TIC126A, TIC126B, TIC126C, TIC126D, TIC126E, TIC126M, TIC126N, TIC126S ### P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS - 12 A Continuous On-State Current - 100 A Surge-Current - Glass Passivated Wafer - 100 V to 800 V Off-State Voltage - Max I_{GT} of 20 mA - Compliance to ROHS #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Ratings | | Value | | | | | | | | |---------------------|---|-------------|-------------|-----|-----|-----|-----|-----|-----|----| | | | Α | В | С | D | E | М | S | N | | | V _{DRM} | Repetitive peak off-state voltage (see Note1) | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | V | | V_{RRM} | Repetitive peak reverse voltage | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | V | | I _{T(RMS)} | Continuous on-state current at (or below) 70°C case temperature (see note2) | 12 | | | | | | Α | | | | I _{T(AV)} | Average on-state current (180° conduction angle) at(or below) 70°C case temperature (see Note3) | | | | | | А | | | | | I _{TM} | Surge on-state current (see Note4) | 100 | | | | | | | Α | | | I _{GM} | Peak positive gate current (pulse width ≤300 µs) | | | ; | 3 | | | | Α | | | P _{GM} | Peak power dissipation (pulse width ≤300 µs) 5 | | | | | W | | | | | | P _{G(AV)} | Average gate power dissipation (see Note5) | | | | W | | | | | | | T _C | Operating case temperature range | -40 to +110 | | | | | | | °C | | | T _{stg} | Storage temperature range | | -40 to +125 | | | | | | | °C | | TL | Lead temperature 1.6 mm from case for 10 seconds | 230 | | | | | | | °C | | #### Notes: - 1. These values apply when the gate-cathode resistance $R_{GK} = 1k\Omega$ - 2. These values apply for continuous dc operation with resistive load. Above 70°C derate linearly to zero at 110°C. - 3. This value may be applied continuously under single phase 50 Hz half-sine-wave operation with resistive load. Above 70°C derate linearly to zero at 110°C. - 4. This value applies for one 50 Hz half-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. - 5. This value applies for a maximum averaging time of 20 ms. ## TIC126A, TIC126B, TIC126C, TIC126D, TIC126E, TIC126M, TIC126N, TIC126S #### THERMAL CHARACTERISTICS | Symbol | Ratings | | Value | Unit | |------------------|---------------------------------------|---|--------|------| | t _{gt} | Gate-controlled
Turn-on time | $V_{AA} = 30 \text{ V}, R_L = 6 \Omega,$
$R_{GK(eff)} = 100 \Omega, V_{in} = 20 \text{ V}$ | 0.8 | 116 | | tq | Circuit-communicated
Turn-off time | V_{AA} = 30 V, R_L = 6 Ω , I_{RM} \approx 10 A | 11 | μs | | R _{∂JC} | | | ≤ 2.4 | °C/W | | R∂JA | | | ≤ 62.5 | C/VV | #### **ELECTRICAL CHARACTERISTICS** TC=25°C unless otherwise noted | Symbol | Ratings | Test Condition(s) | Min | Тур | Mx | Unit | |------------------------|--|---|-----|------|-----|------| | I _{DRM} | Repetitive peak off-state current | V_D = Rated V_{DRM} , R_{GK} = 1 kΩ, T_C = 110°C | - | - | 2 | mA | | I _{RRM} | Repetitive peak reverse current | V_R = Rated V_{RRM} , I_G = 0,
T_C = 110°C | - | - | 2 | mA | | I _{GT} | Gate trigger current | V_{AA} = 6 V, R _L = 100 Ω,
$t_{p(g)} \ge 20 \mu s$ | - | 5 | 20 | mA | | V _{GT} | Gate trigger voltage | $V_{AA} = 6 \text{ V}, R_L = 100 \Omega,$
$R_{GK} = 1 \text{ k}\Omega, t_{p(g)} \ge 20 \mu \text{s},$
$T_C = -40^{\circ}\text{C}$ | - | - | 2.5 | V | | | | V_{AA} = 6 V, R _L = 100 Ω,
R _{GK} = 1 kΩ, t _{p(g)} ≥ 20μs, | - | 0.8 | 1.5 | | | | | V_{AA} = 6 V, R_L = 100 Ω,
R_{GK} = 1 kΩ, $t_{p(g)}$ ≥ 20μs,
T_C = 110°C | 0.2 | - | ı | | | I _H | Holding current | V_{AA} = 6 V, R_{GK} = 1 k Ω , initiating I_T = 100 mA | - | - 40 | | | | | | $V_{AA} = 6 \text{ V}, R_{GK} = 1 \text{ k}\Omega,$
initiating $I_T = 100 \text{ mA},$
$T_C = -40^{\circ}\text{C}$ | _ | _ | 70 | mA | | V_{TM} | Peak on-state voltage | I _{TM} = 8A (see Note6) | - | - | 1.4 | V | | dv/dt | Critical rate of rise of off-state voltage | V_D = Rated V_D ,
T_C = 110°C | - | 100 | - | V/µs | #### Note 6: This parameters must be measured using pulse techniques, $t_W = 300\mu s$, duty cycle ≤ 2 %, voltage-sensing contacts, separate from the courrent-carrying contacts, are located within 3.2mm (1/8 inch) from de device body. # TIC126A, TIC126B, TIC126C, TIC126D, TIC126E, TIC126M, TIC126N, TIC126S ### **MECHANICAL DATA CASE TO-220** | Pin 1 : | kathode | |---------|---------| | Pin 2 : | Anode | | Pin 3 : | Gate |