CX MINIATURE CRYSTALS

Page

1 of 2

CX-1-03

530kHz to 2.1MHz

MINIATURE QUARTZ CRYSTAL FOR PARALLEL OSCILLATORS

General Description

The CX-1 quartz crystal is a high quality extensional mode resonator. The CX-1 is hermetically sealed in a rugged, miniature ceramic package, a quarter of the size of an eight pin dual-in-line package. The crystal is manufactured utilizing a photo-lithographic process, ensuring consistency and repeatability of electrical characteristics.

Outline and Dimensions

Equivalent Circuit

EUROQUARTZ

Telephone: +44(0)1460 230000 Fax: +44(0)1460 230001 Email: sales@euroquartz.co.uk Web: www.euroquartz.co.uk

- Extensional mode
- Ideal for use with microprocessors
- Designed for low-power applications
- Compatible with hybrid packaging
- Low ageing
- Full military environmental testing available
- Ideal for battery operated applications

Specification

Frequency Range: Functional Mode: Calibration Tolerance*:

Load Capacitance: Motional Resistance (R₁): Motional Capacitance (C₁): Quality Factor (Q): Shunt Capacitance (C₀): Drive Level: Turning Point (T₀)**: Temperature Coefficient (k):

Note: Frequency deviation (f) from frequency (fo) @ turning point temperature (To): $\frac{f_{-}f_{0}}{f_{-}} = k(T_{-}T_{0})^{2}$

Ageing, first year: Shock: Vibration, survival: Operating Temperature:

Storage Temperature: Process Temperature:

530kHz to 2.1MHz Extensional ±0.05% (±500ppm) Α В ±0.1% С ±1.0% 7pF $3k\Omega max.$ 1.2fF 150.000 1.0pF max. 3μW max. 35°C -0.035ppm/°C²

requercy (ro) (a) furning point $\frac{f-f_0}{f_0} = k(T-T_0)^2$ $\pm 5ppm max.$ $750g 0.3ms, \frac{1}{2} sine$ 10g rms 10-1,000Hz random $-10^{\circ} + 70^{\circ}C (commercial)$ $-40^{\circ} + 85^{\circ}C (industrial)$ $-55^{\circ} - +125^{\circ}C (military)$ $-55^{\circ}C - +125^{\circ}C$ Lead to Package temp. not to exceed 175^{\circ}C Glass lid to package seal rim temp. not to exceed 210^{\circ}C

Specifications are typical at 25°C unless otherwise indicated.

- Closer calibration available
- Other turning point available

CX MINIATURE CRYSTALS

CX-1-03

530kHz to 2.1MHz

MINIATURE QUARTZ CRYSTAL FOR PARALLEL OSCILLATORS Page 2 of 2 Telephone: +44(0)1460 230000 Fax: +44(0)1460 230001 Email: sales@euroquartz.co.uk Web: www.euroquartz.co.uk

Typical Application⁻

Typical application for Pierce oscillator

The low-profile CX miniature leaded crystal is ideal for small, high density, battery operated portable products. A CX crystal incorporated into a Pierce oscillator (single inverter) circuit provides a high stability with low current consumption. A conventional HCMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a Pi-network circuit with C₁ and C₂ providing the additional phase shift necessary to sustain oscillation. The oscillation frequency (f₀) is 15 to 150ppm above the crystal series resonant frequency (f_s).

Drive Level

 R_A is used to limit the crystal's drive level by forming a voltage divider between R_A and C_1 . R_A also stabilizes the oscillator against changes in the amplifier's output resistance (R_0). R_A should be increased for higher voltage operation.

Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_{ι}). C_{ι} is approximately equal to:

$$C_{L} = \frac{C_{1} \times C_{2}}{C_{1} + C_{2}} + C_{S}$$

NOTE: C_1 and C_2 include stray layout capacitance to ground. C_s is the stray shunt capacitance between the crystal terminals. In practice, the effective values of C_1 will be less than that calculated from C_1 , C_2 , and CS values due to the effect of the amplifier output resistance. C_s should be minimized.

The oscillation frequency (f_0) is approximately equal to:

$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_L)} \right]$$

Where F_s = Series resonant frequency of the crystal

C₁ = Motional Capacitance

C₀ = Shunt Capacitance

Conventional HCMOS Pierce Oscillator Circuit

CX-1-03 - Tray Pack (Standard)

