EryF

Features of the EryF special UV-Index Sensor

The UVI Sensor EryF is based on our approved broad band UV-Sensor TW30SX and uses a Filter leading to excellent accordance with the erythema action curve of the human skin. The EryF is designed for use as a erythema sensor according to ISO 17166 CIE S 007/E (2000) – DIN 5050. It is optimally suited to feature high quality instruments for exact measurements of the UV Index. Overview on the advantages:

- UVI precision is possible up to ± ½ UVI
- the Sensor's current is directly proportional to the UV-Index
- · also suited for sun tanning bank dosimetry
- Based on approved TW30SX technology
- Schottky-type photodiode
- Intrinsic visible blindness due to wide-bandgap semiconductor material
- large photoactive area
- designed to operate in photovoltaic mode
- hermetically sealed metal TO18 housing and UV-glass window
- we are able to manufacture up to 2.000.000 pcs. per year.

Rev. 1.4 Page 1 [4]

EryF

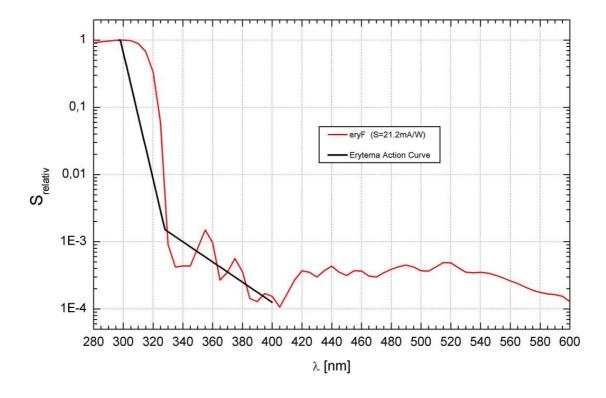
Maximum Ratings

Parameter	Symbol	Value	Unit
Operating temperature range	T_{opt}	-20 +80	°C
Reverse voltage	V_{Rmax}	3	V
Forward current	I _{Fmax}	1	mA
Total power dissipation at 25°C	P _{tot}	1	mW

General Characteristics

(T_a = 25 °C)

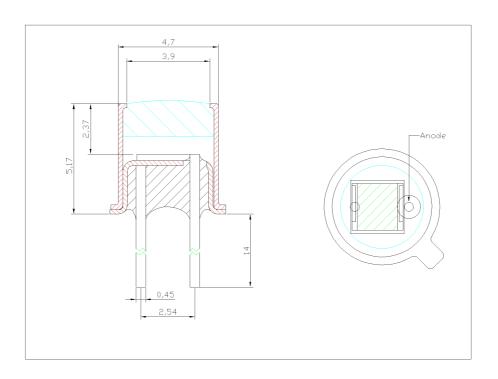
Parameter	Symbol	Value	Unit
Active area	Α	4,18	mm ²
Active area dimensions	LxW	2.2 x 1.9	mm ²
Max. viewing angle	α	70	degree
Shunt resistance (dark)	R_s	300	$M\Omega$
Dark current at 10mV reverse bias	I _d	30	рА
Open circuit voltage (200μW/cm², λ=300nm)	V_0	>250	mV
min. Short circuit current (200μW/cm², λ=300nm)	I ₀	160	nA
Breakdown voltage (dark)	V_{BR}	>3	V
Rev. 1.4			Pag


EryF

Spectral Characteristics

 $(T_a = 25 \, {}^{\circ}C)$

Parameter	Symbol	garanteed Value	Unit
min. spectral sensitivity at peak	S _{max}	19	mA W ⁻¹
Wavelength of peak spectral sensitivity	λ_{Smax}	300	nm
Range of spectral sensitivity (S=0.1*S _{max})	-	215 - 325	nm
Visible blindness	$\frac{S_{max}}{S_{400nm}}$	10000	


Spectral Response

Rev. 1.4 Page 3 [4]

EryF

Pin Layout

Rev. 1.4 Page 4 [4]