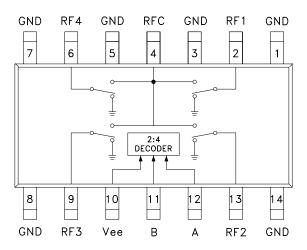


HMC165S14

GaAs MMIC SP4T SWITCH DC - 2.0 GHz

Typical Applications

The HMC165S14 is ideal for:


- Basestation Infrastructure
- CATV & DBS

Features

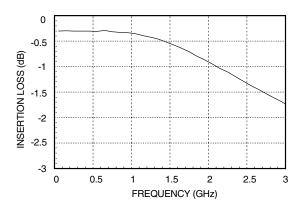
Low Insertion Loss: 0.4 dBm Integrated 2:4 Decoder

14 Lead SOIC Package

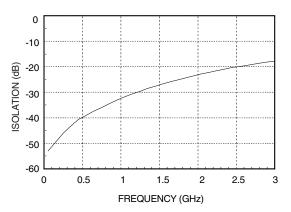
Functional Diagram

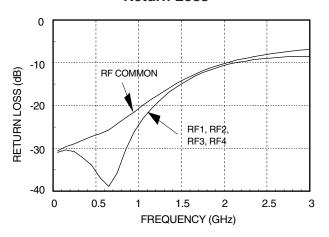
General Description

The HMC165S14 is a low-cost SP4T switch in a 14-lead SOIC package for use in antenna diversity, switched filter banks, gain/attenuation selection, and general channel multiplexing applications. The switch can control signals up to 2.0 GHz and is especially suited for 800-1000 MHz basestation applications. A 2:4 decoder is integrated on the switch, requiring only 2 control lines and a negative bias to select each RF path. Switch outputs are reflective shorts when "Off". The 2:4 decoder replaces 4 to 8 control lines normally required by GaAs SP4T switches. See positive bias/TTL SP4T HMC241QS16.


Electrical Specifications,

$T_A = +25^{\circ}$ C, For 0/-5V Control and Vee = -5V in a 50 Ohm System


A					
Parameter	Frequency	Min.	Тур.	Max.	Units
Insertion Loss	DC - 0.5 GHz DC - 1.0 GHz DC - 2.0 GHz		0.3 0.5 1.0	0.6 0.8 1.3	dB dB dB
Isolation	DC - 0.5 GHz DC - 1.0 GHz DC - 2.0 GHz	35 28 20	39 32 24		dB dB dB
Return Loss	DC - 1.0 GHz DC - 2.0 GHz	16 8.5	20 11		dB dB
Input Power for 1dB Compression	50 MHz 0.5 - 2.0 GHz		22 24		dBm dBm
Input Third Order Intercept	50 MHz 0.5 - 2.0 GHz		35 42		dBm dBm
Switching Characteristics	DC - 2.0 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)			25 50		ns ns

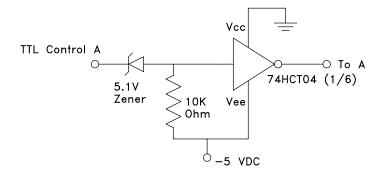

Insertion Loss

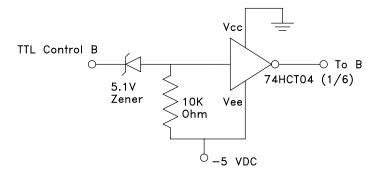
Isolation

Return Loss

Bias Voltage & Current

Vee Range = -5.0 Vdc ± 10%		
Vee (Vdc)	lee (Typ.) (mA)	lee (Max.) (mA)
-5.0	3.0	6.0

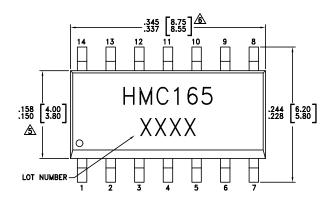

Control Voltages

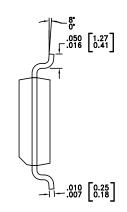

State	Bias Condition
Low	0 to -3 VDC @ 220uA Typ.
High	Vee -0.8 VDC @ 100uA Max.

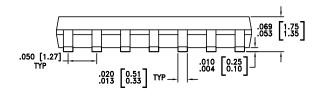
Truth Table

Control Input		Signal Path State	
А	В	RFCOM to:	
High	High	RF1	
Low	High	RF2	
High	Low	RF3	
Low	Low	RF4	

TTL Interface Circuit

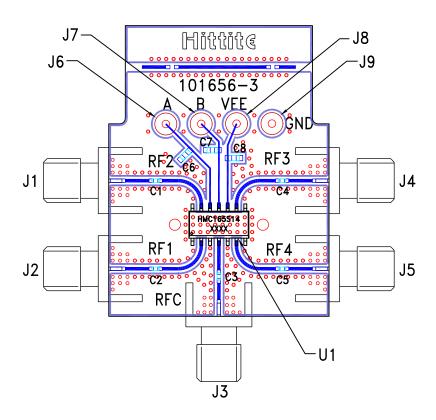

Control inputs A and B can be driven directly with TTL logic with -5 Volts applied to the HCT logic gates (Vee) and to Vee (pin 10) of the RF switch.




Absolute Maximum Ratings

Bias Voltage Range (Port Vee)	-7.0 Vdc
Control Voltage Range (A & B)	Vee -0.5V to +1.0 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
Maximum Input Power	+27 dBm (<500MHz) +30 dBm (>500MHz)

Outline Drawing



NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEADFRAME MATERIAL: COPPER ALLOY
- 3. LEADFRAME PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- 6 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Evaluation PCB

List of Material

Item	Description
J1 - J5	PC Mount SMA RF Connector
J6 - J9	DC Pin
C1 - C5	330 pF capacitor, 0402 Pkg.
C6 - C8	10,000 pF capacitor, 0603 Pkg.
U1	HMC165S14 SP4T Switch
PCB*	101656 Evaluation PCB
* Circuit Board Material: Rogers 4350	

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

Notes: