
HT83FXX

Flash Type Voice OTP MCU

Rev. 1.00 1 May 12, 2009

General Description

The flash type voice series of MCUs have OTP type

Program Memory and Flash type Voice Memory.

The devices are 8-bit high performance microcontrollers

which include a voice synthesizer and tone generator.

They are designed for applications which require multiple

I/Os and sound effects, such as voice and melody. The

devices can provide various sampling rates and beats,

tone levels, tempos for speech synthesizer and melody

generator.

They also include two integrated high quality, voltage

type DAC outputs and voltage type PWM outputs.

The devices are excellent solutions for versatile voice

and sound effect product applications with their efficient

MCU instructions providing the user with programming

capability for powerful custom applications. The system

frequency can be up to 8MHz at an operating voltage of

2.7V and include a power-down function to reduce

power consumption.

The MCU flash voice memory capacity ranges from

2M�8 bit to 128K�8 bit, into which the user can down-

load their voice data repeatedly.

Features

� Operating voltage: 2.7V~3.6V

� System clock: 4MHz~8MHz

� Crystal and RC system oscillator

� 12 I/O pins

� I
2
C/SPI Bus Serial Interface, shared with PB

� 2K�15 OTP Program Memory

� Between 2M�8 bit and 128K�8 bit flash type data

memory

� 80�8 Data Memory

� Two 8-bit programmable timer counter with 8-stage

prescaler and one time base counter

� 12-bit high quality voltage type D/A output

� PWM circuit direct drive speaker

� Watchdog Timer function

� 4-level subroutine nesting

� 2.7V Low voltage detection, tolerance 5%

� Integrated LDO regulator in

HT83F10P/20P/40P/60P/80P

� Power-down function and wake-up feature reduce

power consumption

� Up to 1�s (0.5�s) instruction cycle with 4MHz (8MHz)

system clock at VDD= 3.6V

� 63 powerful instructions

� One reset pin

� Flash Data Memory can be re-programmed up to

100,000 times

� Flash Data Memory data retention > 10 years

� 44-pin QFP package

Technical Document

� Application Note
� HA0075E MCU Reset and Oscillator Circuits Application Note

http://www.holtek.com.tw/english/tech/appnote/appnote.htm#mcu
http://www.holtek.com.tw/english/tech/appnote/uc/pdf/ha0075ev110.pdf

Part No. VDD VIN

OTP

Program

Memory

Data

Memory

Flash

Voice

Memory

Voice

Capacity
I/O

8-bit

Timer

I2C/

SPI
D/A

Package

Types

HT83F10 2.7V~3.6V �
2K�15 80�8 128K�8 32sec 12 2 �

12-bit,

PWM
44QFP

HT83F10P 3.3V 3.6V~24V

HT83F20 2.7V~3.6V �
2K�15 80�8 256K�8 64sec 12 2 �

12-bit,

PWM
44QFP

HT83F20P 3.3V 3.6V~24V

HT83F40 2.7V~3.6V �
2K�15 80�8 512K�8 128sec 12 2 �

12-bit,

PWM
44QFP

HT83F40P 3.3V 3.6V~24V

HT83F60 2.7V~3.6V �
2K�15 80�8 1024K�8 256sec 12 2 �

12-bit,

PWM
44QFP

HT83F60P 3.3V 3.6V~24V

HT83F80 2.7V~3.6V �
2K�15 80�8 2048K�8 512sec 12 2 �

12-bit,

PWM
44QFP

HT83F80P 3.3V 3.6V~24V

Note: For devices that exist in more than one package formats, the table reflects the situation for the larger package.

Voice length is estimated by 32K-bit data rate, or 8K sampling rate and 4 bit ADPCM compress mode.

Block Diagram

HT83FXX

Rev. 1.00 2 May 12, 2009

� � � � �

� � 	

 � � � � � � � �

� 	 � � � � � �
� � � � � �

� � � � � � � � �
� � � � �
� � � � �

� � � � � � !
� � � � �

� � � � �
� � �

�
 "

 � � �

� � � � � � !
� � � � � � � � � � # # � � � �

� � � � �

 � � � $ � �

� � � � � � $ % �

 � � � � � # # � �

�
 �
 � � � � � #
� � � � # # � � � �

& � '
(� # � � ! �
� � � � � � � � �

� � � � � � �
� � � ! � � �
� � � � � �

� � �

) # � � � � � � � �
� � � � � �

� *

) $ � � � � � �

� � �
) $ � � � � � �

& � �

� � � � � � � 	
 � � 	
 � 	
 � � 	
 � � 	

Selection Table

The devices include a comprehensive range of features, with most features common to all devices. The main features

distinguishing them are Flash Voice Memory capacity. The functional differences between the devices are shown in the

following table.

Pin Assignment

Pin Description

Pin Name I/O Options Description

PA0~PA7 I/O

Wake-up,

Pull-high

or None

Bidirectional 8-bit I/O port, Each bit can be configured as a wake-up input by

configuration option. Software instructions determine if the pin is a CMOS out-

put or Schmitt trigger input. Configuration options determine which pins on this

port have pull-high resistors.

PB0/SDO/SDA

PB1/SCK/SCL

PB2/SDI

PB3/SCS

I/O
Pull-high

or None

Bidirectional 4-bit I/O port. Each bit can be configured as a wake-up input by

configuration option. Software instructions determine if the pin is a CMOS out-

put or Schmitt trigger input. Configuration options determine which pins on this

port have pull-high resistors. Pins PB0~PB3 are pin-shared with SPI flash

control and I2C control pins SDO/SDA, SCK/SCL, SDI and SCS.

DO O � Data output pin

CLK O � Clock output pin.

DI I � Data input pin.

SCS O � Select signal.

AUD O CMOS Audio output for driving external transistor or power amplifier.

PWM1, PWM2 O � PWM circuit direct speaker drive

RES I � Schmitt trigger reset input. Active low

OSC1

OSC2
�

Crystal

or RC

OSC1, OSC2 are connected to an external RC network or external crystal, de-

termined by configuration option, for the internal system clock. If the RC sys-

tem clock option is selected, pin OSC2 can be used to measure the system

clock at 1/4 frequency.

VDD � � Positive digital power supply

VSS � � Negative digital power supply, ground

VSSP � � PWM negative power supply, ground

VDDP � � PWM positive power supply

VSSA � � Negative DAC circuit power supply, ground

VDDA � � Positive DAC circuit Power supply

HT83FXX

Rev. 1.00 3 May 12, 2009

�

�

�

�

�

�

�

	

� �

� �
� � � � � � � � � � � � � 	 �
 � � � � � �

� �

� �

� �

� �

� �

� 	

�

� �

� �

� �

� �
� �� �� �� �� 	�
� �� �� �� �� �

� � � � � � � 	
 � 	 � � 	 � � 	 � �
� � � � � � �

�

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�

�
�
�

�
�
�

� � � �

� �

� �

� � � �

� � � �

� � � �

� � � �

� � � �

� � �

� � � �

� � � �

� � � � � � � � 	
 � � 	 � � � 	 � � � 	 � � �
� � � � � � �

�

�

�

�

�

�

�

	

� �

� �
� � � � � � � � � � � � � 	 �
 � � � � � �

� �

� �

� �

� �

� �

� 	

�

� �

� �

� �

� �
� �� �� �� �� 	�
� �� �� �� �� �

�

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�

�
�
�

�
�
�

� � � �

� � � � � �

� � � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � �

� � � �

� � � �

Pin Name I/O Options Description

VDD_PBIO � � PB I/O external positive power supply (determine by option)

LDO_OUT O � LDO output

LDO_IN I � LDO input

CS I � Flash data memory chip select pin

SI I � Flash data memory data input pin

SO O � Flash data memory data output pin

SCK I � Flash data memory clock input pin

HOLD I � Hold, pause the device without deselecting Flash data memory

WP I � Flash data memory write protect pin

VDDF � � Positive Flash data memory Power supply

VSSF � � Negative Flash data memory Power supply, ground

Note: Each pin on PA can be programmed through a configuration option to have a wake-up function.

Individual pins can be selected to have pull-high resistors.

Absolute Maximum Ratings

Supply Voltage...........................VSS+2.7V to VSS+3.6V Storage Temperature..........................�50�C to +125�C

Input Voltage..............................VSS�0.3V to VDD+0.3V Operating Temperature.........................�40�C to +85�C
IOL Total ..150mA IOH Total..�100mA

Total Power Dissipation500mW

Note: These are stress ratings only. Stresses exceeding the range specified under 	Absolute Maximum Ratings	 may

cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed

in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage � fSYS=4MHz/8MHz 2.7 � 3.6 V

fSYS System Frequency 3V
ROSC=275k
 � 4 � MHz

ROSC=144k
 � 8 � MHz

IDD Operating Current 3V
No load, fSYS=4MHz � � 3 mA

No load, fSYS=8MHz � � 5 mA

ISTB1 Standby Current (WDT Off) 3V No load, system HALT � � 1 �A

ISTB2 Standby Current (WDT On) 3V No load, system HALT � � 7 �A

VIL1 Input Low Voltage for I/O Ports 3V � � 1 � V

VIH1 Input High Voltage for I/O Ports 3V � � 2 � V

VIL2 Input Low Voltage (RES) 3V � � 1.4 � V

VIH2 Input High Voltage (RES) 3V � � 2.1 � V

VLVD Low Voltage Detection � LVD 2.7V 2.565 2.700 2.835 V

VLDO LDO Output Voltage � VLDO_IN>3.6V 3.2 3.3 3.4 V

VLDO_IN LDO Input Voltage � � 3.6 � 24 V

HT83FXX

Rev. 1.00 4 May 12, 2009

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

ILDO LDO Output Current � VLDO_IN=5.5V 60 100 � mA

IOL1 I/O Port Sink Current 3V VOL=0.1VDD 7 � � mA

IOH1 I/O Port Source Current 3V VOH=0.9VDD �3.5 � � mA

IOL2 PWM1/PWM2 Sink Current 3V VOL=0.1VDD 50 � � mA

IOH2 PWM1/PWM2 Sink Current 3V VOH=0.9VDD �14.5 � � mA

IAUD AUD Source Current 3V VOH=0.9VDD � �3 � mA

RPH Pull-high Resistance 3V � 20 60 100 k

A.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS
System Clock

(RC OSC, Crystal OSC)
� 2.7V~3.6V 4 � 8 MHz

fTIMER Timer Inut Frequency � 2.7V~3.6V 0 � 8 MHz

tWDTOSC Watchdog Oscillator Period 3V � 45 90 180 �s

tWDT1
Watchdog Time-out Period

(WDT OSC)
3V Without WDT prescaler 12 23 45 ms

tWDT2
Watchdog Time-out Period

(System Clock)
� Without WDT prescaler � 1024 � ms

tRES External Reset Low Pulse Width � � 1 � � �s

tSST System Start-up Timer Period � Wake-up from HALT � 1024 � *tSYS

tINT Interrupt Pulse Width � � 1 � � �s

Note: *tSYS=1/fSYS

Characteristics Curves

� R vs. F Chart Characteristics Curves

HT83FXX

Rev. 1.00 5 May 12, 2009

� � � � � � � � � � � � �

)
��
9
$
�
�
�
�
�:
�
4
;
<

� � : � � <

�

/

-

*

+ . 2 + 1 . * � . , 0 / - - .

, = , (

+ 2

� T vs. F Chart Characteristics Curves

� V vs. F Chart Characteristics Curves � 3.0V

HT83FXX

Rev. 1.00 6 May 12, 2009

� � : �
 <

>�
�

>�
�

�:
*
.
�

<
� � � � � � � � � � � � �

(� � ? , (

+ = 2 /

+ = 2 -

+ = 2 *

+ = 2 2

2 = 1 �

2 = 1 /

2 = 1 -

� - 2 � * 2 2 * 2 - 2 / 2 � 2

� 	 � �

)
��
9
$
�
�
�
�
�:
�
4
;
<

(� � � : (<

/

0

�

1

+ 2

* = 0 , = 2 , = , , = /

� � 4 ; � + . 2 � �

HT83FXX

Rev. 1.00 7 May 12, 2009

System Architecture

A key factor in the high-performance features of the

Holtek range of Voice microcontrollers is attributed to

the internal system architecture. The range of devices

take advantage of the usual features found within RISC

microcontrollers providing increased speed of operation

and enhanced performance. The pipelining scheme is

implemented in such a way that instruction fetching and

instruction execution are overlapped, hence instructions

are effectively executed in one cycle, with the exception

of branch or call instructions. An 8-bit wide ALU is used

in practically all operations of the instruction set. It car-

ries out arithmetic operations, logic operations, rotation,

increment, decrement, branch decisions, etc. The inter-

nal data path is simplified by moving data through the

Accumulator and the ALU. Certain internal registers are

implemented in the Data Memory and can be directly or

indirectly addressed. The simple addressing methods of

these registers along with additional architectural fea-

tures ensure that a minimum of external components is

required to provide a functional I/O, voltage type DAC,

PWM direct drive output, capacitor/resistor sensor input

and external RC oscillator converter with maximum reli-

ability and flexibility.

Clocking and Pipelining

The main system clock, derived from either a Crystal/

Resonator or RC oscillator is subdivided into four inter-

nally generated non-overlapping clocks, T1~T4. The

Program Counter is incremented at the beginning of the

T1 clock during which time a new instruction is fetched.

The remaining T2~T4 clocks carry out the decoding and

execution functions. In this way, one T1~T4 clock cycle

forms one instruction cycle. Although the fetching and

execution of instructions takes place in consecutive in-

struction cycles, the pipelining structure of the

microcontroller ensures that instructions are effectively

executed in one instruction cycle. The exception to this

are instructions where the contents of the Program

Counter are changed, such as subroutine calls or

jumps, in which case the instruction will take one more

instruction cycle to execute.

When the RC oscillator is used, OSC2 can be used used

as a T1 phase clock synchronizing pin. This T1 phase

clock has a frequency of fSYS/4 with a 1:3 high/low duty

cycle.

For instructions involving branches, such as jump or call

instructions, two machine cycles are required to com-

plete instruction execution. An extra cycle is required as

the program takes one cycle to first obtain the actual

jump or call address and then another cycle to actually

execute the branch. The requirement for this extra cycle

should be taken into account by programmers in timing

sensitive applications.

) � � � � � � � � � = � : �
 <

7 @ � � $ � � � � � � � = � : �
 � + <) � � � � � � � � � = � : �
 A + <

7 @ � � $ � � � � � � � = � : �
 <) � � � � � � � � � = � : �
 A * <

7 @ � � $ � � � � � � � = � : �
 A + <

�
 �
 A + �
 A *

� � � � # # � � � � �
 # � � �
: � � � � � � �
 # � � � <

� � � � � �
 # � � � � � +

� � � ! � � � �
 � $ � � � �

� � � � � �
 # � � � � � *

� � � � � �
 # � � � � � ,

� � � � � �
 # � � � � � -

� � % � # � � � � !

System Clocking and Pipelining

) � � � � � � � � � = � + 7 @ � � $ � � � � � � � = � +

) � � � � � � � � � = � *

) # $ � � � � � % � # � � �

+

*

,

-

.

/ � 7 & 	 B C

� � (� 	 D E + * 4 F

 	 & & � � 7 & 	 B

 � & � E + * 4 F

C

C

5 � �

7 @ � � $ � � � � � � � = � *

) � � � � � � � � � = � ,

) � � � � � � � � � = � / 7 @ � � $ � � � � � � � = � /

) � � � � � � � � � = � 0

Instruction Fetching

HT83FXX

Rev. 1.00 8 May 12, 2009

Program Counter

During program execution, the Program Counter is used

to keep track of the address of the next instruction to be

executed. It is automatically incremented by one each

time an instruction is executed except for instructions,

such as 	JMP	 or 	CALL	, that demand a jump to a

non-consecutive Program Memory address. Note that

the Program Counter width varies with the Program

Memory capacity depending upon which device is se-

lected. However, it must be noted that only the lower 8

bits, known as the Program Counter Low Register, are

directly addressable by user.

When executing instructions requiring jumps to

non-consecutive addresses such as a jump instruction,

a subroutine call, interrupt or reset, etc., the

microcontroller manages program control by loading the

required address into the Program Counter. For condi-

tional skip instructions, once the condition has been

met, the next instruction, which has already been

fetched during the present instruction execution, is dis-

carded and a dummy cycle takes its place while the cor-

rect instruction is obtained.

The lower byte of the Program Counter, known as the

Program Counter Low register or PCL, is available for

program control and is a readable and writable register.

By transferring data directly into this register, a short

program jump can be executed directly, however, as

only this low byte is available for manipulation, the

jumps are limited to the present page of memory, that is

256 locations. When such program jumps are executed

it should also be noted that a dummy cycle will be in-

serted.

The lower byte of the Program Counter is fully accessi-

ble under program control. Manipulating the PCL might

cause program branching, so an extra cycle is needed

to pre-fetch. Further information on the PCL register can

be found in the Special Function Register section.

Stack

This is a special part of the memory which is used to

save the contents of the Program Counter only. The

stack has 4 levels and is neither part of the data nor part

of the program space, and is neither readable nor

writable. The activated level is indexed by the Stack

Pointer, SP, and is neither readable nor writeable. At a

subroutine call or interrupt acknowledge signal, the con-

tents of the Program Counter are pushed onto the stack.

At the end of a subroutine or an interrupt routine, sig-

naled by a return instruction, 	RET	 or 	RETI	, the Pro-

gram Counter is restored to its previous value from the

stack. After a device reset, the Stack Pointer will point to

the top of the stack.

If the stack is full and an enabled interrupt takes place,

the interrupt request flag will be recorded but the ac-

knowledge signal will be inhibited. When the Stack

Pointer is decremented, by RET or RETI, the interrupt

will be serviced. This feature prevents stack overflow al-

lowing the programmer to use the structure more easily.

Mode
Program Counter

*10 *9 *8 *7 *6 *5 *4 *3 *2 *1 *0

Initial Reset 0 0 0 0 0 0 0 0 0 0 0

Timer Base Overflow 0 0 0 0 0 0 0 0 1 0 0

Timer Counter 0 Overflow 0 0 0 0 0 0 0 1 0 0 0

Timer Counter 1 Overflow 0 0 0 0 0 0 0 1 1 0 0

SIM Interrupt 0 0 0 0 0 0 1 0 1 0 0

Skip Program Counter + 2

Loading PCL *10 *9 *8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, Call Branch #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from Subroutine S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Program Counter

Note: *10~*0: Program counter bits S10~S0: Stack register bits

#10~#0: Instruction code bits @7~@0: PCL bits

� � � ! � � � �
 � $ � � � �

� � � � � � & � � # � +

� � � � � � & � � # � *

� � � � � � & � � # � ,

� � � � � � & � � # � -

� � � ! � � �
� � � � � �

� � % � � > � � � � � �

� � � � �
� � � � � � �

3 � � � � � � � > � � � � � �

HT83FXX

Rev. 1.00 9 May 12, 2009

However, when the stack is full, a CALL subroutine in-

struction can still be executed which will result in a stack

overflow. Precautions should be taken to avoid such

cases which might cause unpredictable program

branching.

Arithmetic and Logic Unit � ALU

The arithmetic-logic unit or ALU is a critical area of the

microcontroller that carries out arithmetic and logic op-

erations of the instruction set. Connected to the main

microcontroller data bus, the ALU receives related in-

struction codes and performs the required arithmetic or

logical operations after which the result will be placed in

the specified register. As these ALU calculation or oper-

ations may result in carry, borrow or other status

changes, the status register will be correspondingly up-

dated to reflect these changes. The ALU supports the

following functions:

� Arithmetic operations ADD, ADDM, ADC, ADCM,

SUB, SUBM, SBC, SBCM, DAA

� Logic operations AND, OR, XOR, ANDM, ORM,

XORM, CPL, CPLA

� Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA,

RLC

� Increment and Decrement INCA, INC, DECA, DEC

� Branch decision JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA,

SDZA, CALL, RET, RETI

Program Memory

The Program Memory is the location where the user

code or program is stored. By using the appropriate pro-

gramming tools, this Program memory device offer us-

ers the flexibility to conveniently debug and develop

their applications while also offering a means of field

programming.

Structure

The program memory stores the program instructions

that are to be executed. It also includes data, table and

interrupt entries, addressed by the Program Counter

along with the table pointer. The program memory size

is 2K �15 bits. Certain locations in the program memory

are reserved for special usage.

Special Vectors

Within the Program Memory, certain locations are re-

served for special usage such as reset and interrupts.

� Location 000H

This vector is reserved for use by the device reset for

program initialisation. After a device reset is initiated, the

program will jump to this location and begin execution.

� Location 004H

This vector is used by the external interrupt. If the ex-

ternal interrupt pin on the device goes low, the pro-

gram will jump to this location and begin execution if

the external interrupt is enabled and the stack is not

full.

� Location 008H

This vector is used by the 8-bit Timer 0. If a overflow

occurs, the program will jump to this location and be-

gin execution if the timer interrupt is enabled and the

stack is not full.

� Location 00CH

This vector is used by the 8-bit Timer1. If a overflow

occurs, the program will jump to this location and be-

gin execution if the timer interrupt is enabled and the

stack is not full.

� Location 010H

Reserved.

� Location 014H

This vector is used by the SIM Bus interrupt service

program. If the SIM Bus interrupt resulting from a

slave address is matched or if 8 bits of data have been

received or transmitted successfully from the I
2
C inter-

face, or 8 bits of data have been received or transmit-

ted successful from SPI interface, the program will

jump to this location and begin execution if the inter-

rupt is enabled and the stack is not full.

0)) 4

+ . � � � � �

2 + . 4

2 2 2 4

2 2 - 4

2 2 � 4

2 2
 4

2 + 2 4

� � � � � � # � � � � � � �
(� � � � �

� � � � � 3 � � �
� � � � � � $ % � � (� � � � �

� � � � � �
 � $ � � � � � 2
� � � � � � $ % � � (� � � � �

2 + - 4

� � � � � �
 � $ � � � � � +
� � � � � � $ % � � (� � � � �

� � �
� � � � � � $ % � � (� � � � �

Program Memory Structure

HT83FXX

Rev. 1.00 10 May 12, 2009

Look-up Table

Any location within the Program Memory can be defined

as a look-up table where programmers can store fixed

data. To use the look-up table, table pointers are used to

setup the address of the data that is to be accessed from

the Program Memory. However, as some devices pos-

sess only a low byte table pointer and other devices pos-

sess both a high and low byte pointer it should be noted

that depending upon which device is used, accessing

look-up table data is implemented in slightly different

ways.

There are two Table Pointer Registers known as TBLP

and TBHP in which the lower order and higher order ad-

dress of the look-up data to be retrieved must be respec-

tively first written. The additional TBHP register allows

the complete address of the look-up table to be defined

and consequently allow table data from any address

and any page to be directly accessed. For this device,

after setting up both the low and high byte table pointers,

the table data can then be retrieved from any area of

Program Memory using the 	TABRDC [m]	 instruction or

from the last page of the Program Memory using the

	TABRDL [m]	 instruction. When either of these instruc-

tions are executed, the lower order table byte from the

Program Memory will be transferred to the user defined

Data Memory register [m] as specified in the instruction.

The higher order table data byte from the Program

Memory will be transferred to the TBLH special register.

Any unused bits in this transferred higher order byte will

be read as 	0	.

The following diagram illustrates the addressing/data

flow of the look-up table.

Table Program Example

The following example shows how the table pointer and

table data is defined and retrieved from the devices.

This example uses raw table data located in the last

page which is stored there using the ORG statement.

The value at this ORG statement is 	700H	 which refers

to the start address of the last page within the

2048�15-bit Program Memory of the microcontroller.

The table pointer is setup here to have an initial value of

	06H	. This will ensure that the first data read from the

data table will be at the Program Memory address

	706H	 or 6 locations after the start of the last page.

Note that the value for the table pointer is referenced to

the first address of the present page if the 	TABRDC

[m]	 instruction is being used. The high byte of the table

data which in this case is equal to zero will be trans-

ferred to the TBLH register automatically when the

	TABRDL [m]	 instruction is executed.

� � � ! � � � �
� � � � � �

� 3 & 4 � % � � � > � � � � � � E � F

4 � ! � � 3 � � � � � > � � � � # � �
 � � � � � � � & � ' � 3 � � � � � > � � � � # � �
 � � � � � � �

� 3 & �

� � � ! � � � �
 � $ � � � �
4 � ! � � 3 � � �

Look-up Table

tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2

:
:

mov a,06h ; initialise table pointer - note that this address is referenced

mov tblp,a ; to the last page or present page
:
:

tabrdl tempreg1 ; transfers value in table referenced by table pointer
; to tempregl
; data at prog. memory address 	706H	 transferred to
; tempreg1 and TBLH

dec tblp ; reduce value of table pointer by one

tabrdl tempreg2 ; transfers value in table referenced by table pointer
; to tempreg2
; data at prog.memory address 	705H	 transferred to
; tempreg2 and TBLH
; in this example the data 	1AH	 is transferred to
; tempreg1 and data 	0FH	 to register tempreg2
; the value 	00H	 will be transferred to the high byte
; register TBLH

:
:

org 700h ; sets initial address of HT83F10/20/40/60/80 last page

dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:

HT83FXX

Rev. 1.00 11 May 12, 2009

Because the TBLH register is a read-only register and

cannot be restored, care should be taken to ensure its

protection if both the main routine and Interrupt Service

Routine use table read instructions. If using the table

read instructions, the Interrupt Service Routines may

change the value of the TBLH and subsequently cause

errors if used again by the main routine. As a rule it is

recommended that simultaneous use of the table read

instructions should be avoided. However, in situations

where simultaneous use cannot be avoided, the inter-

rupts should be disabled prior to the execution of any

main routine table-read instructions. Note that all table

related instructions require two instruction cycles to

complete their operation.

Instruction
Table Location

*10 *9 *8 *7 *6 *5 *4 *3 *2 *1 *0

TABRDC [m] P10 P9 P8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Table Location

Note: *10~*0: Current Program ROM table P10~P8: Write P12~P8 to TBHP pointer register

@7~@0: Write @7~@0 to TBLP pointer register

Data Memory

The Data Memory is a volatile area of 8-bit wide RAM in-

ternal memory and is the location where temporary in-

formation is stored. Divided into two sections, the first of

these is an area of RAM where special function registers

are located. These registers have fixed locations and

are necessary for correct operation of the device. Many

of these registers can be read from and written to di-

rectly under program control, however, some remain

protected from user manipulation. The second area of

RAM Data Memory is reserved for general purpose use.

All locations within this area are read and write accessi-

ble under program control.

Structure

The Data Memory has a bank, known as Bank, which is

implemented in 8-bit wide RAM. The RAM Data Memory

is located in Bank 0 which is also subdivided into two sec-

tions, the Special Purpose Data Memory and the General

Purpose Data Memory. The length of these sections is

dictated by the type of microcontroller chosen.

The start address of the RAM Data Memory for all de-

vices is the address 	00H	, and the last Data Memory

address is 	FFH	. Registers which are common to all

microcontrollers, such as ACC, PCL, etc., have the

same Data Memory address.

General Purpose Data Memory

All microcontroller programs require an area of

read/write memory where temporary data can be stored

and retrieved for use later. It is this area of RAM memory

that is known as General Purpose Data Memory. This

area of Data Memory is fully accessible by the user pro-

gram for both read and write operations. By using the

	SET [m].i	 and 	CLR [m].i	 instructions individual bits

can be set or reset under program control giving the

user a large range of flexibility for bit manipulation in the

Data Memory.

Special Purpose Data Memory

This area of Data Memory, is located in Bank, where

registers, necessary for the correct operation of the

microcontroller, are stored. Most of the registers are

both readable and writable but some are protected and

are readable only, the details of which are located under

the relevant Special Function Register section. Note

that for locations that are unused, any read instruction to

these addresses will return the value 	00H	.

� % � � � � # � � $ � % � � �
� � � � � � � � � � �

2 2 4

0) 4

*) 4

G � � � � � # � � $ � % � � �
� � � � � � � � � � �
: � 2 � 3 � � � � <

, 2 4

RAM Data Memory Structure

Note: Most of the RAM Data Memory bits can be directly manipulated using the 	SET [m].i	 and 	CLR [m].i	 instruc-

tions with the exception of a few dedicated bits. The RAM Data Memory can also be accessed through the

Memory Pointer registers MP.

HT83FXX

Rev. 1.00 12 May 12, 2009

Special Function Registers

To ensure successful operation of the microcontroller,

certain internal registers are implemented in the RAM

Data Memory area. These registers ensure correct op-

eration of internal functions such as timers, interrupts,

watchdog, etc., as well as external functions such as I/O

data control. The location of these registers within the

RAM Data Memory begins at the address 	00H	. Any

unused Data Memory locations between these special

function registers and the point where the General Pur-

pose Memory begins is reserved for future expansion

purposes, attempting to read data from these locations

will return a value of 	00H	.

Indirect Addressing Register � IAR

The Indirect Addressing Register, IAR, although having

location in normal RAM register space, do not actually

physically exist as normal registers.

The method of indirect addressing for RAM data manip-

ulation uses the Indirect Addressing Register and Mem-

ory Pointer, in contrast to direct memory addressing,

where the actual memory address is specified.

Actions on the IAR register will result in no actual read or

write operation to these register but rather to the mem-

ory location specified by their corresponding Memory

Pointer, MP. Acting as a pair, IAR and MP can together

only access data. As the Indirect Addressing Registers

are not physically implemented, reading the Indirect Ad-

dressing Register indirectly will return a result of 	00H	
and writing to the registers indirectly will result in no op-

eration.

Memory Pointer � MP

For all devices, Memory Pointer, known as MP is pro-

vided. These Memory Pointers are physically imple-

mented in the Data Memory and can be manipulated in

the same way as normal register providing a convenient

way with which to address and track data. When any op-

eration to the relevant Indirect Addressing Registers is

carried out, the actual address that the microcontroller is

directed to, is the address specified by the related Mem-

ory Pointer. MP, together with Indirect Addressing Reg-

ister, IAR, are used to access data. Note that bit 7 of the

Memory Pointers is not required to address the full

memory space and will return a value of 	1	 if read.

2 2 4

2 + 4

2 * 4

2 , 4

2 - 4

2 . 4

2 / 4

2 0 4

2 � 4

2 1 4

2 	 4

2 3 4

2
 4

2 � 4

2 7 4

2) 4

+ 2 4

+ + 4

+ * 4

+ , 4

+ - 4

+ . 4

+ / 4

+ 0 4

+ � 4

+ 1 4

+ 	 4

+ 3 4

+
 4

+ � 4

+ 7 4

+) 4

* 2 4

* + 4

* * 4

* , 4

* - 4

* . 4

* / 4

* 0 4

* � 4

* 1 4

* 	 4

* 3 4

*
 4

* � 4

* 7 4

*) 4

C � " � � � � ' �

� 	 �

� �

	

�
 &

� 3 & �

� 3 & 4

� � � �

� � 	 � " �

� 5 �

� � � 2

� � � 2

� � � +

� � � +

� 	

� 	

� 3

� 3

� 5 �
 4

� � �
 2

� � �
 +

� � � � �

� � � 	 � � � � �
 *

� 	 &

� 	 4

� � �
 �

� � � &

� � � 4

(� &

Special Purpose Data Memory Structure

HT83FXX

Rev. 1.00 13 May 12, 2009

The following example shows how to clear a section of four RAM locations already defined as locations adres1 to

adres4.

data .section �data�
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 �code�

org 00h

start:
mov a,04h ; setup size of block
mov block,a
mov a,offset adres1 ; Accumulator loaded with first RAM address
mov mp,a ; setup memory pointer with first RAM address

loop:
clr IAR ; clear the data at address defined by MP
inc mp ; increment memory pointer
sdz block ; check if last memory location has been cleared
jmp loop

continue:

The important point to note here is that in the example shown above, no reference is made to specific RAM addresses.

Accumulator � ACC

The Accumulator is central to the operation of any

microcontroller and is closely related with operations

carried out by the ALU. The Accumulator is the place

where all intermediate results from the ALU are stored.

Without the Accumulator it would be necessary to write

the result of each calculation or logical operation such

as addition, subtraction, shift, etc., to the Data Memory

resulting in higher programming and timing overheads.

Data transfer operations usually involve the temporary

storage function of the Accumulator; for example, when

transferring data between one user defined register and

another, it is necessary to do this by passing the data

through the Accumulator as no direct transfer between

two registers is permitted.

Program Counter Low Register � PCL

To provide additional program control functions, the low

byte of the Program Counter is made accessible to pro-

grammers by locating it within the Special Purpose area

of the Data Memory. By manipulating this register, direct

jumps to other program locations are easily imple-

mented. Loading a value directly into this PCL register

will cause a jump to the specified Program Memory lo-

cation, however, as the register is only 8-bit wide, only

jumps within the current Program Memory page are per-

mitted. When such operations are used, note that a

dummy cycle will be inserted.

Look-up Table Registers � TBLP, TBLH

These two special function registers are used to control

operation of the look-up table which is stored in the Pro-

gram Memory. TBLP is the table pointer and indicates

the location where the table data is located. Its value

must be setup before any table read commands are ex-

ecuted. Its value can be changed, for example using the

	INC	 or 	DEC	 instructions, allowing for easy table data

pointing and reading. TBLH is the location where the

high order byte of the table data is stored after a table

read data instruction has been executed. Note that the

lower order table data byte is transferred to a user de-

fined location.

Watchdog Timer Register � WDTS

The Watchdog feature of the microcontroller provides

an automatic reset function giving the microcontroller a

means of protection against spurious jumps to incorrect

Program Memory addresses. To implement this, a timer

is provided within the microcontroller which will issue a

reset command when its value overflows. To provide

variable Watchdog Timer reset times, the Watchdog

Timer clock source can be divided by various division ra-

tios, the value of which is set using the WDTS register.

By writing directly to this register, the appropriate divi-

sion ratio for the Watchdog Timer clock source can be

setup. Note that only the lower 3 bits are used to set divi-

sion ratios between 1 and 128.

Status Register � STATUS

This 8-bit register contains the zero flag (Z), carry flag

(C), auxiliary carry flag (AC), overflow flag (OV), power

down flag (PDF), and watchdog time-out flag (TO).

These arithmetic/logical operation and system manage-

ment flags are used to record the status and operation of

the microcontroller.

With the exception of the TO and PDF flags, bits in the

status register can be altered by instructions like most

other registers. Any data written into the status register

will not change the TO or PDF flag. In addition, opera-

tions related to the status register may give different re-

sults due to the different instruction operations. The TO

flag can be affected only by a system power-up, a WDT

HT83FXX

Rev. 1.00 14 May 12, 2009

time-out or by executing the 	CLR WDT	 or 	HALT	 in-

struction. The PDF flag is affected only by executing the

	HALT	 or 	CLR WDT	 instruction or during a system

power-up.

The Z, OV, AC and C flags generally reflect the status of

the latest operations.

� C is set if an operation results in a carry during an ad-

dition operation or if a borrow does not take place dur-

ing a subtraction operation; otherwise C is cleared. C

is also affected by a rotate through carry instruction.

� AC is set if an operation results in a carry out of the

low nibbles in addition, or no borrow from the high nib-

ble into the low nibble in subtraction; otherwise AC is

cleared.

� Z is set if the result of an arithmetic or logical operation

is zero; otherwise Z is cleared.

� OV is set if an operation results in a carry into the high-

est-order bit but not a carry out of the highest-order bit,

or vice versa; otherwise OV is cleared.

� PDF is cleared by a system power-up or executing the

	CLR WDT	 instruction. PDF is set by executing the

	HALT	 instruction.

� TO is cleared by a system power-up or executing the

	CLR WDT	 or 	HALT	 instruction. TO is set by a

WDT time-out.

In addition, on entering an interrupt sequence or execut-

ing a subroutine call, the status register will not be

pushed onto the stack automatically. If the contents of

the status registers are important and if the subroutine

can corrupt the status register, precautions must be

taken to correctly save it.

Interrupt Control Register � INTC, INTCH

Two 8-bit register, known as the INTC and INTCH regis-

ters, controls the operation of both external and internal

timer interrupts. By setting various bits within these reg-

isters using standard bit manipulation instructions, the

enable/disable function of the external and timer inter-

rupts can be independently controlled. A master inter-

rupt bit within this register, the EMI bit, acts like a global

enable/disable and is used to set all of the interrupt en-

able bits on or off. This bit is cleared when an interrupt

routine is entered to disable further interrupt and is set

by executing the 	RETI	 instruction.

Note: In situations where other interrupts may require

servicing within present interrupt service rou-

tines, the EMI bit can be manually set by the pro-

gram after the present interrupt service routine

has been entered.

Timer Registers

All devices contain two 8-bit Timers whose associated

registers are known as TMR0 and TMR1 which is the lo-

cation where the associated timer's 8-bit value is lo-

cated. Their associated control registers, known as

TMR0C and TMR1C, contain the setup information for

these timers.

Note that all timer registers can be directly written to in

order to preload their contents with fixed data to allow

different time intervals to be setup.

Input/Output Ports and Control Registers

Within the area of Special Function Registers, the I/O

registers and their associated control registers play a

prominent role. All I/O ports have a designated register

correspondingly labeled as PA, PB etc. These labeled

I/O registers are mapped to specific addresses within

the Data Memory as shown in the Data Memory table,

which are used to transfer the appropriate output or in-

put data on that port. With each I/O port there is an asso-

ciated control register labeled PAC, PBC, etc., also

mapped to specific addresses with the Data Memory.

The control register specifies which pins of that port are

set as inputs and which are set as outputs. To setup a

pin as an input, the corresponding bit of the control reg-

ister must be set high, for an output it must be set low.

During program initialisation, it is important to first setup

the control registers to specify which pins are outputs

and which are inputs before reading data from or writing

data to the I/O ports. One flexible feature of these regis-

ters is the ability to directly program single bits using the

	SET [m].i	 and 	CLR [m].i	 instructions. The ability to

change I/O pins from output to input and vice-versa by

manipulating specific bits of the I/O control registers dur-

ing normal program operation is a useful feature of

these devices.

� � � �) � (H 	

 � � � � � � � ! " # � � ! �

� � # � � $! � # % � & � " # % � ' (! � � � # �) � � * � " �

 � � � � � > # � !
	 $ @ � # � � � � � � � � � � � > # � !
H � � � � > # � !
� � � > # � ' � > # � !

� + � � ! $ � , �) � " ! $!) � � � * � " �
� � ' � � � � ' � � > # � !
� � � � � � ! � � � � � � � $ � � > # � !
5 � � � � � % # � � � � � � D � � � � � � � � I 2 I

� 0 � 2

Status Register

HT83FXX

Rev. 1.00 15 May 12, 2009

Voice Control and Audio output Registers �

DAL, DAH, VOL

The devices include a single 12-bit current type DAC

function for driving an external 8
 speaker through an

external NPN transistor or Power Amplifier. The pro-

grammer must writer the voice data to these DAL/DAH

registers. The programmer can control the DAC volume

with 7-levels via the VOL register.

Pulse Width Modulator Registers �

PWMC, PWML, PWMH

Each device contains a single 12-bit PWM function for

driving an external 8
 speaker. The programmer must

writer the voice data to PWML/PWMH register. The pro-

grammer can control the PWM volume with 8-levels via

the VOL register.

Serial Interface Module(SIM) Registers �

SIMC0, SIMC1, SIMAR/SIMC2, SIMDR

Each SIM contains SPI and I
2
C function for communi-

cating with other microcontroller or SPI Flash Memory.

All devices contain an integrated I
2
C and SPI bus which

interfaces to the external shared pins SDA ,SCL and

SCSB ,SCK ,SDI ,SDO with PB on the microcontroller.

The I
2
C correct setup and data transfer operation of this

2-line bidirectional bus utilizes 4 special function regis-

ters. The SIMAR register sets the slave address of the

device while the SIMC0 is the control register that en-

ables or disables the device as well as select whether it

is in I
2
C or SPI mode. The SIMC1 register is the I

2
C sta-

tus register while the SIMDR register is the input/output

data register. The SPI correct setup and data transfer

operation of this 3-line bidirectional bus utilizes 3 special

function registers. The SIMC0 is the control register that

enables or disables the device as well as select whether

it is in I
2
C or SPI mode. The SIMC2 register is the SPI

status register while the SIMDR register is the input/out-

put data register.

Flash Data Memory

The Data Memory is the location where the user Data is

stored. For this device the Data Memory is a Flash type,

which means it can be programmed and reprogrammed

a large number of times, allowing the user the conve-

nience of voice data modification using the same de-

vice. By using the appropriate programming tools, these

devices offer users the flexibility to conveniently change

and develop their applications while also offering a

means of field programming.

Flash Data Memory Structure

The internal Flash Data Memory has a capacity of be-

tween 2M�8 bit and 128K�8 bit. Unlike the Program

Memory and RAM Data Memory, the Flash Data Memory

is not directly mapped and is therefore not directly acces-

sible in the same way as the other types of memory.

Accessing the Flash Data Memory

The Flash Data Memory is accessed using a set of

Macros in the library. These instructions control all func-

tions of the Flash such as read, write, erase, enable etc.

The internal Flash structure is similar to that of a stan-

dard SPI Flash Memory, for which 4 pins are used for

transfer of instruction, address and data information.

These are the Chip Select pin, CS, Serial Clock pin,

SCK, Data In pin, SI and the Data Out pin, SO. All ac-

tions related to the Flash Memory must be conducted

through each of these four Flash Memory download

pins. By manipulating these four pin in the device, in ac-

cordance with the accompanying timing diagrams, the

microcontroller can communicate with the Flash Mem-

ory and carry out the required read and write instruc-

tions.

When reading data from the Flash Memory, CS should

be set to 	0	 to start the data transmission. The data will

clocked out on the rising edge of SCK and appear on

SO. The SO pin will normally be in a high-impedance

condition unless a READ statement is being executed.

When writing to the Flash Memory the data must be pre-

sented first on SI and then clocked in on the rising edge

of SCK. After all the instruction, address and data infor-

mation has been transmitted, CS should be set to 	1	 to

terminate the data transmission. Note that after power

on the Flash Memory must be initialised as described.

READ

The 	READ	 instruction is used to read out one or more

bytes of data from the Flash Data Memory. To instigate a

	READ	 instruction, the CS bit should be set low, fol-

lowed by a command instruction and then the instruction

code 	03	, all transmitted via the SI bit. The address in-

formation should then follow with the MSB being trans-

mitted first. After the last address bit, A0, has been

transmitted, the data can be clocked out, bit D7 first, on

the rising edge of the SCK clock signal and can be read

via the SO bit. The data information will first precede the

reading of the first data bit, D7. After the full byte has

been read out, the internal address will be automatically

incremented allowing the next consecutive data byte to

be read out without entering further address data. As

long as the CS bit remains low, data bit D7 of the next

address will automatically follow data bit D0 of the previ-

ous address being inserted between them. The address

will keep incrementing in this way until CS returns to a

high value. SO will normally be in a high impedance con-

dition until the 	READ	 instruction is executed.

HT83FXX

Rev. 1.00 16 May 12, 2009

Page Program Timing

Earse All Timing

Read Data Byte Timing

HT83FXX

Rev. 1.00 17 May 12, 2009

WRITE

The 	WRITE	 instruction is used to write a page byte of

data into the Flash Data Memory. To instigate a WRITE

instruction, the CS bit should be set low, then the in-

struction code 	02	, all transmitted via the SI bit. For this

device, The address information should then follow with

the MSB bit being transmitted first. After the last address

bit, A0, has been transmitted, the data can be immedi-

ately transmitted MSB first. After all the WRITE instruc-

tion code, address and data have been transmitted, the

data will be written into the Flash Data Memory when the

CS bit is set to high. The Flash Data Memory does this

by executing an internal write-cycle, which will first

erase and then write the previously transmitted data

byte into the Flash Data Memory. This process takes

place internally using the Flash Data Memory�s own in-

ternal clock and does not require any action from the

SCK clock. No further instructions can be accepted by

the Flash Data Memory until this internal write-cycle has

finished.

ERAL

The 	ERAL	 instruction is used to erase the whole con-

tents of the Flash Data Memory. After it has been exe-

cuted all the data in the Flash Data Memory will be set to

	1	. To instigate this instruction, the CSB bit should be

set low. The instruction code 	20	. Following on from

this, a 	20	 should then be transmitted. After the 	ERAL	
instruction code has been transmitted, the Flash Data

Memory data will be erased when the CS bit is set to

high.

The Flash Data Memory does this by executing an inter-

nal write-cycle. This process takes place internally using

the Flash Data Memory�s own internal clock and does

not require any action from the SCK clock. No further in-

structions can be accepted by the Flash Data Memory

until this internal write-cycle has finished. To determine

when the write

Instruction Function Instruction Code Address Data

READ Read Out Data 03 A23~A0 D7~D0

WRITE Write Data Page Byte 02 A23~A0 D7~D0

ERAL Erase All 20 A23~A0 �

Instruction Set Summary

In Circuit Programming

The provision of Flash type Data Memory gives the user

and designer the convenience of easy upgrades and

modifications to their Data on the same device. As an

additional convenience, Holtek has provided a means of

programming the microcontroller in-circuit. This pro-

vides manufacturers with the possibility of manufactur-

ing their circuit boards complete with a programmed or

un-programmed microcontroller, and then programming

or upgrading the program at a later stage. This enables

product manufacturers to easily keep their manufac-

tured products supplied with the latest data releases

without removal and re-insertion of the device.

Pin Name Function

SI Serial data input

SO Serial data output

SCK Serial clock

CS Signal Select

VDD Power supply

VSS Ground

The Data Memory can be programmed serially in-circuit

using a 8-wire interface. Data is downloaded and up-

loaded serially on two SI/SO pins with an additional line

for the clock. Two additional lines are required for the

power supply and one line for the select signal. The

technical details regarding the in-circuit programming of

the devices are beyond the scope of this document and

will be supplied in supplementary literature.

� � � � � � �

 # � � �

7 � � � � � � � � >

� � ! � � # � � � # � � �

� � � � � � $ �

� � ' � �

G � � $ �

� � � � �

� �

 & 6

5

 �

� �

(� �

(� �

� � � � �

 � � � � � � � �

In-circuit Programming Interface

HT83FXX

Rev. 1.00 18 May 12, 2009

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on

their I/O ports. With the input or output designation of ev-

ery pin fully under user program control, pull-high op-

tions for all ports and wake-up options on certain pins,

the user is provided with an I/O structure to meet the

needs of a wide range of application possibilities.

Depending upon which device or package is chosen,

the microcontroller range provides from 12 bidirectional

input/output lines labeled with port names PA, PB, etc.

These I/O ports are mapped to the Data Memory with

specific addresses as shown in the Special Purpose

Data Memory table. All of these I/O ports can be used

for input and output operations. For input operation,

these ports are non-latching, which means the inputs

must be ready at the T2 rising edge of instruction 	MOV

A,[m]	, where m denotes the port address. For output

operation, all the data is latched and remains un-

changed until the output latch is rewritten.

Pull-high Resistors

Many product applications require pull-high resistors for

their switch inputs usually requiring the use of an exter-

nal resistor. To eliminate the need for these external re-

sistors, all I/O pins, when configured as an input have

the capability of being connected to an internal pull-high

resistor. These pull-high resistors are selectable via

configuration options and are implemented using a

weak PMOS transistor. Note that if the pull-high option is

selected, then all I/O pins on that port will be connected

to pull-high resistors, individual pins can be selected for

pull-high resistor options.

Port A Wake-up

Each device has a HALT instruction enabling the

microcontroller to enter a Power Down Mode and pre-

serve power, a feature that is important for battery and

other low-power applications. Various methods exist to

wake-up the microcontroller, one of which is to change

the logic condition on one of the Port A pins from high to

low. After a 	HALT	 instruction forces the microcontroller

into entering a HALT condition, the processor will re-

main idle or in a low-power state until the logic condition

of the selected wake-up pin on Port A changes from high

to low. This function is especially suitable for applica-

tions that can be woken up via external switches. Note

that each pin on Port A can be selected individually to

have this wake-up feature.

I/O Port Control Registers

Each I/O port has its own control register PAC and PBC,

to control the input/output configuration. With this con-

trol register, each CMOS output or input with or without

pull-high resistor structures can be reconfigured dynam-

ically under software control. Each pin of the I/O ports is

directly mapped to a bit in its associated port control reg-

ister. For the I/O pin to function as an input, the corre-

sponding bit of the control register must be written as a

	1	. This will then allow the logic state of the input pin to

be directly read by instructions. When the correspond-

ing bit of the control register is written as a 	0	, the I/O

pin will be setup as a CMOS output. If the pin is currently

setup as an output, instructions can still be used to read

the output register. However, it should be noted that the

program will in fact only read the status of the output

data latch and not the actual logic status of the output

pin.

Pin-shared Functions

The flexibility of the microcontroller range is greatly en-

hanced by the use of pins that have more than one func-

tion. Limited numbers of pins can force serious design

constraints on designers but by supplying pins with

multi-functions, many of these difficulties can be over-

come. For some pins, the chosen function of the

multi-function I/O pins is set by configuration options

while for others the function is set by application pro-

gram control.

� Serial Interface Module

The device pins, PB0~PB3, are pin-shared with pins

SDA, SCL, SCS, SCK, SDI, SDO. The choice of which

function is used is selected using the SIMC0 register.

� I/O Pin Structures

The following diagrams illustrate the I/O pin internal

structures. As the exact logical construction of the I/O

pin may differ from these drawings, they are supplied

as a guide only to assist with the functional under-

standing of the I/O pins.

Note also that the specified pins refer to the largest

device package, therefore not all pins specified will

exist on all devices.

HT83FXX

Rev. 1.00 19 May 12, 2009

Programming Considerations

Within the user program, one of the first things to con-

sider is port initialization. After a reset, all of the I/O data

and port control registers will be set high. This means

that all I/O pins will default to an input state, the level of

which depends on the other connected circuitry and

whether pull-high options have been selected. If the port

control registers, PAC, PBC etc., are then programmed

to setup some pins as outputs, these output pins will

have an initial high output value unless the associated

port data registers, PA, PB, etc., are first programmed.

Selecting which pins are inputs and which are outputs

can be achieved byte-wide by loading the correct values

into the appropriate port control register or by program-

ming individual bits in the port control register using the

	SET [m].i	 and 	CLR [m].i	 instructions. Note that when

using these bit control instructions, a read-modify-write

operation takes place. The microcontroller must first

read in the data on the entire port, modify it to the re-

quired new bit values and then rewrite this data back to

the output ports.

Port A has the additional capability of providing wake-up

functions. When the device is in the Power Down Mode,

various methods are available to wake the device up.

One of these is a high to low transition of any of the Port

A pins. Single or multiple pins on Port A can be setup to

have this function.

(� �

�
"
J

� � � � � � � � � � � ! � � � � �

� K

 6
�

� K

 6
�

 � � � � � # � 3 � �
� $ # # � 4 � ! �
� % � � � �

� � � � � 3 $ �

� � � � � �
 � � � � � # � � � ! � � � � �

 � � % � � � � � �

� � � �
 � � � � � # � � � ! � � � � �

� � � � � � � � � � � � � ! � � � � �

� � � � � 3 � �

� 3 � � � � � � 3 � �
� 3 2 � � � � � � � 	
� 3 + � �
 6 � �
 &

� 3 * � � � � D � � 3 , � �
 �
	 � � # � ! � � ' � � � � � � % � � � �

� � � �
� $ # # � $ %

K

K

�
"
J

� 3 2 � � � � � � � 	
� 3 + � �
 6 � �
 &
� 3 * � � � �
� 3 , � �
 �

PB Input/Output Port

� � � � � $ % � � % � � � �
� � � � � � � � � � � � $ %

� � � � � � � � � � � ! � � � � �

 � � � � � # � 3 � �
� $ # # � 4 � ! �
� % � � � �

� � � � � 3 $ �

� � � � � �
 � � � � � # � � � ! � � � � �

 � � % � � � � � �

� � � �
 � � � � � # � � � ! � � � � �

� � � � � � � � � � � � � ! � � � � �

� � � � � 3 � �

� 	 2 L � 	 0

� � � �
� $ # # � $ %� K

 6
�

K

� K

 6
�

K

(� �

�
"
J

PA Input/Output Port

� + � * � , � - � + � * � , � -

� � � � � � � � � � � � � � � � � > � � � � � � � �

� � � � � � �
 # � � �

� � � � � � � � �

Read/Write Timing

HT83FXX

Rev. 1.00 20 May 12, 2009

Timers

The provision of timers form an important part of any

microcontroller, giving the designer a means of carrying

out time related functions. These devices contain two

count up timers of 8-bit capacity. The provision of an in-

ternal prescaler to the clock circuitry of the timer gives

added range to the timer.

There are two types of register related to each Timer.

The first is the register that contains the actual value of

the timer and into which an initial value can be

preloaded. Reading from this register retrieves the con-

tents of the Timer. All devices can have the timer clock

configured to come from the internal clock source.

Configuring the Timer Input Clock Source

The clock source for the 8-bit timers is the system clock

divided by four. The 8-bit timer clock source is also first di-

vided by a, the division ratio of which is conditioned by the

three lower bits of the associated timer control register.

Timer Registers � TMR0, TMR1

The timer registers are special function registers located

in the special purpose Data Memory and is the place

where the actual timer value is stored. All devices con-

tain two 8-bit timers, whose registers are known as

TMR0 and TMR1. The value in the timer registers in-

creases by one each time an internal clock pulse is re-

ceived. The timer will count from the initial value loaded

by the preload register to the full count of FFH for the

8-bit timer at which point the timer overflows and an in-

ternal interrupt signal is generated. The timer value will

then be reset with the initial preload register value and

continue counting.

Note that to achieve a maximum full range count of FFH

for the 8-bit timer, the preload registers must first be

cleared to all zeros. It should be noted that after

power-on, the preload registers will be in an unknown

condition. Note that if the Timer Counters are in an OFF

condition and data is written to their preload registers,

this data will be immediately written into the actual coun-

ter. However, if the counter is enabled and counting, any

new data written into the preload data register during

this period will remain in the preload register and will

only be written into the actual counter the next time an

overflow occurs. Note also that when the timer registers

are read, the timer clock will be blocked to avoid errors,

however, as this may result in certain timing errors, pro-

grammers must take this into account.

Timer Control Registers � TMR0C, TMR1C

Each timer has its respective timer control register,

known as TMR0C and TMR1C. It is the timer control

register together with their corresponding timer registers

that control the full operation of the timers. Before the

timers can be used, it is essential that the appropriate

timer control register is fully programmed with the right

data to ensure its correct operation, a process that is

normally carried out during program initialization. Bits 7

and 6 of the Timer Control Register, must be set to the

required logic levels. Bit 6 of the registers must always

be wriiten with a 	1	, and bit 7 must always be written

with a 	0	. The timer-on bit, which is bit 4 of the Timer

Control Register and known as T0ON/ T1ON, depend-

ing upon which timer is used, provides the basic on/off

control of the respective timer. setting the bit high allows

the timer to run, clearing the bit stops the timer. For the

8-bit timers, which have prescalers, bits 0~2 of the

Timer Control Register determines the division ratio of

the input clock prescaler.

Configuring the Timer

The Timer is used to measure fixed time intervals, pro-

viding an internal interrupt signal each time the Timer

overflows. To do this the Operating Mode Select bit pair

in the Timer Control Register must be set to the

correctvalue as shown.

Control Register Operating Mode

Select Bits

Bit7 Bit6

1 0

The internal clock, fSYS, is used as the Timer clock. How-

ever, this clock source is further divided by a prescaler,

the value of which is determined by the Prescaler Rate

Select bits, which are bits 0~2 in the Timer Control Reg-

ister. After the other bits in the Timer Control Register

have been setup, the enable bit, which is bit 4 of the

Timer Control Register, can be set high to enable the

Timer to run. Each time an internal clock cycle occurs,

the Timer increments by one. When it is full and over-

flows, an interrupt signal is generated and the Timer will

� � � � � � � � � �
 � � � � � #

� 2 � 5
� + � 5

� � � # � � � � � ! � � � � �

� � � � �

� � � � � 3 $ �

� � # � �

� � � > # � '
� � � � � � � � � $ % �

� + � �
 * L � + � �
 2
� 2 � �
 * L � 2 � �
 2

� � 3 � � �
 � $ � � � �

> � B � � - � � � � � � # � �

: + � * L + � * . / <

� + � � +
� 2 � � +

� + � � 2
� 2 � � 2

8-bit Timer Structure

HT83FXX

Rev. 1.00 21 May 12, 2009

reload the value already loaded into the preload register

and continue counting. The interrupt can be disabled by

ensuring that the Timer Interrupt Enable bit in the Inter-

rupt Control Register, INTC, is reset to zero.

Prescaler

All of the 8-bit timers possess a prescaler. Bits 0~2 of

their associated timer control register, define the

pre-scaling stages of the internal clock source of the

Timer. The Timer overflow signal can be used to gener-

ate signals for the Timer interrupt.

Programming Considerations

The internal system clock is used as the timer clock

source and is therefore synchronized with the overall

operation of the microcontroller. In this mode, when the

appropriate timer register is full, the microcontroller will

generate an internal interrupt signal directing the pro-

gram flow to the respective internal interrupt vector.

When the Timer is read, the clock is blocked to avoid er-

rors, however as this may result in a counting error, this

should be taken into account by the programmer. Care

must be taken to ensure that the timers are properly ini-

tialized before using them for the first time. The associ-

ated timer enable bits in the interrupt control register must

be properly set otherwise the internal interrupt associated

with the timer will remain inactive. The edge select, timer

mode and clock source control bits in timer control regis-

ter must also be correctly set to ensure the timer is prop-

erly configured for the required application. It is also

important to ensure that an initial value is first loaded into

the timer registers before the timer is switched on; this is

because after power-on the initial values of the timer reg-

isters are unknown. After the timer has been initialized

the timer can be turned on and off by controlling the en-

able bit in the timer control register.

� 0

� � 5� � 2� � +

� 2

5 � � � � � % # � � � � � � D � � � � � � � � I 2 I

� � � � � �
 � $ � � � � ! � 7 � � � # �
+ C � � � � � # �
2 C � � � � � # �

� % � � � � � � ! � � � � � � � # � � �

� 2 � � +
� + � � +

2
2
+
+

� 2 � � 2
� + � � 2

2
+
2
+

� � � � � � � � � � # � � # �
� � � � � � � � � � # � � # � �
� � � � � � � � �
� � � � � � � � � � # � � # �

� , � 	 � � � , � � � � � ! " # � � ! �

5 � � � � � % # � � � � � � D � � � � � � � � I � � M � � � � � � I

� �
 * � �
 + � �
 2

� � � � � � � � � � � � # � � � � � � � � � � # � � �

� 2 � �
 *
� + � �
 *

2
2
2
2
+
+
+
+

� 2 � �
 +
� + � �
 +

2
2
+
+
2
2
+
+

� 2 � �
 2
� + � �
 2

2
+
2
+
2
+
2
+

� � � � � � � � � �
� � � � � + C *
� � � � � + C -
� � � � � + C �
� � � � � + C + /
� � � � � + C , *
� � � � � + C / -
� � � � � + C + * �
� � � � � + C * . /

Timer Control Register

� � � � � � � � �
� � � � � �
 � � � � � # # � �

� � � � � � # � � � � $ � % $ �

� � � � � � A � + � � � � � � A � * � � � � � � A � 5 � � � � � � A � 5 � A � +

Timer Mode Timing Diagram

HT83FXX

Rev. 1.00 22 May 12, 2009

Timer Program Example

The following example program section is based on the HT83F60 device, which contain two 8-bit timers. Programming

the timer for other devices is conducted in a very similar way. The program shows how the timer registers are setup

along with how the interrupts are enabled and managed. Points to note in the example are how, for the 8-bit timer. Note

how the timer is turned on by setting bit 4 of the respective timer control register. The timer can be turned off in a similar

way by clearing the same bit. This example program sets the timer to be in the timer mode which uses the internal fsys

as their clock source, and produce a timer 0 interrupt per 1ms.

#include HT83F60.inc
jmp begin
:

org 04h ; time base vector
reti

org 08h ; timer 0 interrupt vector
jmp tmr0int ; jump here when timer 0 overflows every 1ms

org 0Ch
reti

org 10h
reti

org 14h
reti
:

; internal timer 0 interrupt routine
Tmr0int:
:

; timer 0 main program placed here
:
reti
:

begin:
; setup timer 0 registers

mov a,06h ; setup timer 0 low byte
mov tmr0,a ; flow byte must be setup before high byte
mov a,094 ; setup timer 0 control register
mov tmr0c,a ; setup timer mode and clock source is fsys/32 prescaler

; setup interrupt register
mov a,05h ; enable global interrupt
mov intc,a ; enable timer 0 interrupt

HT83FXX

Rev. 1.00 23 May 12, 2009

Time Base

The Time Base function will generate a regular interrupt

signal synchronised to the system clock which can be

used by the application as a time base signal.

Time Base Operation

The Time Base operation is a very simple function for

the generation of a regular time signal. This is imple-

mented by generating a regular interrupt signal whose

enable/disabled and request flags are in the INTC regis-

ter. The clock source for the time base is the internal

fSYS/4 clock source, which is then divided internally by a

value of 1024. It is this divided signal that generates the

internal interrupt. The Time Base Interrupt is enabled by

the ETBI bit in the INTC register and interrupt request

flag is the TBF flag in the same register. A time base of

1ms will therefor be generated from a system clock of

4MHz and a time base of 0.5ms will be generated from a

system clock source of 8MHz.

Time base Example

The following example program section is based on the

HT83F60 device. The program shows how the Time

Base registers are setup along with how the interrupts

are enabled and managed. The points to note in the ex-

ample are how the Time Base is turned on by setting bit

4 of the INTC register. The Time Base can be turned off

in a similar way by clearing the same bit. This example

program sets the Time Base which uses the internal

system clock as their clock source, and produces a time

base interrupt every 0.5ms from a system source clock

of 8MHz.

#include HT83F60.inc
jmp begin
:

org 04h ; time base vector
jmp time_base_int ; jump here when time base overflows per 0.5ms

org 08h
reti

org 0Ch
reti

org 10h
reti

org 14h
reti
:

; time base interrupt routine
time_base_int:
:

; time base main program placed here
:
reti
:

begin:
; setup interrupt register

mov a,03h ; enable global and time base interrupt
mov intc,a ; enable time base

� + 2 * -� � � � � � �
 # � � � � -
� � � > # � '
� � � � � � � � � $ % �

HT83FXX

Rev. 1.00 24 May 12, 2009

Serial Interface

The device contains both SPI and I
2
C serial interface

functions, which allows two methods of easy communi-

cation with external peripheral hardware. As the SPI and

I
2
C function share the same external pins and internal

registers their function must first be chosen by selecting

the correct configuration option.

SPI Interface

The SPI interface is often used to communicate with ex-

ternal peripheral devices such as sensors, Flash or

EEPROM memory devices etc. Originally developed by

Motorola, the four line SPI interface is a synchronous

serial data interface that has a relatively simple commu-

nication protocol simplifying the programming require-

ments when communicating with external hardware

devices.

� SPI Interface Operation

The SPI interface is a full duplex synchronous serial

data link. Communication between devices con-

nected to the SPI interface is carried out in a

slave/master mode with all data transfer initiations be-

ing implemented by the master. Multiple slave devices

can be connected to the SPI serial bus with each de-

vice controlled using its slave select line. The SPI is a

four line interface with pin names SDI, SDO, SCK and

SCS. Pins SDI and SDO are the Serial Data Input and

Serial Data Output lines, SCK is the Serial Clock line

and SCS is the Slave Select line. As the SPI interface

pins are pin-shared with segment pins and with the I
2
C

function pins, the SPI interface must first be enabled

by selecting the correct configuration option. After the

SPI configuration option has been selected it can then

also be selected using the SIMEN bit in the SIMC0

register.

The SPI function in this device offers the following fea-

tures:

� Full duplex synchronous data transfer

� Both Master and Slave modes

� LSB first or MSB first data transmission modes

� Transmission complete flag

Several other configuration options also exist to setup

various SPI interface options as follows:

� SPI pin enabled

� WCOL bit enabled or disabled

� CSEN bit enabled or disabled

The status of the SPI interface pins is determined

by a number of factors, whether the device is in

master or slave mode and upon the condition of cer-

tain control bits such as CSEN and SIMEN.

� 0 � / � . � - � , � * � + � 2

� � � � � � : � � � � � � � � � � � � � � ! � � � � � <

�
"
J

� � � � 3 $ > > � �

�
"
J

� & �

� � � � � 3 $ �

�
"
J

� � � � � � � � � � � # � �

� � �

� � �

� � � � � � � # � 3 � $ � � � � � �
 # � � �

�
 6

 # � � � � � � # � � � � �

 *
 +
 2

� � � 7 5

� � � � � � � # � 3 $ � � �) # � !

� � � 7 5

� � � � � � � � � � �

�
 � & �) # � !

� �)
� � D � � � � � �

� � � 7 5

7 5

	 5 �

� � � � � � � 3 � �

� � � � � � � � � � � � 7 � � � # � � � � � � � # �

�
 �7 5

� � � � � � � � � � � # � �

 � 7 5
� � � 7 5

� � D � � � � � �

� � D � � � � � �

Block Diagram

HT83FXX

Rev. 1.00 25 May 12, 2009

Master/Salve

(SIMEN=0)

Master (SIMEN=1) Slave (SIMEN=1)

CSEN=1 CSEN=0 CSEN=0
SCS line=0

(CSEN=1)

SCS line=1

(CSEN=1)

SCS Z L Z Z I, Z I, Z

SDO Z O O O O Z

SDI Z I, Z I, Z I, Z I, Z Z

SCK Z
L(CPOL=1)

H(CPOL=0)

L(CPOL=1)

H(CPOL=0)
I, Z I, Z Z

	Z	 floating, 	H	 output high, 	L	 output low, 	I	 Input, 	O	output level, 	I,Z	 input floating (no pull-high)

SPI Interface Pin Status

� SPI Registers

The SIMDR register is used to store the data being

transmitted and received. There are two control regis-

ters associated with the SPI interface, SIMC0 and

SIMC2 and one data register known as SIMDR. The

SIMC1 register is not used by the SPI function. Regis-

ter SIMC0 is used to control the enable/disable func-

tion, the power down control and to set the data

transmission clock frequency. Register SIMC2 is used

for other control functions such as LSB/MSB selec-

tion, write collision flag etc.

The following gives further explanation of each bit:

� SIMEN

The SIMEN bit is the overall on/off control for the

SPI interface. When the SIMENbit is cleared to zero

to disable the SPI interface, the SDI, SDO, SCK and

SCS lines will be in a floating condition and the SPI

operating current will be reduced to <0.1�A at 5V.

When the bit is high the SPI interface is enabled.

Note that when the SIMEN bit changes from low to

high the contents of the SPI control registers will be

in an unknown condition and should therefore be in-

itialised by the application program.

� SIM0~SIM2

These three bits control the Master/Slave selection

and also setup the SPI interface clock speed when

in the Master Mode. The SPI clock is a function of

the system clock whether it be RC type or Crystal

type. If the Slave Mode is selected then the clock

will be supplied by the external Master device.

The following gives further explanation of each bit:

� TRF

The TRF bit is the Transmit/Receive Complete flag

and is cleared by the application program and can

be used to generate an interrupt. When the bit is

high the data has been transmitted or received. If

the bit is low the data is being transmitted or has not

yet been received.

� WCOL

The WCOL bit is used to detect if a data collision

has occurred. If this bit is high it means that data

has been attempted to be written to the SMDR reg-

ister during a data transfer operation. This writing

operation will be ignored if data is being transferred.

The bit can be cleared by the application program.

Note that using the CSEN bit can be disabled or en-

abled via configuration option.

� CSEN

The CSEN bit is used as an on/off control for the

SCS pin. If this bit is low then the SCS pin will be dis-

abled and placed into a floating condition. If the bit is

high the SCS pin will be enabled and used as a se-

lect pin.

� MLS

The MLS is used to select how the data is trans-

ferred, either MSB or LSB first. Setting the bit high

will select MSB first and low for LSB first.

Note that the SIMC2 register is the same as the

SIMAR register used by the I
2
C interface.

� SPI Communication

After the SPI interface is enabled by setting the

SIMEN bit high, then in the Master Mode, when data is

written to the SIMDR register, transmission/reception

will begin simultaneously. When the data transfer is

complete, the TRF flag will be set automatically. In the

Slave Mode, when the clock signal from the master

has been received, any data in the SIMDR register will

be transmitted and any data on the SDI pin will be

shifted into the SIMDR register. The master should

output an SCS signal before a clock signal is provided

and slave data transfers should be enabled/disabled

before/after an SCS signal is received.

HT83FXX

Rev. 1.00 26 May 12, 2009

� - , � 	 � � ! " # � � ! �

5 � � � � � % # � � � � � � D � � � � � � � � I 2 I

� � � � � � � � > > � � � � � � � #
+ C � � � � � # �
2 C � � � � � # �

5 � � � � � % # � � � � � �

� � � � � � � � � � � � # � � � � � �
 # � � � �
 � � � � � #
� � � * � � � � � � � � + � � � � � � � � 2

� 2

� � � 7 5

� � � � � � D � > � B � � -
� � � � � � D � > � B � � + /
� � � � � � D � > � B � � / -
� � � � � � D � > � B �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

2
2
2
2
+
+
+
+

2
2
+
+
2
2
+
+

� 0

� � � + � � � 2� � � *

2
+
2
+
2
+
2
+

SPI Control Register � SIMC0

� - , � � � � ! " # � � ! �

� 0

� � � � � � � � � � � � � � � � � � � % # � � � � > # � !
+ C � � � � � � � � � � > � � � � � � % # � � �
2 C � � � � � � � � � � > � � � � � � � � % # � � �

� � � � � � � � # # � � � � � � > # � !
+ C � � � � � � � # # � � � � �
2 C � � � � � � # # � � � � �

�
 � � % � � � � � � � # �
+ C � � � � � # �
2 C � � � � � # � D � �
 � � > # � � � � � !

� � � � � � � � > � � � � � �
+ C � � � 3 � > � � � �
2 C � & � 3 � > � � � �

� � � � � # � � � � � ! � � � � # � � � � � �
+ C � > � # # � � ! � � ! �
2 C � � � � � � ! � � ! �

� � � � � # � � � � % � # � � � � � � � � # � � � � � �
+ C � # � ' � # � � #
2 C � � � ! � � # � � #

5 � � � � � % # � � � � � � D � � � � � � � � I 2 I

� 2

�
 � & � �)
 � 7 5� & �
 6 7 G
 6 � � &

SPI Control Register � SIMC2

�
 6

�
 �

� � �

� � � � + � � /

� 0 � � 2 � / � � + � . � � * � - � � , � , � � - � * � � . � + � � / � 2 � � 0

� 0 � � 2 � / � � + � . � � * � - � � , � , � � - � * � � . � 2 � � 0

� � � 7 5 ?
 � 7 5 ? + � � � � ' � � � � � � � � � � � � � � � � �

� � � 7 5 ? � + D �
 � 7 5 ? � 2 � � � � ' � � � � � � � � � � � � � � � � � � : � > � % $ # # � � � � ! � <

�
 6

SPI Interface Timing

HT83FXX

Rev. 1.00 27 May 12, 2009

� � � 7 5 � ? +

� � � � � � � � � �
� � � � � � � � � �

�
 � & ? + N

 # � � � � �
 � &

B

� � � � � � � � � � � �
� � � % # � � � � N
: � �) ? + � N < �

5

B

� � � � � � � �
> � � � � � � � � �

 # � � � � � �)

� � � � � > � �
) � � � � � � N

5

B

7 5 �

� � � � � � � � �
� # � �

� � � � � � � # � �

	

	

� � � � � � � � � > � � �

� � � > � ! $ � �

 � 7 5 � � � � � & � �

� � � E * C 2 F ? 2 2 2 D
2 2 + D 2 + 2 D 2 + + �

� � � E * C 2 F ? + 2 +

SPI Transfer Control Flowchart

HT83FXX

Rev. 1.00 28 May 12, 2009

I
2
C Interface

The I
2
C bus is a bidirectional 2-line communication inter-

face originally developed by Philips. The possibility of

transmitting and receiving data on only 2 lines offers

many new application possibilities for microcontroller

based applications.

� I
2
C Interface Operation

As the I
2
C interface pins are pin-shared with segment

pins and with the SPI function pins, the I
2
C interface

must first be enabled by selecting the correct configu-

ration option.

There are two lines associated with the I
2
C bus, the

first is known as SDA and is the Serial Data line, the

second is known as SCL line and is the Serial Clock

line. As many devices may be connected together on

the same bus, their outputs are both open drain types.

For this reason it is necessary that external pull-high

resistors are connected to these outputs. Note that no

chip select line exists, as each device on the I
2
C bus is

identified by a unique address which will be transmit-

ted and received on the I
2
C bus.

When two devices communicate with each other on

the bidirectional I
2
C bus, one is known as the master

device and one as the slave device. Both master and

slave can transmit and receive data, however, it is the

master device that has overall control of the bus. For

this device, which only operates in slave mode, there

are two methods of transferring data on the I
2
C bus,

the slave transmit mode and the slave receive mode.

� I
2
C Registers

There are three control registers associated with the

I
2
C bus, SIMC0, SIMC1 and SIMAR and one data reg-

ister, SIMDR.

The SIMDR register is used to store the data being

transmitted and received on the I
2
C bus. Before the

microcontroller writes data to the I
2
C bus, the actual

data to be transmitted must be placed in the SIMDR

register. After the data is received from the I
2
C bus,

the microcontroller can read it from the SIMDR regis-

ter. Any transmission of data to the I
2
C bus or recep-

tion of data from the I
2
C bus must be made via the

SIMDR register.

The SIMAR register is the location where the slave

address of the microcontroller is stored. Bits 1~7 of

the SIMAR register define the microcontroller slave

address. Bit 0 is not defined. When a master device,

which is connected to the I
2
C bus, sends out an ad-

dress, which matches the slave address in the SIMAR

register, the microcontroller slave device will be se-

lected.

Note that the SIMAR register is the same register as

SIMC2 which is used by the SPI interface.

The SIMC0 register is used for the I
2
C overall on/off

control.

� I
2
C Configuration Option

There are several configuration options associated

with the I
2
C interface. One of these is to enable the

RNIC bit function which selects the RNIC bit in SIMC1

register. Another configuration option determines the

debounce time of the I
2
C interface. This add a

debounce delay time to the external clock to reduce

the possibility of glitches on the clock line causing er-

roneous operation. The debounce time if selected can

be chosen to be either 1 or 2 system clocks.

� - , � � � � ! " # � � ! �

� 0

5 � � � � � % # � � � � � � D � � � � � � � � I 2 I

� *
 � � � � � � � # � � � � � � � �

� 2

� 	 . � 	 -� 	 / � 	 2� 	 , � 	 * � 	 +

Slave Address Register � SIMAR

� - , � 	 � � ! " # � � ! �

5 � � � � � % # � � � � � � D � � � � � � � � I 2 I

� *
 � � � � � > > � � � � � � � #
+ C � � � � � # �
2 C � � � � � # �

5 � � � � � % # � � � � � �

� *
 � � � � � � � � � # � � � � � � � # � � � � � � � � � � #
� � � * � � � � � � � � + � � � � � � � � 2

� 2

� � � 7 5

5 � � � $ � �
5 � � � $ � �
5 � � � $ � �
5 � � � $ � �
5 � � � $ � �
5 � � � $ � �
� *
 � � � �
5 � � � $ � �

2
2
2
2
+
+
+
+

2
2
+
+
2
2
+
+

2
+
2
+
2
+
2
+

� 0

� � � + � � � 2� � � *

I
2
C Control Register � SIMC0

HT83FXX

Rev. 1.00 29 May 12, 2009

The following gives further explanation of each bit:

� SIMEN

The SIMEN bit determines if the I
2
C bus is enabled

or disabled. If data is to be transferred or received

on the I
2
C bus then this bit must be set high.

The following gives further explanation of each bit:

� HCF

The HCF flag is the data transfer flag. This flag will

be zero when data is being transferred. Upon com-

pletion of an 8-bit data transfer the flag will go high

and an interrupt will be generated.

� HASS

The HASS flag is the address match flag. This flag

is used to determine if the slave device address is

the same as the master transmit address. If the ad-

dresses match then this bit will be high, if there is no

match then the flag will be low.

� HBB

The HBB flag is the I
2
C busy flag. This flag will be

high when the I
2
C bus is busy which will occur when

a START signal is detected. The flag will be reset to

zero when the bus is free which will occur when a

STOP signal is detected.

� HTX

The HTX flag is the transmit/receive mode bit. This

flag should be set high to set the transmit mode and

low for the receive mode.

� TXAK

The TXAK flag is the transmit acknowledge flag. Af-

ter the receipt of 8-bits of data, this bit will be trans-

mitted to the bus on the 9th clock. To continue

receiving more data, this bit has to be reset to zero

before further data is received.

� SRW

The SRW bit is the Slave Read/Write bit. This bit de-

termines whether the master device wishes to

transmit or receive data from the I
2
C bus. When the

transmitted address and slave address match, that

is when the HAAS bit is set high, the device will

check the SRW bit to determine whether it should

be in transmit mode or receive mode. If the SRW bit

is high, the master is requesting to read data from

the bus, so the device should be in transmit mode.

When the SRW bit is zero, the master will write data

to the bus, therefore the device should be in receive

mode to read this data.

� RNIC

The RNIC bit is used as I
2
C running clock from Inter-

nal or external clock. If this bit is low then I
2
C run-

ning using internal clock and it will not wake-up

when I
2
C interrupts in the Power Down Mode. If the

bit is high I
2
C running using external clock and it will

wake-up when I
2
C interrupts in the Power Down

Mode.

� RXAK

The RXAK flag is the receive acknowledge flag.

When the RXAK bit has been reset to zero it means

that a correct acknowledge signal has been re-

ceived at the 9th clock, after 8 bits of data have

been transmitted. When in the transmit mode, the

transmitter checks the RXAK bit to determine if the

receiver wishes to receive the next byte. The trans-

mitter will therefore continue sending out data until

the RXAK bit is set to 	1	. When this occurs, the

transmitter will release the SDA line to allow the

master to send a STOP signal to release the bus.

� - , � � � � ! " # � � ! �

� 0

� � � � � � � � � � � � ' # � ! � � > # � !
+ C � � � � � � � � � � ' # � ! �
2 C � � � � � � ' # � ! �

� *
 � � $ � � � ! � � # � � �
+ C � � *
 � � $ � � � ! � � � � � � � � $ � � � ! � � � � � � � � # � � # � � �
2 C � � *
 � � $ � � � ! � � � � $ � � � ! � � � � � � � � # � � # � � �

� � � � � � � � � � � � � � � ' � � � � � � � 9 $ � � � � > # � !
+ C � � � 9 $ � � � � � � � � � � �
2 C � � � 9 $ � � � � � � � � ' � � � �

� � � � � � � � � � � � � � ' # � ! � � > # � !
+ C � � � M � � � � � � � ' # � ! �
2 C � � � � � � ' # � ! �

� � � � � � � � � � � � � � � � � � �
+ C � � � � � � � � � � � � �
2 C � � � � � � � � � � �

� *
 � � $ � � � $ � � > # � !
+ C � � $ � �
2 C � � � � � � $ � �

 � # # � � ! � � � � � � � � � � � � � � > # � !
+ C � � � � � � �
2 C � � � � � � � � � � �

� � � � � � � � � � > � � � > # � !
+ C � � � � � � > � � � � � � % # � � �
2 C � � � � � � > � � � � � � � � � � % # � � �

� 2

4 � J � J 	 6� � �� J 	 64 3 34 	 	 �4
) � 5 �

I
2
C Control Register � SIMC1

HT83FXX

Rev. 1.00 30 May 12, 2009

� � 	 � � � � � ! � � #
> � � � � � � � � � �

� � � � � # � � � � � � � �
� � � � � � � � � � � > � � � � � � � � � �

	 � � � � ' # � ! �
> � � � � � # � �

� � � � � � � � � � � �
> � � � � � � � � � �

	 � � � � ' # � ! �
> � � � � � # � �

� � � � � � � ! � � #
> � � � � � � � � � �

I
2
C Bus Communication

Communication on the I
2
C bus requires four separate

steps, a START signal, a slave device address transmis-

sion, a data transmission and finally a STOP signal.

When a START signal is placed on the I
2
C bus, all de-

vices on the bus will receive this signal and be notified of

the imminent arrival of data on the bus. The first seven

bits of the data will be the slave address with the first bit

being the MSB. If the address of the microcontroller

matches that of the transmitted address, the HAAS bit in

the SIMC1 register will be set and an I
2
C interrupt will be

generated. After entering the interrupt service routine,

the microcontroller slave device must first check the

condition of the HAAS bit to determine whether the inter-

rupt source originates from an address match or from

the completion of an 8-bit data transfer. During a data

transfer, note that after the 7-bit slave address has been

transmitted, the following bit, which is the 8th bit, is the

read/write bit whose value will be placed in the SRW bit.

This bit will be checked by the microcontroller to deter-

mine whether to go into transmit or receive mode. Be-

fore any transfer of data to or from the I
2
C bus, the

microcontroller must initialise the bus, the following are

steps to achieve this:

Step 1

Write the slave address of the microcontroller to the I
2
C

bus address register SIMAR.

Step 2

Set the SIMEN bit in the SIMC0 register to 	1	 to enable

the I
2
C bus.

Step 3

Set the EHI bit of the interrupt control register to enable

the I
2
C bus interrupt.

� Start Signal

The START signal can only be generated by the mas-

ter device connected to the I
2
C bus and not by the

microcontroller, which is only a slave device. This

START signal will be detected by all devices con-

nected to the I
2
C bus. When detected, this indicates

that the I
2
C bus is busy and therefore the HBB bit will

be set. A START condition occurs when a high to low

transition on the SDA line takes place when the SCL

line remains high.

� Slave Address

The transmission of a START signal by the master will

be detected by all devices on the I
2
C bus. To deter-

mine which slave device the master wishes to com-

municate with, the address of the slave device will be

sent out immediately following the START signal. All

slave devices, after receiving this 7-bit address data,

will compare it with their own 7-bit slave address. If the

address sent out by the master matches the internal

address of the microcontroller slave device, then an

internal I
2
C bus interrupt signal will be generated. The

next bit following the address, which is the 8th bit, de-

fines the read/write status and will be saved to the

SRW bit of the SIMC1 register. The device will then

transmit an acknowledge bit, which is a low level, as

the 9th bit. The microcontroller slave device will also

set the status flag HAAS when the addresses match.

As an I
2
C bus interrupt can come from two sources,

when the program enters the interrupt subroutine, the

HAAS bit should be examined to see whether the in-

terrupt source has come from a matching slave ad-

dress or from the completion of a data byte transfer.

When a slave address is matched, the device must be

placed in either the transmit mode and then write data

to the SIMDR register, or in the receive mode where it

must implement a dummy read from the SIMDR regis-

ter to release the SCL line.

HT83FXX

Rev. 1.00 31 May 12, 2009

� SRW Bit

The SRW bit in the SIMC1 register defines whether

the microcontroller slave device wishes to read data

from the I
2
C bus or write data to the I

2
C bus. The

microcontroller should examine this bit to determine if

it is to be a transmitter or a receiver. If the SRW bit is

set to 	1	 then this indicates that the master wishes to

read data from the I
2
C bus, therefore the

microcontroller slave device must be setup to send

data to the I
2
C bus as a transmitter. If the SRW bit is

	0	 then this indicates that the master wishes to send

data to the I
2
C bus, therefore the microcontroller slave

device must be setup to read data from the I
2
C bus as

a receiver.

� Acknowledge Bit

After the master has transmitted a calling address,

any slave device on the I
2
C bus, whose own internal

address matches the calling address, must generate

an acknowledge signal. This acknowledge signal will

inform the master that a slave device has accepted its

calling address. If no acknowledge signal is received

by the master then a STOP signal must be transmitted

by the master to end the communication. When the

HAAS bit is high, the addresses have matched and

the microcontroller slave device must check the SRW

bit to determine if it is to be a transmitter or a receiver.

If the SRW bit is high, the microcontroller slave device

should be setup to be a transmitter so the HTX bit in

the SIMC1 register should be set to 	1	 if the SRW bit

is low then the microcontroller slave device should be

setup as a receiver and the HTX bit in the SIMC1 reg-

ister should be set to 	0	.

� Data Byte

The transmitted data is 8-bits wide and is transmitted

after the slave device has acknowledged receipt of its

slave address. The order of serial bit transmission is

the MSB first and the LSB last. After receipt of 8-bits of

data, the receiver must transmit an acknowledge sig-

nal, level 	0	, before it can receive the next data byte.

If the transmitter does not receive an acknowledge bit

signal from the receiver, then it will release the SDA

line and the master will send out a STOP signal to re-

lease control of the I
2
C bus. The corresponding data

will be stored in the SIMDR register. If setup as a

transmitter, the microcontroller slave device must first

write the data to be transmitted into the SIMDR regis-

ter. If setup as a receiver, the microcontroller slave de-

vice must read the transmitted data from the SIMDR

register.

� Receive Acknowledge Bit

When the receiver wishes to continue to receive the

next data byte, it must generate an acknowledge bit,

known as TXAK, on the 9th clock. The microcontroller

slave device, which is setup as a transmitter will check

the RXAK bit in the SIMC1 register to determine if it is

to send another data byte, if not then it will release the

SDA line and await the receipt of a STOP signal from

the master.

� � � �

+ 2 + � � � � � � �2 2 + � � � � � � � 22

+ 2 2 + 2 + 2+ +

� ? � � � � � � : + � � � � <

� 	 ? � # � � � 	 � � � � � : 0 � � � � � <

� � ? � � � � � � � � : + � � � � <

� ? � # � � � � � � � � � � � � � � � � � ' # � ! � � � � � � : + � � � � <

� ? � � � � � : � � � � � � <

	 ? 	
 6 � : � J 	 6 � � � � � > � � � � � � � � � � � � � � D � � J 	 6 � � � � � > � � � � � � � � � � � + � � � � <

� ? � � � % � : + � � � � <

�
 &
� � � � �

� � 	

� � � 	
 6

	
 6 � � � %
�
 &

� � 	

� # � � � 	 � � � �

� � 	 � � � � 	 � 	 � � 	 � � � � 	 � 	 �

I
2
C Communication Timing Diagram

�
 &

� � 	

� � � � � � � � � � � � � � �
� � � � � # �

� � � � � �
� � � # # � '
� � � � ! �

� � � % � � � �

Data Timing Diagram

HT83FXX

Rev. 1.00 32 May 12, 2009

� � � � �

4 	 	 � ? +
N

4 � J ? +
� � � � N

� � � ? +
� � � � � N

B � �5 �

B � � 5 �

� J 	 6 ? +
N

B � �

5 �

5 �

� � � � > � � �
� � � � �

� 7 � �

B � �

� $ � � � � � � �
> � � � � � � � � �

� 7 � �

� 7 � �

� � � � � � � �
� � � � �

� 7 � � 4 � J

� � � � � � � �
� � � � �

� $ � � � � � � �
) � � � � � � � � �

 & � � 4 � J

 & � � � J 	 6

� 7 � � � 7 � �

 & � � 4 � J

 & � � � J 	 6

I
2
C Bus ISR Flow Chart

� � � � �

� � � � � � � � � # � �
� � 	 � � � � � � � � � � � 	 �

� 7 � � � � � E * C 2 F ? + + 2
� 7 � � � � � 7 5

� � � � *
 � 3 $ �
� � � � � � $ % � ? N

�

7 � � � # �� � � � � # �

� � � � 7 � � 7 � � � �
� � � � � > � � � � � � � � � $ % �

G � � � � � � � � � � � � ! � � �

 & � � 7 � � � � �
� � # # � � � �) � � � � � � � � �

' � � � � � � � ! � � � � � � *
 � 3 $ � � � � � �

G � � � � � � � � � � � � ! � � �

I
2
C Bus Initialisation Flow Chart

HT83FXX

Rev. 1.00 33 May 12, 2009

Interrupts

Interrupts are an important part of any microcontroller

system. When an internal function such as a Time Base

or Timer requires microcontroller attention, their corre-

sponding interrupt will enforce a temporary suspension

of the main program allowing the microcontroller to di-

rect attention to their respective needs. Each device

contains a Time Base interrupt and two internal timer in-

terrupt functions. The Time Base interrupt is controlled

by bit 1 of INTC register, while the internal interrupt is

controlled by the Timer Counter overflow.

Interrupt Register

Overall interrupt control, which means interrupt enabling

and flag setting, is controlled using two registers, known

as INTC and INTCH, which are located in the Data

Memory. By controlling the appropriate enable bits in

these registers each individual interrupt can be enabled

or disabled. Also when an interrupt occurs, the corre-

sponding request flag will be set by the microcontroller.

The global enable flag if cleared to zero will disable all

interrupts.

Interrupt Operation

A timer or Time Base overflow or by setting their corre-

sponding request flag, if their appropriate interrupt en-

able bit is set. When this happens, the Program

Counter, which stores the address of the next instruction

to be executed, will be transferred onto the stack. The

Program Counter will then be loaded with a new ad-

dress which will be the value of the corresponding inter-

rupt vector. The microcontroller will then fetch its next

instruction from this interrupt vector. The instruction at

this vector will usually be a JMP statement which will

take program execution to another section of program

which is known as the interrupt service routine. Here is

located the code to control the appropriate interrupt. The

interrupt service routine must be terminated with a RETI

statement, which retrieves the original Program Counter

address from the stack and allows the microcontroller to

continue with normal execution at the point where the in-

terrupt occurred.

The various interrupt enable bits, together with their as-

sociated request flags, are shown in the accompanying

diagram with their order of priority.

Once an interrupt subroutine is serviced, all the other in-

terrupts will be blocked, as the EMI bit will be cleared au-

tomatically. This will prevent any further interrupt nesting

from occurring. However, if other interrupt requests oc-

cur during this interval, although the interrupt will not be

immediately serviced, the request flag will still be re-

corded. If an interrupt requires immediate servicing

while the program is already in another interrupt service

routine, the EMI bit should be set after entering the rou-

tine, to allow interrupt nesting. If the stack is full, the in-

terrupt request will not be acknowledged, even if the

related interrupt is enabled, until the Stack Pointer is

decremented. If immediate service is desired, the stack

must be prevented from becoming full.

- . � � � � ! " # � � ! �

� 0 � 2

7 � 2 7 � 3 � 7 � �� 3)� 2) 7 � +� +)

� � � � � � � � � � � � � $ % � � G # � � � # � 7 � � � # �
+ C � ! # � � � # � � � � � # �
2 C � ! # � � � # � � � � � # �

� � � � � 3 � � � � � � � � � � $ % � � 7 � � � # �
+ C � � � � � # �
2 C � � � � � # �

� � � � � � 2 � � � � � � � $ % � � 7 � � � # �
+ C � � � � � # �
2 C � � � � � # �

� � � � � � + � � � � � � � $ % � � 7 � � � # �
+ C � � � � � # �
2 C � � � � � # �

� � � � � 3 � � � � � � � � � � $ % � � � � 9 $ � � � �) # � !
+ C � � � � � �
2 C � � � � � � � �

� � � � � � 2 � � � � � � � $ % � � � � 9 $ � � � �) # � !
+ C � � � � � �
2 C � � � � � � � �

� � � � � � + � � � � � � � $ % � � � � 9 $ � � � �) # � !
+ C � � � � � �
2 C � � � � � � � �

5 � � � � % # � � � � � � D � � � � � � � � I 2 I

Interrupt Control Register

HT83FXX

Rev. 1.00 34 May 12, 2009

Interrupt Priority

Interrupts, occurring in the interval between the rising

edges of two consecutive T2 pulses, will be serviced on

the latter of the two T2 pulses, if the corresponding inter-

rupts are enabled. In case of simultaneous requests, the

accompanying table shows the priority that is applied.

Interrupt Source
Interrupt

Vector

HT83FXX

Priority

Time Base Interrupt 04H 1

Timer 0 Overflow 08H 2

Timer 1 Overflow 0CH 3

SIM Interrupt 14H 4

Suitable masking of the individual interrupts using the

INTC and INTCH registers can prevent simultaneous

occurrences.

Time Base Interrupt

Each device contains a Time Base whose correspond-

ing interrupt enable bits are known as ETBI and is lo-

cated in the INTC register. For a Time Base generated

interrupt to occur, the corresponding Time Base inter-

rupt enable bit must be first set. Time Base also has a

corresponding Time Base interrupt request flag, which

is known as TBF, also located in the INTC register.

When the master interrupt and corresponding timer in-

terrupt enable bits are enabled, the stack is not full, and

when the corresponding timer overflows a subroutine

call to the corresponding Time Base interrupt vector will

occur. The corresponding Program Memory vector loca-

tions for the Time Base is 04H. After entering the inter-

rupt execution routine, the corresponding interrupt

request flag, TBF will be reset and the EMI bit will be

cleared to disable other interrupts.

- . � � � � � ! " # � � ! �

� 0 � 2

� �) 7 � � �

5 � � � � % # � � � � � � D � � � � � � � � I 2 I

 � � � � � # � � � � � � # � � � � � � > � � � � � � � � � � $ % �
+ C � � � � � # �
2 C � � � � � # �

5 � � � � % # � � � � � � D � � � � � � � � I 2 I

� � � � � # � � � � � � > � � � � � � � � � � $ % � � � � 9 $ � � � � > # � !
+ C � � � � � �
2 C � � � � � � � �

5 � � � % # � � � � � � D � � � � � I 2 I

INTCH Register

	 $ � � � � � � � � # # � �
 # � � � � � � � � � � �
� � � $ � # # � � � � � � � � �
 # � � � � � � � � � � > � ' � � �

7 7 � 7 � �

� � � � � � � �

� � � � � � $ % �
� � # # � � !

4 � ! �

	 $ � � � � � � � � # # � � � � � � � # � � � � � � � �

 � � � � � � 7 � � � # � � � � � $ � # # �

7 � 2

& � '

7 � +

7 � � �

� � � � � � 2
� � � � � � $ % � � � � 9 $ � � � �) # � ! � � 2)

� � � � � � +
� � � � � � $ % � � � � 9 $ � � � �) # � ! � � +)

� � �
� � � � � � $ % � � � � 9 $ � � � �) # � ! � � �)

� � � � � 3 � � �
� � 9 $ � � � �) # � ! � 7 �)

Interrupt Structure

HT83FXX

Rev. 1.00 35 May 12, 2009

Timer Interrupt

For a timer generated interrupt to occur, the correspond-

ing timer interrupt enable bit must be first set. Each de-

vice contains two 8-bit timers whose corresponding

interrupt enable bits are known as ET0 and ET1and are

located in the INTC register. Each timer also has a cor-

responding timer interrupt request flag, which are

known as T0F and T1F, also located in the INTC regis-

ter. When the master interrupt and corresponding timer

interrupt enable bits are enabled, the stack is not full,

and when the corresponding timer overflows a subrou-

tine call to the corresponding timer interrupt vector will

occur. The corresponding Program Memory vector loca-

tions for Timer 0 and Timer1 are 08H and 0CH. After en-

tering the interrupt execution routine, the corresponding

interrupt request flags, T0F or T1F will be reset and the

EMI bit will be cleared to disable other interrupts.

Serial Interface Module - SIM - Interrupt

SIM Interrupts include both the SPI and I
2
C Interrupts.

The SIM Mode is determined by the SIM2, SIM1 and

SIM0 bits in the SIMC0 register.

For a SPI Interrupt to occur, the global interrupt enable

bit, EMI, and the corresponding SIM interrupt enable bit,

ESII, must be first set. The SIMEN bit in the SIMC0 reg-

ister must also be set. An actual SPI Interrupt will take

place when the flag, SIF, is set, a situation that will occur

when 8-bits of data are transferred or received from ei-

ther of the SPI interfaces. When the interrupt is enabled,

the stack is not full and an SIM interrupt occurs, a sub-

routine call to the SIM interrupt vector at location 14H,

will take place. When the interrupt is serviced, the SPI

interrupt request flag, SIF, will be automatically reset

and the EMI bit will be automatically cleared to disable

other interrupts.

For an I
2
C interrupt to occur, the corresponding interrupt

enable bit ESII must be first set. An actual I
2
C interrupt

will be initialized when the SIM interrupt request flag,

SIF, is set, a situation that will occur when a matching

I
2
C slave address is received or from the completion of

an I
2
C data byte transfer. When the interrupt is enabled,

the stack is not full and a SIM interrupt occurs, a subrou-

tine call to the SIM interrupt vector at location 14H, will

take place When an I
2
C interrupt occurs, the interrupt re-

quest flag SIF will be reset and the EMI bit will be

cleared to disable other interrupts.

Programming Considerations

By disabling the interrupt enable bits, a requested inter-

rupt can be prevented from being serviced, however,

once an interrupt request flag is set, it will remain in this

condition in the INTC or INTCH register until the corre-

sponding interrupt is serviced or until the request flag is

cleared by a software instruction.

It is recommended that programs do not use the 	CALL

subroutine	 instruction within the interrupt subroutine.

Interrupts often occur in an unpredictable manner or

need to be serviced immediately in some applications. If

only one stack is left and the interrupt is not well con-

trolled, the original control sequence will be damaged

once a 	CALL subroutine	 is executed in the interrupt

subroutine.

All of these interrupts have the capability of waking up

the processor when in the Power Down Mode. Only the

Program Counter is pushed onto the stack. If the con-

tents of the register or status register are altered by the

interrupt service program, which may corrupt the de-

sired control sequence, then the contents should be

saved in advance.

HT83FXX

Rev. 1.00 36 May 12, 2009

Reset and Initialisation

A reset function is a fundamental part of any

microcontroller ensuring that the device can be set to

some predetermined condition irrespective of outside

parameters. The most important reset condition is after

power is first applied to the microcontroller. In this case,

internal circuitry will ensure that the microcontroller, af-

ter a short delay, will be in a well defined state and ready

to execute the first program instruction. After this

power-on reset, certain important internal registers will

be set to defined states before the program com-

mences. One of these registers is the Program Counter,

which will be reset to zero forcing the microcontroller to

begin program execution from the lowest Program

Memory address.

In addition to the power-on reset, situations may arise

where it is necessary to forcefully apply a reset condition

when the microcontroller is running. One example of this

is where after power has been applied and the

microcontroller is already running, the RES line is force-

fully pulled low. In such a case, known as a normal oper-

ation reset, some of the microcontroller registers remain

unchanged allowing the microcontroller to proceed with

normal operation after the reset line is allowed to return

high. Another type of reset is when the Watchdog Timer

overflows and resets the microcontroller. All types of re-

set operations result in different register conditions be-

ing setup.

Reset Functions

There are five ways in which a microcontroller reset can

occur, through events occurring both internally and ex-

ternally:

� Power-on Reset

The most fundamental and unavoidable reset is the

one that occurs after power is first applied to the

microcontroller. As well as ensuring that the Program

Memory begins execution from the first memory ad-

dress, a power-on reset also ensures that certain

other registers are preset to known conditions. All the

I/O port and port control registers will power up in a

high condition ensuring that all pins will be first set to

inputs.

Although the microcontroller has an internal RC reset

function, if the VDD power supply rise time is not fast

enough or does not stabilise quickly at power-on, the

internal reset function may be incapable of providing

proper reset operation. For this reason it is recom-

mended that an external RC network is connected to

the RES pin, whose additional time delay will ensure

that the RES pin remains low for an extended period

to allow the power supply to stabilise. During this time

delay, normal operation of the microcontroller will be

inhibited. After the RES line reaches a certain voltage

value, the reset delay time tRSTD is invoked to provide

an extra delay time after which the microcontroller will

begin normal operation. The abbreviation SST in the

figures stands for System Start-up Timer.

For most applications a resistor connected between

VDD and the RES pin and a capacitor connected be-

tween VSS and the RES pin will provide a suitable ex-

ternal reset circuit. Any wiring connected to the RES

pin should be kept as short as possible to minimise

any stray noise interference.

For applications that operate within an environment

where more noise is present the Enhanced Reset Cir-

cuit shown is recommended.

More information regarding external reset circuits is

located in Application Note HA0075E on the Holtek

website.

� RES Pin Reset

This type of reset occurs when the microcontroller is

already running and the RES pin is forcefully pulled

low by external hardware such as an external switch.

In this case as in the case of other reset, the Program

Counter will reset to zero and program execution initi-

ated from this point.

� 7 �

(� �

� � � � � � � � � � $ �

� � � � � � � # � � � � � �

2 = 1 � (� �

� � � � �

Power-On Reset Timing Chart

� 7 �

2 = + �)

+ 2 2 � �

(� �

(� �

2 = 2 + �)

+ 2 � �

Enhanced Reset Circuit

� 7 �

� � � � � � � � � � $ �

� � � � � � � # � � � � � �

2 = 1 � (� �

2 = - � (� �

� � � � �

RES Reset Timing Chart

� 7 �

(� �

(� �

2 = + �)

+ 2 2 � �

Basic Reset Circuit

HT83FXX

Rev. 1.00 37 May 12, 2009

� Watchdog Time-out Reset during Normal Operation

The Watchdog time-out Reset during normal opera-

tion is the same as a hardware RES pin reset except

that the Watchdog time-out flag TO will be set to 	1	.

� Watchdog Time-out Reset during Power Down

The Watchdog time-out Reset during Power Down is

a little different from other kinds of reset. Most of the

conditions remain unchanged except that the Pro-

gram Counter and the Stack Pointer will be cleared to

	0	 and the TO flag will be set to 	1	. Refer to the A.C.

Characteristics for tSST details.

Reset Initial Conditions

The different types of reset described affect the reset

flags in different ways. These flags, known as PDF and

TO are located in the status register and are controlled

by various microcontroller operations, such as the

Power Down function or Watchdog Timer. The reset

flags are shown in the table:

TO PDF RESET Conditions

0 0 RES reset during power-on

u u RES or LVR reset during normal operation

1 u WDT time-out reset during normal operation

1 1 WDT time-out reset during Power Down

Note: 	u	 stands for unchanged

The following table indicates the way in which the vari-

ous components of the microcontroller are affected after

a power-on reset occurs.

Item Condition After RESET

Program Counter Reset to zero

Interrupts All interrupts will be disabled

WDT
Clear after reset, WDT begins

counting

Timer All Timer will be turned off

Prescaler
The Timer Prescaler will be

cleared

Input/Output Ports I/O ports will be setup as inputs

Stack Pointer
Stack Pointer will point to the top

of the stack

� � � � � � � � � � $ �

� � � � � � � � � � $ �

� � � � � � � # � � � � � �

� � � � �

WDT Time-out Reset during Normal Operation

Timing Chart

� � � � � � � � � � $ �

� � � � � � � � � � $ �

� � � �

WDT Time-out Reset during Power Down

Timing Chart

HT83FXX

Rev. 1.00 38 May 12, 2009

The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable

continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller

is in after a particular reset occurs. The following table describes how each type of reset affects each of the

microcontroller internal registers. Note that where more than one package type exists the table will reflect the situation

for the larger package type.

Register
Reset

(Power-on)

WDT Time-out

(Normal Operation)

RES Reset

(Normal Operation)

RES Reset

(HALT)

WDT Time-out

from HALT

MP � x x x x x x x � u u u u u u u � u u u u u u u � u u u u u u u � u u u u u u u

ACC x x x x x x x x u

PCL 0

TBLP x x x x x x x x u

TBLH x x x x x x x x u

WDTS 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 u u u u u u u u

STATUS �� 0 0 x x x x �� 1 u u u u u �� u u u u u u �� 0 1 u u u u �� 1 1 u u u u

INTC � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � u u u u u u u

TMR0 u u u u u u u u

TMR0C 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 u u u u u u u u

TMR1 0 u u u u u u u u

TMR1C 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 u u u u u u u u

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB � � � � 1 1 1 1 � � � � 1 1 1 1 � � � � 1 1 1 1 � � � � 1 1 1 1 � � � � u u u u

PBC � � � � 1 1 1 1 � � � � 1 1 1 1 � � � � 1 1 1 1 � � � � 1 1 1 1 � � � � u u u u

INTCH �� 0 0 � � 0 0 �� 0 0 � � 0 0 �� 0 0 � � 0 0 �� 0 0 � � 0 0 �� u u � � u u

SIMC0 1 1 1 � � � 0 � 1 1 1 � � � 0 � 1 1 1 � � � 0 � 1 1 1 � � � 0 � u u u � � � u �

SIMC1 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 u u u � � u � u

SIMDR x

SIMAR/

SIMC2
0 u u u u u u u u

DAL x x x x � � � � u u u u � � � � u u u u � � � � u u u u � � � � u u u u � � � �

DAH x x x x x x x x u

PWMCR 0 � � � 0 0 0 0 0 � � � 0 0 0 0 0 � � � 0 0 0 0 0 � � � 0 0 0 0 u � � � u u u u

PWML x x x x � � � � u u u u � � � � u u u u � � � � u u u u � � � � u u u u � � � �

PWMH x x x x x x x x u

VOL x x x x � x x x u u u u � u u u u u u u � u u u u u u u � u u u u u u u � u u u

Note: 	u	 stands for unchanged

	x	 stands for unknown

	�	 stands for undefined

HT83FXX

Rev. 1.00 39 May 12, 2009

Oscillator

Various oscillator options offer the user a wide range of

functions according to their various application require-

ments. Two types of system clocks can be selected

while various clock source options for the Watchdog

Timer are provided for maximum flexibility. All oscillator

options are selected through the configuration options.

The two methods of generating the system clock are:

� External crystal/resonator oscillator

� External RC oscillator

One of these two methods must be selected using the

configuration options.

More information regarding the oscillator is located in

Application Note HA0075E on the Holtek website.

External Crystal/Resonator Oscillator

The simple connection of a crystal across OSC1 and

OSC2 will create the necessary phase shift and feed-

back for oscillation, and will normally not require exter-

nal capacitors. However, for some crystals and most

resonator types, to ensure oscillation and accurate fre-

quency generation, it may be necessary to add two

small value external capacitors, C1 and C2. The exact

values of C1 and C2 should be selected in consultation

with the crystal or resonator manufacturer�s specifica-

tion. The external parallel feedback resistor, Rp, is nor-

mally not required but in some cases may be needed to

assist with oscillation start up.

Internal Ca, Cb, Rf Typical Values @ 5V, 25�C

Ca Cb Rf

11~13pF 13~15pF 800k

Oscillator Internal Component Values

External RC Oscillator

Using the external system RC oscillator requires that a

resistor, with a value between 150k
 and 300k
, is con-

nected between OSC1 and VSS. The generated system

clock divided by 4 will be provided on OSC2 as an out-

put which can be used for external synchronization pur-

poses. Note that as the OSC2 output is an NMOS

open-drain type, a pull high resistor should be con-

nected if it to be used to monitor the internal frequency.

Although this is a cost effective oscillator configuration,

the oscillation frequency can vary with VDD, tempera-

ture and process variations and is therefore not suitable

for applications where timing is critical or where accu-

rate oscillator frequencies are required. For the value of

the external resistor ROSC refer to the Holtek website for

typical RC Oscillator vs. Temperature and VDD charac-

teristics graphics. Note that it is the only microcontroller

internal circuitry together with the external resistor, that

determine the frequency of the oscillator. The external

capacitor shown on the diagram does not influence the

frequency of oscillation.

Watchdog Timer Oscillator

The WDT oscillator is a fully self-contained free running

on-chip RC oscillator with a typical period of 65�s at 5V

requiring no external components. When the device en-

ters the Power Down Mode, the system clock will stop

running but the WDT oscillator continues to free-run and

to keep the watchdog active. However, to preserve

power in certain applications the WDT oscillator can be

disabled via a configuration option.

� �
 +

� �
 *

� >

� � � � � � � � � � #
� � � � $ � � �

-) � ! �) � *
' � % # * * � � � �
� # � % / # �

 +

 *

 �

 �

� %

5 � � � C + = � � % � � � � � � � � � # # � � � � � � � � 9 $ � � � =
* = � 	 # � � � $! � � � � � � � � � ' � � � �
 + � � �
 * � % � � � � � � � � � � % � � � � � � � �
� � � � � � % � � � � � � � � � � > � � � � $ � � 0 %) =

Crystal/Resonator Oscillator

� �
 +

� � �

� �
 *> � B � � - � 5 � � � � � % � � � � � � � �

External RC Oscillator

HT83FXX

Rev. 1.00 40 May 12, 2009

Power Down Mode and Wake-up

Power Down Mode

All of the Holtek microcontrollers have the ability to enter

a Power Down Mode, also known as the HALT Mode or

Sleep Mode. When the device enters this mode, the nor-

mal operating current, will be reduced to an extremely

low standby current level. This occurs because when

the device enters the Power Down Mode, the system

oscillator is stopped which reduces the power consump-

tion to extremely low levels, however, as the device

maintains its present internal condition, it can be woken

up at a later stage and continue running, without requir-

ing a full reset. This feature is extremely important in ap-

plication areas where the MCU must have its power

supply constantly maintained to keep the device in a

known condition but where the power supply capacity is

limited such as in battery applications.

Entering the Power Down Mode

There is only one way for the device to enter the Power

Down Mode and that is to execute the 	HALT	 instruc-

tion in the application program. When this instruction is

executed, the following will occur:

� The system oscillator will stop running and the appli-

cation program will stop at the 	HALT	 instruction.

� The Data Memory contents and registers will maintain

their present condition.

� The WDT will be cleared and resume counting if the

WDT clock source is selected to come from the WDT

oscillator. The WDT will stop if its clock source origi-

nates from the system clock.

� The I/O ports will maintain their present condition.

� In the status register, the Power Down flag, PDF, will

be set and the Watchdog time-out flag, TO, will be

cleared.

Standby Current Considerations

As the main reason for entering the Power Down Mode

is to keep the current consumption of the MCU to as low

a value as possible, perhaps only in the order of several

micro-amps, there are other considerations which must

also be taken into account by the circuit designer if the

power consumption is to be minimized. Special atten-

tion must be made to the I/O pins on the device. All

high-impedance input pins must be connected to either

a fixed high or low level as any floating input pins could

create internal oscillations and result in increased cur-

rent consumption. Care must also be taken with the

loads, which are connected to I/Os, which are setup as

outputs. These should be placed in a condition in which

minimum current is drawn or connected only to external

circuits that do not draw current, such as other CMOS

inputs. Also note that additional standby current will also

be required if the configuration options have enabled the

Watchdog Timer internal oscillator.

Wake-up

After the system enters the Power Down Mode, it can be

woken up from one of various sources listed as follows:

� An external reset

� An external falling edge on Port A

� A system interrupt

� A WDT overflow

If the system is woken up by an external reset, the de-

vice will experience a full system reset, however, if the

device is woken up by a WDT overflow, a Watchdog

Timer reset will be initiated. Although both of these

wake-up methods will initiate a reset operation, the ac-

tual source of the wake-up can be determined by exam-

ining the TO and PDF flags. The PDF flag is cleared by a

system power-up or executing the clear Watchdog

Timer instructions and is set when executing the 	HALT	
instruction. The TO flag is set if a WDT time-out occurs,

and causes a wake-up that only resets the Program

Counter and Stack Pointer, the other flags remain in

their original status.

Each pin on Port A can be setup via an individual config-

uration option to permit a negative transition on the pin

to wake-up the system. When a Port A pin wake-up oc-

curs, the program will resume execution at the instruc-

tion following the 	HALT	 instruction.

If the system is woken up by an interrupt, then two possi-

ble situations may occur. The first is where the related

interrupt is disabled or the interrupt is enabled but the

stack is full, in which case the program will resume exe-

cution at the instruction following the 	HALT	 instruction.

In this situation, the interrupt which woke-up the device

will not be immediately serviced, but will rather be ser-

viced later when the related interrupt is finally enabled or

when a stack level becomes free. The other situation is

where the related interrupt is enabled and the stack is

not full, in which case the regular interrupt response

takes place. If an interrupt request flag is set to 	1	 be-

fore entering the Power Down Mode, the wake-up func-

tion of the related interrupt will be disabled.

No matter what the source of the wake-up event is, once

a wake-up situation occurs, a time period equal to 1024

system clock periods will be required before normal sys-

tem operation resumes. However, if the wake-up has

originated due to an interrupt, the actual interrupt sub-

routine execution will be delayed by an additional one or

more cycles. If the wake-up results in the execution of

the next instruction following the 	HALT	 instruction, this

will be executed immediately after the 1024 system

clock period delay has ended.

HT83FXX

Rev. 1.00 41 May 12, 2009

Low Drop Output � LDO

All device include a fully integrated LDO regulator which

can be used to provide a fixed voltage for user applica-

tions. The integrated LDO is a simple three terminal de-

vice with an external input pin, LDO_IN, external output

pin, LDO_OUT, and a ground pin connected to the de-

vice VSS pin. Implemented in CMOS technology, it can

deliver a 100mA output current and allow an input volt-

age as high as 24V. It will supply a fixed output voltage

level of 3.3V. Using CMOS technology ensures that the

regulator has a low dropout voltage and a low quiescent

current.

Low Voltage Detector � LVD

The Low Voltage Detector internal function provides a

means for the user to monitor when the power supply

voltage falls below a certain fixed level as specified in

the DC characteristics.

Operation

The Low Voltage Detector must first be enabled using a

configuration option.

The LVD control bit is bit 2 of the PWMCR regsiter and is

known as LVDF. Under normal operation, and when the

power supply voltage is above the specified VLVD value

in the DC characteristic section, the LVDF bit will remain

at a zero value. If the power supply voltage should fall be-

low this VLVD value then the LVDF bit will change to a

high value indicating a low voltage condition. Note that

the LVDF bit is a read-only bit. By polling the LVDF bit in

the PWMCR register, the application program can there-

fore determine the presence of a low voltage condition.

Watchdog Timer

The Watchdog Timer is provided to prevent program

malfunctions or sequences from jumping to unknown lo-

cations, due to certain uncontrollable external events

such as electrical noise. It operates by providing a de-

vice reset when the WDT counter overflows. The WDT

clock is supplied by one of two sources selected by con-

figuration option: its own self-contained dedicated inter-

nal WDT oscillator, or the instruction clock which is the

system clock divided by 4. Note that if the WDT configu-

ration option has been disabled, then any instruction re-

lating to its operation will result in no operation.

The internal WDT oscillator has an approximate period

of 65�s at a supply voltage of 5V. If selected, it is first di-

vided by 256 via an 8-stage counter to give a nominal

period of 17ms. Note that this period can vary with VDD,

temperature and process variations. For longer WDT

time-out periods the WDT prescaler can be utilized. By

writing the required value to bits 0, 1 and 2 of the WDTS

register, known as WS0, WS1 and WS2, longer time-out

periods can be achieved. With WS0, WS1 and WS2 all

equal to 1, the division ratio is 1:128 which gives a maxi-

mum time-out period of about 2.1s.

A configuration option can select the instruction clock,

which is the system clock divided by 4, as the WDT clock

source instead of the internal WDT oscillator. If the in-

struction clock is used as the clock source, it must be

noted that when the system enters the Power Down

Mode, as the system clock is stopped, then the WDT

clock source will also be stopped. Therefore the WDT

will lose its protecting purposes. In such cases the sys-

tem cannot be restarted by the WDT and can only be re-

started using external signals. For systems that operate

in noisy environments, using the internal WDT oscillator

is therefore the recommended choice.

Under normal program operation, a WDT time-out will

initialise a device reset and set the status bit TO. How-

ever, if the system is in the Power Down Mode, when a

WDT time-out occurs, only the Program Counter and

Stack Pointer will be reset. Three methods can be

adopted to clear the contents of the WDT and the WDT

prescaler. The first is an external hardware reset, which

means a low level on the RES pin, the second is using

the watchdog software instructions and the third is via a

	HALT	 instruction.

There are two methods of using software instructions to

clear the Watchdog Timer, one of which must be chosen

by configuration option. The first option is to use the sin-

gle 	CLR WDT	 instruction while the second is to use

the two commands 	CLR WDT1	 and 	CLR WDT2	. For

the first option, a simple execution of 	CLR WDT	 will

clear the WDT while for the second option, both 	CLR

WDT1	 and 	CLR WDT2	 must both be executed to

successfully clear the WDT. Note that for this second

option, if 	CLR WDT1	 is used to clear the WDT, succes-

sive executions of this instruction will have no effect,

only the execution of a 	CLR WDT2	 instruction will

clear the WDT. Similarly, after the 	CLR WDT2	 instruc-

tion has been executed, only a successive 	CLR WDT1	
instruction can clear the Watchdog Timer.

HT83FXX

Rev. 1.00 42 May 12, 2009

Voice Output

The device contains an internal 12-bit DAC function

which can be used for audio signal generation.

Voice Control

Two internal registers DAL and DAH contain the 12-bit

digital value for conversion by the internal DAC. There is

also a DAC enable/disable control bit in the PWMC con-

trol register for overall on/off control of the DAC circuit. If

the DAC circuit is not enabled, the the DAH/DAL value

outputs will be invalid. Writing a 	1	 to the DAC bit in bit1

of PWMCR will enable the enable DAC circuit, while

writing a 	0	 to the DAC bit will disable the DAC circuit.

Audio Output and Volume Control � DAL, DAH, VOL

The audio output is 12-bits wide whose highest 8-bits

are written into the DAH register and whose lowest four

bits are written into the highest four bits of the DAL regis-

ter. Bits 0~3 of the DAL register are always read as zero.

There are 8 levels of volume which are setup using the

VOL register. Only the highest 3-bits of this register are

used for volume control, the other bits are not used and

read as zero.

� � � � � �
 � $ � � � �

� � � � � : � * . / < 0 � � � � � � � � � � � # � �

� � � � � + � � " J

� � � � � � � � � � $ �

� � 2 L � � *
� � � �
 # � � � � � � $ � � �

 # � � � � � � � � � � % �

 � � > � ! $ � � � � � � � � % � � � �

 & � � � � � + �) # � !

 & � � � � � * �) # � !

+ � � � � * � � � � � � $ � � � � � �

 & � �

 & � �
> � B � � -

� � � � � � � � # # � � � �

� � � �
 # � � � � � � $ � � �

 � � > � ! $ � � � � � � � � % � � � �

Watchdog Timer

0 � & � � ! " # � � ! �

� 0 � 2

5 � � � $ � � D � � � � � � � � I 2 I

� , � * � + � 2

	 $ � � � � $ � % $ �

0 � & � � ! " # � � ! �

0 � � � � ! " # � � ! �

� 0 � 2

� + + � + 2 � 1 � �

	 $ � � � � $ � % $ �

0 � � � � ! " # � � ! �

� ' & � � ! " # � � ! �

� 0 � 2

5 � � � $ � � D � � � � � � � � I 2 I

� 	
 � � # $ � � � � � � � � � # � � � �

� � # % ! � � �) � � � * � � ! " # � � ! �

� 0 � / � . � -

" � � � � � � � � � � � $ � % $ �

(* (+ (2

� � * 1 0 � � � � ! " # � � ! �

� 0 � 2

� � � � % � � � � � # � � � � � � � � � � # � � �

� � *
2
2
2
2
+
+
+
+

� � +
2
2
+
+
2
2
+
+

� � 2
2
+
2
+
2
+
2
+

� � � � � � � �
� � � � � � + C +
� � � � � � + C *
� � � � � � + C -
� � � � � � + C �
� � � � � � + C + /
� � � � � � + C , *
� � � � � � + C / -
� � � � � � + C + * �

5 � � � $ � �

� � + � � 2

Watchdog Timer Register

HT83FXX

Rev. 1.00 43 May 12, 2009

 1 , & � � ! " # � � ! �

� 0 � 2

5 � � � $ � � D � � � � � � � � I 2 I

� , � * � + � 2

� � � � � $ � % $ �

 / * � ! � 1 # 2 � � � , � 2 / * � � � � � 0 � � � � & � 3 � � ! " # � � ! �

 1 , � � � ! " # � � ! �

� 0 � 2

� + + � + 2 � 1 � �

� � � � � $ � % $ �

 / * � ! � 1 # 2 � � � , � 2 / * � � � � � 0 � � � � � # " � � � ! " # � � ! �

� ' & � � ! " # � � ! �

� 0 � 2

5 � � � $ � � D � � � � � � � � I 2 I

� � � � � # $ � � � � � � � � � # � � � �

� � # % ! � � �) � � � * � � ! " # � � ! �

� 0 � / � . � -

" � � � � � � � $ � � � � $ � % $ �

(� & 2(� & +(� & *(� & ,

Pulse Width Modulation Output

All devices include a single 12-bit PWM function which

can directly drive external audio components such as

speakers.

Pulse Width Modulator Operation

The PWM output is provided on two complimentary out-

puts on the PWM1 and PWM2 pins, providing a differen-

tial output pair and thus capable of higher drive power.

These two pins can directly drive a piezo buzzer or an 8

ohm speaker without using external components. The

PWM outputs can also be used single ended, where the

signal is provided on the PWM1 output, and again can

also be used by itself alone to drive a piezo buzzer or an

8 ohm speaker without external components. This sin-

gle end output drive type is chosen using the Sin-

gle_PWM bit in the PWMCR register.

If the MSB_SIGN bit is low, then the signal that is pro-

vided on PWM1and PWM2 will obtain a GND level volt-

age after setting the PWMCC bit high. If the MSB_SIGN

bit is high, then the signal that is provided on PWM2 and

PWM1 will have a GND level voltage when the PWMCC

bit is set high.

The two PWM outputs will initially be at low levels, and if

the PWM function is stopped will also return to a low

level. If the PWMCC bit changes from low to high then

the PWM function will start running and latch new data.

If the data is not updated then the old value will remain. If

the PWMCC bit changes from high to low, at the end of

the duty cycle, the PWM output will stop.

 1 , � � � ! " # � � ! �

� 2

� � �

� � � ! # � 8 � � �

� 0

� � 3 8 � � G 5 � 	

� � � � 7 � � � # �
+ C � � � � � # �
2 C � � � � � # �

� 	
 � � � � � # �
+ C � � � � � # �
2 C � � � � � # �

& (� � � � � � � � � � � > # � !
+ C � & (� � � � � � � � � �
2 C � & (� � � � � � � � � � � � � �

� � � ! # � � � � � � � $ � % $ �
+ C � � � � ! # � � � $ � % $ �
2 C � $ � # � � $ � % $ � �

5 � � � � � % # � � � � � � D � � � � � � � � I 2 I

� + + � � � � � # # � # � � � � � � � � # � � � � �
+ C � � + + � � � � � � � � � �
2 C � � + + � � � � � �

& (�)

Pulse Width Modulator Control Register

� % � � � � �
� � � +

� � � *

2 = 2 + �) O2 = 2 + �) O

I O I �) � � � � � $ � � � ! � � � � � � ! � � � # � � � � � � � � � � � � � � � � � � �
� � $ � � D � � � � � � � � � � � � � � � � � � � � � � � � � % � � � � � � � =

5 � � � C

HT83FXX

Rev. 1.00 44 May 12, 2009

Configuration Options

Configuration options refer to certain options within the MCU that are programmed into the device during the program-

ming process. During the development process, these options are selected using the HT-IDE software development

tools. As these options are programmed into the device using the hardware programming tools, once they are selected

they cannot be changed later by the application software.

No. Options

I/O Options

1 PA0~PA7: wake-up enable or disable

2 PA0~PA7: pull-high enable or disable

3 PB0~PB3: pull-high enable or disable

Oscillator Options

4 OSC type selection: RC or crystal

Watchdog Options

5 WDT: enable or disable

6 WDT clock source: WDROSC or T1

PB I/O Port Output Voltage Options

7 VDD_PBIO/VDD type selection: VDD_PBIO or VDD for Port B, SPI, I2C I/O per bit

LVD Options

8 LVD function: enable or disable

SIM Options

9 SIM Function: enable or disable

10 SPI S/W CSEN: enable or disable

11 SPI S/W WCOL: enable or disable

I
2
C Options

12 I2C RNIC: enable or disable

13 I2C debounce time: 0/1/2 system clocks

Application Circuits

VDD=2.7V~3.6V

HT83FXX

Rev. 1.00 45 May 12, 2009

	 " �

+

*

,

-

.

/ 0

�

� � � � � 4 � �

(� �

- 0 �)

2 = + �)

+ 2 �)

� " � 5

(� �

(� 7)

5
 � " � �

 7

	 $ � � � � �
� � 6

: � � � + / � <

(� �

� 2 . 2

2 = + �)

� +
� *

� � 6

: � � � + / � <

	 " �

5 � � � C � � + P � *

� � �) � # � � � � � ' / � (/ �

 � 3 ! � � � $ (* # 5 # ! � � ' / � (/ �

� � � � � � 	 � � 	 � 	 � � 	 � � 	

� 7 �

(� �

+ 2 2 � �

(� �

2 = + �)

+ 2 2 �)

� �
 *

� �
 +

� 	 2 L � 	 0

� 3 2 L � 3 ,

+ . 2 � � L
, 2 2 � �

	 " �

(� �
(� � 	
(� � �

(� �

(
�
�
	

+ 2 �

- 0 �)2 = + �)

(
�
�
�

(
�
�
8
�
3
��

 & 6

� �

� �

�
 �

�
 6

� �

� �

 �

� 7 �

(� �

+ 2 2 � �

(� �

2 = + �)

+ 2 2 �)

� �
 *

� �
 +

- � 4 ; L
� � 4 ;

� 	 2 L � 	 0

� 3 2 L � 3 ,

� � � � � � 	 � � 	 � 	 � � 	 � � 	

5 � � � C � � � � � � � � � � % % # � � � � � � � � � � > � � � � � � � � � � � � � � � % � � � � � � > � � $ # � � � � � � � � � � $ # � � � � � � � $ � % $ � =

� � � +
� � � *

� � 6

: � � � + / � <

- 0 �)

(� �

 & 6

� �

� �

�
 �

�
 6

� �

� �

 �

(� �)

(
�
�
)

(
�
�
	

(
�
�
�

(
�
�
8
�
3
��

(
�
�
)

(� �
(� � 	
(� � �

(� �)

VIN=3.6V~24V

HT83FXX

Rev. 1.00 46 May 12, 2009

	 " �

+

*

,

-

.

/ 0

�

� � � � � 4 � �

(� �

- 0 �)

2 = + �)

+ 2 �)

� " � 5

(� �

(� 7)

5
 � " � �

 7

	 $ � � � � �
� � 6

: � � � + / � <

(� �

� 2 . 2

2 = + �)

� +
� *

� � 6

: � � � + / � <

	 " �

5 � � � C � � + P � *

� � �) � # � � � � � ' / � (/ �

 � 3 ! � � � $ (* # 5 # ! � � ' / � (/ �

� � � � � � 	
 � � 	
 � 	
 � � 	
 � � 	

� 7 �

(� �

+ 2 2 � �

(� �

2 = + �)

+ 2 2 �)

� �
 *

� �
 +

� 	 2 L � 	 0

� 3 2 L � 3 ,

+ . 2 � � L
, 2 2 � �

	 " �

(� �
(� � 	
(� � �

(� �

(
�
�
	

+ 2 �

- 0 �)2 = + �)

(
�
�
�

(
�
�
8
�
3
��

 & 6

� �

� �

�
 �

�
 6

� �

� �

 �

� 7 �

(� �

+ 2 2 � �

(� �

2 = + �)

+ 2 2 �)

� �
 *

� �
 +

- � 4 ; L
� � 4 ;

� 	 2 L � 	 0

� 3 2 L � 3 ,

� � � � � � 	
 � � 	
 � 	
 � � 	
 � � 	

5 � � � C � � � � � � � � � � % % # � � � � � � � � � � > � � � � � � � � � � � � � � � % � � � � � � > � � $ # � � � � � � � � � � $ # � � � � � � � $ � % $ � =

� � � +
� � � *

� � 6

: � � � + / � <

- 0 �)

(� �

 & 6

� �

� �

�
 �

�
 6

� �

� �

 �

(� �)

(
�
�
)

(
�
�
	

(
�
�
�

(
�
�
8
�
3
��

(
�
�
)

(� �
(� � 	
(� � �

(� �)

(� 5

& � � 8 � 5

& � � 8 � " �

(� 5

& � � 8 � 5

& � � 8 � " �

HT83FXX

Rev. 1.00 47 May 12, 2009

Instruction Set

Introduction

Central to the successful operat ion of any

microcontroller is its instruction set, which is a set of pro-

gram instruction codes that directs the microcontroller to

perform certain operations. In the case of Holtek

microcontrollers, a comprehensive and flexible set of

over 60 instructions is provided to enable programmers

to implement their application with the minimum of pro-

gramming overheads.

For easier understanding of the various instruction

codes, they have been subdivided into several func-

tional groupings.

Instruction Timing

Most instructions are implemented within one instruc-

tion cycle. The exceptions to this are branch, call, or ta-

ble read instructions where two instruction cycles are

required. One instruction cycle is equal to 4 system

clock cycles, therefore in the case of an 8MHz system

oscillator, most instructions would be implemented

within 0.5�s and branch or call instructions would be im-

plemented within 1�s. Although instructions which re-

quire one more cycle to implement are generally limited

to the JMP, CALL, RET, RETI and table read instruc-

tions, it is important to realize that any other instructions

which involve manipulation of the Program Counter Low

register or PCL will also take one more cycle to imple-

ment. As instructions which change the contents of the

PCL will imply a direct jump to that new address, one

more cycle will be required. Examples of such instruc-

tions would be 	CLR PCL	 or 	MOV PCL, A	. For the

case of skip instructions, it must be noted that if the re-

sult of the comparison involves a skip operation then

this will also take one more cycle, if no skip is involved

then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program

is one of the most frequently used operations. Making

use of three kinds of MOV instructions, data can be

transferred from registers to the Accumulator and

vice-versa as well as being able to move specific imme-

diate data directly into the Accumulator. One of the most

important data transfer applications is to receive data

from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and

data manipulation is a necessary feature of most

microcontroller applications. Within the Holtek

microcontroller instruction set are a range of add and

subtract instruction mnemonics to enable the necessary

arithmetic to be carried out. Care must be taken to en-

sure correct handling of carry and borrow data when re-

sults exceed 255 for addition and less than 0 for

subtraction. The increment and decrement instructions

INC, INCA, DEC and DECA provide a simple means of

increasing or decreasing by a value of one of the values

in the destination specified.

Logical and Rotate Operations

The standard logical operations such as AND, OR, XOR

and CPL all have their own instruction within the Holtek

microcontroller instruction set. As with the case of most

instructions involving data manipulation, data must pass

through the Accumulator which may involve additional

programming steps. In all logical data operations, the

zero flag may be set if the result of the operation is zero.

Another form of logical data manipulation comes from

the rotate instructions such as RR, RL, RRC and RLC

which provide a simple means of rotating one bit right or

left. Different rotate instructions exist depending on pro-

gram requirements. Rotate instructions are useful for

serial port programming applications where data can be

rotated from an internal register into the Carry bit from

where it can be examined and the necessary serial bit

set high or low. Another application where rotate data

operations are used is to implement multiplication and

division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to

specified locations using the JMP instruction or to a sub-

routine using the CALL instruction. They differ in the

sense that in the case of a subroutine call, the program

must return to the instruction immediately when the sub-

routine has been carried out. This is done by placing a

return instruction RET in the subroutine which will cause

the program to jump back to the address right after the

CALL instruction. In the case of a JMP instruction, the

program simply jumps to the desired location. There is

no requirement to jump back to the original jumping off

point as in the case of the CALL instruction. One special

and extremely useful set of branch instructions are the

conditional branches. Here a decision is first made re-

garding the condition of a certain data memory or indi-

vidual bits. Depending upon the conditions, the program

will continue with the next instruction or skip over it and

jump to the following instruction. These instructions are

the key to decision making and branching within the pro-

gram perhaps determined by the condition of certain in-

put switches or by the condition of internal data bits.

HT83FXX

Rev. 1.00 48 May 12, 2009

Bit Operations

The ability to provide single bit operations on Data Mem-

ory is an extremely flexible feature of all Holtek

microcontrollers. This feature is especially useful for

output port bit programming where individual bits or port

pins can be directly set high or low using either the 	SET

[m].i	 or 	CLR [m].i	 instructions respectively. The fea-

ture removes the need for programmers to first read the

8-bit output port, manipulate the input data to ensure

that other bits are not changed and then output the port

with the correct new data. This read-modify-write pro-

cess is taken care of automatically when these bit oper-

ation instructions are used.

Table Read Operations

Data storage is normally implemented by using regis-

ters. However, when working with large amounts of

fixed data, the volume involved often makes it inconve-

nient to store the fixed data in the Data Memory. To over-

come this problem, Holtek microcontrollers allow an

area of Program Memory to be setup as a table where

data can be directly stored. A set of easy to use instruc-

tions provides the means by which this fixed data can be

referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range

of other instructions also exist such as the 	HALT	 in-

struction for Power-down operations and instructions to

control the operation of the Watchdog Timer for reliable

program operations under extreme electric or electro-

magnetic environments. For their relevant operations,

refer to the functional related sections.

Instruction Set Summary

The following table depicts a summary of the instruction

set categorised according to function and can be con-

sulted as a basic instruction reference using the follow-

ing listed conventions.

Table conventions:

x: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program memory address

Mnemonic Description Cycles Flag Affected

Arithmetic

ADD A,[m]

ADDM A,[m]

ADD A,x

ADC A,[m]

ADCM A,[m]

SUB A,x

SUB A,[m]

SUBM A,[m]

SBC A,[m]

SBCM A,[m]

DAA [m]

Add Data Memory to ACC

Add ACC to Data Memory

Add immediate data to ACC

Add Data Memory to ACC with Carry

Add ACC to Data memory with Carry

Subtract immediate data from the ACC

Subtract Data Memory from ACC

Subtract Data Memory from ACC with result in Data Memory

Subtract Data Memory from ACC with Carry

Subtract Data Memory from ACC with Carry, result in Data Memory

Decimal adjust ACC for Addition with result in Data Memory

1

1Note

1

1

1Note

1

1

1Note

1

1Note

1Note

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

C

Logic Operation

AND A,[m]

OR A,[m]

XOR A,[m]

ANDM A,[m]

ORM A,[m]

XORM A,[m]

AND A,x

OR A,x

XOR A,x

CPL [m]

CPLA [m]

Logical AND Data Memory to ACC

Logical OR Data Memory to ACC

Logical XOR Data Memory to ACC

Logical AND ACC to Data Memory

Logical OR ACC to Data Memory

Logical XOR ACC to Data Memory

Logical AND immediate Data to ACC

Logical OR immediate Data to ACC

Logical XOR immediate Data to ACC

Complement Data Memory

Complement Data Memory with result in ACC

1

1

1

1Note

1Note

1Note

1

1

1

1Note

1

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Increment & Decrement

INCA [m]

INC [m]

DECA [m]

DEC [m]

Increment Data Memory with result in ACC

Increment Data Memory

Decrement Data Memory with result in ACC

Decrement Data Memory

1

1Note

1

1Note

Z

Z

Z

Z

HT83FXX

Rev. 1.00 49 May 12, 2009

Mnemonic Description Cycles Flag Affected

Rotate

RRA [m]

RR [m]

RRCA [m]

RRC [m]

RLA [m]

RL [m]

RLCA [m]

RLC [m]

Rotate Data Memory right with result in ACC

Rotate Data Memory right

Rotate Data Memory right through Carry with result in ACC

Rotate Data Memory right through Carry

Rotate Data Memory left with result in ACC

Rotate Data Memory left

Rotate Data Memory left through Carry with result in ACC

Rotate Data Memory left through Carry

1

1Note

1

1Note

1

1Note

1

1Note

None

None

C

C

None

None

C

C

Data Move

MOV A,[m]

MOV [m],A

MOV A,x

Move Data Memory to ACC

Move ACC to Data Memory

Move immediate data to ACC

1

1Note

1

None

None

None

Bit Operation

CLR [m].i

SET [m].i

Clear bit of Data Memory

Set bit of Data Memory

1Note

1Note
None

None

Branch

JMP addr

SZ [m]

SZA [m]

SZ [m].i

SNZ [m].i

SIZ [m]

SDZ [m]

SIZA [m]

SDZA [m]

CALL addr

RET

RET A,x

RETI

Jump unconditionally

Skip if Data Memory is zero

Skip if Data Memory is zero with data movement to ACC

Skip if bit i of Data Memory is zero

Skip if bit i of Data Memory is not zero

Skip if increment Data Memory is zero

Skip if decrement Data Memory is zero

Skip if increment Data Memory is zero with result in ACC

Skip if decrement Data Memory is zero with result in ACC

Subroutine call

Return from subroutine

Return from subroutine and load immediate data to ACC

Return from interrupt

2

1Note

1note

1Note

1Note

1Note

1Note

1Note

1Note

2

2

2

2

None

None

None

None

None

None

None

None

None

None

None

None

None

Table Read

TABRDC [m]

TABRDL [m]

Read table (current page) to TBLH and Data Memory

Read table (last page) to TBLH and Data Memory

2Note

2Note
None

None

Miscellaneous

NOP

CLR [m]

SET [m]

CLR WDT

CLR WDT1

CLR WDT2

SWAP [m]

SWAPA [m]

HALT

No operation

Clear Data Memory

Set Data Memory

Clear Watchdog Timer

Pre-clear Watchdog Timer

Pre-clear Watchdog Timer

Swap nibbles of Data Memory

Swap nibbles of Data Memory with result in ACC

Enter power down mode

1

1Note

1Note

1

1

1

1Note

1

1

None

None

None

TO, PDF

TO, PDF

TO, PDF

None

None

TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,

if no skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the 	CLR WDT1	 and 	CLR WDT2	 instructions the TO and PDF flags may be affected by

the execution status. The TO and PDF flags are cleared after both 	CLR WDT1	 and

	CLR WDT2	 instructions are consecutively executed. Otherwise the TO and PDF flags

remain unchanged.

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the Accumulator.

Operation ACC � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the specified Data Memory.

Operation [m] � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the Accumulator.

Operation ACC � ACC + [m]

Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added. The result is

stored in the Accumulator.

Operation ACC � ACC + x

Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the specified Data Memory.

Operation [m] � ACC + [m]

Affected flag(s) OV, Z, AC, C

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC 	AND	 [m]

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation ACC � ACC 	AND	 x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC 	AND	 [m]

Affected flag(s) Z

HT83FXX

Rev. 1.00 50 May 12, 2009

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then in-

crements by 1 to obtain the address of the next instruction which is then pushed onto the

stack. The specified address is then loaded and the program continues execution from this

new address. As this instruction requires an additional operation, it is a two cycle instruc-

tion.

Operation Stack � Program Counter + 1

Program Counter � addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation [m] � 00H

Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i � 0

Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT2 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

HT83FXX

Rev. 1.00 51 May 12, 2009

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa.

Operation [m] � [m]

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC � [m]

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value re-

sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or

if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble

remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of

6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-

ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C

flag may be affected by this instruction which indicates that if the original BCD sum is

greater than 100, it allows multiple precision decimal addition.

Operation [m] � ACC + 00H or

[m] � ACC + 06H or

[m] � ACC + 60H or

[m] � ACC + 66H

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation [m] � [m] � 1

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-

mulator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] � 1

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents

of the Data Memory and registers are retained. The WDT and prescaler are cleared. The

power down flag PDF is set and the WDT time-out flag TO is cleared.

Operation TO � 0

PDF � 1

Affected flag(s) TO, PDF

HT83FXX

Rev. 1.00 52 May 12, 2009

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation [m] � [m] + 1

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-

lator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] + 1

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter � addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation ACC � [m]

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation ACC � x

Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation [m] � ACC

Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-

ation. The result is stored in the Accumulator.

Operation ACC � ACC 	OR	 [m]

Affected flag(s) Z

HT83FXX

Rev. 1.00 53 May 12, 2009

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC 	OR	 x

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-

ation. The result is stored in the Data Memory.

Operation [m] � ACC 	OR	 [m]

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the re-

stored address.

Operation Program Counter � Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the

specified immediate data. Program execution continues at the restored address.

Operation Program Counter � Stack

ACC � x

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by set-

ting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending

when the RETI instruction is executed, the pending Interrupt routine will be processed be-

fore returning to the main program.

Operation Program Counter � Stack

EMI � 1

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � [m].7

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-

main unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � [m].7

Affected flag(s) None

HT83FXX

Rev. 1.00 54 May 12, 2009

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � C

C � [m].7

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � C

C � [m].7

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into

bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � [m].0

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-

tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data

Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � [m].0

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � C

C � [m].0

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-

places the Carry bit and the original carry flag is rotated into bit 7. The rotated result is

stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � C

C � [m].0

Affected flag(s) C

HT83FXX

Rev. 1.00 55 May 12, 2009

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Accumulator. Note that if the result

of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or

zero, the C flag will be set to 1.

Operation ACC � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-

sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] � 1

Skip if [m] = 0

Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0, the program proceeds with the following instruction.

Operation ACC � [m] � 1

Skip if ACC = 0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation [m] � FFH

Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i � 1

Affected flag(s) None

HT83FXX

Rev. 1.00 56 May 12, 2009

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] + 1

Skip if [m] = 0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation ACC � [m] + 1

Skip if ACC = 0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m].i � 0

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation ACC � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumu-

lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-

tive, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will

be set to 1.

Operation ACC � ACC � x

Affected flag(s) OV, Z, AC, C

HT83FXX

Rev. 1.00 57 May 12, 2009

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3~[m].0 � [m].7 ~ [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 ~ ACC.0 � [m].7 ~ [m].4

ACC.7 ~ ACC.4 � [m].3 ~ [m].0

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As

this requires the insertion of a dummy instruction while the next instruction is fetched, it is a

two cycle instruction. If the result is not 0 the program proceeds with the following instruc-

tion.

Operation Skip if [m] = 0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is

zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-

tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation ACC � [m]

Skip if [m] = 0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i = 0

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

HT83FXX

Rev. 1.00 58 May 12, 2009

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC 	XOR	 [m]

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC 	XOR	 [m]

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation ACC � ACC 	XOR	 x

Affected flag(s) Z

HT83FXX

Rev. 1.00 59 May 12, 2009

Package Information

44-pin QFP (10mm�10mm) Outline Dimensions

Symbol
Dimensions in mm

Min. Nom. Max.

A 13.00 � 13.40

B 9.90 � 10.10

C 13.00 � 13.40

D 9.90 � 10.10

E � 0.80 �

F � 0.30 �

G 1.90 � 2.20

H � � 2.70

I 0.25 � 0.50

J 0.73 � 0.93

K 0.10 � 0.20

L � 0.10 �

� 0� � 7�

HT83FXX

Rev. 1.00 60 May 12, 2009

, -

+ ++

- -

	 3

* *

+ *

7

)

G

4

�

Q

6 �

, , * ,

�

&

HT83FXX

Rev. 1.00 61 May 12, 2009

Copyright � 2009 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek as-
sumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life

due to malfunction or otherwise. Holtek�s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)
G Room, 3 Floor, No.1 Building, No.2016 Yi-Shan Road, Minhang District, Shanghai, China 201103
Tel: 86-21-5422-4590
Fax: 86-21-5422-4705
http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, Gaoxin M 2nd, Middle Zone Of High-Tech Industrial Park, ShenZhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722

Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752
Fax: 86-10-6641-0125

Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

