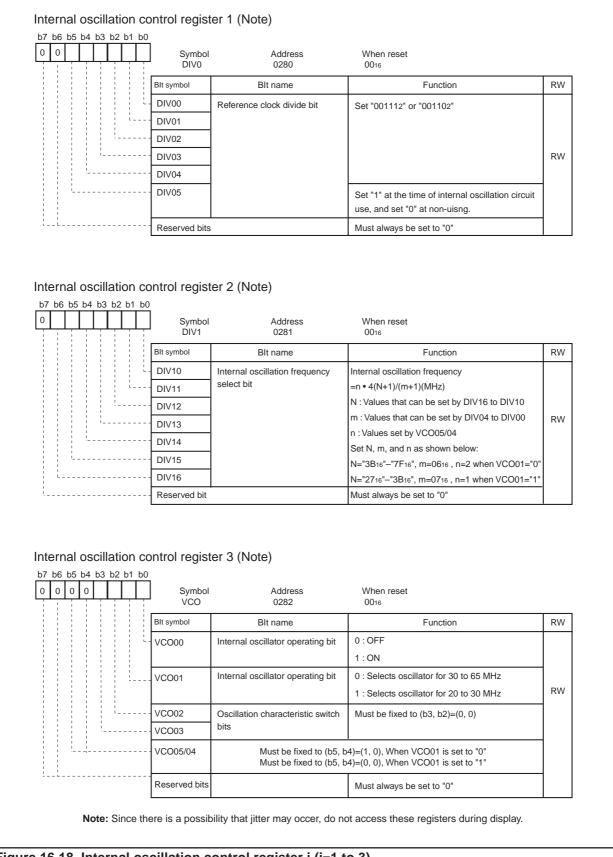


Figure 16.18 Internal oscillation control register i (i=1 to 3)

2.16.5 Field Determination Display

To display the block with vertical dot size of 1/2H, whether an even field or an odd field is determined through differences in a synchronizing signal waveform of interlacing system. The dot line 0 or 1 (refer to Figure 16.20) corresponding to the field is displayed alternately.

In the following, the field determination standard for the case where both the horizontal sync signal and the vertical sync signal are negative-polarity inputs will be explained. A field determination is determined by detecting the time from a falling edge of the horizontal sync signal until a falling edge of the VSYNC control signal (refer to Figure 16.9) in the microcomputer and then comparing this time with the time of the previous field. When the time is longer than the comparing time, it is regarded as even field. When the time is shorter, it is regarded as odd field.

The field determination flag changes at a rising edge of VSYNC control signal in the microcomputer .

The contents of this field can be read out by the field determination flag (bit 7 of the I/O polarity control register at address 020616). A dot line is specified by bit 6 of the I/O polarity control register (refer to Figure 16.19).

However, the field determination flag read out from the CPU is fixed to "0" at even field or "1" at odd field, regardless of bit 6.

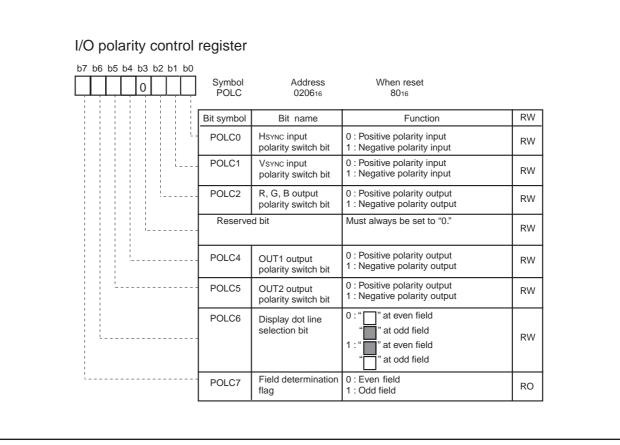
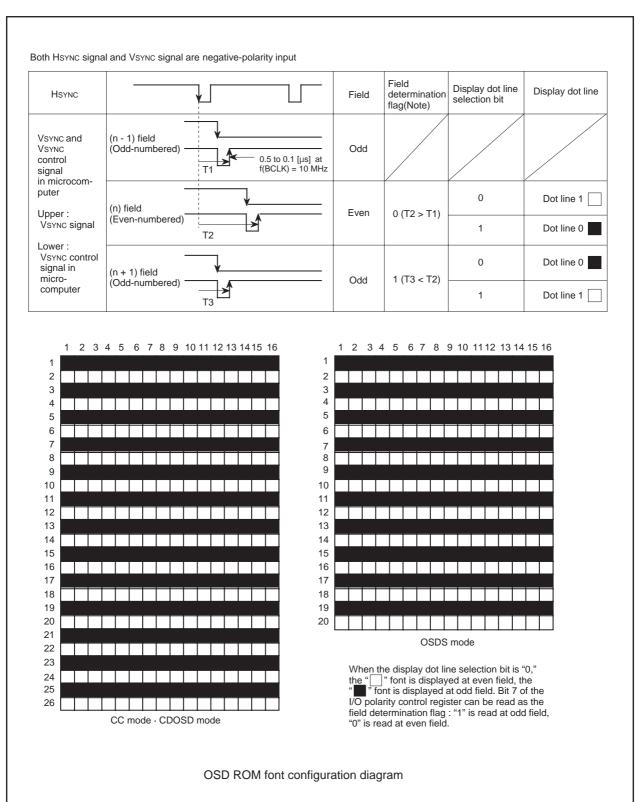



Figure 16.19 I/O polarity control register

Note : The field determination flag changes at a rising edge of the VSYNC control signal (negative-polarity input) in the microcomputer.

Figure 16.20 Relation between field determination flag and display font

Memory for OSD

There are 2 types of memory for OSD : OSD ROM (addresses 3000016 to 4FFFF16) used to store character dot data and OSD RAM (addresses 800016 to 8FFF16) used to specify the kinds of display characters, display colors, and SPRITE display. The following describes each type of memory.

(1) ROM for OSD (addresses 3000016 to 4FFFF16)

The dot pattern data for OSD characters is stored in the character font area in the OSD ROM and the CD font data for OSD characters is stored in the color dot font area in the OSD ROM. To specify the kinds of the character font and the CD font, it is necessary to write the character code into the OSD RAM.

For character font, there are the following 2 mode.

- OSDL enable mode
 - 16 \times 20-dot font and 24 \times 32-dot font
- OSDL disable mode
- 16 X 20-dot font

The modes are selected by bit 0 of the OSD control register 4 for each screen.

The conditions for each OSDL enable/disable mode are shown in Figure 16.22.

During OSDL enable mode, character codes 00016 through 1FF16 can be used. In this case, the character codes 00016 through 0FF16 are turned to 16 \times 20-dot fonts, whereas the character codes 10016 through 1FF16 are turned to 24 \times 32- dot fonts. Of these, however, character codes 0FE16, 0FF16, 10016, and 18016 cannot be used.

During OSDL disable mode, character codes 00016 through $2FF_{16}$ can be used. In this case, all characters are turned to 16×20 -dots. Of these, however, character codes $0FE_{16}$, $0FF_{16}$, 100_{16} , 180_{16} , 200_{16} , and 280_{16} cannot be used.

CD codes 0016 through 7F16 can be used. In this case, all characters are turned to 16×26 -dot fonts. Of these, however, CD codes 3F16 and 4016 cannot be used.

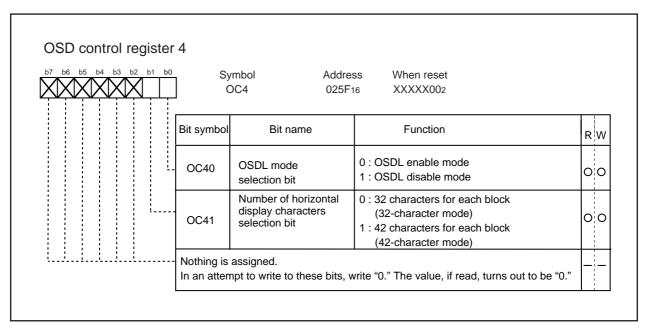


Figure 16.21 OSD control register 4

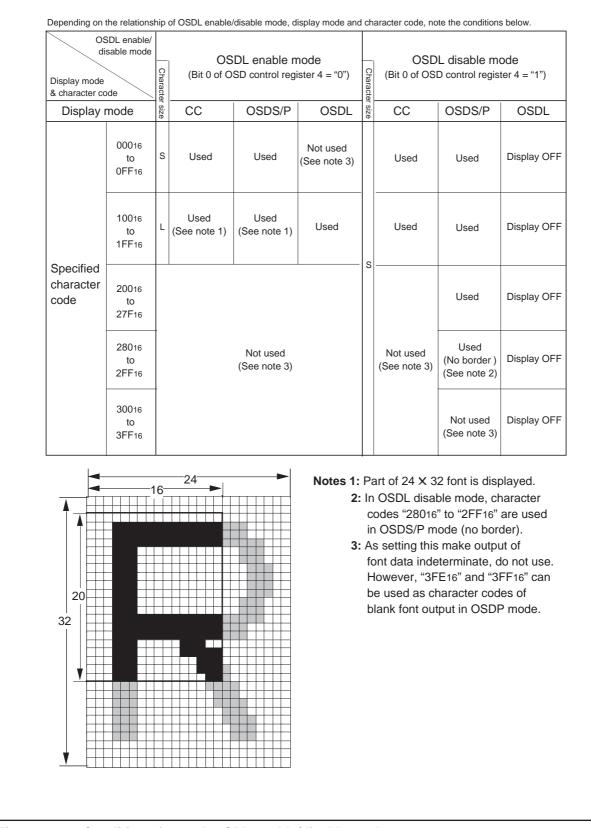


Figure 16.22 Conditions for each OSDL enable/disable mode

(2) OSD RAM (OSD RAM for character, addresses 840016 to 8EFF16)

The OSD RAM for character is allocated at addresses 840016 to 8EFF16, and is divided into a display character code specification part, color code 1 specification part, and color code 2 specification part for each block. The number of characters for 1 block (32- or 42-character mode) is selected by bit 1 of the OSD control register 4. Tables 16.3 to 16.7 show the address map.

For example, to display 1 character position (the left edge) in block 1, write the character code in address 840016, write color code 1 at 840116, and write color code 2 at 848016. The structure of the OSD RAM is shown in Figure 16.23.

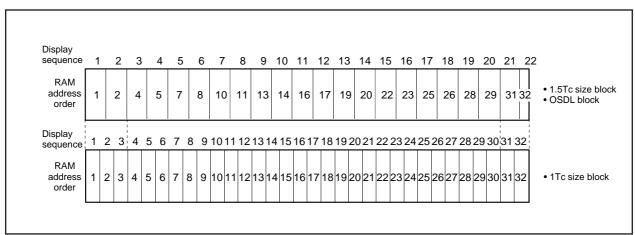
Note : For blocks of the following dot sizes, the 3nth (n = 1 to 14) character is skipped as compared with ordinary block.

In OSDL mode: all dot size.

■In OSDS and CDOSD modes of layer 2: 1.5Tc × 1/2H or 1.5Tc × 1H

Accordingly, maximum 22 characters (32-character mode)/28 characters (42-character mode) are only displayed in 1 block (refer to Fig 16.22). The RAM data for the 3nth character does not effect the display. Any character data can be stored here. And also, note the following only in 32-character mode. As the character is displayed in the 28th's character area in 42-character mode, set ordinarily.

• In OSDS mode


The character is not displayed, and only the left 1/3 part of the 22nd character back ground is displayed in the 22nd's character area. When not displaying this back-ground, set transparent for character background color.

• In OSDL mode

Set a blank character or a character of transparent color to the 22nd character.

• In CDOSD mode

The character is not displayed, and color palette color specified by bits 3 to 6 of color code 1 can be output in the 22nd's character area (left 1/3 part).

Block	Display Position (from left)	Character Code Specification	Color Code 1 Specification	Color Code 2 Specificatio
	1st character	840016	840116	848016
Block 1	2nd character	840216	840316	848216
DIOOR	31st character	: 843C16	843D16	84BC16
	32nd character	843E16	843F16	84BE16
	1st character	844016	844116	84C016
	2nd character	844216	844316	84C216
Block 2	:	:	:	:
	31st character	847C16	847D16	84FC16
	32nd character	847E16	847F16	84FE16
	1st character	850016	850116	858016
	2nd character	850216	850316 :	858216
Block 3	31st character	853C16	853D16	85BC16
	32nd character	853E16	853F16	85BE16
	1st character	854016	854116	85C016
	2nd character	854216	854316	85C216
Block 4	: 21 at abaractor	:	:	:
	31st character 32nd character	857C16	857D16	85FC16
	1st character	857E16	857F16	85FE16
		860016	860116	868016
Block 5	2nd character	860216	860316	868216
DIUCK 3	31st character	863C16	863D16	86BC16
	32nd character	863E16	863F16	86BE16
	1st character	864016	864116	86C016
	2nd character	864216	864316	86C216
Block 6	:	:	:	:
	31st character	867C16	867D16	86FC16
	32nd character	867E16	867F16	86FE16
	1st character	870016	870116	878016
Block 7	2nd character	870216	870316	878216
	31st character	: 873C16	: 873D16	: 87BC16
	32nd character	873E16	873F16	87BE16
	1st character	874016	874116	87C016
	2nd character	874216	874316	87C216
Block 8	:	:	:	:
	31st character	877C16	877D16	87FC16
	32nd character	877E16	877F16	87FE16
	1st character	880016	880116	888016
	2nd character	880216	880316	888216
Block 9	: 31st character	:		:
	32nd character	883C16	883D16	88BC16
	1st character	883E16	883F16	88BE16
	2nd character	884016	884116	88C016
Block 10		884216	884316 :	88C216
DIUCK IU	31st character	887C16	887D16	88FC16
	32nd character	887E16	887F16	88FE16

Table 16.3 Contents of OSD RAM (1st to 32nd character)

Block	Display Position (from left)	Character Code Specification	Color Code 1 Specification	Color Code 2 Specification
	1st character	890016	890116	898016
Block 11	2nd character	890216	890316	898216
DIOCK II	:	:	:	:
	31st character	893C16	893D16	89BC16
	32nd character	893E16	893F16	89BE16
	1st character	894016	894116	89C016
	2nd character	894216	894316	89C216
Block 12	: 21 at abarastar	: 897C16	: 897D16	: 89FC16
	31st character	897C16 897E16	897D16	89FE16
	32nd character			
	1st character	8A0016	8A0116	8A8016
Block 13	2nd character	8A0216	8A0316	8A8216
DIOCK 10	31st character	8A3C16	8A3D16	8ABC16
	32nd character	8A3E16	8A3F16	8ABE16
	1st character	8A4016	8A4116	8AC016
	2nd character	8A4216	8A4316	8AC216
Block 14	:	:	:	:
	31st character	8A7C16	8A7D16	8AFC16
	32nd character	8A7E16	8A7F16	8AFE16
	1st character	8B0016	8B0116	8B8016
Dia dia 45	2nd character	8B0216	8B0316	8B8216
Block 15		:	:	:
	31st character	8B3C16	8B3D16	8BBC16
	32nd character	8B3E16	8B3F16	8BBE16
	1st character	8B4016	8B4116	8BC016
Block 16	2nd character	8B4216	8B4316	8BC216
DIGORTO	31st character	: 8B7C16	: 8B7D16	: 8BF016
	32nd character	8B7E16	8B7F16	8BFE16

Table 16.4 Contents of OSD RAM (1st to 32nd character) (continued)

Block	Display Position (from left)	Character Code Specification	Color Code 1 Specification	Color Code 2 Specification
	33rd character	8C0016	8C0116	8C8016
	34th character	8C0216	8C0316	8C8216 :
	39th character	8C0C16	8C0D16	8C8C16
Block 1	40th character	8C0E16	8C0F16	8C8E16
	41st character	8E0016	8E0116	8E8016
	42nd character	8E0216	8E0316	8E8216
	33rd character	8C1016	8C1116	8C9016
	34th character		8C1316	8C9216 -
Block 2	39th character	8C1C16	8C1D16	8C9C16
DIUCK Z	40th character	8C1E16	8C1F16	8C9E16
	41st character	8E0816	8E0916	8E8816
	42nd character	8E0A16	8E0B16	8E8A16
	33rd character	8C2016	8C2116	8CA016
	34th character	8C2216	8C2316	8CA216
	·	:	:	:
Block 3	39th character	8C2C16	8C2D16	8CAC16
DIOORO	40th character	$\frac{862616}{8C2E16}$	8C2F16	8CAE16
	40th character	8E1016	8E1116	8E9016
	41st character 42nd character	8E1216	8E1316	8E9216
	33rd character	8C3016	8C3116	8CB016
	34th character	$\frac{800018}{8C3216}$	8C3316	8CB216
Block 4	: 39th character	: 8C3C16	: 8C3D16	: 8CBC16
DIOCK 4	40th character	8C3E16	8C3F16	8CBE16
	41st character	8E1816	8E1916	8E9816
	42nd character	8E1A16	8E1B16	8E9A16
	33rd character	8C4016	8C4116	8CC016
	34th character		8C4316	8CC216
Block 5	39th character	8C4C16	8C4D16	8CCC16
DIOORO	40th character	8C4E16	8C4F16	8CCE16
	41st character	8E2016	8E2116	8EA016
	42nd character	8E2216	8E2316	8EA216
	33rd character	8C5016	8C5116	8CD016
	34th character	8C5216	8C5316	8CD216 :
Block 6	39th character	8C5C16	8C5D16	8CDC16
DIOOR U	40th character	8C5E16	8C5F16	8CDE16
	41st character	8E2816	8E2916	8EA816
	42nd character	8E2A16	8E2B16	8EAA16
	33rd character	8C6016	8C6116	8CE016
	34th character		8C6316	8CE216
Dia da 7	:	:	:	:
Block 7		8C6C16	<u>8C6D16</u>	<u>8CEC16</u>
	40th character	8C6E16	8C6F16	8CEE16
	41st character	8E3016	8E3116	8EB016
	42nd character	8E3216	8E3316	8EB216

Table 16.5 Contents of OSD RAM (33rd to 42nd character)

Block	Display Position (from left)	Character Code Specification	Color Code 1 Specification	Color Code 2 Specificatio
	33rd character	8C7016	8C7116	8CF016
	34th character	8C7216	8C7316	8CF216
	39th character	: 8C7C16	: <u>8C7D</u> 1 <u>6</u>	: <u>8CFC16</u>
Block 8	40th character	8C7E16	8C7F16	8CFE16
	41st character	8E3816	8E3916	8EB816
	42nd character	8E3A16	8E3B16	8EBA16
	33rd character	8D0016	8D0116	8D8016
	34th character	8D0216	8D0316	8D8216
	:	:	:	:
Block 9		<u>8D0C16</u>	<u>8D0D16</u>	8D8C16
	40th character	8D0E16	8D0F16	8D8E16
	41st character	8E4016	8E4116	8EC016
	42nd character	8E4216	8E4316	8EC216
	33rd character	8D1016	8D1116	8D9016
	34th character	8D1216	8D1316	8D9216
	:	:	:	:
Block 10	39th character	8D1C16	8D1D16	8D9C16
	40th character	8D1E16	8D1F16	8D9E16
	41st character	8E4816	8E4916	8EC816
	42nd character	8E4A16	8E4B16	8ECA16
	33rd character	8D2016	8D2116	8DA016
	34th character	8D2216	8D2316	8DA216
Block 11	: 39th character	: 8D2C16	: 8D2D16	: 8DAC16
	40th character	8D2E16	8D2F16	8DAE16
	41st character	8E5016	8E5116	8ED016
	42nd character	8E5216	8E5316	8ED216
	33rd character	<u>8D3016</u>	8D3116	8DB016
	34th character	8D3216	8D3316	8DB216
	:	:	:	:
Block 12	39th character	8D3C16	8D3D16	8DBC16
	40th character	8D3E16	8D3F16	8DBE16
	41st character	8E5816	8E5916	8ED816
	42nd character	8E5A16	8E5B16	8EDA16
	33rd character	<u>8D4016</u>	<u>8D41</u> 16	8DC016
	34th character	8D4216	8D4316	8DC216
Block 13	39th character	: <u>8D4C16</u>	8D4D16	8DCC16
	40th character	8D4E16	8D4F16	8DCE16
	41st character	8E6016	8E6116	8EE016
	42nd character	8E6216	8E6316	8EE216
	33rd character	8D5016	8D5116	8DD016
	34th character	8D5216	8D5316	8DD216
Block 14	:	:	:	:
DIUCK 14	39th character	8D5C16	8D5D16	8DDC16
	40th character	8D5E16	8D5F16	8DDE16
	41st character	8E6816	8E6916	8EE816
	42nd character	8E6A16	8E6B16	8EEA16

Table 16.6 Contents of OSD RAM (33rd to 42nd character) (continued)

Block	Display Position (from left)	Character Code Specification	Color Code 1 Specification	Color Code 2 Specification
	33rd character	8D6016	8D6116	8DE016
	34th character	8D6216	8D6316	8DE216
	:	:	:	:
Disch 45	39th character	<u>8D6C16</u>	<u>8D6D16</u>	<u>8DEC16</u>
Block 15	40th character	8D6E16	8D6F16	8DEE16
	41st character	8E7016	8E7116	8EF016
	42nd character	8E7216	8E7316	8EF216
	33rd character	8D7016	8D7116	8DF016
	34th character	8D7216	8D7316	8DF216
	:	:	:	:
Block 16	39th character	<u> </u>	<u>8D7D16</u>	<u>8DFC16</u>
	40th character	8D7E16	8D7F16	8DFE16
	41st character	8E7816	8E7916	8EF816
	42nd character	8E7A16	8E7B16	8EFA16

Table 16.7 Contents of OSD RAM (33rd to 42nd character) (continued)

b2	b		b0	bī				1				1	b(b7									b(
C9	RC	21	RC20		17 F	RC16	RC15	RC14	RC	:13	RC12	RC11		8	C7		C6	C5		24	C3	C2	C1	C
Co	Color code 2 Color code 1																C	Chara	lcte	r code				
				СС	C mo	ode					(DSDS	/L/P	mod	de							D mod	е	
Bit		В	it nar	ne	\downarrow	F	uncti	on		B	Bit nar	ne		F	Funct	tion			Bit r	nam	е	F	unctio	on
C0 C1 C2 C3 C4 C5 C6	(L	-	harac code order		ts)	chara	Specif cter c SD R0	ode in	(L		harac code order)	hara	Spec acter SD F	cod			CD (7	cod bits)	-	char O	Specify acter of in SD RC olor do	code M
C7 C8	-																		Not	use	d			
RC11 RC12	Characte	se	electi Color	palet on bit palet on bit	t 0 tte	fo	y color chara ee not		Character	S	electi Color	palett on bit palett on bit	0 '	fo	y colo r char ee no	racte	r		Colo				or palet or palet	
RC13				palet on bit					Ĩ			palett on bit									alette bit 0			
RC14		Ital	ic co	ntrol	1	: Itali	c OFF c ON					palett on bit						Doto	Colo	or p	alette bit 1	Specify a dot which selects color palette 0		
RC15 RC16	U		sh co rline	ontrol	rol C	: Fla:): Uno	sh OF sh ON derline derline	l 9 OFF	Character background	S	electi Color	palett on bit palett on bit	0 0 e	fo	y colo r char ee no	racte	r		selec Colo	ction	alette n bit 2 alette n bit 3	by	OSD F	ROM
RC17			T2 ou contre	utput ol				out OFF	<u> </u>		IT2 ou contro				T2 οι T2 οι		OFF	C	UT2 cor	out			T2 outp T2 outp	
RC20 RC21	Character background	se	electi Color	palet on bit palet on bit	t 0 tte	for	y color backgr ee not		Character background	S	electi Color	palett on bit palett on bit	2 e	Specify color palette for background (See note 3)			Not	use	d					
C9	Ch		cter c order	code 1 bit				racter D ROM	Ch		cter c order				fy ch in OS				Not	use	d	_		

4: Only in CDOSD mode, a dot which selects color palette 0 is colored to the color palette set and color palette by RC13 to RC16 of OSD RAM in character units. When the character size is 1.5Tc X 1H or 1.5Tc X 1/2H, however, set RCI3 to RC16 and RC17 of all characters (including the 3nth character) within the same block to the same value.

Figure 16.24 Structure of OSD RAM

(3) OSD RAM (OSD RAM for SPRITE, addresses 800016 to 83E716)

The OSD RAM for SPRITE fonts 1 and 2, consisting of 4 planes for each font, is assigned to addresses 800016 to 83E716. Each plane corresponds to each color palette selection bit and the color palette of each dot is determined from among 16 kinds.

Table 16.8 OSD RAM address (SPRITE font 1)

Planes		Plane 3	3		Plane 2				Plane	91		Plane 0				
	(Cold	r paleltte s	election bi	t 3)	(Colo	or paleltte s	selection bi	t 2)	(Co	lor paleltte	selection	bit 1)	(Co	lor paleltte	selection	bit 0)
Dots	1 to 8	9 to 16	17 to 24	25 to 32	1 to 8	9 to 16	17 to 24	25 to 32	1 to 8	9 to 16	17 to 24	25 to 32	1 to 8	9 to 16	17 to 24	25 to 32
Bits	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0
Line 1	80C016	80C116	81C016	81C116	808016	808116	818016	818116	804016	804116	814016	814116	800016	800116	810016	810116
Line 2	80C216	80C316	81C216	81C316	808216	808316	818216	818316	804216	804316	814216	814316	800216	800316	810216	810316
			:			•	:	:	:	•	:	:		:		
Line 19	80E416	80E516	81E416	81E516	80A416	80A516	81A416	81A516	806416	806516	816416	816516	802416	802516	812416	812516
Line 20	80E616	80E716	81E616	81E716	80A616	80A716	81A616	81A716	806616	806716	816616	816716	802616	802716	812616	812716

Table 16.9 OSD RAM address (SPRITE font 2)

Planes		Plane 3	3		Plane 2				Plane	9 1		Plane 0				
	(Colo	r paleltte s	election bi	t 3)	(Colo	or paleltte s	election bi	t 2)	(Co	lor paleltte	selection	bit 1)	(Co	lor paleltte	selection	bit 0)
Dots	1 to 8	9 to 16	17 to 24	25 to 32	1 to 8	9 to 16	17 to 24	25 to 32	1 to 8	9 to 16	17 to 24	25 to 32	1 to 8	9 to 16	17 to 24	25 to 32
Bits	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0	b7 to b0
Line 1	82C016	82C116	83C016	83C116	828016	828116	838016	838116	824016	824116	834016	834116	820016	820116	830016	830116
Line 2	82C216	82C316	83C216	83C316	828216	828316	838216	838316	824216	824316	834216	834316	820216	820316	830216	830316
		:													:	
Line 19	82E416	82E516	83E416	83E516	82A416	82A516	83A416	83A516	826416	826516	836416	836516	822416	822516	832416	832516
Line 20	82E616	82E716	83E616	83E716	82A616	82A716	83A616	883A716	826616	826716	836616	836716	822616	822716	832616	832716

Character Color

As shown in Figure 16.25, there are 16 built-in color codes. Color palette 0 is fixed at transparent, and color palette 8 is fixed at black. The remaining 14 colors can be set to any of the 512 colors available. The setting procedure for character colors is as follows:

- OSDS/L/P mode 16 kinds Color palettes are set by bits RC11 to RC14 of the OSD RAM.
- CDOSD mode 16 kinds
- Color palettes are set in dot units according to CD font data.

Only in CDOSD mode, a dot which selects color palette 0 or 8 is colored to the color palette set by RC13 to RC16 of OSD RAM in character units (refer to Figure 16.25). And, selection of color palette set is possible by RC12 of OSDRAM.

- SPRITE display 16 kinds Color palettes are set in dot units according to the CD font data.
- **Notes 1:** Color palette 8 is always selected for bordering and solid space output (OUT 1 output) regardless of the set value in the register.
 - 2: Color palette 0 (transparent) and the transparent setting of other color palettes will differ. When there are multiple layers overlapping (on top of each other, piled up), and the priority layer is color palette 0 (transparent), the bottom layer is displayed, but if the priority layer is the transparent setting of any other color palette, the background is displayed without displaying the bottom layer (refer to Figure 16.27).

Character Background Color

The display area around the characters can be colored in with a character background color. Character background colors are set in character units.

• CC mode 4 kinds

Color palette selection range (color codes 0 to 3, 4 to 7, 8 to 11, or 12 to 15) can be selected by bits 1 and 2 of the OSD control register 3 (address 020716). Color palettes are set by bits RC20 and RC21 of the OSD RAM from among the selection range.

OSDS/L/P mode 16 kinds

Color palettes are set by bits RC15, RC16, RC20, and RC21 of the OSD RAM.

Note: The character background is displayed in the following part:

(character display area) – (character font) – (border). Accordingly, the character background color and the color signal for these two sections cannot be mixed.

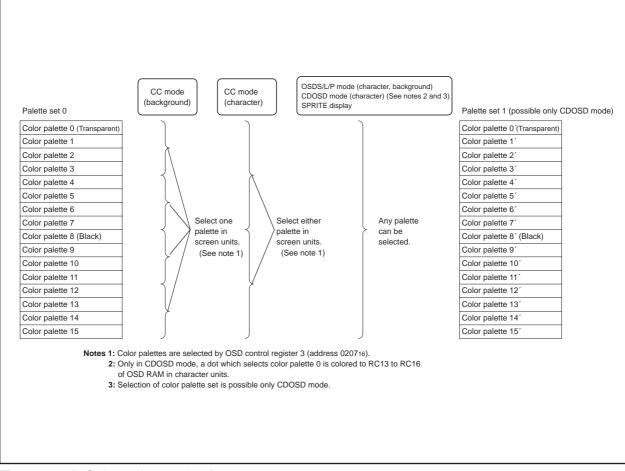


Figure 16.25 Color palette selection

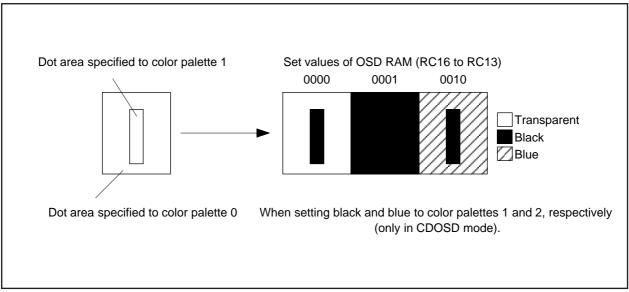


Figure 16.26 Set of color palette 0 or 8 in CDOSD mode

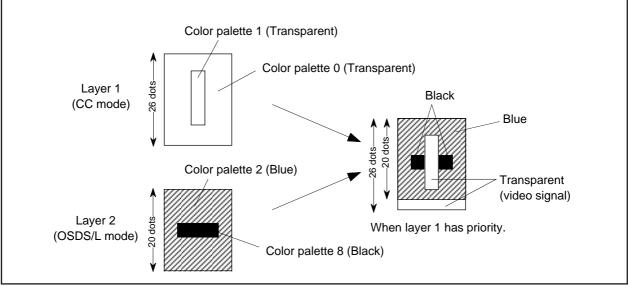


Figure 16.27 Difference between color palette 0 (transparent) and transparent setting of other color palettes

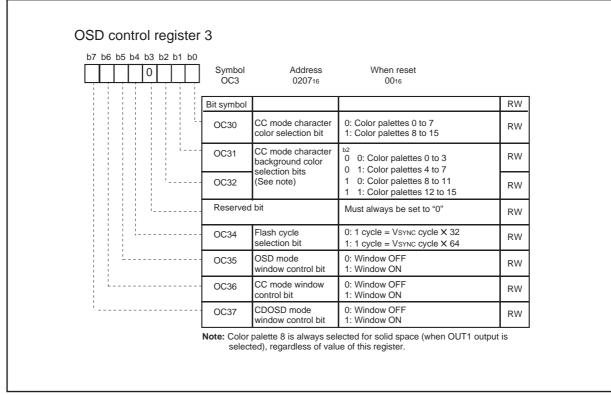


Figure 16.28 OSD control register 3

15) (b8) 7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 (b8) 7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 (b8) 15 b4 b3 b2 b1 b0 15 b4 b3	CRi (i = 1 to CRi (i = 9 to	Odd addresses w 15) Even addresses w	within addresses 024016 to 024D16, ithin addresses 024016 to 024D16 within addresses 024E16 to 025B16, ithin addresses 024E16 to 025B16	Indetermina
	Bit symbol	Bit name	Function	RW
	Ri_2 to CRi_0	R signal output control bits	b2 b1 b0 0 0 0:Vss 0 0 1:1/7V 0 1 0:2/7V 0 1 1:3/7V 1 0 0:4/7V 1 0 1:5/7V 1 1 0:6/7V 1 1 1:7/7V	RW
		ned. o write to this bit, write "0 ad, turns out to be indete		-
	Ri_6 to CRi_4	G signal output control bits	b6 b5 b4 0 0 0:Vss 0 0 1:17V 0 1 0:27V 1 0 0:4/7V 1 0 1:577V 1 1 0:6/7V 1 1 1:77V	RW
		ned. o write to this bit, write "0 ad, turns out to be indete		-
c	Ri_10 to CRi_8	B signal output control bits	b2 b1 b0 0 0 0:Vss 0 0 1:1/7V 0 1 0:2/7V 0 1 1:3/7V 1 0 0:4/7V 1 0 1:5/7V 1 1 0:6/7V 1 1 1:7/7V	RW
		ned. o write to this bit, write "0 ad, turns out to be indete		-
	CRi_12	OUT1 signal output control bit	0: No output 1: Output	RW
*		ned.) write to this bit, write "0 ad, turns out to be indete		-
Note 1: When set up color palette of the palette set 1, (address 02D516) as 1. The color palette register of the palette set 1 c			setting the bit 6 of an extended register	

Figure 16.29 Color palette register i (i = 1 to 7, 9 to 15)

OUT1, OUT2 Signals

The OUT1, OUT2 signals are used to control the luminance of the video signal. The output waveform of the OUT1, OUT2 signals is controlled by bit 6 of the color palette register i (refer to Figure 16.29), bits 0 to 2 of the block control register i (refer to Figure 16.4) and RC17 of OSD RAM. The setting values for controlling OUT1, OUT2 and the corresponding output waveform is shown in Figure 16.30.

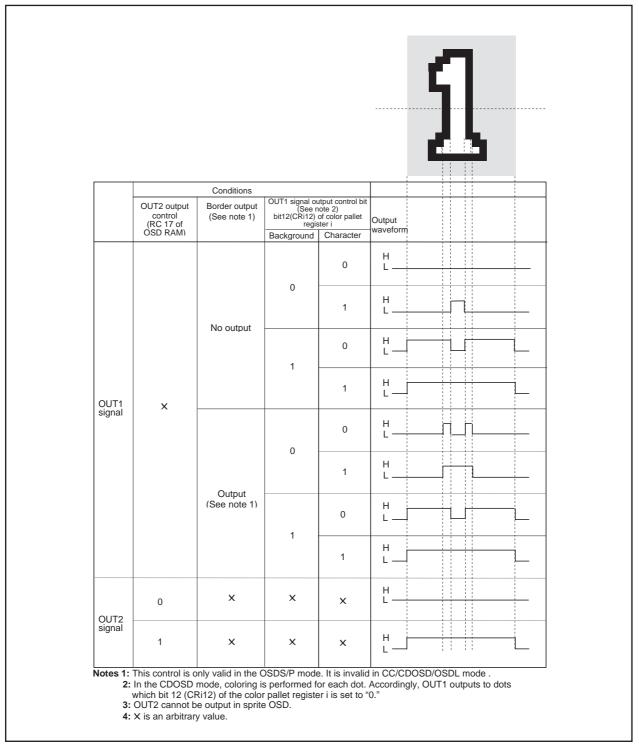


Figure 16.30 Setting value for controlling OUT1, OUT2 and corresponding output waveform

Attribute

The attributes (flash, underline, italic fonts) are controlled to the character font. The attributes to be controlled are different depending on each mode.

CC mode Flash, underline, italic for each character

OSDS/P mode Border (all bordered, shadow bordered can be selected) for each block

(1) Underline

The underline is output at the 23rd and 24th lines in vertical direction only in the CC mode. The underline is controlled by RC16 of OSD RAM. The color of underline is the same color as that of the character font.

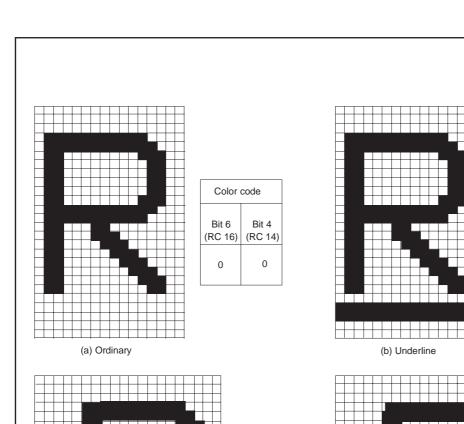
(2) Flash

The parts of the character font, the underline, and the character background are flashed only in the CC mode. The flash for each character is controlled by RC15 of OSD RAM. The ON/OFF for flash is controlled by bit 3 of the OSD control register 1 (refer to Figure 16.3). When this bit is "0," only character font and underline flash. When "1," for a character without solid space output, R, G, B and OUT1 (all display area) flash, for a character with solid space output, only R, G, and B (all display area) flash. The flash cycle bases on the VSYNC count and is selected by bit 4 of OSD control register 3.

<NTSC method>

■ When bit 4 = "0"	· VSYNC cycle X 24 \approx 400 ms (at flash ON)
	· VSYNC cycle X 8 \approx 133 ms (at flash OFF)
■ When bit 4 = "1"	 VSYNC cycle X 48 ≈ 800 ms (at flash ON)
	· VSYNC cycle X 8 \approx 267 ms (at flash OFF)

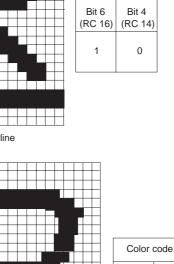
(3) Italic


The italic is made by slanting the font stored in OSD ROM to the right only in the CC mode. The italic is controlled by RC14 of OSD RAM.

The display example attribute is shown in Figure 16.31. In this case, "R" is displayed.

Notes 1: When setting both the italic and the flash, the italic character flashes.

- 2: When a flash character (with flash character background) adjoin on the right side of a non-flash italic character, parts out of the non-flash italic character is also flashed.
- **3:** OUT2 is not flashed.
- 4: When the pre-divide ratio = 1, the italic character with slant of 1 dot X 5 steps is displayed; when the pre-divide ratio = 2, the italic character with slant of 1/2 dot X 10 steps is displayed (refer to Figure 16.32 (c), (d)).
- **5**: The boundary of character color is displayed in italic. However, the boundary of character background color is not affected by the italic (refer to Figure 16.32).
- **6:** The adjacent character (one side or both side) to an italic character is displayed in italic even when the character is not specified to display in italic (refer to Figure 16.32).
- 7: When displaying the 32nd character (in 32-character mode)/42nd character (in 42-character mode) in the italic and when solid space is off (OC14 = "0"), parts out of character area is not displayed (refer to Figure 16.32).
- 8: When use the italic character which the pre-divide ratio = 1, do not use the character in which dot data exists for the right end of a font.

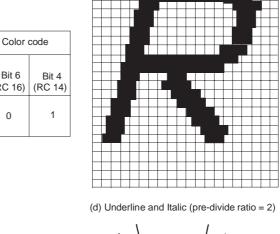


Bit 6

(RC 16)

0

Color code


Bit 4 (RC 14)

1

Bit 6

(RC 16)

0

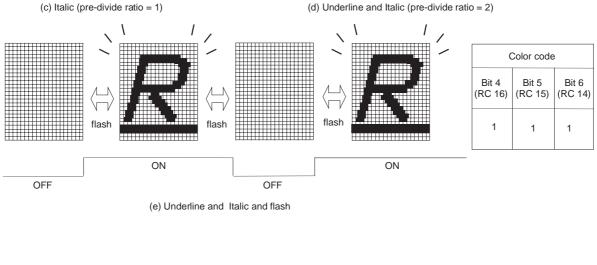


Figure 16.31 Example of attribute display (in CC mode)

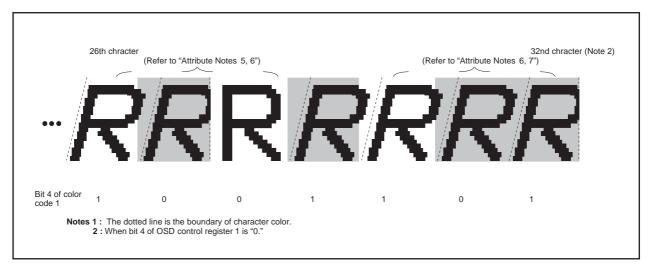
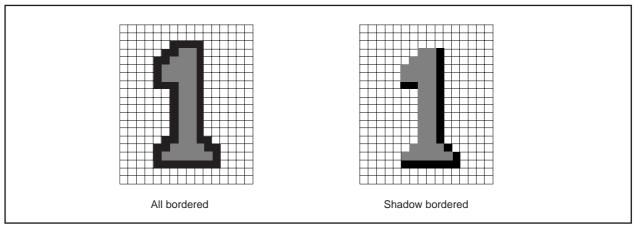


Figure 16.32 Example of italic display

(4) Border


The border is output in the OSDS/P mode. The all bordered (bordering around of character font) and the shadow bordered (bordering right and bottom sides of character font) are selected (refer to Figure 16.33) by bit 2 of the OSD control register 1 (refer to Figure 16.3). The ON/OFF switch for borders can be controlled in block units by bits 0 to 2 of the block control register i (refer to Figure 16.4).

The OUT1 signal is used for border output. The border color is fixed at color palette 8 (block). The border color for each screen is specified by the border color register i.

The horizontal size (x) of border is 1Tc (OSD clock cycle divided in the pre-divide circuit) regardless of the character font dot size. However, only when the pre-divide ratio = 2 and character size = 1.5Tc, the horizontal size is 1.5Tc. The vertical size (y) different depending on the screen scan mode and the vertical dot size of character font.

Notes 1 : The border dot area is the shaded area as shown in Figure 16.33.

- **2**: When the border dot overlaps on the next character font, the character font has priority (refer to Figure 16.36 A). When the border dot overlaps on the next character back ground, the border has priority (refer to Figure 16.36 B).
- 3: The border in vertical out of character area is not displayed (refer to Figure 16.36).

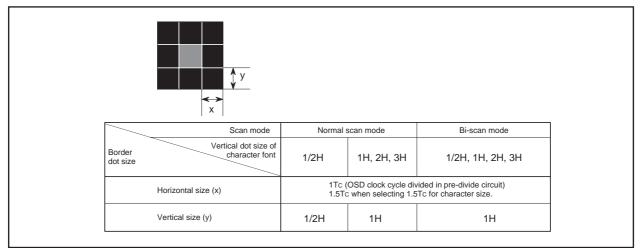


Figure 16.34 Horizontal and vertical size of border



Figure 16.35 Border area

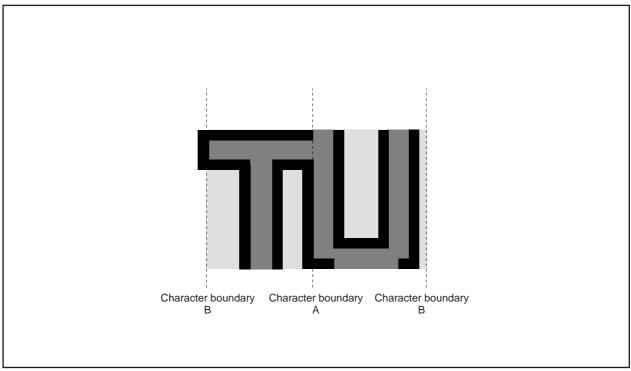


Figure 16.36 Border priority

Automatic Solid Space Function

This function generates automatically the solid space (OUT1 or OUT2 blank output) of the character area in the CC mode.

The solid space is output in the following area :

• the character area except character code "00916 "

•the character area on the left and right sides

This function is turned on and off by bit 4 of the OSD control register 1 (refer to Figure 16.3).

OUT1 or OUT2 output is selected by bit 3 of the OSD control register 2.

- **Notes 1:** When selecting OUT1 as solid space output, character background color with solid space output is fixed to color palette 8 (black) regardless of setting.
 - 2: When selecting any font except blank font as the character code "00916," the set font is output.

Bit 4 of OSD control register 1		0					1		
Bit 3 of OSD control register 2	()	1		0		1		
RC17 of OSD RAM	0	1	0	1	0	1	0	1	
OUT1 output signal	•Character •Character area		•Character •Character area	font area background	•Solid space	e area	•Character f •Character f area		
OUT2 output signal	OFF	•Character display area	OFF	•Character display area		•Character display area		•Solid space •Character display area	

Table 16.10 Setting for automatic solid space

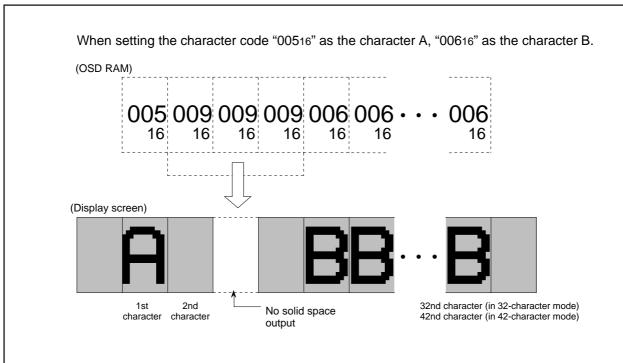


Figure 16.37 Display screen example of automatic solid space

Particular OSD Mode Block

This function can display with mixing the fonts below within the OSDP mode block. <horizontal dot structure with vertical dot structure of 20 dots>

- 16 dots
- 12 dots
- 8 dots
- 4 dots

Each font is selected by a character code. Figure 16.38 shows the display example of particular OSD mode block and Table 16.11 shows the corresponding between character codes and display fonts.

Note: As for 8 X 20-dot and 4 X 20-dot fonts, only these character background color can be displayed. And also, any character is not displayed on the right side area nor any following areas of these fonts.

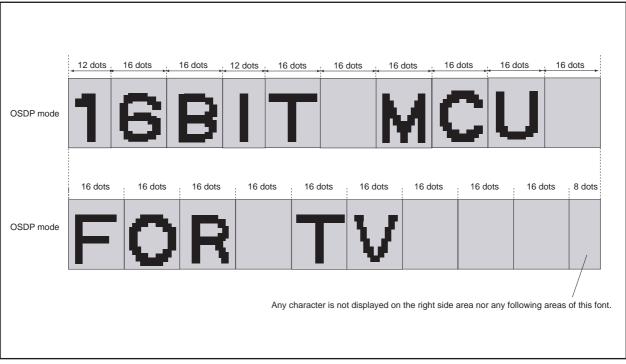


Figure 16.38 Display example of OSD mode block

Character code	Display fonts	Notes
00016 to 0EF16, 10016 to 2FF16 (except 10016, 18016, 20016, 28016)		
0F016 to 0FD16	Not displayed	 The left 12-dot part (16 × 12 dots) of set font is displayed. In CC and OSDS modes, entire part (16 × 20 dots) of set font is displayed.
3FE16		 The blank font (only character background) is displayed. Any character is not displayed on the right side area nor any following areas of this font. Do not set this font for the 1st character (left edge) of a block.
3FF16		 The blank font (only character background) is displayed. Any character is not displayed on the right side area nor any following areas of this font. Do not set this font for the 1st character (left edge) of a block.

Table 16.11 Corresponding between character codes and display fonts

Multiline Display

This microcomputer can ordinarily display 16 lines on the CRT screen by displaying 16 blocks at different vertical positions. In addition, it can display up to 16 lines by using OSD1 interrupts.

An OSD1 interrupt request occurs at the point at which display of each block has been completed. In other words, when a scanning line reaches the point of the display position (specified by the vertical position registers) of a certain block, the character display of that block starts, and an interrupt occurs at the point at which the scanning line exceeds the block. The mode in which an OSD1 interrupt occurs is different depending on the setting of the OSD control register 2 (refer to Figure 16.7).

When bit 7 of the OSD control register 2 is "0"

An OSD1 interrupt request occurs at the completion of layer 1 block display.

• When bit 7 of the OSD control register 2 is "1"

An OSD1 interrupt request occurs at the completion of layer 2 block display.

- Notes 1: An OSD1 interrupt does not occur at the end of display when the block is not displayed. In other words, if a block is set to off display by the display control bit of the block control register i (addresses 021016 to 021F16), an OSD1 interrupt request does not occur (refer to Figure 16.39 (A)).
 - 2: When another block display appears while one block is displayed, an OSD1 interrupt request occurs only once at the end of the another block display (refer to Figure 16.39 (B)).
 - **3:** On the screen setting window, an OSD1 interrupt occurs even at the end of the CC mode block (off display) out of window (refer to Figure 16.39 (C)).

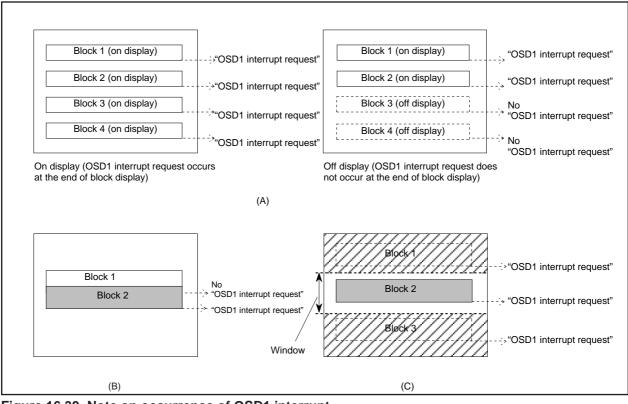


Figure 16.39 Note on occurrence of OSD1 interrupt

SPRITE OSD Function

This is especially suitable for cursor and other displays as its function allows for display in any position, regardless of the validity of block OSD displays or display positions. SPRITE font consists of 2 characters: SPRITE fonts 1 and 2. Each SPRITE font is a RAM font consisting of 32 horizontal dots X 20 vertical dots, 4 planes, and 4 bits of data per dot. Each plane has corresponding color palette selection bit, and 16 kinds of color palettes can be selected by the plane bit combination (three bits) for each dot. The color palette is set in dot units according to the OSD RAM (SPRITE) contents from among the selection range. It is possible to add arbitrary font data by software as the SPRITE fonts consist of RAM font.

The SPRITE OSD control register can control SPRITE display and dot size. The display position can also be set independently of the block display by the SPRITE horizontal position registers and the sprite horizontal vertical position registers. The vertical fonts 1 and 2 can be set independently. OSD2 interrupt request occurs at each completion of font display. The horizontal position is set in 2048 steps in 2Tosc units, and the vertical position is set in 1024 steps in 1TH units.

When SPRITE display overlaps with other OSD displays, SPRITE display is always given priority. However, the SPRITE display overlaps with the display which includes OUT2 output, OUT2 in the OSD is output without masking.

Notes 1: The SPRITE OSD function cannot output OUT2.

- **2:** When using SPRITE OSD, do not set HS \leq "00316", HS \geq "80016."
- 3: When using SPRITE OSD, do not set VSi = "00016," VSi ≥ "40016."
- **4:** When displaying with SPRITE fonts 1 and 2 overlapped, the SPRITE font with a larger set value as the vertical display start position is displayed. When the set values of the vertical display start position are the same, the SPRITE font 1 is displayed.

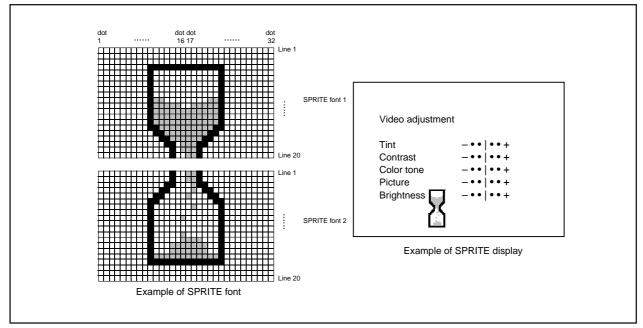


Figure 16.40 SPRITE OSD display example

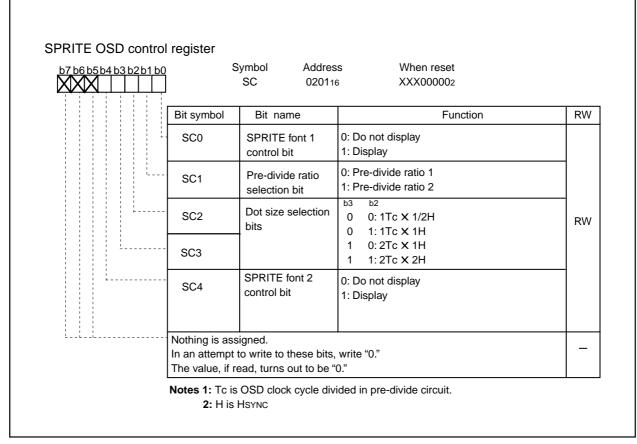


Figure 16.41 SPRITE OSD control register

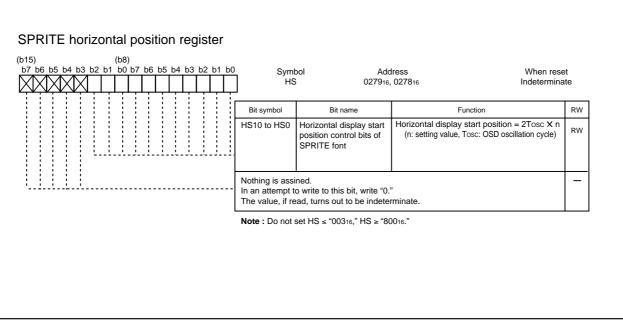
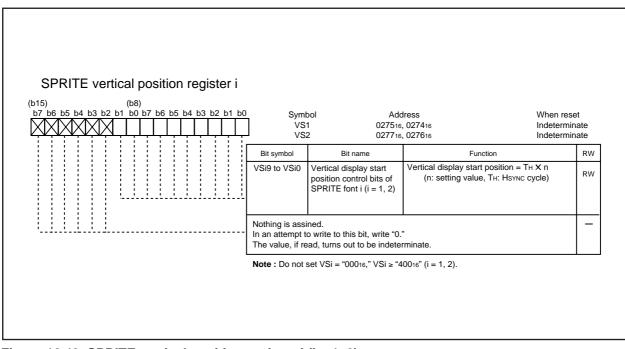
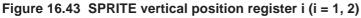




Figure 16.42 SPRITE horizontal position register

Window Function

The window function can be set windows on-screen and output OSD within only the area where the window is set.

The ON/OFF for vertical window function is performed by bit 5 of the OSD control register 1 and is used to select vertical window function or vertical blank function by bit 6 of the OSD control register 2. Accordingly, the vertical window function cannot be used simultaneously with the vertical blank function. The display mode to validate the window function is selected by bits 5 to 7 of the OSD control register 3. The top border is set by the top border control register (TBR) and the bottom border is set by the bottom border (BBR).

The ON/OFF for horizontal window function is performed by bit 4 of the OSD control register 2 and is used interchangeably for the horizontal blank function with bit 5 of the OSD control register 2. Accordingly, the horizontal blank function cannot be used simultaneously with the horizontal window function. The display mode to validate the window function is selected by bits 5 to 7 of the OSD control register 3. The left border is set by the left border control register (LBR), and the right border is set by the right border control register (RBR).

- **Notes 1:** Horizontal blank and horizontal window, as well as vertical blank and vertical window can not be used simultaneously.
 - 2: When the window function is ON by OSD control registers 1 and 2, the window function of OUT2 is valid in all display mode regardless of setting value of the OSD control register 3 (bits 5 to 7). For example, even when make the window function valid in only CC mode, the function of OUT2 is valid in OSDS/L/P and CDOSD modes.
 - **3:** As for SPRITE display, the window function does not operate.

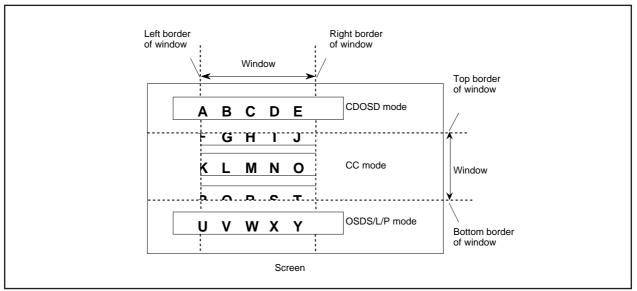


Figure 16.44 Example of window function (When CC mode is valid)

Blank Function

The blank function can output blank (OUT1) area on all sides (vertical and horizontal) of the screen. This provides the blank signal, wipe function, etc., when outputting a 3 : 4 image on a wide screen.

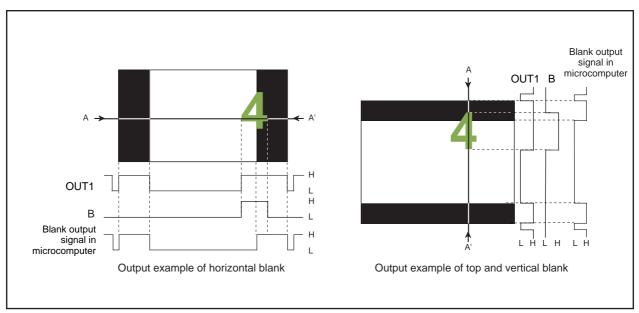
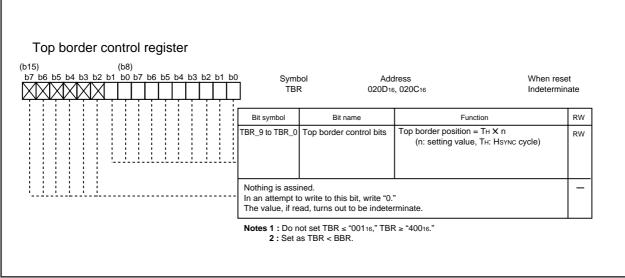
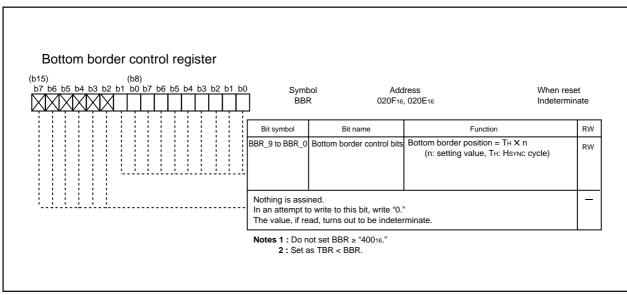
The ON/OFF for vertical blank function is performed by bit 5 of the OSD control register 1 and is used to select vertical window function or vertical blank function by bit 6 of the OSD control register 2. Accordingly, the vertical blank function cannot be used simultaneously with the vertical window function. The top border is set by the top border control register (TBR), and the bottom border is set by the bottom border control register (BBR), in 1H units.

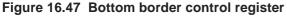
The ON/OFF for horizontal blank function is performed by bit 4 of the OSD control register 2 and is used interchangeably for the horizontal window function with bit 5 of the OSD control register 2. Accordingly, the horizontal blank function cannot be used simultaneously with the horizontal window function. The left border is set by the left border control register (LBR) and the right border is set by the right border control register (RBR), in 4Tosc units.

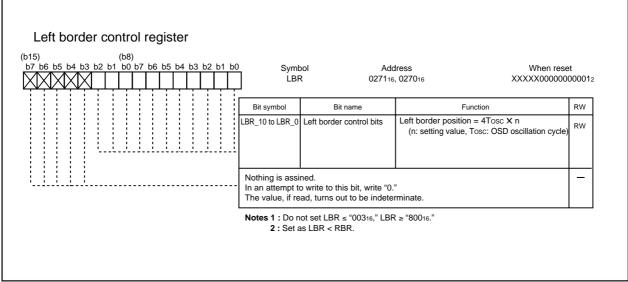
The OSD output (except raster) in area with blank output is not deleted.

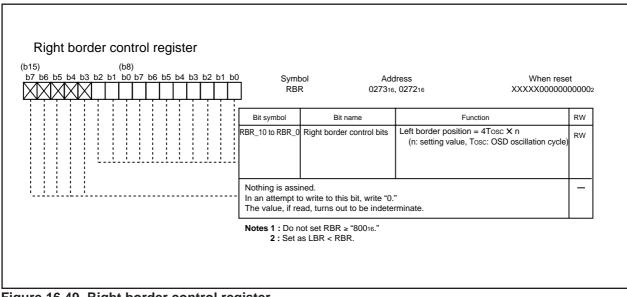
These blank signals are not output in the horizontal/vertical blanking interval.

- **Notes 1.** Horizontal blank and horizontal window, as well as vertical blank and vertical window can not be used simultaneously.
 - 2. When using the window function, be sure to set "1" to bit 0 of OSD control register 1.


Figure 16.45 Blank output example (when OSD output is B + OUT1)





Raster Coloring Function

An entire screen (raster) can be colored by setting the bits 6 to 0 of the raster color register. Since each of the R, G, B, OUT1, and OUT2 pins can be switched to raster coloring output, 512 raster colors can be obtained.

When the character color/the character background color overlaps with the raster color, the color (R, G, B, OUT1, OUT2), specified for the character color/the character background color, takes priority of the raster color. This ensures that the character color/the character background color is not mixed with the raster color.

The raster color register is shown in Figure 16.50, the example of raster coloring is shown in Figure 16.51.

Note: Raster is not output to the area which includes blank area.

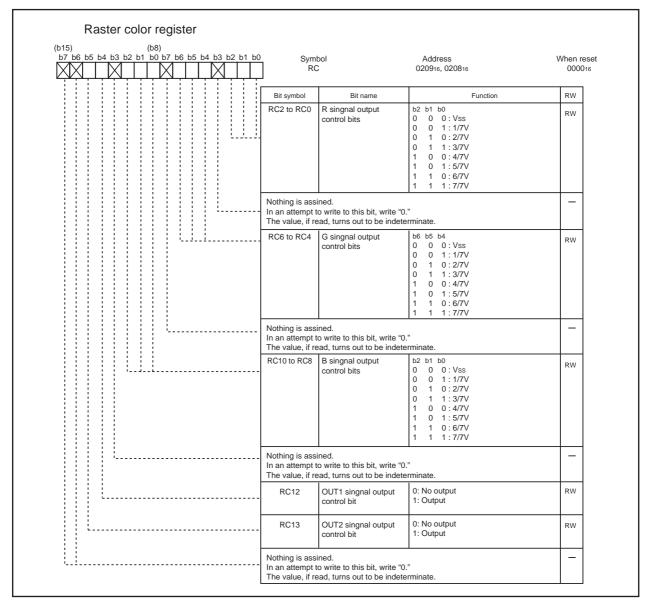


Figure 16.50 Raster color register

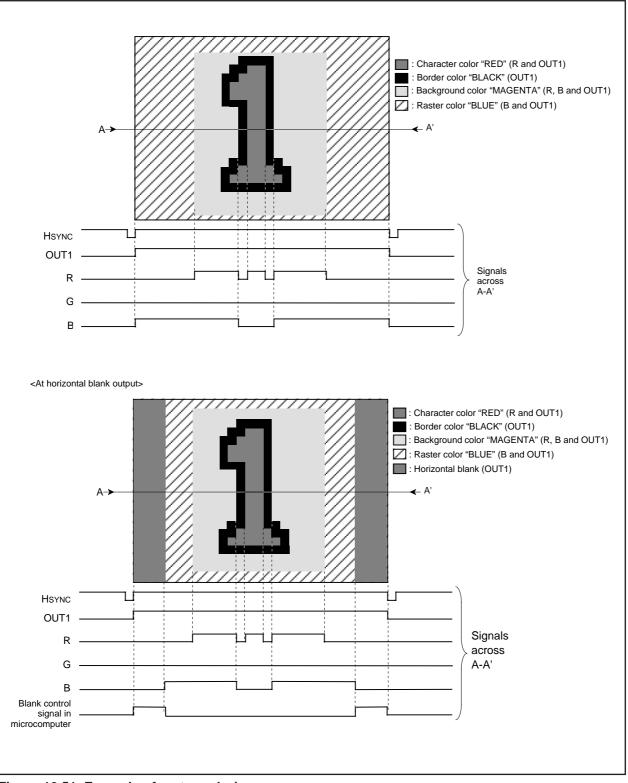


Figure 16.51 Example of raster coloring

Scan Mode

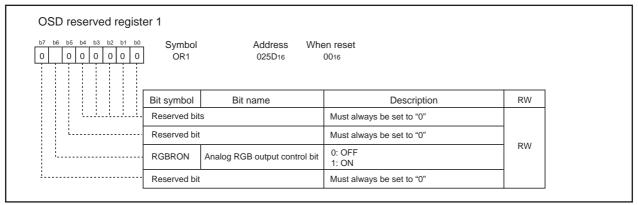
This microcomputer has the bi-scan mode for corresponding to HSYNC of double speed frequency. In the bi-scan mode, the vertical start display position and the vertical size is two times as compared with the normal scan mode. The scan mode is selected by bit 1 of the OSD control register 1 (refer to Figure 16.3).

Table 16.12 Setting for scan mode

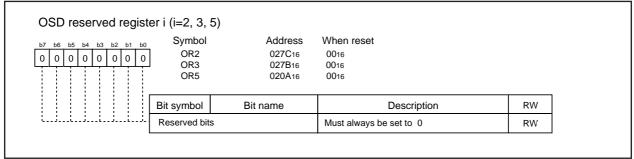
Parameter Scan Mode	Normal Scan	Bi-Scan
Bit 1 of OSD control register 1	0	1
Vertical display start position	Value of vertical position register X 1H	Value of vertical position register X 2H
Vertical dot size	1Tc X 1/2H	1Tc X 1H
	1Tc X 1H	1Tc X 2H
	2Tc X 2H	2Tc X 4H
	3Tc 🗙 3H	3Tc × 6H

R, G, B Signal Output Control

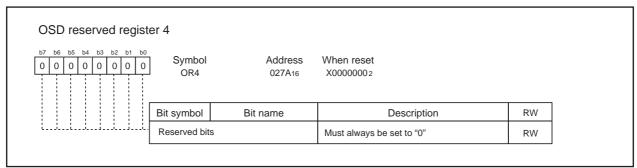
The form of R, G, B signal output is controlled by bit 4 of the clock register and bit 2 of the OSD control register 2 as the table below.

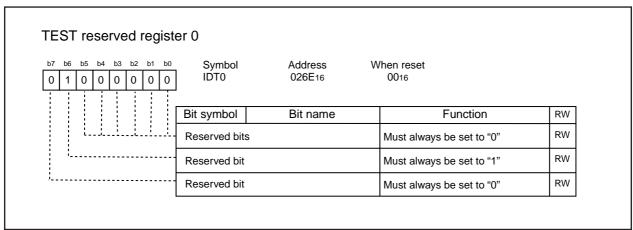

Table 16.13 R, G, B signal output control

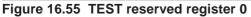
	, O, D Signal O		
Bit 4 of clock	Bit 2 of OSD	Bit 0 of extended	
control register 1	control register 2	register	Form of R, G, B signal output
(address 020516)	(address 020316)	(address 02D516)	
0	0	1	Each R, G, B pin outputs 2 values (digital output).
0	1	0	Each R, G, B pin outputs 8 values (analog output). (Note 1)
			DIGR0, DIGR1, DIGR2
			DIGG0, DIGG1, DIGG2
1	0	0	DIGB0, DIGB1, DIGB2
	Ŭ	Ŭ	Each of these pins output two-level values.
			(Corresponding to each signal output control bit in color palette
			register i)
			DIGR0~2 correspond to CRi0~2, respectively.
			DIGG0~2 correspond to CRi4~6, respectively.
			DIGB0~2 correspond to CRi8~10, respectively.


Note 1: In addition to this, set the ANARGBCLKEN bit (address 02DE16, bit 4) and the RGBRON bit (address 025D16, bit 6) to "1."Also, set the ANARGBCAPON bit (address 2DE, bit3) and attach the capacitor for analog RGB internal operation stability (0.47 μF (reference value)) to the CAP pin.

2: To use the OUT1 and OUT2 pin, set the OUT1EN bit (address 02DB16, bit 4) and the OUT2EN bit (address 02DB16, bit 5) to "1."


OSD Reserved Register


Figure 16.52 OSD reserved register 1



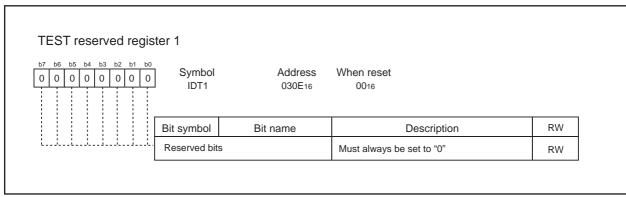


Figure 16.56 TEST reserved register 1

TB0IN noise filter

The noise filter is built in the input of a TB0IN pin. ON/OFF of a noise filter and selection of a filter clock are performed in the bit 2 to bit 4 of extended register 1D.

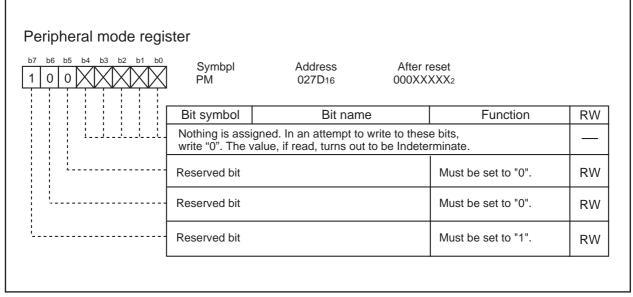


Figure 16.57 Peripheral mode register

Programmable I/O Ports

The programmable input/output ports (hereafter referred to simply as "I/O ports") consist of 75 lines P0 to P10. Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high every 4 lines.

Figures 17.1 to 17.5 show the I/O ports. Figure 17.6 shows the I/O pins.

Each pin functions as an I/O port, a peripheral function input/output, or a bus control pin.

(1) Port Pi Direction Register (PDi Register, i = 0 to 10)

Figure 17.7 shows the PDi registers.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

During memory extension and microprocessor modes, the PDi registers for the pins functioning as bus control pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA, and BCLK) cannot be modified.

No direction register bit for P85 is available.

(2) Port Pi Register (Pi Register, i = 0 to 10)

Figure 17.8 show the Pi registers.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the input/output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

During memory extension and microprocessor modes, the PDi registers for the pins functioning as bus control pins (A0 to A19, D0 to D15, $\overline{CS0}$ to $\overline{CS3}$, \overline{RD} , $\overline{WRL/WR}$, $\overline{WRH/BHE}$, ALE, \overline{RDY} , \overline{HOLD} , \overline{HLDA} , and BCLK) cannot be modified.

(3) Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers) Figure 17.10 shows the PUR0 to PUR2 registers.

The PUR0 to PUR2 register bits can be used to select whether or not to pull the corresponding port high in 4 bit units. The port chosen to be pulled high has a pull-up resistor connected to it when the direction bit is set for input mode.

However, the pull-up control register has no effect on P0 to P3, P40 to P43, and P5 during memory extension and microprocessor modes. Although the register contents can be modified, no pull-up resistors are connected.

(4) Port Control Register (PCR Register)

Figure 17.11 shows the port control register.

When the P1 register is read after setting the PCR register's PCR0 bit to "1", the corresponding port latch can be read no matter how the PD1 register is set.

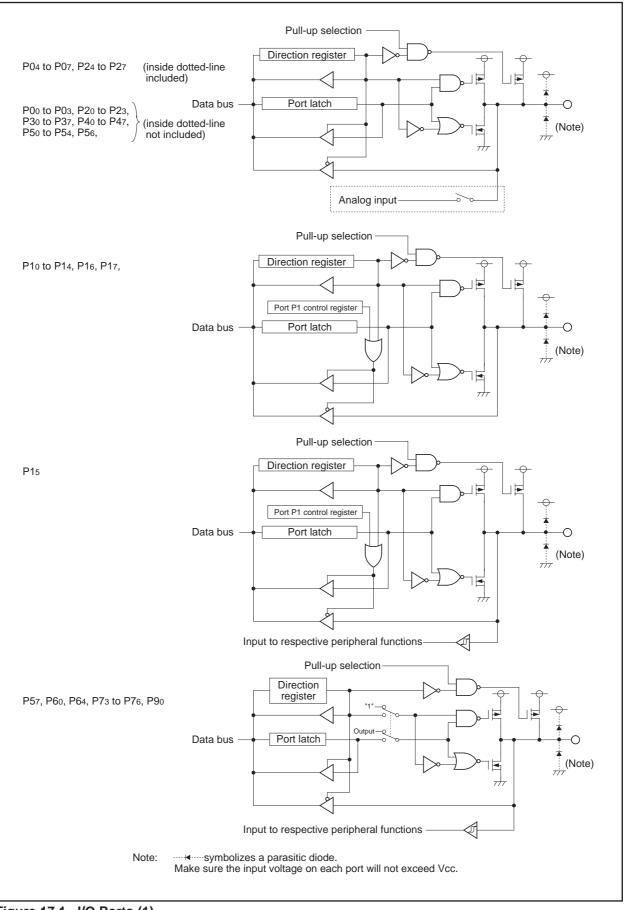
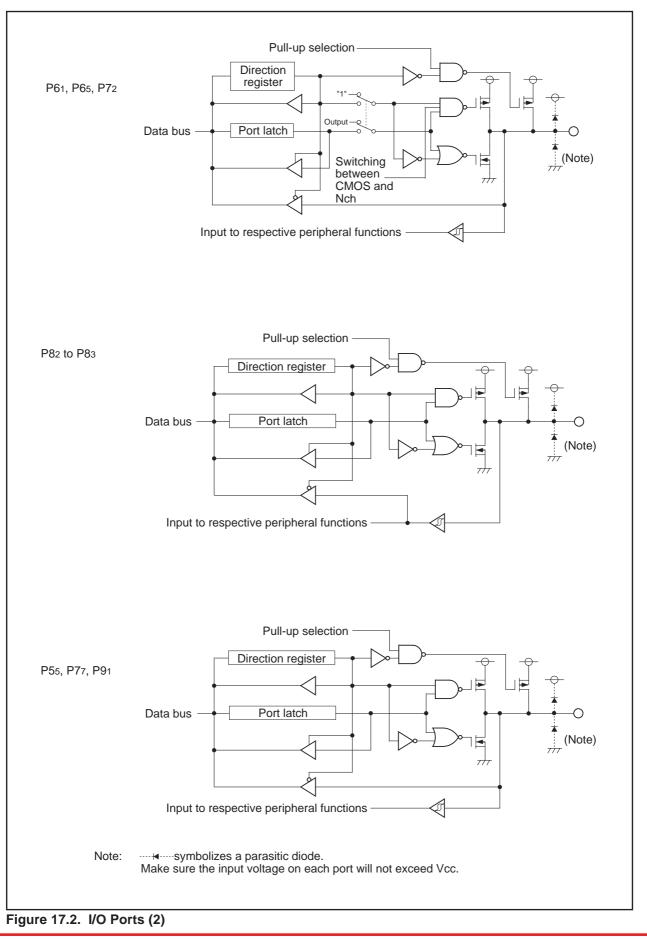
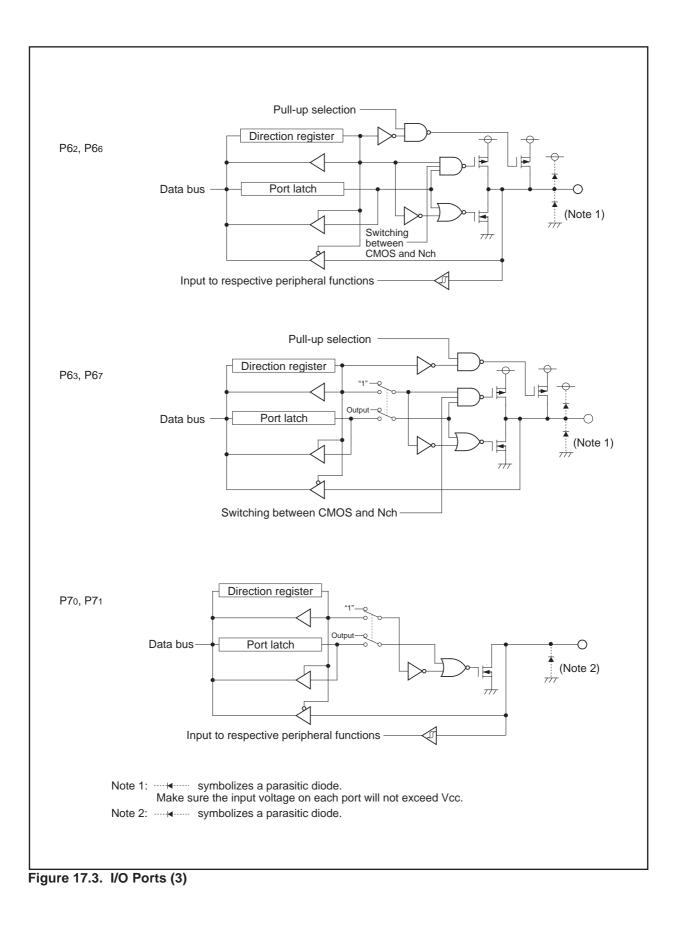




Figure 17.1. I/O Ports (1)

RENESAS

RENESAS

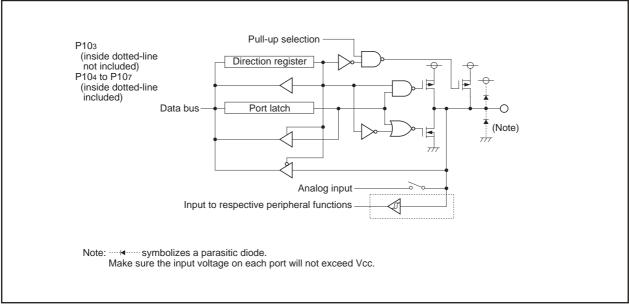
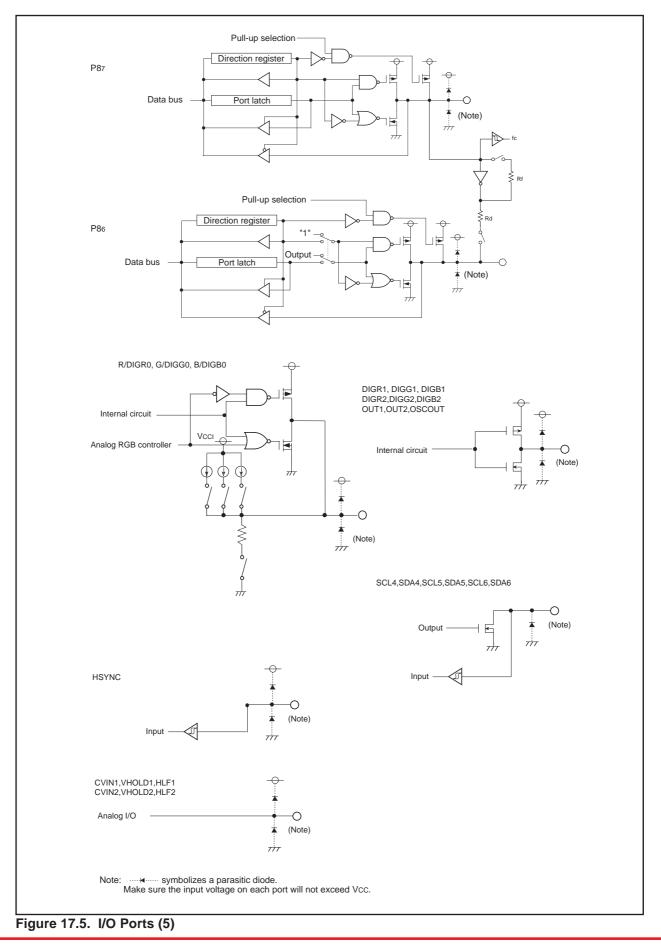



Figure 17.4. I/O Ports (4)

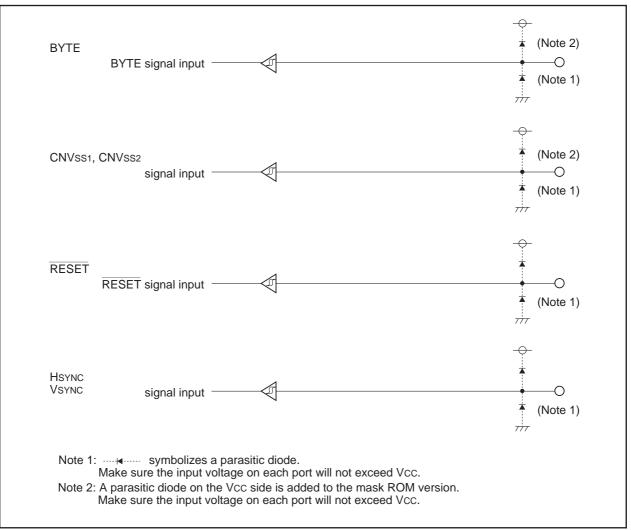
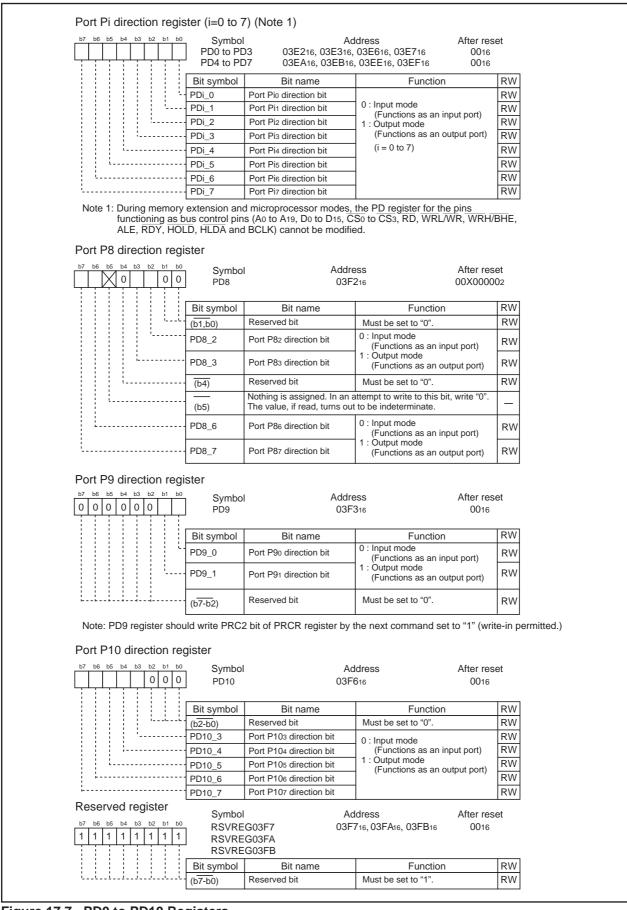



Figure 17.6. I/O Pins

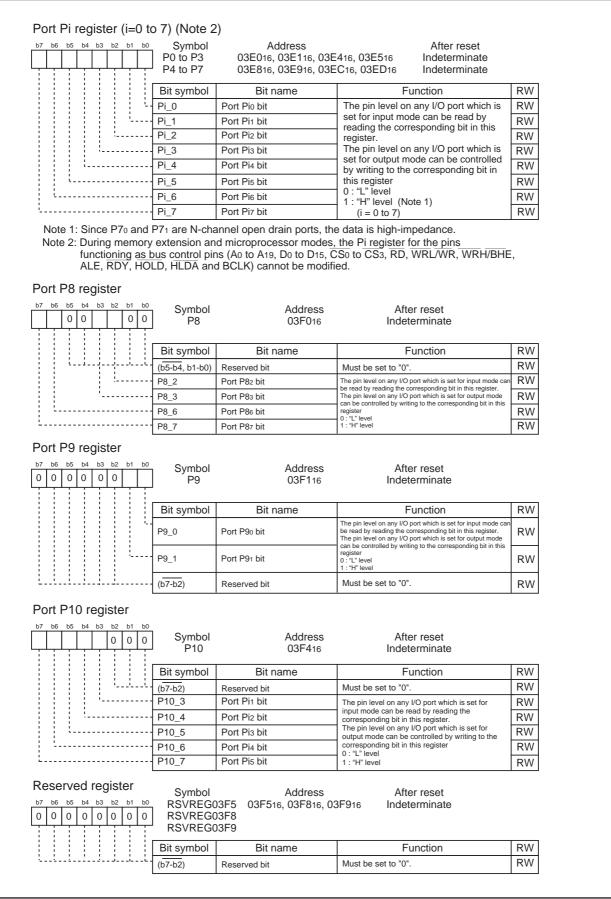
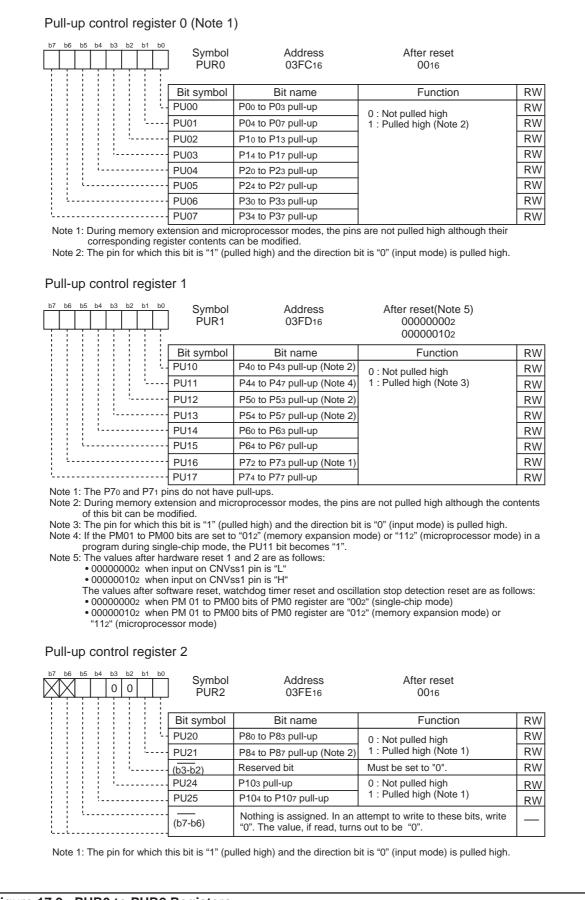



Figure 17.8. P0 to P10 Registers

Figure 17.9. PUR0 to PUR2 Registers

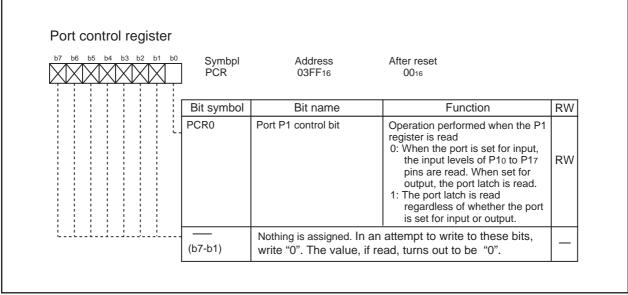


Figure 17.10. PCR Register

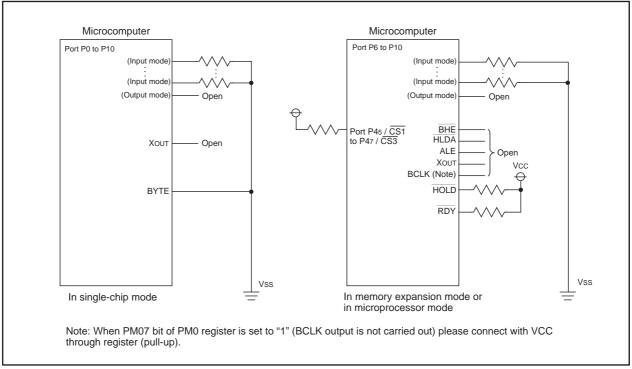
Pin name	Connection
Ports P0 to P10	After setting for input mode, connect every pin to Vss via a resistor(pull-down); or after setting for output mode, leave these pins open. (Note 1)
XOUT (Note 2)	Open
BYTE	Connect to Vss

Table 17.1.	Unassigned Pin	Handling in Single-chip Mode
-------------	----------------	------------------------------

Note 1: When the ports P70 and P71 are set for output mode, make sure a low-level signal is output from the pins. The ports P70 and P71 are N-channel open-drain outputs.

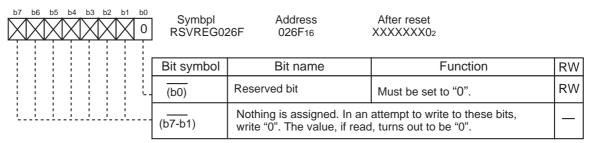
Note 2: With external clock input to XIN pin.

Table 17.2. Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode


Pin name	Connection
Ports P6 to P10	After setting for input mode, connect every pin to Vss via a resistor (pull-down); or after setting for output mode, leave these pins open. (Note 1, 2)
P45 / CS1 to P47 / CS3	Connect to Vcc via a resistor (pulled high) by setting the PD4 register's corresponding direction bit for CSi (i=1 to 3) to "0" (input mode) and the CSR register's CSi bit to "0" (chip select disabled).
BHE, ALE, HLDA, XOUT(Note 3), BCLK (Note 4)	Open
HOLD, RDY	Connect via resistor to Vcc2 (pull-up)

Note 1: If the CNVss1 pin has the Vss level applied to it, these pins are set for input ports until the processor mode is switched over in a program after reset. For this reason, the voltage levels on these pins become indeterminate, causing the power supply current to increase while they remain set for input ports.

Note 2: When the ports P70 and P71 are set for output mode, make sure a low-level signal is output from the pins. The ports P70 and P71 are N-channel open-drain outputs.


Note 3: With external clock input to XIN pin.

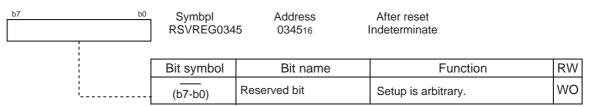
Note 4: If the PM07 bit in the PM0 register is set to "1" (BCLK output is not carried out), connect this pin to Vcc via a resistor (pulled high).

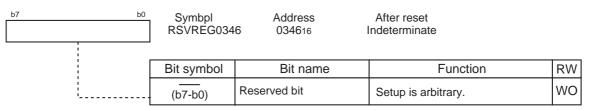
Figure 17.11. Unassigned Pins Handling

RENESAS

$\overbrace{\begin{array}{c} b7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	Symbpl RSVREG03	Address 30F 030F16	After reset XXXXXXX02	
	Bit symbol	Bit name	Function	RW
	(b0)	Reserved bit	Must be set to "0".	RW
	(b7-b1)	Nothing is assigned. In an write "0". The value, if read	attempt to write to these bits, l, turns out to be "0".	_

b7 b0	Symbpl RSVREG034	Address 2 034216 I	After reset Indeterminate	
[Bit symbol	Bit name	Function	RW
	(b7-b0)	Reserved bit	Setup is arbitrary.	WO


Reserved register


b7	b0	Symbpl RSVREG034	Address 3 034316	After reset Indeterminate	
		Bit symbol	Bit name	Function	RW
		(b7-b0)	Reserved bit	Setup is arbitrary.	wo

Reserved register

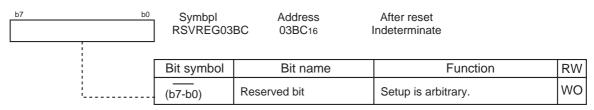
b7 b0	Symbpl RSVREG034	Address 4 034416	After reset Indeterminate	
	Bit symbol	Bit name	Function	RW
	(b7-b0)	Reserved bit	Setup is arbitrary.	WO

Reserved register

Reserved register

b7	b6	b5	b4	b3	b2	b1	b0	Symbol	Address	After reset		
0	0	0	0	0	0	0	0	RSVREG03		0016		
<u>ل</u> ب							÷					
	1	1	- 1	- 1		1	1.					_
	1	1		1				Bit symbol	Bit name	Function	RW	/
į.		!_	÷.	j.	j.	j.		(b7-b0)	Reserved bit	Must be set to "0".	RW	7

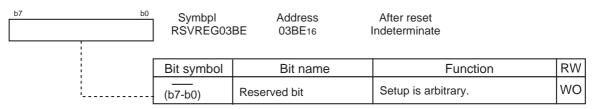
Reserved register

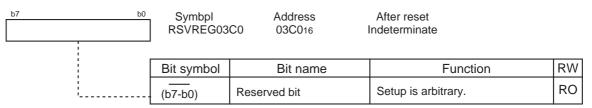

b7	b6	b5	b4	b3	b2	b1	b0	Symbol	Address	After reset		
0	0	0	0	0	0	0	0	RSVREG0		0016		
			-	-		-						
	ł							Bit symbol	Bit name	Fun	ction	RW
ĺ.	Ĺ .		i.	j.	j.			(b7-b0)	Reserved bit	Must be set to "0	".	RW

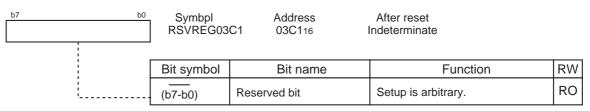
Reserved register

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbpl RSVREG03 RSVREG03		After reset 0016 0016	
	Bit symbol	Bit name	Function	RW
	(b5-b0)	Reserved bit	Must be set to "0".	RW
<u> </u>	(b7-b6)	Nothing is assigned. In an write "0". The value, if read	attempt to write to these bits, I, turns out to be "0".	_

b7	b0		Address 34C 034C16	After reset Indeterminate	
		Bit symbol	Bit name	Function	RW
		(b7-b0)	Reserved bit	Setup is arbitrary.	WO

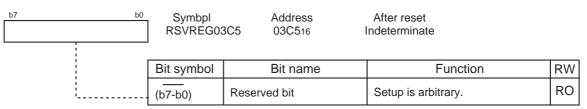



Reserved register

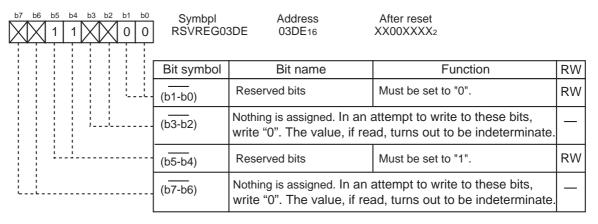

b7	b0	Symbpl RSVREG03	Address BD 03BD16	After reset Indeterminate	
		Bit symbol	Bit name	Function	RW
		(b7-b0)	Reserved bit	Setup is arbitrary.	WO

Reserved register

Reserved register


b7	^{b0} Symbpl RSVREG0	Address 3C2 03C216	After reset Indeterminate	
	Bit symbol	Bit name	Function	RW
	(b7-b0)	Reserved bit	Setup is arbitrary.	RO

Reserved register


b7	b0	Symbpl RSVREG03	Address 3C3 03C316	After reset Indeterminate	
	[Bit symbol	Bit name	Function	RW
		(b7-b0)	Reserved bit	Setup is arbitrary.	RO

Reserved register

b7 b0	Symbpl RSVREG03	Address 3C4 03C4 ₁₆	After reset Indeterminate	
	Bit symbol	Bit name	Function	RW
	(b7-b0)	Reserved bit	Setup is arbitrary.	RO

b7	b6 0	b5 0	b4 0	b3 0	b2 0	1)	Symbpl RSVREG03	3DF	Address 03DF16	1	After reset 0016	
			1					Bit symbol		Bit name		Function	RW
	į.				j		 . [(b6-b0)	Reserv	ed bits	ſ	Must be set to "0".	RW
l							 . [(b7)	Reserv	ed bit	ľ	Must be set to "1".	RW

b7 b6 b5 b4 b3 b2 b1 b0	Symbpl RSVREG0	Address 34D 034D16	After reset Indeterminate	
	Bit symbol	Bit name	Function	RW
	(b3-b0)	Reserved bit	Setup is arbitrary.	wo
	(b7-b4)		attempt to write to these bits, , turns out to be Indeterminate	—

Reserved register

b7 b6 b5 b4 b3 b2 b1 b0	Symbpl RSVREG03	Address 39E 039E16	After reset XXXXXX002	
	Bit symbol	Bit name	Function	RW
	(b1-b0)	Reserved bit	Must be set to "0".	RW
	(b7-b2)	Nothing is assigned. In an write "0". The value, if read	attempt to write to these bits, l, turns out to be "0".	

Reserved register

b7 0	b6 1	b5 0	b4 0	b3 0	b2	ь1 0	b0 0	Symbpl RSVREG03 RSVREG03		6	After reset 010000002 010000002		
	ł	ł	ł	ł			1	Bit symbol	Bit nai	ne	Func	tion	RW
			.i.	.j.	j		 	(b5-b0)	Reserved bit		Must be set to "0'		RW
	!						 [(b6)	Reserved bit		Must be set to "1'	³ .	RW
							 [(b7)	Reserved bit		Must be set to "0'	³ .	RW

Reserved register

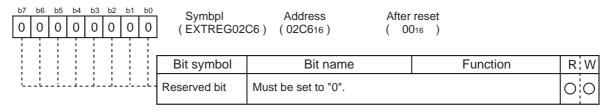
b7 t	 Symbpl RSVREG0 RSVREG0 		After reset Indeterminate Indeterminate	
	Bit symbol	Bit name	Function	RW
	- (b0)	Reserved bit	Setup is arbitrary.	WO

b7	b0	Symbpl RSVREG0 RSVREG0		After reset Indeterminate Indeterminate	
		Bit symbol	Bit name	Function	RW
		(b0)	Reserved bit	Setup is arbitrary.	RW

b7 b6 b5 b4 b3 b2 b	b1 b0	Symbpl (EXTREG02		reset D16)	
		Bit symbol	Bit	Function	R
	- - -	IREQSELSIG0	Interrupt DMA factor selection	0 : TIMERA0 1 : I ² C-bus0	00
		IREQSELSIG1	Interrupt DMA factor selection	0 : TIMERA1 1 : I ² C-bus1	00
		IREQSELSIG2	Interrupt DMA factor selection	0 : TIMERA2 1 : OSD2	00
		IREQSELSIG3	Interrupt DMA factor selection	0 : TIMERA3 1 : VSYNC	00
		IREQSELSIG4	Interrupt DMA factor selection	0 : TIMERA4 1 : I ² C-bus0NACK	00
		IREQSELSIG5	Interrupt DMA factor selection	0 : TIMERB0 1 : I ² C-bus1NACK	00
		IREQSELSIG6	Interrupt DMA factor selection	0 : TIMERB1 1 : I ² C-bus2NACK	00
		IREQSELSIG7	Interrupt DMA factor selection	0 : TIMERB2 1 : I ² C-bus2	00

b7	b6	^{b5}	b4 1	b3	b2	b1	b0	Symbpl (EXTREG02		r reset 0 ₁₆)		
	1	-						Bit symbol	Bit	Function		R
							į	IREQSELSIG8	Interrupt DMA factor selection	0 : TIMERB3 1 : Do not set	0	0
						1		IREQSELSIG9	Interrupt DMA factor selection	0 : TIMERB4 1 : Do not set	0	0
					i,			IREQSELSIG10	Interrupt DMA factor selection	0 : TIMERB5 1 : OSD1	0	0
				!_				IREQSELSIGA1	Interrupt factor selection	0 : UART2 bus shock detection 1 : I ² C-bus0	0	0
			!					Reserved bit	Must be set to "1".		0	0
		į						Reserved bit	Must be set to "1".		0	0
	!							IREQSELSIGA4	Interrupt DMA factor selection	0 : Key input 1 : VSYNC	0	0
								IREQSELSIGA5	Interrupt DMA factor selection	0 : AD 1 : I ² C-bus1NACK	0	0

b7	b6 0	^{b5}	ь4 0	ьз 0	b2 0	b1	b0	Symbpl (EXTREG020		reset D16)	
								Bit symbol	Bit name	Function	RW
								IREQSELSIGA6	Interrupt DMA factor selection	0 : INT2 1 : OSD2	00
Ļ.		!.	- <u>!</u> -	. <u>:</u> .				Reserved bit	Must be set to "0".		00


b7	b6	b5	b4	b3	b2	b1	b0	Symbpl	Address	After	reset	
0	0	0	0	0	0	0	0	(EXTREG02			D16)	
- i -	- i -	- i -	- i -	- i -	- i -	- i -	- i -					
	1	1	1	1	1	1	11	Dit av male al	Ditarana		E sus a C a s	5.14
- i -	- i -	- i -	- i -	- i -	- i -	- i -	- i	Bit symbol	Bit name		Function	R:W
	1	1	1	1	1	1	- : 1					
ι.	i.		-i-	-:-		:		Reserved bit	Must be set to "0".			00

b7	b6 0	b5 0	b4 0	ьз 0	^{b2}	b1 0	^{b0}	Symbpl (EXTREG02	Address C4)(02C416)	reset D16)	
								Bit symbol	Bit name	Function	RW
i.			-i-	- <u>i</u> -	. j			Reserved bit	Must be set to "0".		00

b7	b6 0	b5 0	b4	ьз 0	^{b2}	b1	ьо О	Symbpl (EXTREG020	Address C5)(02C516)	reset D16)	
	-			-		-					
								Bit symbol	Bit name	Function	R:W
Ĺ.	i.		.i.		.j.,			Reserved bit	Must be set to "0".		00

b7	b6	b5	b4	b3	b2	b1	b0	Symbol	Address	After	reset	
0	0	0	0	0	0	0	0	(EXTREG02			D16)	
-		-				T	T					
								Bit symbol	Bit name		Function	RW
Ĺ.			- i -	- <u>;</u> -	. j			Reserved bit	Must be set to "0".			00

b7	b6 0	b5 0	b4 0	b3 0	b2 0	b1	b0 0	Symbpl (EXTREG02)	Address C8)(02C816)	reset D16)	
			-	1				Bit symbol	Bit name	Function	RW
į			.i.	.i.	. j			Reserved bit	Must be set to "0".		00

D.	^{b6}	ь5 О	b4	ьз 0	^{b2}	ь1 О	ьо О	Symbpl (EXTREG02	Address C9)(02C916)	reset D16)	
7		÷			T	÷	Ŧ				
								Bit symbol	Bit name	Function	RW
į	i.	<u>!</u> .	.i.				i.	Reserved bit	Must be set to "0".		00

b7	b6 0	b5 0	b4 0	ьз 0	b2 0	b1	b0 0	Symbpl (EXTREG02	Address CA)(02CA16)	reset D16)	
	1		-	-	-	1		Bit symbol	Bit name	Function	RW
Ę.	i.		.i.	. j.	. j			Reserved bit	Must be set to "0".		00

b7	b6	b5	b4	b3	b2	b1	b0	Symbol	Address	After	reset	
0	0	0	0	0	0	0	0	(EXTREG02			D16)	
Ī	÷	÷	÷	÷	÷	Ţ	T					
								Bit symbol	Bit name		Function	RW
į.	i.		.i.	.j.	.j.			Reserved bit	Must be set to "0".			00

b7	b6 0	b5 0	b4 0	b3 0	b2 0	b1	ьо О	Symbpl (EXTREG02	Address CC)(02CC16)	reset D16)	
	1		-	-		1		Bit symbol	Bit name	Function	RW
Į.			.i.		. <u>.</u>			Reserved bit	Must be set to "0".		00

b7	b6	b5	b4	b3	b2	b1	b0	Symbol		Address	After	reset	
0	0	0	0	0	0	0	0	(EXTREG02	CD)	(02CD16)		D ₁₆)	
			-	-									
								Bit symbol		Bit name		Function	RW
į	i.		.i.	.j.	.j.			Reserved bit	Mus	t be set to "0".			00

b7	b6 0	b5 0	b4 0	b3 0	b2 0	b1	b0 0	Symbpl (EXTREG02	Address CE)(02CE16)	reset D16)	
							-	Bit symbol	Bit name	Function	RW
į	i.		-i-		. j		i.	Reserved bit	Must be set to "0".		00

b7	b6 0	b5 0	b4 0	b3 0	b2 0	b1 0	b0 0	Symbpl (EXTREG02	Address CF)(02CF16)	reset D16)	
								Bit symbol	Bit name	Function	RW
Ę	i.		.i.	-i-	.j.			Reserved bit	Must be set to "0".		00

b7	b6 0	^{b5}	b4	ьз 0	^{b2}	ь1 О	ьо О	Symbpl (EXTREG02	Address D0)(02D016)	reset D16)	
1			-	-	-	-	T				
	-	-	1			ł		Bit symbol	Bit name	Function	RW
Ľ.			- i -	.j.				Reserved bit	Must be set to "0".		00

b7	b6	b5 0	ь4 О	ьз 0	b2	b1	ьо О	Symbpl (EXTREG02	Address D1)(02D116)	reset D16)	
		-	-		T	T	Ŧ				
								Bit symbol	Bit name	Function	RW
į		<u>!</u> .	.i.					Reserved bit	Must be set to "0".		00

b7	b6 0	b5 0	b4 0	b3 0	b2 0	b1 0	ьо О	Symbpl (EXTREG02	Address D2)(02D216)	reset D16)	
							-	Bit symbol	Bit name	Function	RW
į	i.	<u>!</u>	-i-		. j		i.	Reserved bit	Must be set to "0".		00

b7	b6 0	b5 0	b4	ьз 0	b2 0	b1	ьо О	Symbpl (EXTREG02	D3)	Address (02D316)	reset D16)	
					-	-	-					
	1	-	-	-	1			Bit symbol		Bit name	Function	RW
į.			.i.			<u> </u>		Reserved bit	Mus	t be set to "0".		00

b7	b6 0	b5 0	64 0	b3	b2 0	b1 0	b0 0	Symbpl (EXTREG02	Address D4)(02D4 ₁₆)	reset D16)	
						-	[Bit symbol	Bit name	Function	RW
Ĺ.	i.		-i-	-i-				(b7-b0)	Reserved bits	Must be set to "0".	00

b7	b6	b5 0	b4	b3	b2 0	b1	b0	Symbpl (EXTREG02		reset D16)	
								Bit symbol	Bit name	Function	RW
							i.	RGBSEL	RGB signal output selection bit	0: RGB 3-bit or analog output 1: RGB 2 values output	00
				. <u> </u>				(b5-b1)	Reserved bits	Must be set to "0".	00
								CREGCPUSEL	Palette register selection	0: Palette register setting of palette set 0 1: Palette register setting of palette set 1	00
								(b7)	Reserved bit	Must be set to "1".	00

b7 b6 b5 b4 b3 b2 b1 b0 0 0	Symbpl (EXTREG02	Address After rese 2D6) (02D616) (0016	et)	
	Bit symbol	Bit name	Function	RW
	SCL3DRVUP	SCL3 output buffer size adjustment	0 : weak 1 : strong	00
· · · · · · · · · · · · · · · · · · ·	SDA3DRVUP	SDA3 output buffer size adjustment	0 : weak 1 : strong	00
	SCL5DRVUP	SCL5 output buffer size adjustment	0 : weak 1 : strong	00
	SDA5DRVUP	SDA5 output buffer size adjustment	0 : weak 1 : strong	00
	SCL6DRVUP	SCL6 output buffer size adjustment	0 : weak 1 : strong	00
	SDA6DRVUP	SDA6 output buffer size adjustment	0 : weak 1 : strong	00
<u> </u>	Reserved bit	Must be set to "0".		00
i	Reserved bit	Must be set to "0".		00

ь7 О	^{b6}	b5	b4	ьз 1	b2	b1	ьо О	Symbpl (EXTREG02l	Address D7)(02D716)	After (00		
								Bit symbol	Bit name		Function	RW
ĺ.			.i					Reserved bit	Must be set to "0".	I		00
	<u>.</u>	<u>.</u>						Reserved bit	Must be set to "1".			00

b7 b	1 b5 b4	b3 b2	b1	b0	Symbpl (EXTREG02	Address After re 2D8) (02D816) (001		
					Bit symbol	Bit name	Function	RW
					SCLOINSEL	I ² C-bus0 SCL input pin selection	0 : Pin "SCL2" 1 : Pin "SCL5"	00
			!		SDA0INSEL	I ² C-bus0 SDA input pin selection	0 : Pin "SDA2" 1 : Pin "SDA5"	00
		_			SCL1INSEL0	I ² C-bus1 SCL input pin selection	0 : Pin "SCL3" 1 : Pin "SCL6"	00
					SDA1INSEL0	I ² C-bus1 SDA input pin selection	0 : Pin "SDA3" 1 : Pin "SDA6"	00
					SCL1INSEL1	I ² C-bus1 SCL input pin selection	0 : SCL3 or SCL6 (SCL1INSEL0 available) 1 : Pin "SCL1"	00
	·				SDA1INSEL1	I ² C-bus1 SDA input pin selection	0 : SDA3 or SDA6 (SDA1INSEL0 available) 1 : Pin "SDA1"	00
1					(b7-b6)	Reserved bits	Must be set to "1".	00

b7 b	6 b5	b4	b3	b2	b1	b0	Symbpl (EXTREG02	Address After re 2D9) (02D916) (0016	eset 6)	
			ł				Bit symbol	Bit name	Function	RW
							BUSON1	SCL1-SCL3, SDA1-SDA3 bus switch	0 : OFF 1 : ON	00
					!		BUSON2	SCL5-SCL6, SDA5-SDA6 bus switch	0 : OFF 1 : ON	00
				¦_			SCLSDA1EN	SCL1, SDA1 pin control	0 : SCL1 and SDA1 are not used 1 : SCL1 and SDA1 are used.	00
			!_				SCLSDA2EN	SCL2, SDA2 pin control	0 : SCL2 and SDA2 are not used 1 : SCL2 and SDA2 are used.	00
		!					SCLSDA3EN	SCL3, SDA3 pin control	0 : SCL3 and SDA3 are not used 1 : SCL3 and SDA3 are used.	00
							SCLSDA4EN	SCL4, SDA4 pin control	0 : SCL4 and SDA4 are not used 1 : SCL4 and SDA4 are used.	00
	l						SCLSDA5EN	SCL5, SDA5 pin control	0 : SCL5 and SDA5 are not used 1 : SCL5 and SDA5 are used.	00
							SCLSDA6EN	SCL6, SDA6 pin control	0 : SCL6 and SDA6 are not used 1 : SCL6 and SDA6 are used.	00

b7	b6 0	b5	b4	b3	b2 0	b1	ьо О	Symbpl (EXTREG02	Address DA)(02DA16)	reset D ₁₆)	
								Bit symbol	Bit name	Function	RW
į.					.j			(b7-b0)	Reserved bit	Must be set to "0".	00

b7 b	6 b5	b4	b3	b2		1	b0	Symbpl (EXTREG02	Address After ro 2DB) (02DB16) (001		
								Bit symbol	Bit name	Function	RW
							-	SELVIN	VSYNC input selection	0 : VSYNC1 1 : VSYNC2	00
					!			DIGREN	R digital 3BIT output control	0 : DISABLE 1 : ENABLE	00
				i.				DIGGEN	Q digital 3BIT output control	0 : DISABLE 1 : ENABLE	00
			į.					DIGBEN	B digital 3BIT output control	0 : DISABLE 1 : ENABLE	00
		!						OUT1EN	OUT1 output control	0 : DISABLE 1 : ENABLE	00
	į							OUT2EN	OUT2 output control	0 : DISABLE 1 : ENABLE	00
								OSCOUTEN	OSCOUT output control	0 : DISABLE 1 : ENABLE	00
								OSCEN	Selection of OSD2/VSYNC1/INT2 function	0 : VSYNC1/INT2 input 1 : OSC2 output	00

b7	b6 0	b5 0	b4	ьз 0	b2	b1	ьо О	Symbpl (EXTREG02		After ((00	reset ¹⁶)		
							[Bit symbol	Bit name		Function	R	W
							i.	(b0)	Reserved bit		Must be set to "0".	0	0
						Ļ		TST11	OSD oscillation circuit		0: Used (LC or ceramic) 1: Not used	0	0
Ľ					.).		[(b7-b2)	Reserved bits		Must be set to "0".	0	0

b7 b6 b5 b4 b3 b2 b1 b0 0	Symbpl (EXTREG0	Address After r 2DD)(02DD16) (001	eset 6)	
	Bit symbol	Bit name	Function	RW
· · · · · · · · · · · · · · · · · · ·	(b1-b0)	Reserved bits	Must be set to "0".	00
	WSWL0 WSWL1	TB0IN pin noise filter clock selection bit	b3 b2 0 0:0.25∝s (The removable maximum bus width=1∝s) 0 1: 8∝s (The removable maximum bus width=32∝s) 1 0: 16∝s (The removable maximum bus width=64∞s) 1 1: 32∝s (The removable maximum bus width=128∝s)	00
	NFON	TB0IN pin noise filter ON/OFF selection	0 : Noise filter OFF 1 : Noise filter ON	00
	(b7-b5)	Reserved bits	Must be set to "0".	00

	b5 b4 b3 b2 b1 b0 0 0 0 0 0 0	Symbpl (EXTREG02	Address After ro 2DE)(02DE16) (001		
		Bit symbol	Bit name	Function	RW
		(b2-b0)	Reserved bit	Must be set to "0".	00
		ANARGBCAPON	The CAP pin for inside operation of analog RGB stable	0 : CAP pin is not used 1 : CAP pin is used	00
	· · · · · · · · · · · · · · · · · · ·	ANARGBCLKEN	Analog RGB internal clock input control	0 : OFF 1 : ON	00
	<u>.</u>	(b6-b5)	Reserved bits	Must be set to "0".	00
L		(b7)	Reserved bit	Must be set to "0".	00

b7	ь6 О	b5 0	ь4 0	ьз 0	^{b2}	b1	ьо О	Symbpl (EXTREG02	Address DF)(02DF16)	reset Di6)	
		-			-	-					·
		ł	ł	ł	ł	ł		Bit symbol	Bit name	Function	R;W
Ę		! .	-1-	-1-		!		(b7-b0)	Reserved bit	Must be set to "0".	00

Electrical Characteristics

Table 18.1.	Absolute	Maximum	Ratings
-------------	----------	---------	---------

Symbol	Parameter		Condition	Rated value	Unit	
VCC1,VCC2, VCC3	Supply ve			VCC1=VCC2= VCC3	-0.3 to 6.5	V
VI	Input voltage	P00 to P0 P30 to P3 P60 to P6 P90 to P9 HLF2, VH	CNVss1, BYTE, CNVss2,)7, P10 to P17, P20 to P27, 37, P40 to P47, P50 to P57, 37, P72 to P77, P82, P8, P87 31, P103 to P107, VSYNC1, OSC1, 40LD2, CVIN2, HLF1,VHOLD1, SYNC, XIN, SCL5, SDA5,SCL6, SDA6		-0.3 to Vcc1+0.3	V
		P70, P71, SCL4, SDA4			-0.3 to 6.5	V
VO Output voltage		P30 to P3 P60 to P6 P90 to P9 OSC2, O HLF1, VH DIGR1, E	D7, P10 to P17, P20 to P27, B7, P40 to P47, P50 to P57, B7, P72 to P77, P82, P83, P86, P87 B1, P103 to P107, OUT1, OUT2, SCHLF, HLF2, VHOLD2, CVIN2, HOLD1, CVIN1, XouT, DIGR2, DIGG1, DIGG2, DIGB1, DSCOUT, R, G, B, SCL5, SDA5, HA6		-0.3 to Vcc1+0.3	V
		P70, P71,	SCL4, SDA4		-0.3 to 6.5	V
Pd	Power di	ower dissipation		Topr=25°C	500	mW
Topr	Operatin	g ambient	At microcomputer operate		-20 to 70	°C
	temperat	ure	At flash memory erase		0 to 60	°C
Tstg	Storage t	emperatur	e		-40 to 125	°C

Ourseland.	Deremeter				d	1.1.4		
Symbol		Parameter			Min.	Тур.	Max.	Unit
/CC1, VCC2, VCC3	Supply voltag	e(Vcc1=Vcc2=Vcc3)			3.15	3.3	3.45	V
Vss	Supply voltage	je				0		V
	HIGH input	P31 to P37, P40	to P47, P50	to P57	0.8Vcc1		Vcc1	V
	voltage	P00 to P07, P10 to P17, P20 to P27, P30 (during single-chip mode)					Vcc1	V
Viн		P00 to P07, P10 (data input duri		to P27, P30 expansion and microprocessor modes)	0.5Vcc1		Vcc1	V
			NVss1, BYTI	, P83, P86, 87, P90 to P91, P103 to P107, E, VSYNC1,OSC1,HSYNC	0.8Vcc1		Vcc1	V
		P70, P71, SCL	4,SDA4		0.8Vcc1		6.5	V
	LOW input	P31 to P37, P40	to P47, P50	to P57	0		0.2Vcc1	V
	voltage	P00 to P07, P10	to P17, P20	to P27, P30 (during single-chip mode)	0		0.2Vcc1	V
VIL		P00 to P07, P10 (data input duri		to P27, P30 expansion and microprocessor modes)	0		0.16Vcc1	V
		P103 to P107,	NVss1, BYTI	, P83, P86, P87, P90 to P91, E, VSYNC1,OSC1,HSYNC, CL6,SDA6	0		0.2Vcc1	V
I _{OH (peak)}	HIGH peak or current	HIGH peak output P00 to P07, P10 to P17, P20 to P27,P30 to P37,					-10.0	mA
I _{OH (avg)}	HIGH average output current P00 to P07, P10 to P17, P20 to P27,P30 to P37, P40 to P47, P50 to P57, P60 to P67,P72 to P77, P82,P83,P86,P87,P90,P91,P103 to P107, R,G,B,OUT1,OUT2,OSCOUT,DIGR1,DIGR2, DIGG1,DIGG2,DIGB1,DIGB2					-5.0	mA	
I _{OL (peak)}	LOW peak ou current	P40 to P82,P8 R,G,B,	P47, P50 to I 3,P86,P87,P9 OUT1,OUT2,	P17, P20 to P27,P30 to P37, P57, P60 to P67,P70 to P77, J0,P91,P103 to P107, OSCOUT,DIGR1,DIGR2,DIGG1,DIGG2, L4, SDA4, SCL5, SDA5, SCL6,SDA6			10.0	mA
I OL (avg)	DIGB1,DIGB2, SCL4, SDA4, SCL5, SDA5, SCL6,SDA6 LOW average output current P00 to P07, P10 to P17, P20 to P27,P30 to P37, P40 to P47, P50 to P57, P60 to P67,P70 to P77, P82,P83,P86,P87,P90,P91,P103 to P107, R,G,B,OUT1,OUT2,OSCOUT,DIGR1,DIGR2,DIGG1,DIGG2 DIGB1,DIGB2, SCL4, SDA4, SCL5, SDA5, SCL6,SDA6			P17, P20 to P27,P30 to P37, P57, P60 to P67,P70 to P77, 10,P91,P103 to P107, OSCOUT,DIGR1,DIGR2,DIGG1,DIGG2,			5.0	mA
f (XIN)	Main clock in	put oscillation fre	quency			16		MHz
f (Xcin)	Sub-clock os	cillation frequenc	у			32.768		kHz
fosc	Oscillation fre	equency (for OSE) OSC1	LC oscillation mode	8.0		30	_
				Ceramic oscillation mode	20.0		30	MHz
				Internal oscillation mode (XIN=16MHz)	20.0		65	
f cvin	Input frequen	су		chronized signal of 525i (480i) video signal	15.262	15.734	16.206	
			The level syn	chronized signal of 525p (480p) video signal	-	31.47	-	kHz
Vi	Input amplitue	de		Video signal CVIN1, CVIN2	1.5	1.75	2.00	V

Table 18.2. Recommended Operating Conditions (Note 1)

Note 1: Referenced to Vcc = Vcc1 = Vcc2 = Vcc3 = $3.3V \pm 0.15V$ at Topr = -20 to 70 °C unless otherwise specified.

Note 2: The mean output current is the mean value within 100ms.

Note 3: The total IoL (peak) for ports P0, P1, P2, P86, P87 and P9 must be 80mA max. The total IoL (peak) for ports P3, P4, P5, P6, P7 and P80 to P84 must be 80mA max. The total IOH (peak) for ports P0, P1, and P2 must be -40mA max. The total IOH (peak) for ports P3, P4 and P5 must be -40mA max. The total IOH (peak) for ports P6, P7, and P80 to P84 must be -40mA

Symbol	Deremeter		5	Standard		
Symbol	Parameter	Measuring condition	Min.	Тур.	Max.	Unit
	Resolution	VREF =VCC1			8	Bits
INL	Absolute accuracy	VREF=VCC1=3.3V			+5	LSB
tCONV	Conversion time, Sample & hold function available	Øad=10 MHz	2.8			μs
t SAMP	Sampling time		0.3			μS
Vref	Reference voltage			VCC1		V
Via	Analog input voltage		0		VCC1	V

Table 18.3. A/D Conversion Characteristics (Note 1)

Note 1: Referenced to Vcc1=3.3V, Vss=0V at Topr = -20 to 70°C unless otherwise specified.

Note 2: AD operation clock frequency (ØAD frequency) must be 10 MHz or less. And divide the fAD and make ØAD frequency equal to or lower than fAD/2. Note 3: A case without sample & hold function turn ØAD frequency into 250 kHz or more in addition to a limit of Note 2.

A case with sample & hold function turn ØAD frequency into 1MHz or more in addition to a limit of Note 2.

Table 18.4. Analog R,G,B output specifications (Vcc1=3.3V, Vss=0V, Ta=25°C, Load capacity RI=nothing, Load capacity CI=nothing, unless otherwise specified)

Symbol	Parameter	Measuring condition		Unit		
Symbol	Falameter	Measuring condition	Min.	Тур.	Max.	Onit
Vppm	Maximum output amplitude	RGB each output control bit=111b setup	α X 0.8	$\alpha = \frac{100}{140} \rightleftharpoons 0.71$	α X 1.2	V
Voe	Output deviation				±20	%
lo	Maximum output current	RGB each output control bit=111b setup	2.2	4.0	5.8	mΑ
Ro	Output register		190		400	ΩA
Tst	Set ring time	30 to 70% or 70 to 30%			33	nS

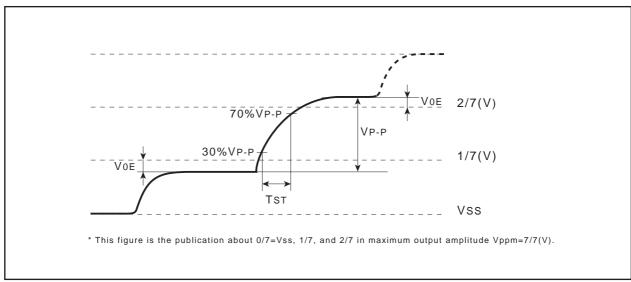
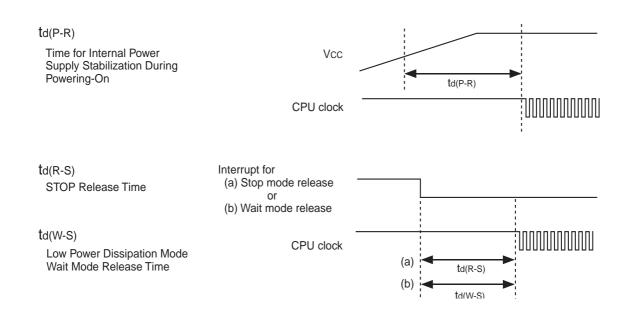


Figure 18.1. Analog RGB output characteristic

Parameter		Stantard			
Falameter	Min.	Тур.	Max.	Unit	
Word program time		30	200	μs	
Block erase time		1	4	S	
Erase all unlocked blocks time		1 X n	4 X n	S	
Lock bit program time		30	200	μs	

Note 1: Referenced to Vcc1=3.3V at Topr=0 to 60°C unless otherwise specified. Note 2: n denotes the number of block erases.


Table 18.6. Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr = 0 to 60°C)

Flash program, erase voltage	Flash read operation voltage
Vcc1 = 3.3 V ± 0.15V	Vcc1=3.3 to 0.15 V

Table 18.7. Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring Condition		Unit		
Symbol	Parameter	Measuring Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On				2	ms
td(R-S)	STOP Release Time	Vcc1=2.7 to 3.45V			150	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μS

Note: When VCC1 = 5V.

Symbol		Param	neter	Measuring condition		Standard		Unit
Cymbol				Modedning contaition	Min.	Тур.	Max.	
Vон	HIGH output voltage	P50 to P57,P60 to P6 P90,P91,P103 to P10	7,P20 to P27,P30 to P37,P40 to P47, 7,P72 to P77,P82,P83,P86,P87, 7,R,G,B,OUT1,OUT2, GR2,DIGG1,DIGG2,DIGB1,DIGB2	lон=-1mA	Vcc -0.5		Vcc	v
			HIGHPOWER	Iон=-0.1mA	Vcc -0.5		Vcc	V
Vон	HIGH outpu	t voltage Xout	LOWPOWER	Іон=-50μА	Vcc -0.5		Vcc	7 V
	HIGH outpu	t voltage Xcout	HIGHPOWER	With no load applied		2.5		V
		5	LOWPOWER	With no load applied		1.6		1
Vol	LOW output voltage	P50 to P57,P60 to P6 P90,P91,P103 to P10	7,P20 to P27,P30 to P37,P40 to P47, 7,P72 to P77,P82,P83,P86,P87, 7,R,G,B,OUT1,OUT2, GR2,DIG61,DIG62,DIGB1,DIGB2 tDA5,SCL6,SDA6	IOL= 1mA			0.5	v
	LOW output	voltage Xour	HIGHPOWER	IOL= 0.1 mA			0.5	
		voltage X001	LOWPOWER	IOL = 50 μA			0.5	V
Vol	LOW output	voltage Xcout	HIGHPOWER	With no load applied		0		V
		-	LOWPOWER	With no load applied		0		† *
VT+-VT-	Hysteresis HOLD, RDY, TAON to TA3N, TB0N, TB1N, INTo to INT3, CTSo to CTS2, SCL0 to SCL6, SDA0 to SDA6, CLKo to CLK2, TA0our to TA3our, KI to Kl3, RxDo to RxD2 VSYNC1, VSYNC2, HOC, HC1, HSYNC2			0.2		0.8	v	
VT+-VT-	Hysteresis	RESET			0.2	(0.7)	1.8	V
VT+-VT-	Hysteresis	Xin			0.2		0.8	V
Ін	HIGH input current	P50 to P57,P60 to P6 P90,P91,P103 to P10	7,P20 to P27,P30 to P37,P40 to P47, 7,P72 to P77,P82,P83,P86,P87, 7,Xm,RESET,CNVss1,BYTE, /NC,SCL4,SDA4,SCL5,SDA5,	Vi = 3V			40	μΑ
IIL.	LOW input current	P50 to P57,P60 to P6 P90,P91,P103 to P10	7,P20 to P27,P30 to P37,P40 to P47, 7,P72 to P77,P82,P83,P86,P87, 7,Xn,RESET,CNVss1,BYTE, /NC,SCL4,SDA4,SCL5,SDA5,	Vi = 0V			-4.0	μΑ
RPULLUP	Pull-up resistance		7,P20 to P27,P30 to P37,P40 to P47, 7,P72 to P77,P82,P83,P86,P87, 7	V1 = 0V	66	160	500	kΩ
Rfxin	Feedback re	esistance XIN				3.0		MΩ
RfXCIN	Feedback re	esistance Xcin				25		MΩ
RBS	I ² C-bus, Bus	s switch					130	Ω

Table 18.8. Electrical Characteristics (Note 1)

Note 1: Referenced to VCC = VCC1 = VCC2 = VCC3 = 3.3V, VSS = 0V, Topr = -20 to 70 °C unless otherwise specified.

Symbol	Par	ameter	Me	asuring condition	n		Standard		Unit
				medeamig contaiton		Min.	Тур.	Max.	Unit
		In single-chip mode, the output pins are open and other pins are	Mask ROM		OSD ON Data slicer ON		100	140	mA
		Vss		f(BCLK)=16MHz,	OSD OFF Data slicer OFF		15		mA
	Flash memory No division O	OSD ON Data slicer ON		120	170	mA			
					OSD OFF Data slicer OFF		15		mA
			Mask ROM	f(Xcin)=32kHz, Low power dissip ROM(Note 3)	ation mode,		25		μΑ
Icc	Power supply current		Flash memory	f(BCLK)=32kHz, Low power dissip RAM(Note 3)	ation mode,		25		μΑ
				f(BCLK)=32kHz Low power dissip Flash memory(No			420		μΑ
			Mask ROM Flash memory	f(BCLK)=32kHz, Wait mode (Note Oscillation capacity			6.0		μΑ
				f(BCLK)=32kHz, Wait mode(Note 2 Oscillation capacity			1.8		μΑ
				Stop mode, Topr=25°C			0.7	3.0	μΑ

Table 18.9. Electrical Characteristics (2) (Note 1)

Note 1: Referenced to VCC = VCC1 = VCC2 = VCC3 = 3.3V, VSS = 0V, Topr = -20 to 70 °C unless otherwise specified. Note 2: With one timer operated using fc32. Note 3: This indicates the memory in which the program to be executed exists.

Timing Requirements

(VCC1 = VCC2 = VCC3 = 3.3V, VSS = 0V, at Topr = - 20 to 70°C unless otherwise specified)

Symbol	Parameter	Star	Unit	
	raianetei			Max.
tc	External clock input cycle time	62		ns
tw(H)	External clock input HIGH pulse width	25		ns
tw(L)	External clock input LOW pulse width	25		ns
tr	External clock rise time		15	ns
tf	External clock fall time		15	ns

Table 18.10. External Clock Input

Table 18.11. Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Stan	dard	Linit
	Parameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (for setting with no wait)		(Note 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(Note 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplex bus area)		(Note 3)	ns
tsu(DB-RD)	Data input setup time	50		ns
tsu(RDY-BCLK)	RDY input setup time	40		ns
tsu(HOLD-BCLK)	HOLD input setup time	50		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

Note 1: Calculated according to the BCLK frequency as follows:

Note 2: Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 60$ [ns] n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

Note 3: Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 60$$
 [ns] n is "2" for 2-wait setting, "3" for 3-wait setting.

Timing Requirements

(VCC1 = VCC2 = VCC3 = 3.3V, VSS = 0V, at Topr = - 20 to 70°C unless otherwise specified)

Table 18.12.	Timer A Input	(Counter Input in Event Counter Mode)	
	Third / Thipat	(ocumer input in Erent ocumer inous)	

Cumhal	Deromotor	Stan	dard	Lincit
Symbol	Symbol Parameter	Min.	Max.	Unit
tc(TA)	TAi IN input cycle time	300		ns
tw(TAH)	TAi IN input HIGH pulse width	60		ns
tw(TAL)	TAi IN input LOW pulse width	60		ns

Table 18.13. Timer A Input (Gating Input in Timer Mode)

		Stan	dard	
Symbol	Parameter	Min.	Max.	Unit
tc(TA)	TAi IN input cycle time	600		ns
tw(TAH)	TAi IN input HIGH pulse width	300		ns
tw(TAL)	TAi IN input LOW pulse width	300		ns

Table 18.14. Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	Falameter	Min.	Max.	Unit
tc(TA)	TAi IN input cycle time	300		ns
tw(TAH)	TAi IN input HIGH pulse width	150		ns
tw(TAL)	TAi IN input LOW pulse width	150		ns

Table 18.15. Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Derometer	Stan	dard	Linit
	Parameter	Min.	Max.	Unit
tw(TAH)	TAiın input HIGH pulse width	150		ns
tw(TAL)	TAi IN input LOW pulse width	150		ns

Table 18.16. Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Devementer	Star	Standard	Unit
	Parameter	Min.	Max.	
tc(UP)	TAiout input cycle time	3000		ns
tw(UPH)	TAiout input HIGH pulse width	1500		ns
tw(UPL)	TAiout input LOW pulse width	1500		ns
tsu(UP-TIN)	TAiout input setup time	600		ns
th(TIN-UP)	TAio∪⊤ input hold time	600		ns

Table 18.17. Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Derometer	Standard	Unit	
	Parameter	Min.	Max.	Unit
tc(TA)	TAi IN input cycle time	2		∝s
tsu(TAIN-TAOUT)	TAiout input setup time	500		ns
tsu(TAOUT-TAIN)	TAin input setup time	500		ns

Timing Requirements

(VCC1 = VCC2 = VCC3 = 3.3V, VSS = 0V, at Topr = - 20 to 70°C unless otherwise specified)

Cumbal	Parameter	Star	dard	Unit
Symbol	Min.	Max.	Unit	
tc(TB)	TBiin input cycle time (counted on one edge)	150		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBin input cycle time (counted on both edges)	300		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	160		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	160		ns

Table 18.19. Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Star	ndard	Unit
	Falanielei	Min.	Max.	Unit
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBilN input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 18.20. Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	ndard Max.	Unit
Symbol		Min.	Max.	Unit
tc(TB)	TBiin input cycle time	600		ns
tw(TBH)	TBilN input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 18.21. Serial I/O

Symbol	Parameter	Standard		Unit
Symbol	Falantelei	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	100		ns
th(C-D)	RxDi input hold time	90		ns

Table 18.22. External Interrupt INTi Input

Symbol	Parameter	Parameter Standard Unit	Llnit	
Symbol	Talameter	Min.	Max.	Onit
tw(INH)	tw(INH) INTi input HIGH pulse width			ns
tw(INL) INTi input LOW pulse width		380		ns

Switching Characteristics

(VCC1 = VCC2 = VCC3 = 3.3V, VSS = 0V, at Topr = - 20 to 70°C, CM15 = "1" unless otherwise specified)

Symbol	Parameter	Measuring condition	Standard		Linit
Symbol	Parameter	Medeuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			30	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
t h(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(Note 2)		ns
td(BCLK-CS)	Chip select output delay time			30	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			30	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time	Fig.19.11		30	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time	-		30	ns
th(BCLK-WR)	WR signal output hold time	-	0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)	-		40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)	-	4		ns
td(DB-WR)	Data output delay time (refers to WR)	-	(Note 1)		ns
th(WR-DB)	Data output hold time (refers to WR)(Note 3)		(Note 2)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

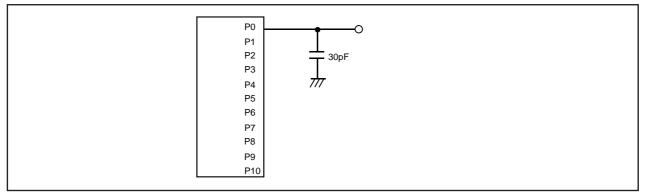
Note 1: Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \text{ X } 10^9}{\text{f(BCLK)}}$$
 - 40 [ns]

Note 2: Calculated according to the BCLK frequency as follows:

Note 3: This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up

(pull-down) resistance value.


Hold time of data bus is expressed in

 $t = -CR X \ln (1 - VOL / VCC2)$

by a circuit of the right figure.

For example, when VoL = 0.2Vcc2, C = 30pF, R = 1k\Omega, hold time of output "L" level is

$$t = -30pF X 1k\Omega X ln (1 - 0.2Vcc2 / Vcc2)$$

= 6.7ns.

DBi

Figure 18.2. Ports P0 to P10 Measurement Circuit

Switching Characteristics

(VCC1 = VCC2 = VCC3 = 3.3V, VSS = 0V, at Topr = - 20 to 70°C, CM15 = "1" unless otherwise specified)

Oursels al	Deveneter	Measuring condition	Standard		11.2	
Symbol	Parameter	Measuring condition	Min.	Max.	Unit	
td(BCLK-AD)	Address output delay time			30	ns	
th(BCLK-AD)	Address output hold time (refers to BCLK)	-	4		ns	
th(RD-AD)	Address output hold time (refers to RD)	-	0		ns	
th(WR-AD)	Address output hold time (refers to WR)	-	(Note 2)		ns	
td(BCLK-CS)	Chip select output delay time	-		30	ns	
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns	
$t_{d(BCLK-ALE)}$	ALE signal output delay time			30	ns	
th(BCLK-ALE)	ALE signal output hold time	-	-4		ns	
$t_{d(BCLK-RD)}$	RD signal output delay time	Fig.19.11		30	ns	
th(BCLK-RD)	RD signal output hold time		0		ns	
$t_{d(BCLK-WR)}$	WR signal output delay time	-		30	ns	
th(BCLK-WR)	WR signal output hold time		0		ns	
td(BCLK-DB)	Data output delay time (refers to BCLK)	-		40	ns	
th(BCLK-DB)	Data output hold time (refers to BCLK)	1	4		ns	
td(DB-WR)	Data output delay time (refers to WR)	1	(Note 1)		ns	
th(WR-DB)	Data output hold time (refers to WR)(Note 3)		(Note 2)		ns	
td(BCLK-HLDA)	HLDA output delay time			40	ns	

Table 18.24. Memory Expansion and Microprocessor Modes

(for 1- to 3-wait setting and external area access)

Note 1: Calculated according to the BCLK frequency as follows:

<u>(n-0.5) X 10⁹</u> - 40 [ns]

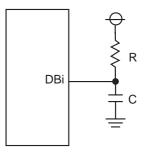
n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting.

Note 2: Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \text{ X } 10^9}{\text{f(BCLK)}} - 10 \quad \text{[ns]}$$

Note 3: This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

 $t = -CR X \ln (1 - VOL / VCC2)$

by a circuit of the right figure.

For example, when VoL = 0.2VcC2, C = 30pF, R = 1k\Omega, hold time of output "L" level is

Switching Characteristics

(VCC1 = VCC2 = VCC3 = 3.3V, VSS = 0V, at Topr = - 20 to 70°C, CM15 = "1" unless otherwise specified)

Oursels al	Deremeter		Standard		L lacit
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
$t_{d(BCLK-AD)}$	Address output delay time			50	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		(Note 1)		ns
t h(WR-AD)	Address output hold time (refers to WR)		(Note 1)		ns
td(BCLK-CS)	Chip select output delay time			50	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
th(RD-CS)	Chip select output hold time (refers to RD)		(Note 1)		ns
th(WR-CS)	Chip select output hold time (refers to WR)		(Note 1)		ns
$t_{d(BCLK-RD)}$	RD signal output delay time			40	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			40	ns
th(BCLK-WR)	WR signal output hold time	Fig.19.11	0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			50	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(Note 2)		ns
t h(WR-DB)	Data output hold time (refers to WR)		(Note 1)		ns
$t_{d(BCLK-HLDA)}$	HLDA output delay time			40	ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time (refers to BCLK)			40	
th(BCLK-ALE)	ALE signal output hold time (refers to BCLK)		- 4		ns
td(AD-ALE)	ALE signal output delay time (refers to Address)		(Note 3)		ns
t h(ALE-AD)	ALE signal output hold time (refers to Adderss)		(Note 4)		ns
$t_{d(AD-RD)}$	RD signal output delay from the end of Adress		0		ns
td(AD-WR)	WR signal output delay from the end of Adress		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

Table 18.25. Memory Expansion and Microprocessor Modes

(for 2- to 3-wait setting, external area access and multiplex bus selection)

Note 1: Calculated according to the BCLK frequency as follows:

Note 2: Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} -50$$
 [ns] n is "2" for 2-wait setting, "3" for 3-wait setting.

Note 3: Calculated according to the BCLK frequency as follows:

Note 4: Calculated according to the BCLK frequency as follows:

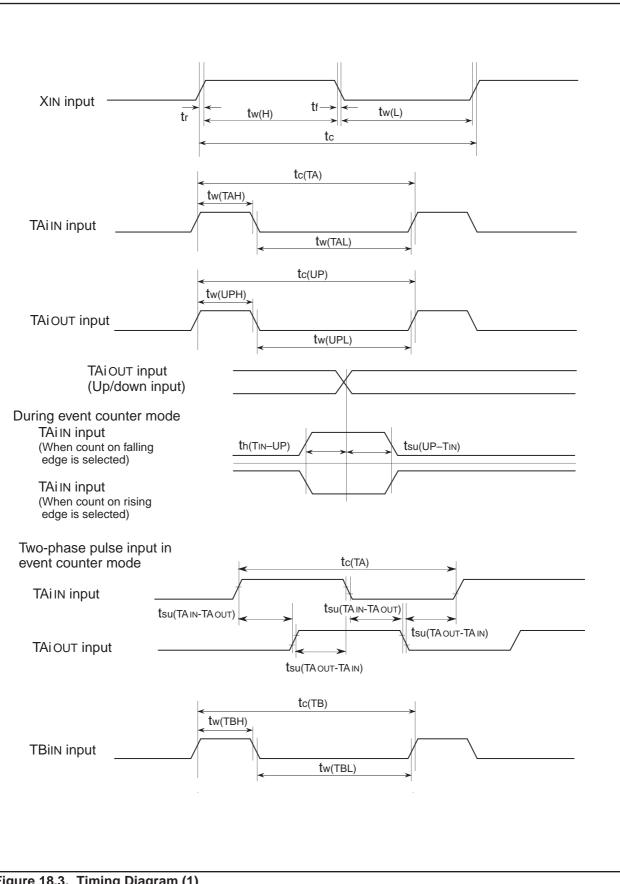


Figure 18.3. Timing Diagram (1)

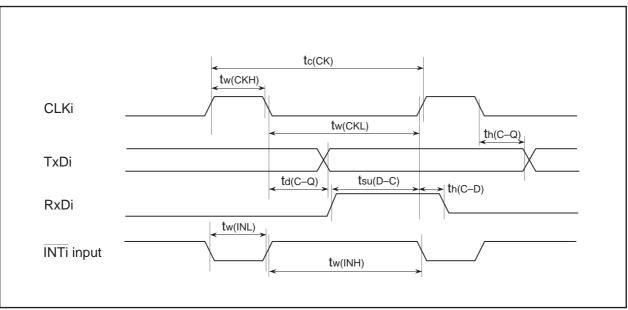


Figure 18.4. Timing Diagram (2)

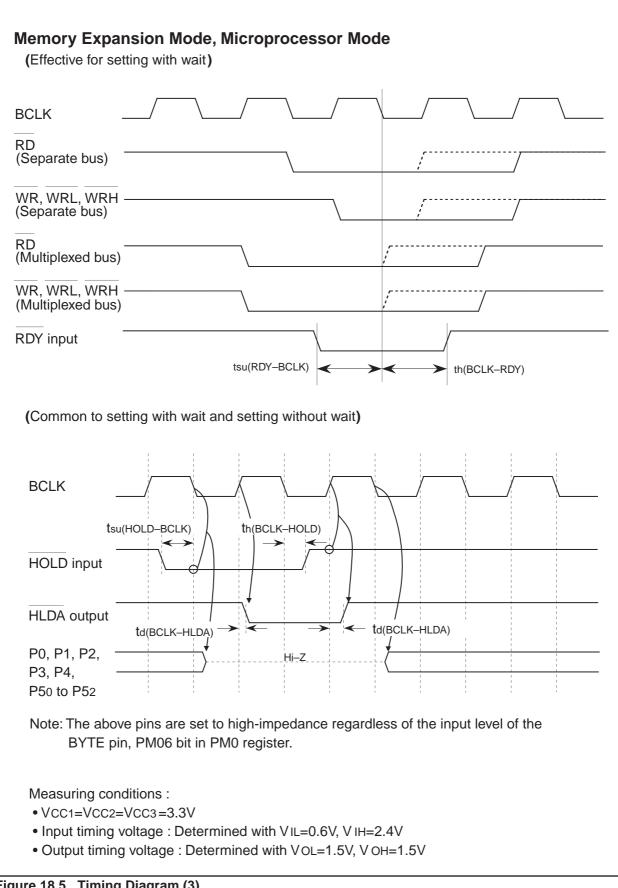


Figure 18.5. Timing Diagram (3)

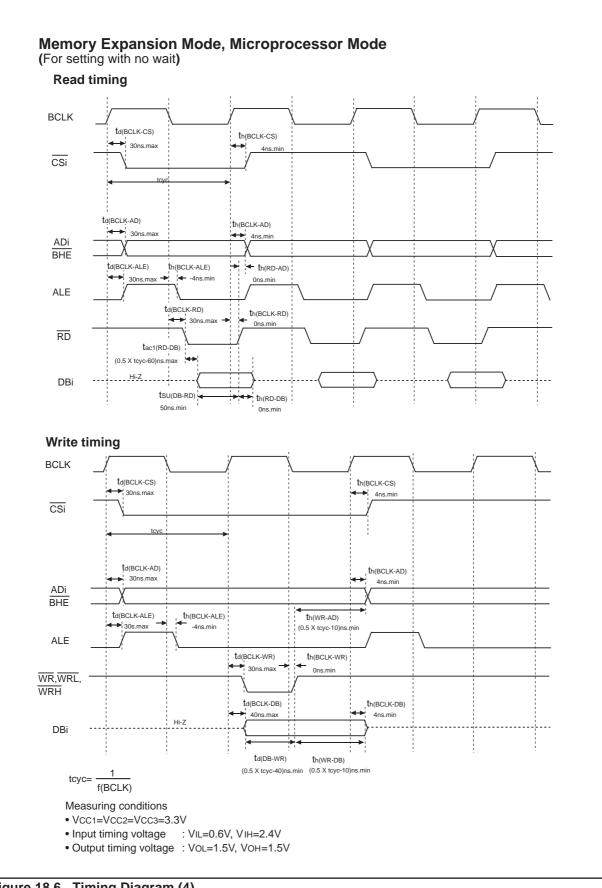
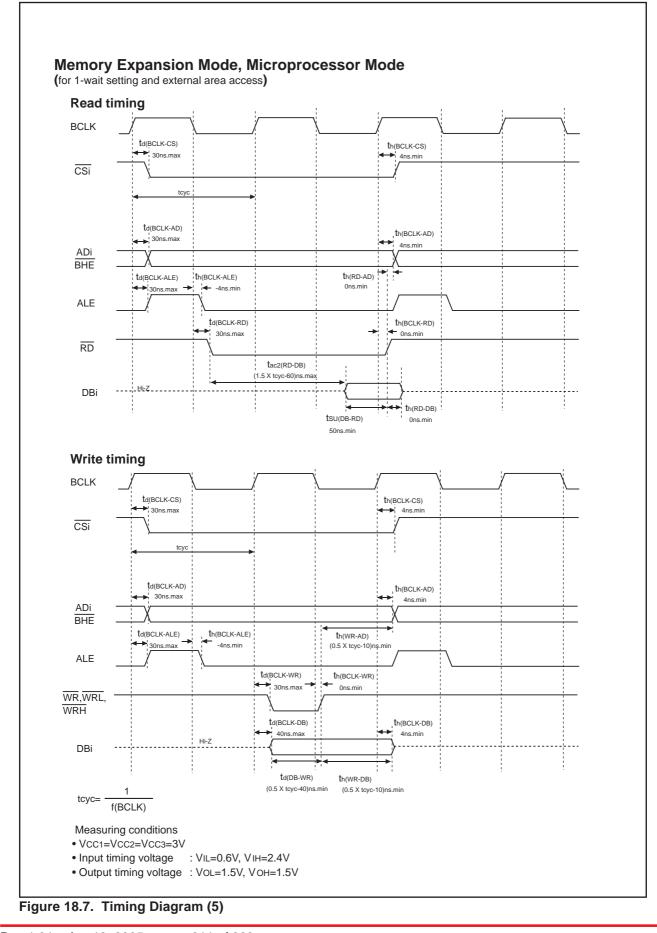



Figure 18.6. Timing Diagram (4)

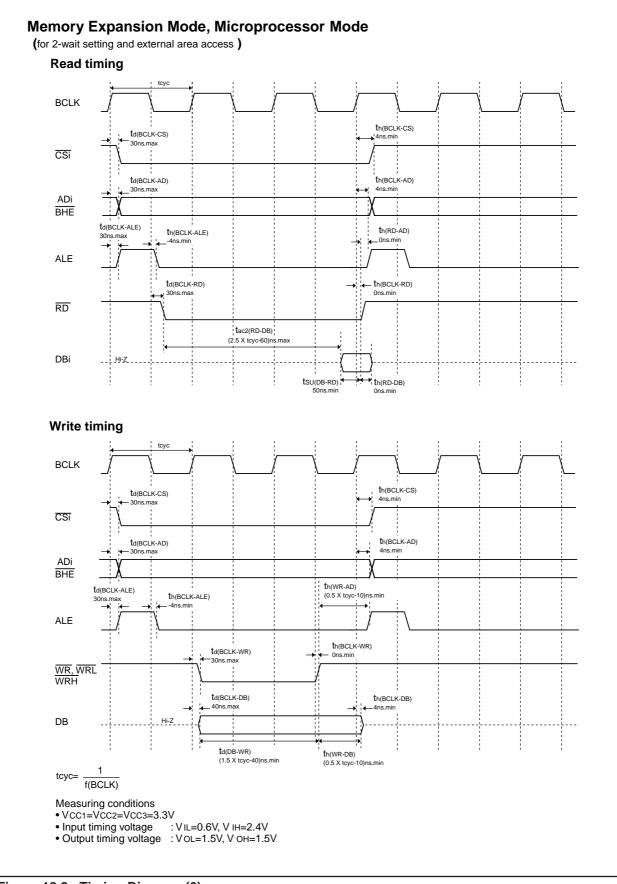
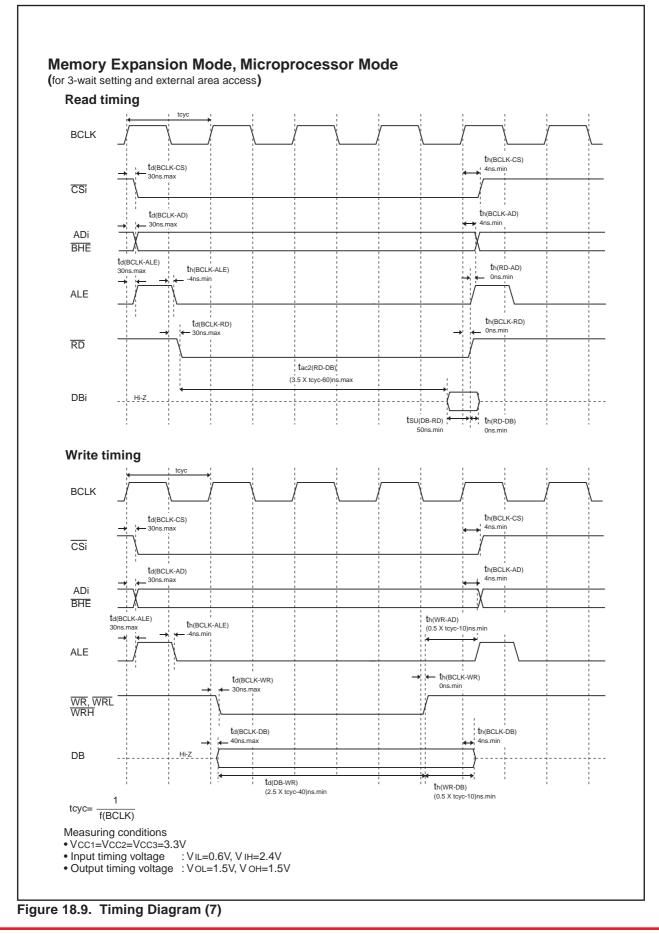



Figure 18.8. Timing Diagram (6)

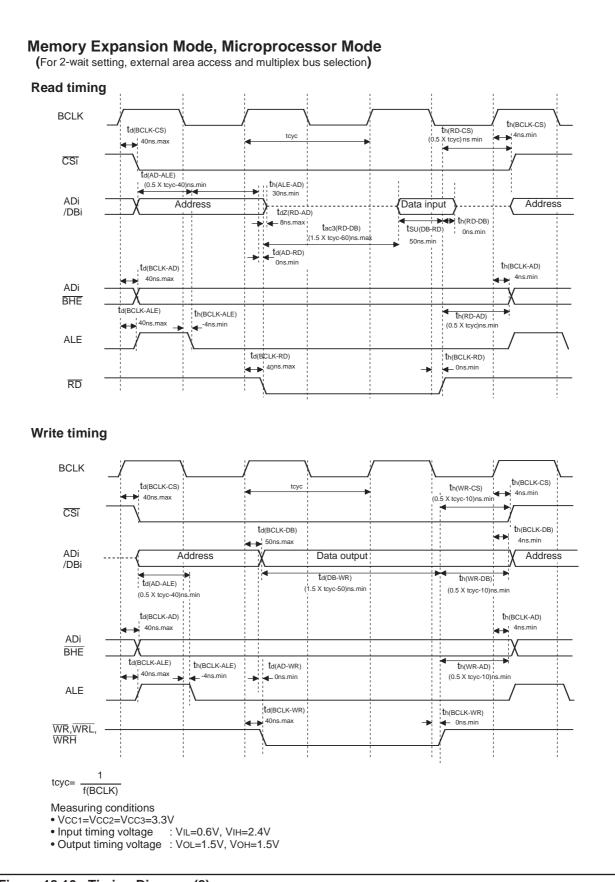
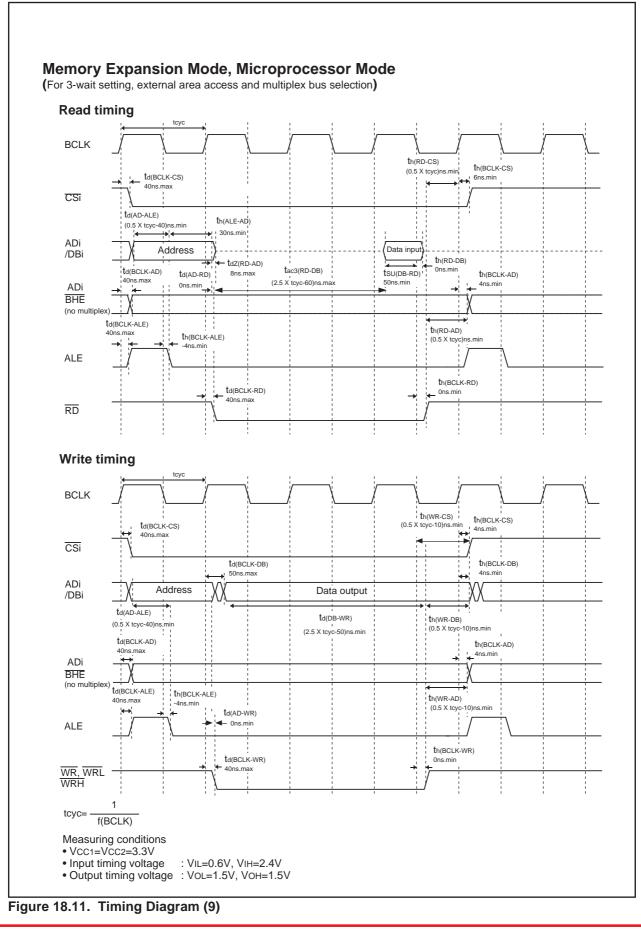



Figure 18.10. Timing Diagram (8)

Flash Memory Version

Flash Memory Performance

The flash memory version is functionally the same as the mask ROM version except that it internally contains flash memory.

The flash memory version has three modes—CPU rewrite, standard serial input/output, and parallel input/ output modes—in which its internal flash memory can be operated on.

Table 19.1 shows the outline performance of flash memory version (refer to "Table 1.1. Performance outline of M306V8FJFP" for the items not listed in Table 19.1.).

Item		Specification		
Flash memory of	operating mode	3 modes (CPU rewrite, standard serial I/O, parallel I/O)		
Erase block User ROM area		Refer to "Figure 19.1. Flash Memory Block Diagram"		
Erase block	Boot ROM area	1 block (4 Kbytes) (Note 1)		
Method for prog	jram	In units of word, in units of byte (Note 2)		
Method for erasure		Collective erase, block erase		
Program, erase	control method	Program and erase controlled by software command		
Protect method		Protected for each block by lock bit		
Number of com	mands	8 commands		
Number of prog	ram and erasure	100 times		
ROM code protection		Parallel I/O and standard serial I/O modes are supported.		

Table 19.1. Flash Memory Version Specifications

Notes 1: The boot ROM area contains a standard serial I/O mode rewrite control program which is stored in it when shipped from the factory. This area can only be rewritten in parallel input/output mode

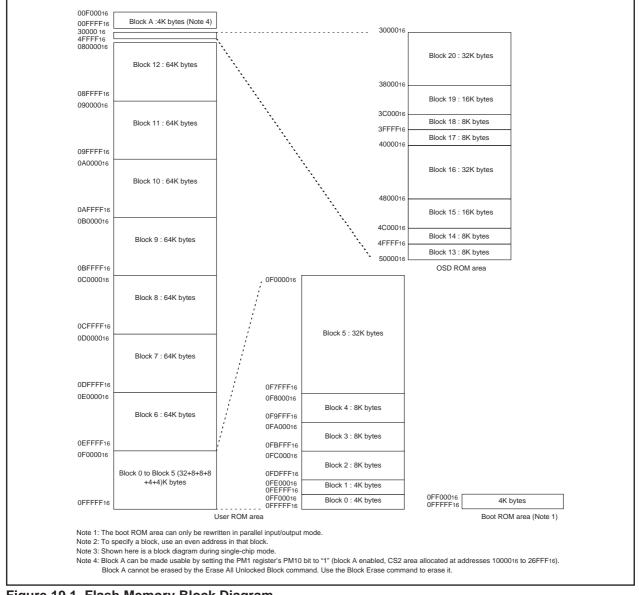
2: Can be programmed in byte units in only parallel input/output mode.

Flash memory	CPU rewrite mode (Note 1)	Standard serial I/O mode	Parallel I/O mode
rewrite mode			
Function	The user ROM area is rewrit- ten by executing software commands from the CPU. EW0 mode: Can be rewritten in any area other than the flash memory (Note 2) EW1 mode: Can be rewritten in the flash memory	The user ROM area is rewrit- ten by using a dedicated se- rial programmer. Standard serial I/O mode 1: Clock sync serial I/O Standard serial I/O mode 2: UART	The boot ROM and user ROM areas are rewritten by using a dedicated parallel programmer.
Areas which	User ROM area	User ROM area	User ROM area
can be rewritten			Boot ROM area
Operation	Single chip mode	Boot mode	Parallel I/O mode
mode	Memory expansion mode		
	(EW0 mode)		
	Boot mode (EW0 mode)		
ROM	None	Serial programmer	Parallel programmer
programmer			

Table 19.2. Flash Memory	y Rewrite	Modes	Overview
--------------------------	-----------	-------	----------

Note 1: The PM13 bit remains set to "1" while the FMR0 register FMR01 bit = 1 (CPU rewrite mode enabled). The PM13 bit is reverted to its original value by clearing the FMR01 bit to "0" (CPU rewrite mode disabled). However, if the PM13 bit is changed during CPU rewrite mode, its changed value is not reflected until after the FMR01 bit is cleared to "0".

Note 2: When in CPU rewrite mode, the PM10 and PM13 bits in the PM1 register are set to "1". The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM13 bit = 1. When the PM13 bit = 0 and the flash memory is used in 4M-byte mode, the extended accessible area (5000016 to BFFFF16) cannot be used.



Memory Map

The ROM in the flash memory version is separated between a user ROM area and a boot ROM area, OSD ROM area. Figure 19.1 shows the block diagram of flash momoery. The user ROM area has a 4K-byte block A, in addition to the area that stores a program for microcomputer operation during singe-chip or memory expansion mode.

The user ROM area is divided into several blocks, each of which can individually be protected (locked) against programming or erasure. The user ROM area can be rewritten in all of CPU rewrite, standard serial input/output, and parallel input/output modes. Block A is enabled for use by setting the PM1 register's PM10 bit to "1" (block A enabled, CS2 area at addresses 1000016 to 26FFF16).

The boot ROM area is located at addresses that overlap the user ROM area, and can only be rewritten in parallel input/output mode. After a hardware reset that is performed by applying a high-level signal to the CNVss1 and P50 pins and a low-level signal to the P55 pin, the program in the boot ROM area is executed. After a hardware reset that is performed by applying a low-level signal to the CNVss1 pin, the program in the user ROM area is executed (but the boot ROM area cannot be read). OSD ROM area that stores character font data. It is rewritten in CPU rewriting mode, standard serial I/O mode, or parallel I/O mode.

Figure 19.1. Flash Memory Block Diagram

Boot Mode

After a hardware reset which is performed by applying a low-level signal to the P55 pin and a high-level signal to the CNVss1 and P50 pins, the microcomputer is placed in boot mode, thereby executing the program in the boot ROM area.

During boot mode, the boot ROM and user ROM areas are switched over by the FMR05 bit in the FMR0 register.

The boot ROM area contains a standard serial input/output mode based rewrite control program which was stored in it when shipped from the factory.

The boot ROM area can be rewritten in parallel input/output mode. Prepare an EW0 mode based rewrite control program and write it in the boot ROM area, and the flash memory can be rewritten as suitable for the system.

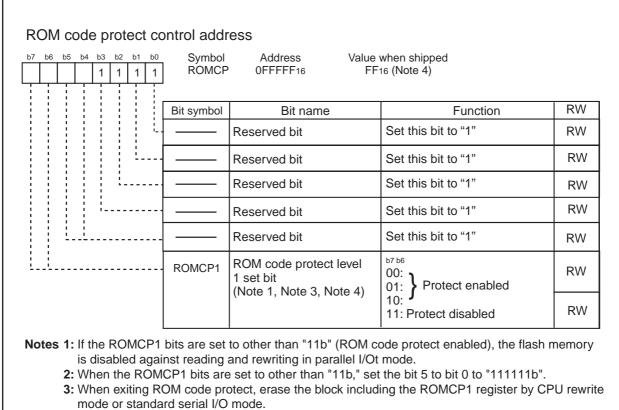
Functions To Prevent Flash Memory from Rewriting

To prevent the flash memory from being read or rewritten easily, parallel input/output mode has a ROM code protect and standard serial input/output mode has an ID code check function.

ROM Code Protect Function

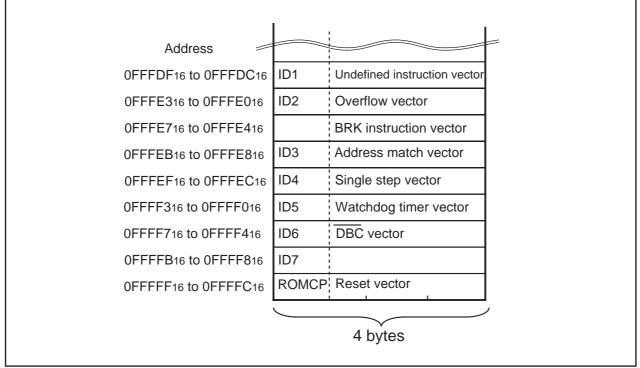
The ROM code protect function inhibits the flash memory from being read or rewritten during parallel input/output mode. Figure 19.2 shows the ROMCP register.

The ROMCP register is located in the user ROM area. The ROM code protect function is enabled when the ROMCR bits are set to other than "11b". In this case, set the bit 5 to bit 0 to "111111b".


When exiting ROM code protect, erase the block including the ROMCP1 register by the CPU rewrite mode or the standard serial I/O mode.

• ID Code Check Function

Use the ID code check function in standard serial I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFFFh", ID codes are not compared, allowing all commands to be accepted.


The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses 0FFFDFh, 0FFFE3h, 0FFFE3h, 0FFFE3h, 0FFFF3h, 0FFFF7h, and 0FFFFBh. The flash memory must have a program with the ID codes set in these addresses.

4: If a memory block that including ROMCP1 register is erased, the ROMCP register is set to "FFh".

Figure 19.2. ROMCP Register

Figure 19.3. Address for ID Code Stored

CPU Rewrite Mode

In CPU rewrite mode, the user ROM area or OSD ROM area can be rewritten by executing software commands from the CPU. Therefore, the user ROM area or OSD ROM area can be rewritten directly while the microcomputer is mounted on-board without having to use a ROM programmer, etc.

In CPU rewrite mode, only the user ROM area shown in Figure 19.1 can be rewritten and the boot ROM area cannot be rewritten. Make sure the Program and the Block Erase commands are executed only on each block in the user ROM area.

During CPU rewrite mode, the user ROM area be operated on in either Erase Write 0 (EW0) mode or Erase Write 1 (EW1) mode. Table 19.3 lists the differences between Erase Write 0 (EW0) and Erase Write 1 (EW1) modes.

	EW0 mode	EW1 mode
Operation mode	Single chip mode	Single chip mode
	 Memory expansion mode 	
	Boot mode	
Areas in which a	User ROM area	User ROM area
rewrite control	Boot ROM area	
program can be located		
Areas in which a	Must be transferred to any area other	Can be executed directly in the user
rewrite control	than the flash memory (e.g., RAM)	ROM area
program can be executed	before being executed (Note 2)	
Areas which can be	User ROM area	User ROM area
rewritten	OSD ROM area	OSD ROM area
		However, this does not include the area
		in which a rewrite control program
		exists
Software command	None	 Program, Block Erase command
limitations (Note 3)		Cannot be executed on any block in
		which a rewrite control program exists
		Erase All Unlocked Block command
		Cannot be executed when the lock bit
		for any block in which a rewrite control
		program exists is set to "1" (unlocked)
		or the FMR0 register's FMR02 bit is set
		to "1" (lock bit disabled)
		Read Status Register command
		Cannot be executed
Modes after Program or	Read Status Register mode	Read Array mode
Erase		
CPU status during Auto	Operating	Hold state (I/O ports retain the state in
Write and Auto Erase		which they were before the command
		was executed) (Note 1)
Flash memory status	Read the FMR0 register's FMR00,	Read the FMR0 register's FMR00,
detection (Note 3)	FMR06, and FMR07 bits in a	FMR06, and FMR07 bits in a program
	program	
	Execute the Read Status Register	
	command to read the status	
	register's SR7, SR5, and SR4 flags.	

Table 19.3. EW0 Mode and EW1 Mode

Note 1: Make sure no interrupts (except watchdog timer interrupts) and DMA transfers will occur.

Note 2: When in CPU rewrite mode, the PM10 and PM13 bits in the PM1 register are set to "1". The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM13 bit = 1. When the PM13 bit = 0 and the flash memory is used in 4M-byte mode, the extended accessible area (5000016 to BFFFF16) cannot be used.

Note 3: The register name in explanatory note and a bit name are the cases of rewriting of user ROM area.

• EW0 Mode

The microcomputer is placed in CPU rewrite mode by setting the FMR0 register's FMR01 bit to "1" (CPU rewrite mode enabled), ready to accept commands. In this case, because the FMR1 register's FMR11 bit = 0, EW0 mode is selected. The FMR01 bit can be set to "1" by writing "0" and then "1" in succession. Use software commands to control program and erase operations. Read the FMR0 register or status register to check the status of program or erase operation at completion.

• EW1 Mode

EW1 mode is selected by setting FMR11 bit to "1" (by writing "0" and then "1" in succession) after setting the FMR01 bit to "1" (by writing "0" and then "1" in succession).

Read the FMR0 register to check the status of program or erase operation at completion. The status register cannot be read during EW1 mode.

Flash memory Control Register (FIDR, FMR0 and FMR1 registers)

Figure 19.4 shows the FIDR, FMR0 and FMR1 registers.

FMR00 Bit

This bit indicates the flash memory operating state. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

FMR01 Bit

The microcomputer is made ready to accept commands by setting the FMR01 bit to "1" (CPU rewrite mode). During boot mode, make sure the FMR05 bit also is "1" (user ROM area access).

FMR02 Bit

The lock bit is disabled by setting the FMR02 bit to "1" (lock bit disabled). (Refer to 22.3.6 Data Protect Function.) The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled).

The FMR02 bit does not change the lock bit status but disables the lock bit function. If the block erase or erase all unlocked block command is executed when the FMR02 bit is set to "1", the lock bit status changes "0" (locked) to "1" (unlocked) after command execution is completed.

FMSTP Bit

This bit is provided for initializing the flash memory control circuits, as well as for reducing the amount of current consumed in the flash memory. Setting the FMSTP bit to "1" makes the internal flash memory inaccessible. Set the FMSTP bit by program in a space other than the flash memory.

In the following cases, set the FMSTP bit to "1":

- When flash memory access resulted in an error while erasing or programming in EW0 mode (FMR00 bit not reset to "1" (ready))
- When entering low power mode or ring low power mode

Figure 19.8 shows a flow chart to be followed before and after entering low power mode.

Note that when going to stop or wait mode, the FMR0 register does not need to be set because the power for the internal flash memory is automatically turned off and is turned back on again after returning from stop or wait mode.

FMR05 Bit

This bit switches between the boot ROM and user ROM areas during boot mode. Set this bit to "0" when accessing the boot ROM area (for read) or "1" (user ROM access) when accessing the user ROM area (for read, write, or erase).

FMR06 Bit

This is a read-only bit indicating the status of auto program operation. The bit is set to "1" when a program error occurs; otherwise, it is cleared to "0". For details, refer to the description of the full status check.

FMR07 Bit

This is a read-only bit indicating the status of auto erase operation. The bit is set to "1" when an erase error occurs; otherwise, it is cleared to "0". For details, refer to the description of the full status check. Figure 19.6 show the setting and resetting of EWO mode and 19.7 show the setting and resetting of EW1 mode, respectively.

FMR11 Bit

When the FMR11 bit is set to "0" (EW0 mode), the MCU (microcomputer) enters EW0 mode. When the FMR11 bit is set to "1" (EW1 mode), the MCU (microcomputer) enters EW1 mode.

FMR16 Bit

This is a read-only bit indicating the execution result of the Read Lock Bit Status command. While the block is locked, the FMR16 bit is set to "0". While the block is not locked, this bit is set to "1".

	Sym FID			After reset XXXXX002	
	Bit symbol	Bit name		Function	RW
	FIDR0	Flash module type	^{b1 b0} 0 0: M16	C/62N, M3062GF8N type flash module	RO
	FIDR1	identification value	1 0: M16	SC/62P type flash module SC/62M, M16C/62A type flash module	RO
	 (b7-b2)	Nothing is assigned. When write, set to "0".	When re	ad, their contents are indeterminate.	
by this register. Fol	es on-chip fla low the proce		C/62 grou	up. Note, however, no chip version is kn	own
	ster order bits of r ss to externa uctions no. 1 not show a c	al memories or other SF and no. 2. FIDR registe hip version.		interrupts or DMA transfers will occur be ot discriminate the type of built-in flash	tween
b7 b6 b5 b4 b3 b2 b1 b0	Sym Sym	hbol Address		After reset XX0000012	
	Bit symbol	Bit name		Function	RW
	FMR00	RY/BY status flag		0: Busy (being written or erased) 1: Ready	RO
	FMR01	CPU rewrite mode sele (Note 1)	əct bit	0: Disables CPU rewrite mode 1: Enables CPU rewrite mode	RW
· · · · · · · · · · · · · · · · · · ·	FMR02	Lock bit disable select (Note 2)	bit	0: Enables lock bit 1: Disables lock bit	RW
	FMSTP	Flash memory stop bit (Note 3, Note 5)		0: Enables flash memory operation 1: Stops flash memory operation (placed in low power mode, flash memory initialized)	RW
	(b4)	Reserved bit		Must always be set to "0"	RW
	FMR05	User ROM area select (Note 3) (Effective in only boot		0: Boot ROM area is accessed 1: User ROM area is accessed	RW
	FMR06	Program status flag (N	ote 4)	0: Terminated normally 1: Terminated in error	RO
	FMR07	Erase status flag (Note	; 4)	0: Terminated normally 1: Terminated in error	RO
Note 2: To set this bit to interrupts or no I Note 3: Write to this bit f Note 4: This flag is clear	V0 mode, w "1", write "C DMA transfe rom a progr red to "0" by he FMR01 b by writing "	rrite to this bit from a " and then "1" in succ ers will occur before v ram in other than the executing the Clear bit = 1 (CPU rewrite n	cession v vriting "1 flash me Status co node). If flash me	emory. ommand. the FMR01 bit = 0, although the FM mory is neither placed in low power	R03 bi mode
can be set to "1" nor initialized.	R) control Sym	register 1 abol Address	,	rogram or Read Lock Bit Status cor After reset	nmand
can be set to "1" nor initialized. Note 6: This status inclu Flash memory (USEI	R) control Sym FM	register 1 hbol Address R1 01B516	,	After reset DX00XX0X2	1
can be set to "1" nor initialized. Note 6: This status inclu Flash memory (USEI	R) control Sym FM Bit symbol	register 1 hbol Address R1 01B516 Bit name	,	After reset	RW
can be set to "1" nor initialized. Note 6: This status inclu Flash memory (USEI	R) control Sym FM Bit symbol (b0)	register 1 hbol Address R1 01B516 Bit name Reserved bit		After reset)X00XX0X2 Function The value in this bit when read is indeterminate.	1
can be set to "1" nor initialized. Note 6: This status inclu Flash memory (USEI	R) control Sym FM Bit symbol	register 1 hbol Address R1 01B516 Bit name		After reset DX00XX0X2 Function The value in this bit when read is indeterminate. 0: EW0 mode 1: EW1 mode	RW
can be set to "1" nor initialized. Note 6: This status inclu Flash memory (USEI	R) control Sym FM Bit symbol (b0)	register 1 abol Address R1 01B516 Bit name Reserved bit EW1 mode select bit (After reset DX00XX0X2 Function The value in this bit when read is indeterminate. 0: EW0 mode	RW RO
can be set to "1" nor initialized. Note 6: This status inclu Flash memory (USEI	R) control Sym FM Bit symbol (b0) FMR11	register 1 bol Address R1 01B516 Bit name Reserved bit EW1 mode select bit (Note)		After reset DX00XX0X2 Function The value in this bit when read is indeterminate. 0: EW0 mode 1: EW1 mode The value in this bit when read is	RW RO RW
can be set to "1" nor initialized. Note 6: This status inclu Flash memory (USEI	R) control Sym FM Bit symbol (b0) FMR11 (b3-b2)	register 1 hbol Address R1 01B516 Bit name Reserved bit EW1 mode select bit (Note) Reserved bit		After reset DX00XX0X2 Function The value in this bit when read is indeterminate. 0: EW0 mode 1: EW1 mode The value in this bit when read is indeterminate.	RW RO RW

Figure 19.4. FIDR Register and FMR0 and FMR1 Registers

Figure 19.5 shows the register FMOSi0, figure 19.5-2 shows registers FMOSi1 and FMOSi4 (i=A, B).

FMOSi00 Bit

This bit indicates the operating status of the flash memory. The bit is "0" when the Program, Erase, or erase suspend mode is running; otherwise, the bit is "1".

FMOSi01 Bit

The microcomputer is made ready to accept commands by setting the FMR01 bit to "1" (CPU rewrite mode).

FMOSi02 Bit

When FMR02 bit is "0" (rewriting is forbidden,) block 0 and block 1 do not receive the command of a program and block erase.

FMOSiSTP Bit

This bit is provided for initializing the flash memory control circuits, as well as for reducing the amount of current consumed in the flash memory. Setting the FMSTP bit to "1" makes the internal flash memory inaccessible. Therefore, FMSTP bit should program of domains other than a flash memory. In the following cases, set the FMSTP bit to "1":

• When flash memory access resulted in an error while erasing or programming in EW0 mode (FMR00 bit not reset to "1" (ready))

• When entering low power mode

Figure 19.8 shows a flow chart to be followed before and after entering low power mode.

When CPU rewriting mode shifts at stop mode or wait mode at the time of invalid, the FMR0 register does not need to be set because the power for the internal flash memory is automatically turned off and is turned back on again after returning from stop or wait mode.

FMOSi06 Bit

This is a read-only bit indicating the status of auto program operation. The bit is set to "1" when a program error occurs; otherwise, it is cleared to "0". For details, refer to the description of the full status check.

FMOSi07 Bit

This is a read-only bit indicating the status of auto erase operation. The bit is set to "1" when an erase error occurs; otherwise, it is cleared to "0". For details, refer to the description of the full status check.

FMOSi11 Bit

Setting this bit to "1" places the microcomputer in EW1 mode.

FMOSi40 Bit

When FMR40 bit is set to "1" (permission), an erase suspension function will be permitted.

FMOSi41 Bit

In the EW0 mode, when FMR41 bit is set to "1" by the program, it will shift to erase suspension mode. In the EW1 mode, if the interruption demand of permitted interruption occurs, FMR41 bit will be automatically set to "1" (suspension request), and they will shift to erase suspension mode.

When resome automatic elimination operation, set FMR41 bit to "0" (erase restart.)

FMOSi46 Bit

FMR46 is set to "0" during automatic elimination execution. It is set to "1" by the inside of erase suspension mode. Between "0", access to a flash memory is prohibition.

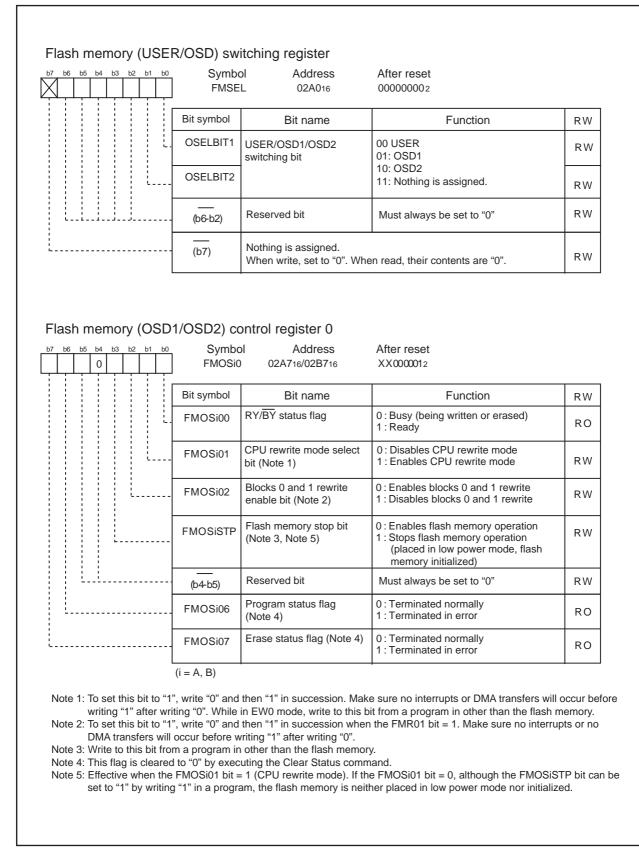


Figure 19.5-1. Register FMOSA0/FMOSB0/FMSEL

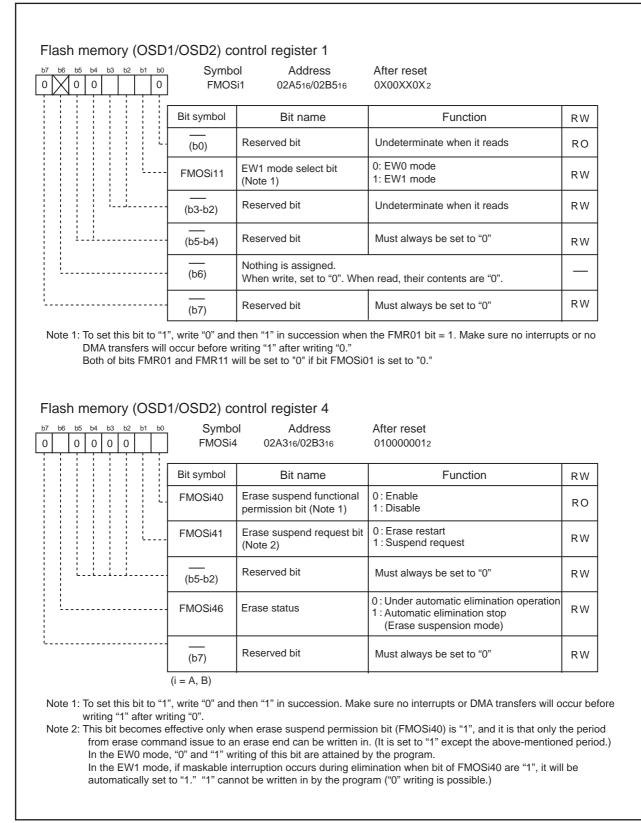


Figure 19.5-2. Registers FMOSA1, FMOSB1, FMOSA4 and FMOSB4

RENESAS

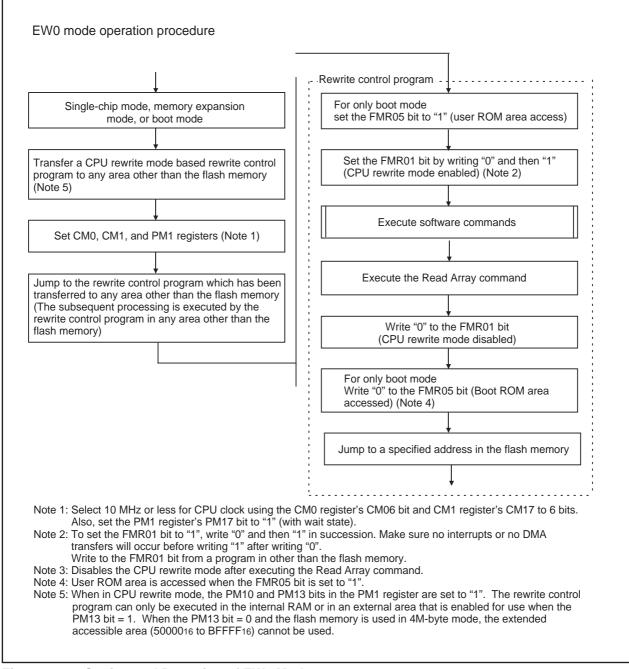


Figure 19.6. Setting and Resetting of EW0 Mode

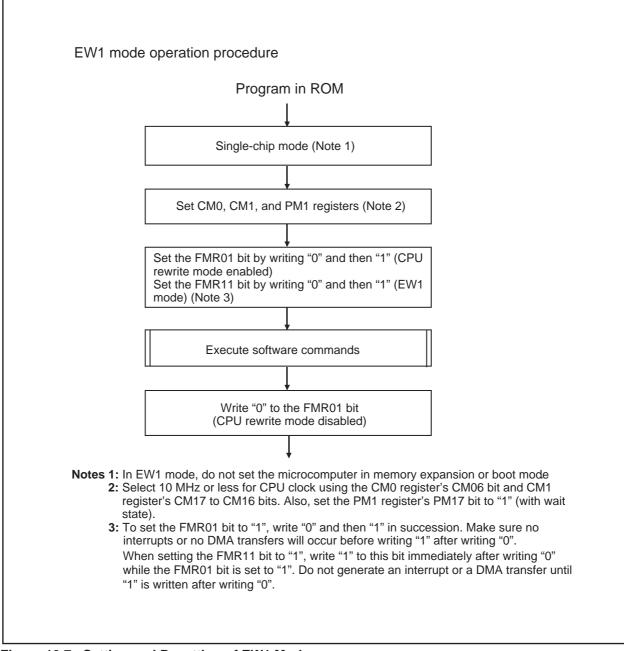
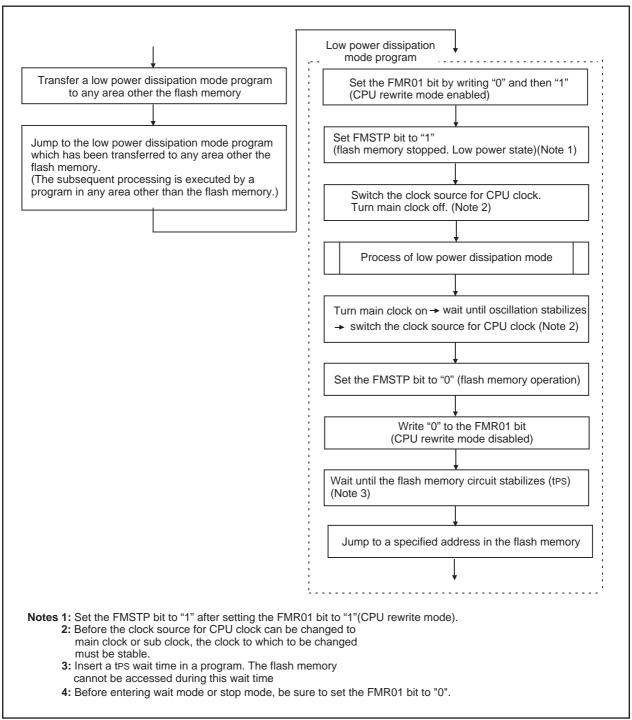



Figure 19.7. Setting and Resetting of EW1 Mode

Precautions on CPU Rewrite Mode

(1) Operation Speed

Before entering CPU rewrite mode (EW0 or EW1 mode), select 10 MHz or less for CPU clock using the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register. Also, set the PM17 bit in the PM1 register to "1" (with wait state).

(2) Instructions to Prevent from Using

The following instructions cannot be used in EW0 mode because the flash memory's internal data is referenced: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

(3) Interrupt (EW0 Mode)

- Any interrupt which has a vector in the variable vector table can be used providing that its vector is transferred into the RAM area.
- The watchdog timer interrupts can be used because the FMR0 register and FMR1 register are initialized when one of those interrupts occurs. The jump addresses for those interrupt service routines should be set in the fixed vector table.

When a monitor timer interrupt is generated, the rewriting operation ends. Execute the rewriting program again after an interrupt routine ends.

• The address match interrupt cannot be used because the flash memory's internal data is referenced.

(4) Interrupt (EW1 Mode)

- Make sure that any interrupt which has a vector in the variable vector table or address match interrupt will not be accepted during the auto program or auto erase period.
- Avoid using watchdog timer interrupts.

(5) How to Access

To set the FMR01, FMR02, or FMR11 bit to "1", write "0" and then "1" in succession. This is necessary to ensure that no interrupts or DMA transfers will occur before writing "1" after writing "0".

(6) Rewrite user ROM area (EW0 Mode)

 If the power supply voltage drops while rewriting any block in which the rewrite control program is stored, a problem may occur that the rewrite control program is not correctly rewritten and, consequently, the flash memory becomes unable to be rewritten thereafter. In this case, standard serial I/O or parallel I/O mode should be used.

(7) Rewrite user ROM area (EW1 Mode)

• Avoid rewriting any block in which the rewrite control program is stored.

(8) DMA Transfer

In EW1 mode, make sure that no DMA transfers will occur while the FMR0 register's FMR00 bit = 0 (during the auto program or auto erase period).

(9) Writing Command and Data

Write the command code and data at even addresses.

(10) Wait Mode

When shifting to wait mode, set the FMR01 bit to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

(11) Stop Mode

When shifting to stop mode, the following settings are required:

• Set the FMR01 bit to "0" (CPU rewrite mode disabled) and disable DMA transfers before setting the CM10 bit to "1" (stop mode).

• Execute the JMP.B instruction subsequent to the instruction which sets the CM10 bit to "1" (stop mode)

Example program BSET 0, CM1 ; Stop mode JMP.B L1

L1:

Program after returning from stop mode

(12) Low Power Dissipation Mode

If the CM05 bit is set to "1" (main clock stop), the following commands must not be executed.

- Program
- Block erase
- Erase all unlocked blocks
- Lock bit program software command
- Read lock bit status

Software Commands

Software commands are described below. The command code and data must be read and written in 16bit units, to and from even addresses in the user ROM area. When writing command code, the 8 highorder bits (D15–D8) are ignored.

Table 19.4. Software Commands

		First bus cycle	e	S	Second bus cycle		
Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)	
Read array	Write	Х	xxFF16				
Read status register	Write	Х	xx70 16	Read	X	SRD	
Clear status register	Write	Х	xx5016				
Program	Write	WA	xx4016	Write	WA	WD	
Block erase	Write	Х	xx2016	Write	BA	xxD016	
(Note 1, 2) Erase all unlocked block	Write	Х	xxA716	Write	Х	xxD016	
Lock bit program (Note 2)	Write	BA	xx77 16	Write	BA	xxD016	
Read lock bit status (Note 2)	Write	Х	xx71 16	Write	BA	xxD016	

Note 1: It is only blocks 0 to 12 that can be erased by the Erase All Unlocked Block command.

Block A cannot be erased. Use the Block Erase command to erase block A.

Note 2: It can perform only to USER area. The execution to OSD area serves as error.

SRD: Status register data (D7 to D0)

WA: Write address (Make sure the address value specified in the the first bus cycle is the same even address as the write address specified in the second bus cycle.)

WD: Write data (16 bits)

BA: Uppermost block address (even address, however)

X: Any even address in the user ROM area

xx: High-order 8 bits of command code (ignored)

Read Array Command (FF16)

This command reads the flash memory.

Writing 'xxFF16' in the first bus cycle places the microcomputer in read array mode. Enter the read address in the next or subsequent bus cycles, and the content of the specified address can be read in 16-bit units.

Because the microcomputer remains in read array mode until another command is written, the contents of multiple addresses can be read in succession.

Read Status Register Command (7016)

This command reads the status register.

Write 'xx7016' in the first bus cycle, and the status register can be read in the second bus cycle. (Refer to "Status Register.") When reading the status register too, specify an even address in the user ROM area.

Do not execute this command in EW1 mode.

Clear Status Register Command (5016)

The clear status register command clears the status register. By writing "xx50h" in the first bus cycle, the FMR07 to FMR06 bits in the FMR0 register are set to "00b" and the SR5 to SR4 bits in the status register are set to "00b".

Program Command (4016)

This command writes data to the flash memory in 1 word (2 byte) units.

Write 'xx4016' in the first bus cycle and write data to the write address in the second bus cycle, and an auto program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same even address as the write address specified in the second bus cycle.

Check the FMR00 bit in the FMR0 register to see if auto programming has finished. The FMR00 bit is "0" during auto programming and set to "1" when auto programming is completed.

Check the FMR06 bit in the FMR0 register after auto programming has finished, and the result of auto programming can be known. (Refer to "Full Status Check.")

Additional writing to the programmed address cannot be performed. Figure 19.9 shows the program flow chart. Also, each block can disable a program by the lock bit.

In EW1 mode, do not execute this command on any address at which the rewrite control program is located.

In EW0 mode, the microcomputer goes to read status register mode at the same time auto programming starts, making it possible to read the status register. The status register bit 7 (SR7) is cleared to "0" at the same time auto programming starts, and set back to "1" when auto programming finishes. In this case, the microcomputer remains in read status register mode until a read command is written next. The result of auto programming can be known by reading the status register after auto programming has finished.

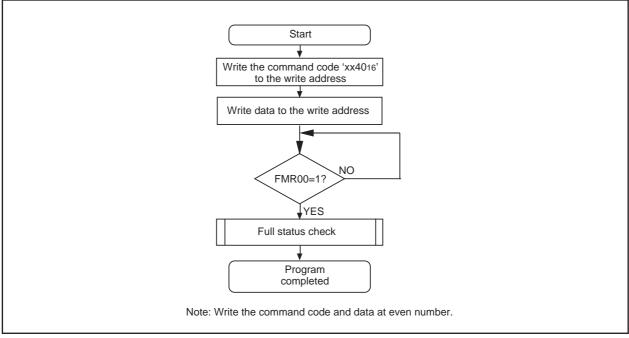


Figure 19.9. Program Command

Block Erase

Write 'xx2016' in the first bus cycle and write 'xxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and an auto erase operation (erase and verify) will start. Check the FMR0 register's FMR00 bit to see if auto erasing has finished.

The FMR00 bit is "0" (busy) during auto erasing and set to "1" (ready) when auto erasing is completed. Check the FMR0 register's FMR07 bit after auto erasing has finished, and the result of auto erasing can be known. (Refer to "Full Status Check.")

Figure 19.10 shows an example of a block erase flowchart.

Each block can be protected against erasing by a lock bit. (Refer to "Data Protect Function.") Writing over already programmed addresses is inhibited.

In EW1 mode, do not execute this command on any address at which the rewrite control program is located.

In EW0 mode, the microcomputer goes to read status register mode at the same time auto erasing starts, making it possible to read the status register. The status register bit 7 (SR7) is cleared to "0" at the same time auto erasing starts, and set back to "1" when auto erasing finishes. In this case, the microcomputer remains in read status register mode until the Read Array or Read Lock Bit Status command is written next.

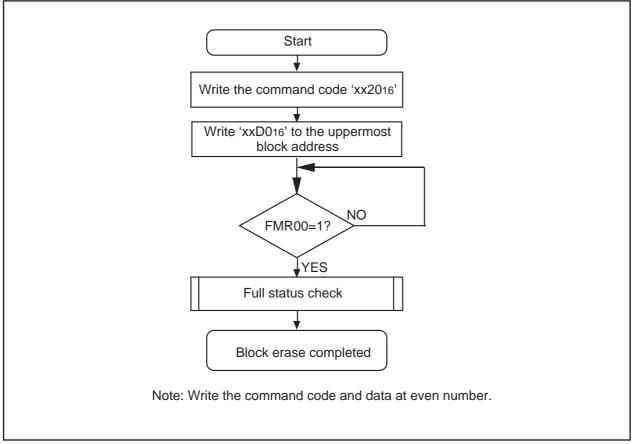


Figure 19.10. Block Erase Command

Erase All Unlocked Block (User area only)

Write 'xxA716' in the first bus cycle and write 'xxD016' in the second bus cycle, and all blocks except block A will be erased successively, one block at a time.

Check the FMR0 register's FMR00 bit to see if auto erasing has finished. The result of the auto erase operation can be known by inspecting the FMR0 register's FMR07 bit.

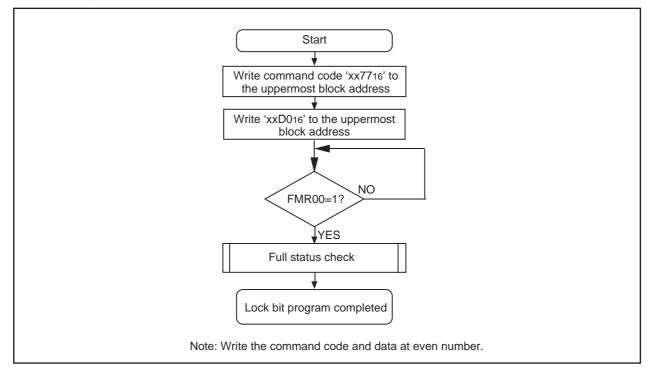
Each block can be protected against erasing by a lock bit. (Refer to "Data Protect Function.")

In EW1 mode, do not execute this command when the lock bit for any block = 1 (unlocked) in which the rewrite control program is stored, or when the FMR0 register's FMR02 bit = 1 (lock bit disabled).

In EW0 mode, the microcomputer goes to read status register mode at the same time auto erasing starts, making it possible to read the status register. The status register bit 7 (SR7) is cleared to "0" (busy) at the same time auto erasing starts, and set back to "1" (ready) when auto erasing finishes. In this case, the microcomputer remains in read status register mode until the Read Array or Read Lock Bit Status command is written next.

Note that only blocks 0 to 12 can be erased by the Erase All Unlocked Block command. Block A cannot be erased. Use the Block Erase command to erase block A.

Lock Bit Program Command (User area only)


This command sets the lock bit for a specified block to "0" (locked).

Write 'xx7716' in the first bus cycle and write 'xxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and the lock bit for the specified block is cleared to "0". Make sure the address value specified in the first bus cycle is the same uppermost block address that is specified in the second bus cycle.

Figure 2.11 shows an example of a lock bit program flowchart. The lock bit status (lock bit data) can be read using the Read Lock Bit Status command.

Check the FMR0 register's FMR00 bit to see if writing has finished.

Refer to "Data protect function" for the lock bit function and how to set the lock bit to "1" (unlocked status).

Read Lock Bit Status Command (User area only)

This command reads the lock bit status of a specified block.

Write 'xx7116' in the first bus cycle and write 'xxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and the lock bit status of the specified block is stored in the FMR1 register's FMR16 bit. Read the FMR16 bit after the FMR0 register's FMR00 bit is set to "1" (ready).

Figure 19.12 shows an example of a read lock bit status flowchart.

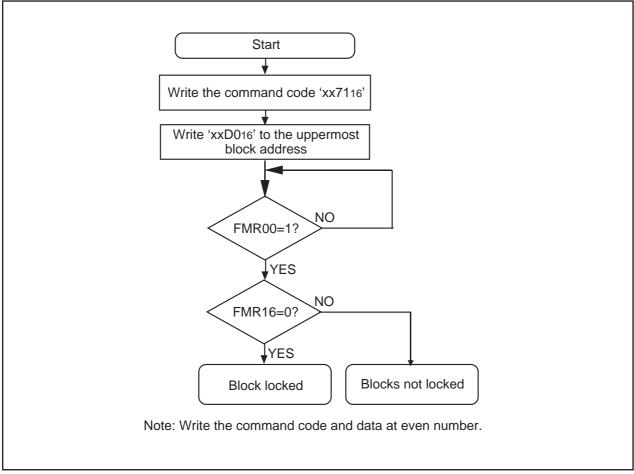


Figure 19.12. Read Lock Bit Status Command

Data Protect Function (User area only)

Each block in the flash memory has a nonvolatile lock bit. The lock bit is effective when the FMR02 bit = 0 (lock bit enabled). The lock bit allows each block to be individually protected (locked) against programming and erasure. This helps to prevent data from inadvertently written to or erased from the flash memory. The following shows the relationship between the lock bit and the block status.

- When the lock bit = 0, the block is locked (protected against programming and erasure).
- When the lock bit = 1, the block is not locked (can be programmed or erased.

The lock bit is cleared to "0" (locked) by executing the Lock Bit Program command, and is set to "1" (unlocked) by erasing the block. The lock bit cannot be set to "1" by a command. The lock bit status can be read using the Read Lock Bit Status command

The lock bit function is disabled by setting the FMR02 bit to "1", with all blocks placed in an unlocked state. (The lock bit data itself does not change state.) Setting the FMR02 bit to "0" enables the lock bit function (lock bit data retained).

If the Block Erase or Erase All Unlocked Block command is executed while the FMR02 bit = 1, the target block or all blocks are erased irrespective of how the lock bit is set. The lock bit for each block is set to "1" after completion of erasure.

For details about the commands, refer to "Software Commands."

Status Register

The status register indicates the operating status of the flash memory and whether an erase or programming operation terminated normally or in error. The status of the status register can be known by reading bit 0, bit 6 and bit 7 of the FMR0, FMOSA0 and FMOSB0 registers.

A status register exists in each to three area of USER/OSD1/OSD2. In order to read the right result, it is necessary to choose an object area by FMSEL0 and FMSEL1 before command execution. Table 19.5 shows the status register.

In EW0 mode, the status register can be read in the following cases:

- (1) When a given even address in the user ROM area is read after writing the Read Status Register command
- (2) When a given even address in the user ROM area is read after executing the Program, Block Erase, Erase All Unlocked Block, or Lock Bit Program command but before executing the Read Array command.

Sequencer Status (SR7 and FMR00/FMOSA00/FMOSB00 Bits)

The sequence status indicates the operating status of the flash memory. SR7 = 0 (busy) during auto programming, auto erase, and lock bit write, and is set to "1" (ready) at the same time the operation finishes.

Erase Status (SR5 and FMR07/FMOSA07/FMOSB07 Bits)

Refer to "Full Status Check."

Program Status (SR4 and FMR06/FMOSA06/FMOSB06 Bits)

Refer to "Full Status Check."

Status register	Flash memory control	Status name	Cor	Value after	
bit	register0	Status name	"O"	"1"	reset
SR7 (D7)	bit0	Sequencer status	Busy	Ready	1
SR6 (D6)		Reserved bit	-	-	
SR5 (D5)	bit7	Erase status	Terminated normally	Terminated in error	0
SR4 (D4)	bit6	Program status	Terminated normally	Terminated in error	0
SR3 (D3)		Reserved bit	-	-	
SR2 (D2)		Reserved bit	-	-	
SR1 (D1)		Reserved bit	-	-	
SR0 (D0)		Reserved bit	-	-	

Table 19.5. Status Register

• Do to D7: Indicates the data bus which is read out when the Read Status Register command is executed.

• SR5 and SR4 are cleared to "0" by executing the Clear Status Register command.

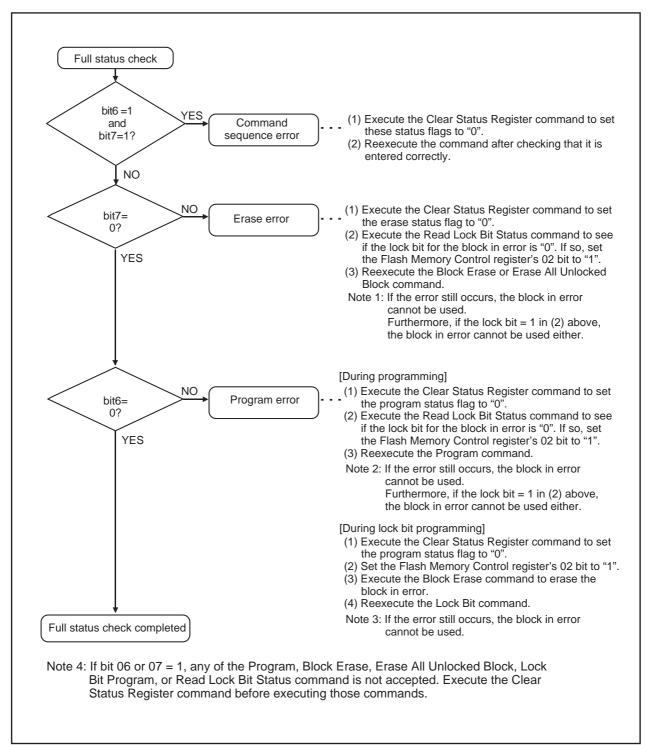
• When SR5 or SR4 = 1, the Program, Block Erase, Erase All Unlocked Block, and Lock Bit Program commands are not accepted.

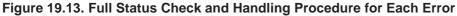
• Flash memory control register exists independently to each area of USER, OSD1, and OSD2, and serves as FMR0, FMOSA0, and FMOSB0, respectively.

Full Status Check

When an error occurs, the bit 6 to 7 of the Flash memory control register are set to "1", indicating occurrence of each specific error. Therefore, execution results can be verified by checking these status bits (full status check). Table 19.6 lists errors and FMR0, FMOSA0, and FMOSB0 register status. Figure 19.13 shows a full status check flowchart and the action to be taken when each error occurs.

Flash memory			
control register			
(status	register)	Error	Error occurrence condition
sta	tus		
(SR5)	(SR4)	-	
1	1	Command	When any command is not written correctly
		sequence error	• When invalid data was written other than those that can be writ-
			ten in the second bus cycle of the Lock Bit Program, Block Erase,
			or Erase All Unlocked Block command (i.e., other than 'xxD016' or
			'xxFF16') (Note 1)
1	0	Erase error	When the Block Erase command was executed on locked blocks
			(Notes 2, 3)
			• When the Block Erase or Erase All Unlocked Block command
			was executed on unlocked blocks but the blocks were not auto-
			matically erased correctly
0	1	Program error	• When the Block Erase command was executed on locked blocks
			(Notes 2, 3)
			• When the Program command was executed on unlocked blocks
			but the blocks were not automatically programmed correctly.
			• When the Lock Bit Program command was executed but not pro-
			grammed correctly (Note 3)
L	1		


Table 19.6. Errors and the Flash Memory Control Register Status


Note 1: Writing 'xxFF16' in the second bus cycle of these commands places the microcomputer in read array mode, and the command code written in the first bus cycle is nullified.

Note 2: When the 02 bit = 1 (lock bit disabled), no error will occur under this condition.

Note 3: It does not correspond, when it performs to OSD1 or OSD2 area, and error is not generated.

Standard Serial I/O Mode

In standard serial input/output mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial programmer suitable for the M16C/6V8 group. For more information about serial programmers, contact the manufacturer of your serial programmer. For details on how to use, refer to the user's manual included with your serial programmer.

Table 19.7 lists pin functions (flash memory standard serial input/output mode). Figures 19.14 to 19.16 show pin connections for standard serial input/output mode.

ID Code Check Function

This function determines whether the ID codes sent from the serial programmer and those written in the flash memory match. (Refer to the description of the functions to inhibit rewriting flash memory version.)

Pin	Name	I/O	Description			
Vcc1, Vcc2, Vcc3, Vss	Power input		Please input the guarantee voltage of program erase into pins VCC1, VCC2, and VCC3. Please input 0V into Vss.			
CNVSS1, CNVSS2	CNVss	I	Please connect CNVss1 to Vcc and connect CNVss2 to Vss.			
RESET	Reset input	I	Reset input pin. While $\overrightarrow{\text{RESET}}$ pin is "L" level, input a 20 cycle or longer clock to XIN pin.			
Xin	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and			
Хоит	Clock output	0	XOUT pins. To input an externally generated clock, input it to XIN pin and open XOUT pin.			
BYTE	BYTE input	I	Connect this pin to Vss.			
P00 to P07	Input port P0	I	Input "H" or "L" level signal or open.			
P10 to P17	Input port P1	I	Input "H" or "L" level signal or open.			
P20 to P27	Input port P2	I	Input "H" or "L" level signal or open.			
P30 to P37	Input port P3	I	Input "H" or "L" level signal or open.			
P40 to P47	Input port P4	I	Input "H" or "L" level signal or open.			
P51 to P54, P56, P57	Input port P5	I	Input "H" or "L" level signal or open.			
P50	CE input	I	Input "H" level signal.			
P55	EPM input	I	Input "L" level signal.			
P60 to P63	Input port P6	I	Input "H" or "L" level signal or open.			
P64/RTS1	BUSY output	0	Standard serial I/O mode 1: BUSY signal output pin Standard serial I/O mode 2: Monitors the boot program operation check signal output pin.			
P65/CLK1	SCLK input	I	Standard serial I/O mode 1: Serial clock input pin Standard serial I/O mode 2: Input "L".			
P66/RxD1	RxD input	I	Serial data input pin.			
P67/TxD1	TxD output	0	Serial data output pin. (Note 1)			
P70 to P77	Input port P7	Ι	Input "H" or "L" level signal or open.			
P82 to P83, P86, P87	Input port P8	I	Input "H" or "L" level signal or open.			
P90 to P91	Input port P9	I	Input "H" or "L" level signal or open.			
P103 to P107	Input port P10	Ι	Input "H" or "L" level signal or open.			
Other input pins			Input "H" or "L" level signal.			
Other output pins			Please open.			

Table 19.7. Pin Functions (Flash Memory Standard Serial I/O Mode)

Note 1: When using standard serial input/output mode 1, the TxD pin must be held high while the RESET pin is pulled low. Therefore, connect this pin to VCC1 via a resistor. Because this pin is directed for data output after reset, adjust the pull-up resistance value in the system so that data transfers will not be affected.

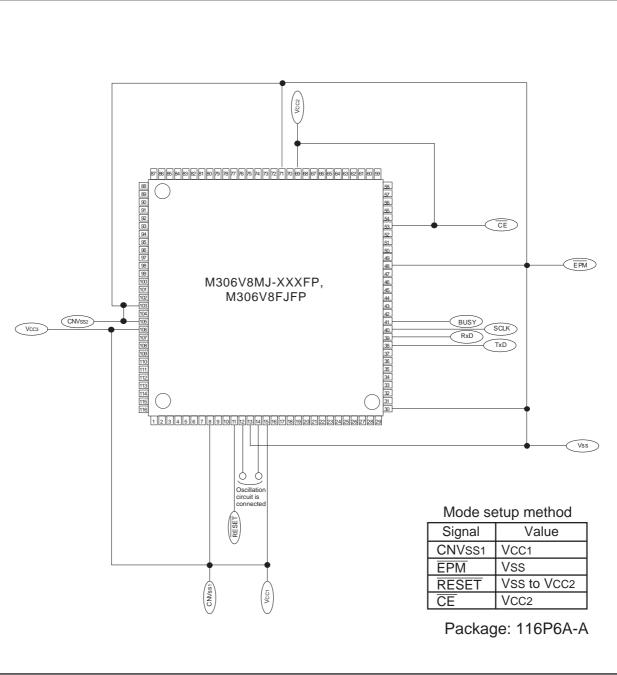


Figure 19.14. Pin circuit at the time of standard serial I/O mode

Example of Circuit Application in the Standard Serial I/O Mode

Figure 19.15 and 19.16 show example of circuit application in standard serial I/O mode 1 and mode 2, respectively. Refer to the user's manual for serial writer to handle pins controlled by a serial writer.

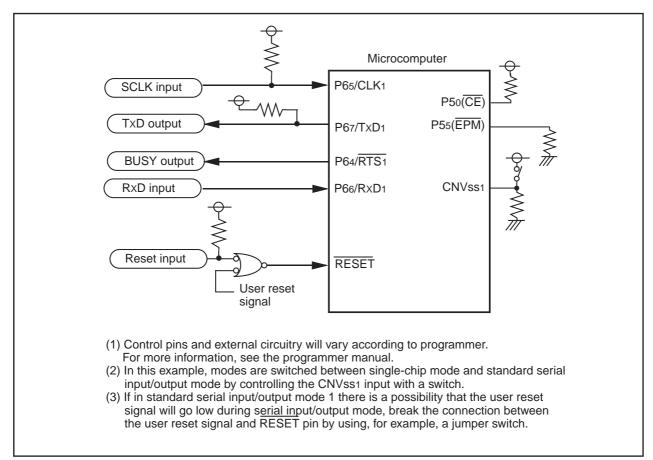


Figure 19.15. Circuit Application in Standard Serial I/O Mode 1

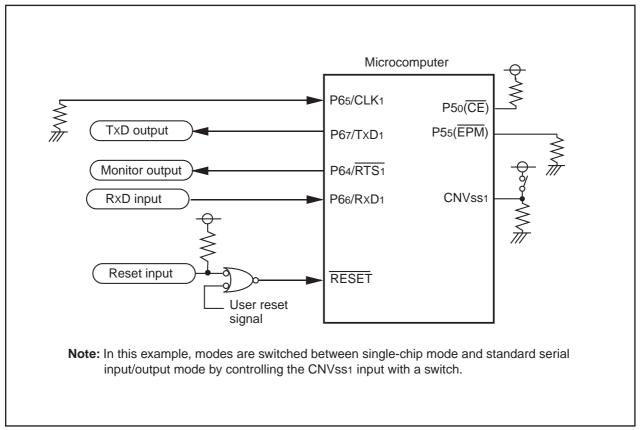


Figure 19.16. Circuit Application in Standard Serial I/o Mode 2

Parallel I/O Mode

In parallel input/output mode, the user ROM, OSD ROM, and boot ROM areas can be rewritten by using a parallel programmer suitable for the M16C/6V8 group. For more information about parallel programmers, contact the manufacturer of your parallel programmer. For details on how to use, refer to the user's manual included with your parallel programmer.

Boot ROM Areas

In the boot ROM area, an erase block operation is applied to only one 4 Kbyte block. The boot ROM area contains a standard serial input/output mode based rewrite control program which was written in it when shipped from the factory. Therefore, when using a serial programmer, be careful not to rewrite the boot ROM area.

When in parallel output mode, the boot ROM area is located at addresses 0FF00016 to 0FFFFF16. When rewriting the boot ROM area, make sure that only this address range is rewritten. (Do not access other than the addresses 0FF00016 to 0FFFFF16.)

ROM Code Protect Function

The ROM code protect function inhibits the flash memory from being read or rewritten. (Refer to the description of the functions to inhibit rewriting flash memory version.)

Usage Precaution

Reset

When supplying power to the microcomputer, the power supply voltage applied to the VCC1 pin must meet the conditions of SVCC.

Symbol	Parameter	Min.	Typ.	Max.	Unit
SVcc	Power supply rising gradient (Vcc1)	0.05			V/ms

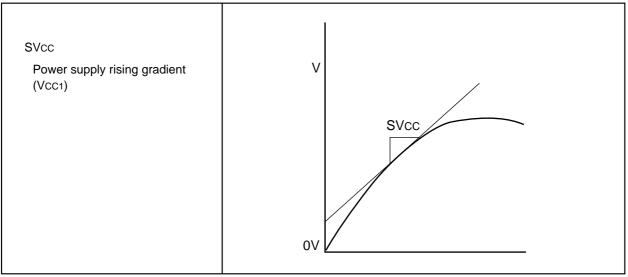


Figure 20.1 Timing of SVcc

Bus

- The ROMless version can operate only in the microprocessor mode, connect the CNVss1 pin to VCC1.
- When resetting CNVss1 pin with "H" input, contents of internal ROM cannot be read out.

Power Control

- When exiting stop mode by hardware reset, set RESET pin to "L" until a main clock oscillation is stabilized.
- Set the MR0 bit in the TAiMR register (i=0 to 4) to "0" (pulse is not output) to use the timer A to exit stop mode.
- Insert more than four NOP instructions after an WAIT instruction or a instruction to set the CM10 bit of CM1 register to "1". When shifting to wait mode or stop mode, an instruction queue reads ahead to the next instruction to halt a program by an WAIT instruction and an instruction to set the CM10 bit to "1" (all clocks stopped). The next instruction may be executed before entering wait mode or stop mode, depending on a combination of instruction and an execution timing.
- Wait the main clock oscillation stabilizes, before switching the clock source for CPU clock to the main clock.

Similarly, wait until the sub clock oscillates stably before switching the clock source for CPU clock to the sub clock.

• Suggestions to reduce power consumption

Ports

The processor retains the state of each I/O port even when it goes to wait mode or to stop mode. A current flows in active I/O ports. A pass current flows in input ports that high-impedance state. When entering wait mode or stop mode, set non-used ports to input and stabilize the potential.

A/D converter

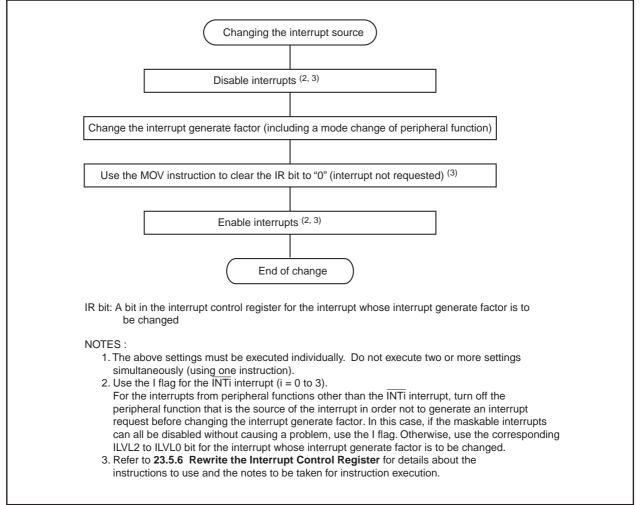
When A/D conversion is not performed, set the VCUT bit of ADiCON1 register to "0" (no VREF connection). When A/D conversion is performed, start the A/D conversion at least 1 μ s or longer after setting the VCUT bit to "1" (VREF connection).

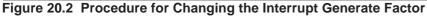
Stopping peripheral functions

Use the CM0 register CM02 bit to stop the unnecessary peripheral functions during wait mode. However, because the peripheral function clock (fC32) generated from the sub-clock does not stop, this measure is not conducive to reducing the power consumption of the chip. If low speed mode or low power dissipation mode is to be changed to wait mode, set the CM02 bit to "0" (do not peripheral function clock stopped when in wait mode), before changing wait mode.

Switching the oscillation-driving capacity

Set the driving capacity to "LOW" when oscillation is stable.




Changing the Interrupt Generate Factor

If the interrupt generate factor is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). If you changed the interrupt generate factor for an interrupt that needs to be used, be sure to clear the IR bit for that interrupt to "0" (interrupt not requested).

Changing the interrupt generate factor refered to here means any act of changing the source, polarity or timing of the interrupt assigned to each software interrupt number. Therefore, if a mode change of any peripheral function involves changing the generate factor, polarity or timing of an interrupt, be sure to clear the IR bit for that interrupt to "0" (interrupt not requested) after making such changes. Refer to the description of each peripheral function for details about the interrupts from peripheral functions.

Figure 20.2 shows the procedure for changing the interrupt generate factor.

DMAC

Write to DMAE Bit in DMiCON Register

When both of the conditions below are met, follow the steps below.

Conditions

- The DMAE bit is set to "1" again while it remains set (DMAi is in an active state).
- A DMA request may occur simultaneously when the DMAE bit is being written.

Step 1: Write "1" to the DMAE bit and DMAS bit in the DMiCON register simultaneously⁽¹⁾. Step 2: Make sure that the DMAi is in an initial state⁽²⁾ in a program. If the DMAi is not in an initial state, the above steps should be repeated.

NOTES :

1. The DMAS bit remains unchanged even if "1" is written. However, if "0" is written to this bit, it is set to "0" (DMA not requested). In order to prevent the DMAS bit from being modified to "0," "1" should be written to the DMAS bit when "1" is written to the DMAE bit. In this way the state of the DMAS bit immediately before being written can be maintained.

Similarly, when writing to the DMAE bit with a read-modify-write instruction, "1" should be written to the DMAS bit in order to maintain a DMA request which is generated during execution.

2. Read the TCRi register to verify whether the DMAi is in an initial state. If the read value is equal to a value which was written to the TCRi register before DMA transfer start, the DMAi is in an initial state. (If a DMA request occurs after writing to the DMAE bit, the value written to the TCRi register is "1".) If the read value is a value in the middle of transfer, the DMAi is not in an initial state.

Timers

Timer A

(1) Timer A (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register and the TAi register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register is modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, if the counter is read at the same time it is reloaded, the value "FFFFh" is read. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

(2) Timer A (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the UDF register, the ONSF register TAZIE, TA0TGL and TA0TGH bits and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register, the UDF register, the TAZIE, TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, "FFFFh" can be read in underflow, while reloading, and "0000h" in overflow. When setting TAi register to a value during a counter stop, the setting value can be read before a counter starts counting. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

(3) Timer A (One-shot Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, the TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

When setting TAiS bit to "0" (count stop), the followings occur:

- A counter stops counting and a content of reload register is reloaded.
- TAiOUT pin outputs "L".
- After one cycle of the CPU clock, the IR bit in the TAilC register is set to "1" (interrupt request).

Output in one-shot timer mode synchronizes with a count source internally generated. When an external trigger has been selected, one-cycle delay of a count source as maximum occurs between a trigger input to TAiIN pin and output in one-shot timer mode.

The IR bit is set to "1" when timer operation mode is set with any of the following procedures:

- Select one-shot timer mode after reset.
- Change an operation mode from timer mode to one-shot timer mode.
- Change an operation mode from event counter mode to one-shot timer mode.

To use the Timer Ai interrupt (the IR bit), set the IR bit to "0" after the changes listed above have been made.

When a trigger occurs, while counting, a counter reloads the reload register to continue counting after generating a re-trigger and counting down once. To generate a trigger while counting, generate a second trigger between occurring the previous trigger and operating longer than one cycle of a timer count source.

(4) Timer A (Pulse Width Modulation Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

The IR bit is set to "1" when setting a timer operation mode with any of the following procedures:

- Select the PWM mode after reset.
- Change an operation mode from timer mode to PWM mode.
- Change an operation mode from event counter mode to PWM mode.

To use the Timer Ai interrupt (interrupt request bit), set the IR bit to "0" by program after the above listed changes have been made.

When setting TAiS register to "0" (count stop) during PWM pulse output, the following action occurs:

- Stop counting.
- When TAiOUT pin is output "H," output level is set to "L" and the IR bit is set to "1".
- When TAiOUT pin is output "L," both output level and the IR bit remains unchanged.

Timer B

(1) Timer B (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

A value of a counter, while counting, can be read in TBi register at any time. "FFFFh" is read while reloading. Setting value is read between setting values in TBi register at count stop and starting a counter.

(2) Timer B (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

The counter value can be read out on-the-fly at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always "FFFFh." If the TBi register is read after setting a value in it while not counting but before the counter starts counting, the read value is the one that has been set in the register.

(3) Timer B (Pulse Period/pulse Width Measurement Mode)

The timer remains idle after reset. Set the mode, count source, etc. using the TBiMR (i = 0 to 5) register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts). Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not. To clear the MR3 bit to "0" by writing to the TBiMR register while the TBiS bit = 1 (count starts), be sure to write the same value as previously written to the TM0D0, TM0D1, MR0, MR1, TCK0 and TCK1 bits and a 0 to the MR2 bit.

The IR bit in the TBiIC register (i=0 to 5) goes to "1" (interrupt request), when an effective edge of a measurement pulse is input or Timer Bi is overflowed. The factor of interrupt request can be determined by use of the MR3 bit in the TBiMR register within the interrupt routine.

If the source of interrupt cannot be identified by the MR3 bit such as when the measurement pulse input and a timer overflow occur at the same time, use another timer to count the number of times Timer B has overflowed.

To set the MR3 bit to "0" (no overflow), set TBiMR register with setting the TBiS bit to "1" and counting the next count source after setting the MR3 bit to "1" (overflow).

Use the IR bit to detect only overflows. Use the MR3 bit only to determine the interrupt factor within the interrupt routine.

When a count is started and the first effective edge is input, an indeterminate value is transferred to the reload register. At this time, Timer Bi interrupt request is not generated.

A value of the counter is indeterminate at the beginning of a count. MR3 may be set to "1" and Timer Bi interrupt request may be generated between a count start and an effective edge input.

For pulse width measurement, pulse widths are successively measured. Use program to check whether the measurement result is an "H" level width or an "L" level width.

Serial I/O

Clock Synchronous Serial I/O

(1) Transmission/reception

With an external clock selected, and choosing the $\overline{\text{RTS}}$ function, the output level of the $\overline{\text{RTS}}$ ipin goes to "L" when the data-receivable status becomes ready, which informs the transmission side that the reception has become ready. The output level of the $\overline{\text{RTS}}$ ipin goes to "H" when reception starts. So if the $\overline{\text{RTS}}$ ipin is connected to the $\overline{\text{CTS}}$ ipin on the transmission side, the circuit can transmission and reception data with consistent timing. With the internal clock, the $\overline{\text{RTS}}$ function has no effect.

(2) Transmission

When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

- The TE bit in the UiC1 register= 1 (transmission enabled)
- The TI bit in the UiC1 register = 0 (data present in UiTB register)
- If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin = L

(3) Reception

In operating the clock-synchronous serial I/O, operating a transmitter generates a shift clock. Fix settings for transmission even when using the device only for reception. Dummy data is output to the outside from the TXDi pin when receiving data.

When an internal clock is selected, set the TE bit in the UiC1 register (i = 0 to 2) to 1 (transmission enabled) and write dummy data to the UiTB register, and the shift clock will thereby be generated. When an external clock is selected, set the TE bit to 1 and write dummy data to the UiTB register, and the shift clock will be generated when the external clock is fed to the CLKi input pin.

When successively receiving data, if all bits of the next receive data are prepared in the UARTi receive register while the RE bit in the UiC1 register (i = 0 to 2) = 1 (data present in the UiRB register), an overrun error occurs and the OER bit in the UiRB register is set to "1" (overrun error occurred). In this case, because the content of the UiRB register is indeterminate, a corrective measure must be taken by programs on the transmit and receive sides so that the valid data before the overrun error occurred will be retransmitted. Note that when an overrun error occurred, the IR bit in the SiRIC register does not change state.

To receive data in succession, set dummy data in the lower-order byte of the UiTB register every time reception is made.

When an external clock is selected, the conditions must be met while if the CKPOL bit = 0, the external clock is in the high state; if the CKPOL bit = 1, the external clock is in the low state.

- The RE bit in the UiC1 register= 1 (reception enabled)
- The TE bit in the UiC1 register= 1 (transmission enabled)
- The TI bit in the UiC1 register= 0 (data present in the UiTB register)

A/D Converter

Set ADCON0 (except bit 6), ADCON1 and ADCON2 registers when A/D conversion is stopped (before a trigger occurs).

When the VCUT bit in the ADCON1 register is changed from "0" (Vref not connected) to "1" (Vref connected), start A/D conversion after passing 1 µs or longer.

When changing an A/D operation mode, select analog input pin again in the CH2 to CH0 bits in the ADCON0 register and the SCAN1 to SCAN0 bits in the ADCON1 register.

When setting the ADST bit in the ADCON0 register to "0" in single-sweep mode during A/D conversion and aborting A/D conversion, disable the interrupt before setting the ADST bit to "0".

Programmable I/O Ports

The input threshold voltage of pins differs between programmable input/output ports and peripheral functions.

Therefore, if any pin is shared by a programmable input/output port and a peripheral function and the input level at this pin is outside the range of recommended operating conditions VIH and VIL (neither "high" nor "low"), the input level may be determined differently depending on which side—the programmable input/ output port or the peripheral function—is currently selected.

Flash Memory Version

(1) Functions to Inhibit Rewriting Flash Memory Rewrite

ID codes are stored in addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFEFh, 0FFFF3h, 0FFFF7h, and 0FFFFBh. If wrong data are written to theses addresses, the flash memory cannot be read or written in standard serial I/O mode.

The ROMCP register is mapped in address 0FFFFh. If wrong data is written to this address, the flash memory cannot be read or written in parallel I/O mode.

In the flash memory version of microcomputer, these addresses are allocated to the vector addresses (H) of fixed vectors.

(2) Program Command

Write "xx40h" in the first bus cycle and write data to the write address in the second bus cycle, and an auto program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same even address as the write address specified in the second bus cycle.

(3) Lock Bit Program Command

Write "xx77h" in the first bus cycle and write "xxD0h" to the uppermost address of a block (even address, however) in the second bus cycle, and the lock bit for the specified block is cleared to "0". Make sure the address value specified in the first bus cycle is the same uppermost block address that is specified in the second bus cycle.

Noise

Use thick and shortest possible wiring to connect bypass capacitors (0.1 μ F) between the VCC1 pin and Vss pin, VcC2 pin and Vss pin, and VcC3 pin and Vss pin.

Figure 20.3 shows the bypass capacitor connection.

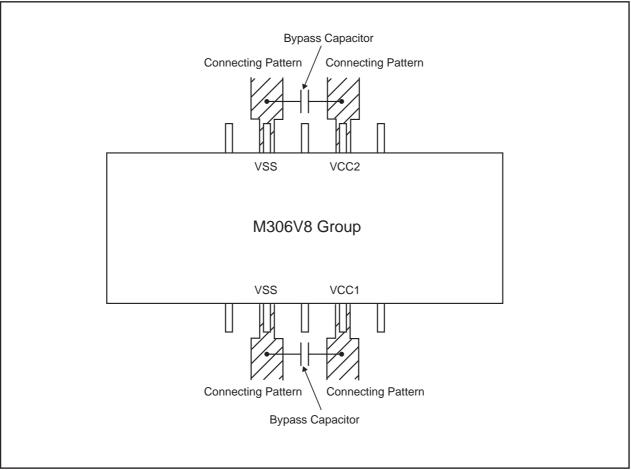
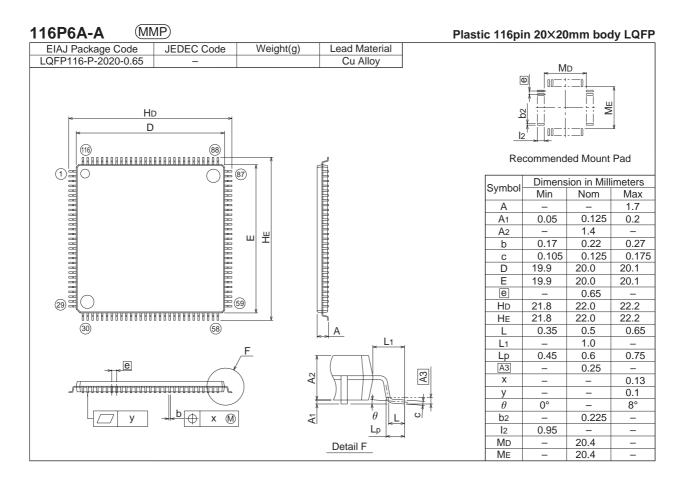



Figure 20.3 Bypass Capacitor Connection

Package Outline

REVISION HISTORY

M306V8FJFP

Rev.	Date		Description		
		Page	Summary		
1.30	Mar 15, 2005	_	First edition issued.		
1.31	Apr 18, 2005	2	Table 1.1 revised.		
		25	Table 3.1 partly deleted.		
		265	Figure 17.5 partly deleted.		
		295	Table 18.1 partly deleted.		
		298	Table 18.7 revised.		
		299	Table 18.8 partly deleted.		

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. assumes no responsibility for any damage, ilability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information actal system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage or manufa
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

http://www.renesas.com