EPF8010GM

- Recommended for 10/100, $100 \mathrm{BX}, 155 \mathrm{Mb} / \mathrm{s}$ applications (requiring 1:1 magnetics)
- Guaranteed to operate with 8 mA DC bias at $70^{\circ} \mathrm{C} \cdot$
- Complies with or exceeds IEEE 802.3, 10 BT/100 BX Standards •

Electrical Parameters @ $\mathbf{2 5}^{\circ} \mathrm{C}$

OCL $70^{\circ} \mathrm{C}$	Insertion Loss (dB Max.)						Return Loss (dB Min.)						Common Mode Rejection (dB Min.)						Crosstalk (dB Min.) [Between Channels]	
$100 \mathrm{KHz}, 0.1 \mathrm{Vrms}$ 8 mA DC Bias	$\begin{aligned} & .1-80 \\ & \mathrm{MHz} \end{aligned}$		$\begin{gathered} 80-100 \\ \mathrm{MHz} \end{gathered}$		$\begin{gathered} 100-150 \\ \mathrm{MHz} \end{gathered}$		$\begin{aligned} & 1-30 \\ & \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 30-60 \\ & \mathrm{MHz} \end{aligned}$		$\begin{gathered} \text { 60-100 } \\ \mathrm{MHz} \end{gathered}$		$\begin{aligned} & 1-30 \\ & \mathrm{MHz} \end{aligned}$		$\begin{gathered} 30-100 \\ \mathrm{MHz} \end{gathered}$		$\begin{gathered} 100-500 \\ \mathrm{MHz} \end{gathered}$		$\begin{aligned} & 5-10 \\ & \mathrm{MHz} \end{aligned}$	$\begin{gathered} 10-100 \\ \mathrm{MHz} \end{gathered}$
Cable Side	Xmit	Rcv																		
$350 \mu \mathrm{H}$	-1	-1	-2	-2	-3	-3	-18	-18	-12	-12	-10	-10	-38	-38	-38	-38	-10	-10	-40	-40

- Isolation : 1500 Vrms • Impedance : 100Ω • Rise Time : 3.0 nS Max. •

Schematic

1:1

Dimensions

Dim.	(Inches)			(Millimeters)		
	Min.	Max.	Nom.	Min.	Max.	Nom.
A	. 970	. 990		24.64	25.15	
B	. 380	. 400		9.65	10.16	
C	. 225	. 245		5.72	6.22	
D	. 700	Typ.		17.78	Typ.	
E	. 005	. 015		. 127	. 381	
F	. 100	Typ.		2.54	Typ.	
G	. 500	. 520		12.7	13.20	
H	. 018	. 022		. 457	. 559	
I	. 008	. 012		. 203	. 305	
J	. 090	Typ.		2.28	Typ.	
K	0°	8°		0°	8°	
L	. 025	. 045		. 635	1.14	
M			. 030			. 762
N			. 100			2.54
P			. 092			2.34
Q			. 560			14.22

*CMC or CMT optional.

EPF8010GM

The circuit below is a guideline for interconnecting PCA's EPF8010GM with a typical 100 BX PHY chip for $100 \mathrm{Mb} / \mathrm{s}$ applications over UTP cable. Further details of system design, such as chip pin-out, etc. should be obtained from the specific chip manufacturer.

Typical insertion loss of the isolation transformer is 0.5 dB . This parameter covers the entire spectrum of the encoded signals in $100 / 155$ protocols. Under terminated conditions, to transmit a 2 V pk-pk signal across the cable, you must adjust the specific chip preset template control resistors to get at least $2.12 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ across the transmit side input pins.

It is recommended that system designers do not ground the receiver side center tap, via a capacitor. This may worsen EMI, specifically if the secondary "common mode termination" is pulled to chassis ground as shown.

The phantom resistors shown around the connector have been known to suppress unwanted radiation that unused wires pick up from the immediate environment. Their placement and use are to be considered carefully before a design is finalized.

The "common mode termination" load of 75Ω shown from the center taps of the secondary may be taken to chassis ground via a suitable cap. This depends upon the user's design, EMI margin, etc.

It is recommended that there be a neat separation of ground planes in the layout. It is generally accepted practice to limit the plane off at least 0.05 inches away from the chip side pins of EPF8010GM. There need not be any ground plane beyond this point.

For best results, the PCB designer should design the outgoing traces preferably to be 50Ω, balanced and well coupled to achieve minimum radiation from these traces.

Typical Application Circuit for 100 BX over UTP

Notes : * Pin-outs shown are for DCE configurations : e.g. Hubs, Repeaters

