Semicustom cmos

Embedded array

CE77 Series

■ DESCRIPTION

The CE77 series $0.25\,\mu m$ CMOS embedded array is a line of highly integrated CMOS ASICs featuring high speed and low power consumption at the same time.

CE77 series is available in 15 frames with the enhanced lineup of 470 K to 6980 K gates.

■ FEATURES

Technology : 0.25 μm silicon-gate CMOS, 3- to 4-layer wiring

• Supply voltage : $+2.5 \text{ V} \pm 0.2 \text{ V}$ (normal) to $+1.5 \text{ V} \pm 0.1 \text{ V}$

- Junction temperature range : -40 °C to +125 °C
- Gate delay time : tpd = 33 ps (2.5 V, inverter cell High Speed type, F/O = 1, No load)
- Gate power consumption: 0.02 μW/MHz (1.5 V, F/O = 1, No load)
- High-load driving capability : IoL = 2 mA/4 mA/8 mA/12 mA mixable
- Output buffer cells with noise reduction circuits
- Inputs with on-chip input pull-up/pull-down resistors (25 kΩ typical) and bidirectional buffer cells
- Buffer cells dedicated to crystal oscillator
- Special interface (P-CML, LVDS, T-LVTTL, SSTL, PCI, USB, GTL+, and others including those under development)
- IP macros (CPU, PCI, USB, IrDA, PLL, DAC, ADC, and others including those under development)
- Capable of incorporating compiled cells (RAM/ROM/FIFO/Delay line, and others.)
- · Configurable internal bus circuits
- Advanced hardware/software co-design environment
- Support for static timing sign-off
 Dramatically reducing the time for generating test vectors for timing verification and the simulation time
- Hierarchical design environment for supporting large-scale circuits
- Simulation (before layout) considering the input slew rate and detailed RC delay calculation (after layout), supporting development with minimized timing trouble after trial manufacture

(Continued)

(Continued)

- Support for memory (RAM/ROM) SCAN
- Support for memory (RAM) BIST
- Support for boundary SCAN
- Support for path delay test
- A variety of package options

(SQFP, HQFP, PBGA, LQFP, FBGA under development)

■ MACRO LIBRARY (Including macros being prepared)

Logic cells (about 700 types)

• Adder

- AND-OR
- AND-OR Inverter
- Decoder
- Clock Buffer
- Non-SCAN Flip Flop

• Latch

• Inverter

• NAND

Buffer

• AND

• OR-AND Inverter

• NOR

- OR
- SCAN Flip Flop
- Selector
- BUS Driver
- EOR
- ENOR

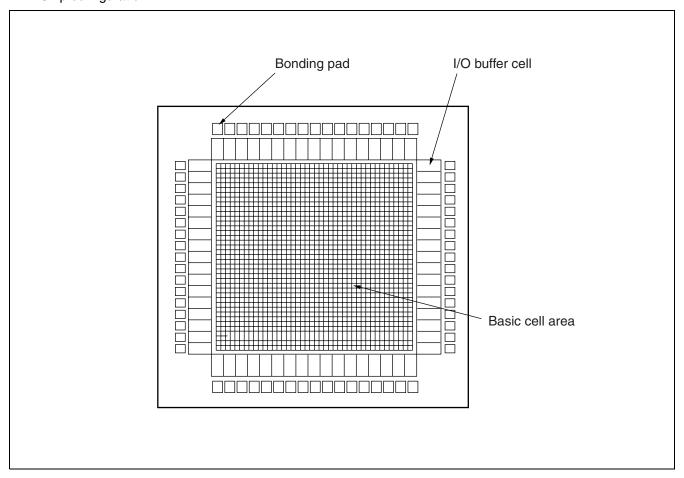
Others

• Boundary Scan Register

2. IP macros

CPU	SPARClite, ARM7
Interface macro	USB, IrDA, etc.
Multimedia processing macros	JPEG, etc.
Mixed signal macros	ADC, DAC, Analog switch, etc.
Compiled macros	RAM, ROM, FIFO, Delay Line,
PLL	Analog PLL

3. Special I/O interface macros


- P-CML
- USB

■ CHIP STRUCTURE

The chip layout of the CE77 series consists of two major areas: chip peripheral area and basic cell area.

The chip peripheral area contains the input/output buffer cells for interfacing with external devices and the associated bonding pads. The basic cell area contains some of input/output buffer cells, the unit cells and the compiled cells.

• Chip configuration

■ COMPILED CELLS

Compiled cells are macro cells which are automatically generated with the bit/word configuration specified. The CE77 series has the following types of compiled cells (Note that each macro is different in word/bit range depending on the column type) .

1. Clock synchronous single-port RAM (1 address, 1 RW)

(High density type) / (Partial write type)

Column type	Memory capacity	Word range	Bit range	Unit
4	16 to 72 K	16 to 1 K	1 to 72	bit
16	64 to 72 K	64 to 4 K	1 to 18	bit

(Ultra high density type)

Column type	Memory capacity	Word range	Bit range	Unit
4	64 to 72 K	32 to 1 K	2 to 72	bit
4	2064 to 512 K	1032 to 4 K	2 to 128	bit
16	4160 to 512 K	2080 to 16 K	2 to 32	bit

(Low power consumption type)

Column type	Memory capacity	Word range	Bit range	Unit
4	128 to 72 K	32 to 1 K	4 to 72	bit
8	256 to 72 K	64 to 2 K	4 to 36	bit

(High speed type)

Column type	Memory capacity	Word range	Bit range	Unit
8	128 to 144 K	32 to 2 K	4 to 72	bit

2. Clock synchronous dual-port RAM (2 addresses, 1 RW/1 R)

Column type	Memory capacity	Word range	Bit range	Unit
4	16 to 72 K	16 to 1 K	1 to 72	bit
16	64 to 72 K	64 to 4 K	1 to 18	bit

3. Clock synchronous register file (3 addresses, 1W/2R)

Column type	Memory capacity	Word range	Bit range	Unit
1	4608	4 to 64	1 to 72	bit

4. Clock synchronous register file (4 addresses, 2W/2R)

Column type	Memory capacity	Word range	Bit range	Unit
1	4608	4 to 64	1 to 72	bit

5. Clock synchronous ROM (1 address, 1R)

Column type	Memory capacity	Word range	Bit range	Unit
8	128 to 512 K	32 to 4 K	4 to 128	bit
16	128 to 512 K	64 to 8 K	2 to 64	bit

6. Clock synchronous delay line memory (2 addresses, 1W/1R)

Column type	Memory capacity	Word range	Bit range	Unit
8	512 to 32 K	32 to 1 K	16 to 32	bit
16	512 to 32 K	64 to 2 K	8 to 16	bit
32	512 to 32 K	128 to 4 K	4 to 8	bit

7. Clock synchronous FIFO memory (2 addresses, 1W/1R)

Column type	Memory capacity	Word range	Bit range	Unit
8	512 to 32 K	32 to 1 K	16 to 32	bit
16	512 to 32 K	64 to 2 K	8 to 16	bit
32	512 to 32 K	128 to 4 K	4 to 8	bit

■ ABSOLUTE MAXIMUM RATINGS

Davamata		Symbol	Application		Rating	Linit
Parametei		Symbol Application		Min	Max	Unit
Da		V _{DD}	$V_{DD} = 1.4 \text{ V to } 2.7 \text{ V}$	- 0.5	+3.0*4	V
Power supply voltag	e ·	V DD	V _{DD} = 2.7 V to 3.6 V	- 0.5	+4.0*5	V
Input voltage *1		Vı		- 0.5	$V_{DD} + 0.5 (\le 3.0 \text{ V})^{*4}$	V
input voltage		VI	_	- 0.5	$V_{DD} + 0.5 (\le 4.0 \text{ V})^{*5}$	V
Output voltage*1		Vo		- 0.5	$V_{DD} + 0.5 (\le 3.0 \text{ V})^{*4}$	V
Output voltage*1		Vo	_	- 0.5	$V_{DD} + 0.5 (\le 4.0 \text{ V})^{*5}$	
Storage temperature		Tst	_	-55	+125 °C	
Junction temperatur	е	Tj	_	-40	+125	°C
L	L type		Powerless type (IoL = 2 mA)	_	±13	
Output ourrent*2	M type] ,_	Normal type (IoL = 4 mA)		±13	m 1
	H type	- lo	Power type (IoL = 8 mA)	_	±13	mA
	V type		High power type (IoL = 12 mA)	_	±26	
Power-supply pin cu	ırrent *3	ΙD	Per VDD, GND pin	_	60	mA

^{*1 :} Vss = 0 V

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2 :} Maximum output current which can be supplied constantly.

^{*3:} Maximum supply current which can be supplied constantly.

^{*4:} Internal gate part in case of single power supply or dual power supply.

^{*5:} I/O part in case 3.3 V I/F or 2.5 V I/F is used by dual power supply.

■ RECOMMENDED OPERATING CONDITIONS

1. Single power supply

• Conditions: $V_{DD} = 2.5 \text{ V} \pm 0.2 \text{ V}$, $V_{SS} = 0 \text{ V}$

Down	Parameter		Symbol				
Faranielei		Min		Тур	Max	Unit	
Power supply voltage		V _{DD}	2.3	2.5	2.7	V	
(II III I I I I I I	CMOS normal	VIH	1.7	_	V _{DD} + 0.3	V	
"H" level input voltage	CMOS schmitt		$V_{DD} \times 0.8$			V	
"L" level input voltage	CMOS normal	.,	0.0		+0.7	V	
L level input voltage	CMOS schmitt	VIL	-0.3	_	V _{DD} × 0.2	V	
Junction temperature		Tj	-40	_	+125	°C	

• Conditions: $V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}$, $V_{SS} = 0 \text{ V}$

Doron	Parameter				Unit	
i alametei		Symbol Min		Тур	Max	Offic
Power supply voltage		V _{DDI}	1.65	1.8	1.95	V
"I I" level input veltage	CMOS normal	VIH	$V_{\text{DD}} \times 0.65$		V _{DD} + 0.3	V
"H" level input voltage	CMOS schmitt	VIH	$V_{\text{DD}} \times 0.8$] —		V
"I " lovel input voltage	CMOS normal	V.	-0.3		$V_{\text{DD}} \times 0.35$	V
"L" level input voltage	CMOS schmitt	VIL		_	$V_{DD} \times 0.2$	
Junction temperature		Tj	-40	_	+125	°C

• Conditions: V_{DD} = 1.5 V±0.1 V, V_{SS} = 0 V

Paran	Parameter			Value			
r arameter		Symbol Min		Тур	Max	Unit	
Power supply voltage		V _{DDI}	1.4	1.5	1.6	V	
"I !" lavel input valtage	CMOS normal	VIH	$V_{\text{DD}} \times 0.7$	_	V _{DD} + 0.3	V	
"H" level input voltage	CMOS schmitt		$V_{\text{DD}} \times 0.8$			V	
"L" level input voltage	CMOS normal	VIL	0.0		$V_{DD} \times 0.3$	V	
L level iliput voltage	CMOS schmitt	VIL	-0.3	_	$V_{DD} \times 0.2$	V	
Junction temperature		Tj	-40	_	+125	°C	

2. Dual power supply

ullet Conditions: $V_{\text{DDE}} = 3.3 \text{ V} \pm 0.3 \text{ V/V}_{\text{DDI}} = 2.5 \text{ V} \pm 0.2 \text{ V}, V_{\text{DDI}} = 1.8 \text{ V} \pm 0.15 \text{ V}, V_{\text{DDI}} = 1.5 \text{ V} \pm 0.1 \text{ V}, V_{\text{SS}} = 0 \text{ V}$

Parar	v_0.5 V/VDDI = 2.5 V_0.		•	Value	•	Unit	
Parai	neter	Symbol	Min	Тур	Max	Oilit	
Power supply voltage		V _{DDE}	3.0	3.3	3.6	V	
Tower supply voltage		V _{DDI}	1.4	_	2.7	V	
	1.5 V CMOS normal		$V_{\text{DDI}} \times 0.7$				
	1.8 V CMOS normal		$V_{\text{DDI}}\times0.65$		V _{DDI} + 0.3		
	2.5 V CMOS normal		1.7				
	3.3 V CMOS normal		2.0		V _{DDE} + 0.3		
"H" level input voltage	1.5 V CMOS schmitt	Vıн		_		V	
	1.8 V CMOS schmitt		$V_{\text{DDI}} imes 0.8$		V _{DDI} + 0.3		
	2.5 V CMOS schmitt						
	3.3 V CMOS schmitt		$V_{\text{DDE}} \times 0.8$		V _{DDE} + 0.3		
	5 V Tolerant		2.0		5.5		
	1.5 V CMOS normal				$V_{\text{DDI}} \times 0.3$		
	1.8 V CMOS normal				$V_{\text{DDI}} \times 0.35$		
	2.5 V CMOS normal				+ 0.7		
	3.3 V CMOS normal				+ 0.8		
"L" level input voltage	1.5 V CMOS schmitt	VıL	-0.3	_		V	
	1.8 V CMOS schmitt				$V_{\text{DDI}} \times 0.2$		
	2.5 V CMOS schmitt						
	3.3 V CMOS schmitt				$V_{\text{DDE}} \times 0.2$		
	5 V Tolerant				+ 0.8		
Junction temperature		Tj	-40		+125	°C	

• Conditions: $V_{DDE} = 2.5 \text{ V} \pm 0.2 \text{ V/V}_{DDI} = 1.8 \text{ V} \pm 0.15 \text{ V}$, $V_{DDI} = 1.5 \text{ V} \pm 0.1 \text{ V}$, $V_{SS} = 0 \text{ V}$

Parar	notor	Symbol		Value		Unit
Parai	neter	Symbol	Min	Тур	Max	Offic
Power supply voltage		V _{DDE}	2.3	2.5	2.7	V
		V _{DDI}	1.4	_	1.95	V
	1.5 V CMOS normal		$V_{\text{DDI}} \times 0.7$		V _{DDI} + 0.3	
"H" level input voltage	1.8 V CMOS normal	VIH	$V_{\text{DDI}} \times 0.65$		+ U.S	
	2.5 V CMOS normal		1.7		V _{DDE} + 0.3	V
	1.5 V CMOS schmitt		V _{DDI} × 0.8	_	V _{DDI} + 0.3	
	1.8 V CMOS schmitt				+ U.S	
	2.5 V CMOS schmitt		$V_{\text{DDE}} \times 0.8$		V _{DDE} + 0.3	
	1.5 V CMOS normal				$V_{DDI} \times 0.3$	
	1.8 V CMOS normal				$V_{\text{DDI}} \times 0.35$	
"I " lovel input veltege	2.5 V CMOS normal	\ \/	0.2		0.7	
"L" level input voltage	1.5 V CMOS schmitt	VIL	-0.3	_	V _{DDI} × 0.2	V
	1.8 V CMOS schmitt	-			V DDI X U.Z	
	2.5 V CMOS schmitt				V _{DDE} × 0.2	
Junction temperature		Tj	-40	_	+125	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ DC CHARACTERISTICS

• Single power supply : V_{DD} = 2.5 V (Standard)

 $(V_{DD} = 2.5 \text{ V} \pm 0.2 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_{j} = -40 \,^{\circ}\text{C} \text{ to } +125 \,^{\circ}\text{C})$

Parameter	Symbol	Conditions		Value		Unit	
Parameter	Syllibol	Conditions	Min	Тур	Max	Ollit	
		T2	0.1		0.1		
		T3, T4	_	_	0.2		
		T5 to T7	_	_	0.3		
		T8, T9	_	_	0.4		
Power supply current*1	IDDS	TA			0.5	mΛ	
Fower supply current	IDDS	TB, TC	_	_	0.6	IIIA	
		TD	_	_	0.8		
		TE			1.0		
		TF	_	_	1.1		
		TG	_	_	1.3	V V — μΑ	
"H" level output voltage	Vон	Іон = –100 μА	V _{DD} - 0.2	_	V _{DD}	V	
"L" level output voltage	Vol	Ιοι = 100 μΑ	0	_	0.2	V	
"H" level output voltage V-I characteristics	_	2.5 V V _{DD} = 2.5 V±0.2 V	*2	_	_		
"L" level output current V-I characteristics	_	2.5 V V _{DD} = 2.5 V±0.2 V	*2	_	_		
Input leakage current	l.	_			±5	μΑ	
Pull-up/pull-down resistance	R₽	Pull-up V _{IL} = 0 V Pull-down V _{IH} = V _{DD}	10	25	120	kΩ	

^{*1 :} When the memory is in a standby mode and analog macro is in a power-down mode. At both cases, conditions are $V_{IH} = V_{DD}$, $V_{IL} = V_{SS}$, and $T_j = +25$ °C. The above values may not be guaranteed when the input buffer with a pull-up/pull-down resistor or a crystal oscillator buffer is used.

^{*2 :} Refer to "(2) 2.5 V" in ■ V-I CHARACTERISTICS.

• Single power supply : $V_{\text{DD}} = 1.8 \text{ V}$

 $(V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_{j} = -40 \,^{\circ}\text{C} \text{ to } +125 \,^{\circ}\text{C})$

Parameter	Cumbal	Conditions		Value		Unit
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		T2	_		0.1	
		T3, T4	_		0.2	
		T5 to T7	_		0.3	
		T8, T9	_	_	0.4	
Power supply current*1	IDDS	TA	_	_	0.5	mA
Power supply current	IDDS	TB, TC	_		0.6	IIIA
		TD	_		0.8	
		TE	_		1.0	
		TF	_		1.1	
		TG	_		1.3	
"H" level output voltage	Vон	Іон = -100 μΑ	V _{DD} - 0.2		V _{DD}	V
"L" level output voltage	Vol	Ιοι = 100 μΑ	0		0.2	V
"H" level output voltage V-I characteristics	_	1.8 V V _{DD} = 1.8 V±0.15 V	*2	_	_	_
"L" level output current V-I characteristics	_	1.8 V V _{DD} = 1.8 V±0.15 V	*2	_	_	_
Input leakage current	Iι	_	_		±5	μΑ
Pull-up/pull-down resistance	R₽	Pull-up V _{IL} = 0 V Pull-down V _{IH} = V _{DD}	10	40	120	kΩ

^{*1 :} When the memory is in a standby mode and analog macro is in a power-down mode. At both cases, conditions are $V_{IH} = V_{DD}$, $V_{IL} = V_{SS}$, and $T_j = +25$ °C. The above values may not be guaranteed when the input buffer with a pull-up/pull-down resistor or a crystal oscillator buffer is used.

^{*2 :} Refer to "(3) 1.8 V" in ■ V-I CHARACTERISTICS.

• Single power supply : $V_{\text{DD}} = 1.5 \text{ V}$

(VDD = 1.5 V \pm 0.1 V, Vss = 0 V, T_{j} = -40 °C to +125 °C)

Parameter	Cumbal	Conditions		Value			
Parameter	Symbol	Conditions	Min	Тур	Max	- Unit	
		T2	_	_	0.1		
		T3, T4	_		0.2		
		T5 to T7	_		0.3		
		T8, T9	_		0.4		
Dower aupply aurrent*1	lano	TA	_		0.5	mA	
Power supply current*1	IDDS	TB, TC	_	_	0.6	IIIA	
		TD	_		0.8		
		TE —			1.0		
		TF	_	_	1.1		
		TG	_	_	1.3		
"H" level output voltage	Vон	Іон = -100 μΑ	V _{DD} - 0.2		V _{DD}	V	
"L" level output voltage	Vol	Ιοι = 100 μΑ	0		0.2	V	
"H" level output voltage V-I characteristics		1.5 V V _{DD} = 1.5 V±0.1 V	*2	_	_		
"L" level output current V-I characteristics		1.5 V V _{DD} = 1.5 V±0.1 V	*2	_	_		
Input leakage current	Iι	_	_	_	±5	μΑ	
Pull-up/pull-down resistance	R₽	Pull-up V _{IL} = 0 V Pull-down V _{IH} = V _{DD}	10	55	120	kΩ	

^{*1 :} When the memory is in a standby mode and analog macro is in a power-down mode. At both cases, conditions are $V_{IH} = V_{DD}$, $V_{IL} = V_{SS}$, and $T_j = +25$ °C. The above values may not be guaranteed when the input buffer with a pull-up/pull-down resistor or a crystal oscillator buffer is used.

^{*2 :} Refer to "(4) 1.5 V" in ■ V-I CHARACTERISTICS.

 $\begin{array}{l} \bullet \ \ \text{Dual power supply}: V_{\text{DDE}} = \textbf{3.3 V/V}_{\text{DDI}} = \textbf{2.5 V}, \ \textbf{1.8 V}, \ \textbf{1.5 V} \\ (V_{\text{DDE}} = 3.3 \ \text{V} \pm 0.3 \ \text{V/V}_{\text{DDI}} = 2.5 \ \text{V} \pm 0.2 \ \text{V}, \ \textbf{1.8 V} \pm 0.15 \ \text{V}, \ \textbf{1.5 V} \pm 0.1 \ \text{V}, \ \text{V}_{\text{SS}} = 0 \ \text{V}, \ T_{j} = -40 \ ^{\circ}\text{C} \ \text{to} \ +125 \ ^{\circ}\text{C}) \end{array}$

Darameter	Cymbol		Conditions		Value		Unit	
Parameter	Symbol		Conditions	Min	Тур	Max	Unit	
		T2		_	_	0.1		
		T3, T4		_	_	0.2		
		T5 to T7		_	_	0.3		
		T8, T9	T8, T9		_	0.4		
Dower oundly ourrent*1	1	TA		_	_	0.5	^	
Power supply current*1	Idds	TB, TC		_	_	0.6	- mA	
		TD		_	_	0.8		
		TE		_	_	1.0		
		TF		_	_	1.1		
		TG		_	_	1.3		
	V _{OH4}	3.3 V ou	itput Іон = –100 μA	V _{DDE} - 0.2	_	V _{DDE}		
"L" lovel output voltage	Vонз	2.5 V ou	itput Iон = -100 μA	V _{DDI} – 0.2	_	V _{DDI}	\/	
"H" level output voltage	V _{OH2}	1.8 V ou	itput Iон = -100 μA	V _{DDI} – 0.2	_	V _{DDI}	- V	
	V _{OH1}	1.5 V ou	itput Іон = −100 μA	V _{DDI} – 0.2	_	V _{DDI}		
	V _{OL4}	3.3 V ou	itput IoL = 100 μA	0	_	0.2		
"L" level output voltage	Vol3	2.5 V ou	itput IoL = 100 μA	0	_	0.2	V	
L level output voltage	V _{OL2}	1.8 V ou	itput IoL = 100 μA	0	_	0.2		
	V _{OL1}	1.5 V ou	itput IoL = 100 μA	0	_	0.2		
		3.3 V V	DDE = 3.3 V±0.3 V	*2	_	_		
"H" level output		2.5 V V	od = 2.5 V±0.2 V	*3	_	_	_	
V-I characteristics		1.8 V V	DDE = 1.8 V±0.15 V	*4	_	_		
		1.5 V V	DI = 1.5 V±0.1 V	*5	_	_		
		3.3 V V	DDE = 3.3 V±0.3 V	*2	_	_		
"L" level output		2.5 V V	od = 2.5 V±0.2 V	*3	_	_		
V-I characteristics		1.8 V V	DDE = 1.8 V±0.15 V	*4	_	_	1 —	
		1.5 V V	od = 1.5 V±0.1 V	*5	_	_		
Input leakage current	Iι		_	_	_	±5	μΑ	
		3.3 V	Pull-up V _{IL} = 0 Pull-down V _{IH} = V _{DDE}	10	25	70		
Pull-up/pull-down resistance		2.5 V	Pull-up V _{IL} = 0 Pull-down V _{IH} = V _{DDI}	10	25	120	10	
	R₽	1.8 V	Pull-up VIL = 0 Pull-down VIH = VDDI	10	40	120	- kΩ	
		1.5 V	Pull-up V _{IL} = 0 Pull-down V _{IH} = V _{DDI}	10	55	120		

^{*1:} When the memory is in a standby mode and analog macro is in a power-down mode. At both cases, conditions are $V_{IH} = V_{DD}$, $V_{IL} = V_{SS}$, and $T_j = +25$ °C. The above values may not be guaranteed when the input buffer with a pull-up/pull-down resistor or a crystal oscillator buffer is used.

^{*2:} Refer to "(1) 3.3 V" in ■ V-I CHARACTERISTICS.

^{*3:} Refer to "(2) 2.5 V" in ■ V-I CHARACTERISTICS.

^{*4:} Refer to "(3) 1.8 V" in ■ V-I CHARACTERISTICS".

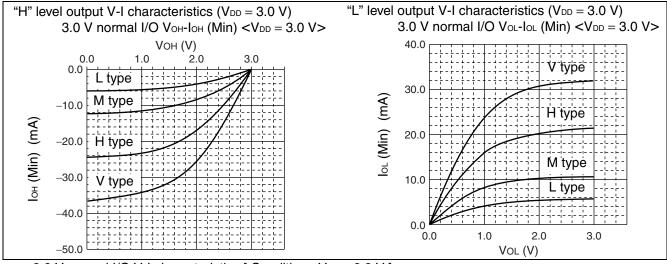
^{*5:} Refer to "(4) 1.5 V" in ■ V-I CHARACTERISTICS.

• Dual power supply : $V_{DDE} = 2.5 \text{ V/V}_{DDI} = 2.5 \text{ V}$, 1.8 V, 1.5 V $(V_{DDE} = 2.5 \text{ V} \pm 0.2 \text{ V/V}_{DDI} = 1.8 \text{ V} \pm 0.15 \text{ V}$, 1.5 V \pm 0.1 V, Vss = 0 V, T_j = -40 °C to +125 °C)

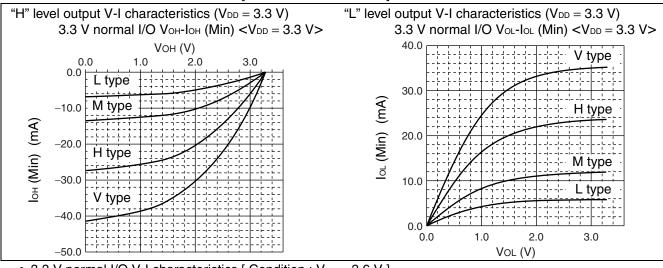
Down and an	0	Conditions			Value		Heit
Parameter	Symbol		Min		Тур	Max	Unit
		T2		_	_	0.1	
		T3, T4	T3, T4		_	0.2	
		T5 to T7	7	_	_	0.3	
		T8, T9		_	_	0.4	
D		TA		_	_	0.5	
Power supply current*1	IDDS	TB, TC		_	_	0.6	mA
		TD		_	_	0.8	
		TE		_	_	1.0	
		TF		_	_	1.1	
		TG		_	_	1.3	
	Vонз	2.5 V ou	utput Ioн = -100 μA	V _{DDE} - 0.2	_	V _{DDE}	
"H" level output voltage	V _{OH2}	1.8 V ou	itput Ioн = -100 μA	V _{DDI} - 0.2	_	V _{DDI}	V
	V _{OH1}	1.5 V ou	itput Ioн = -100 μA	V _{DDI} - 0.2	_	V _{DDI}	
	Vol3	2.5 V output IoL = 100 μA		0	_	0.2	
"L" level output voltage	V _{OL2}	1.8 V output IοL = 100 μA		0	_	0.2	V
	V _{OL1}	1.5 V output IoL = 100 μA		0	_	0.2	
	_	2.5 V V	DDE = 2.5 V±0.2 V	*2	_	_	
"H" level output V-I characteristics	_	1.8 V V	DDI = 1.8 V±0.15 V	*3	_	_	
Vicinaraciensiles	_	1.5 V V	DDI = 1.5 V±0.1 V	*4	_	_	
	_	2.5 V V	DDE = 2.5 V±0.2 V	*2	_	_	
"L" level output V-I characteristics		1.8 V V	DDI = 1.8 V±0.15 V	*3		_	
V-1 Characteristics		1.5 V V	DDI = 1.5 V±0.1 V	*4	_	_	
Input leakage current	Iι	_		_	_	±5	μΑ
		2.5 V	Pull-up V _{IL} = 0 Pull-down V _{IH} = V _{DDE}	10	25	120	
Pull-up/pull-down resistance	R₽	1.8 V	Pull-up V _{IL} = 0 Pull-down V _{IH} = V _{DDI}	10	40	120	kΩ
		1.5 V	Pull-up V _{IL} = 0 Pull-down V _{IH} = V _{DDI}	10	55	120	

^{*1:} When the memory is in a standby mode and analog macro is in a power-down mode. At both cases, conditions are $V_{IH} = V_{DD}$, $V_{IL} = V_{SS}$, and $T_j = +25$ °C. The above values may not be guaranteed when the input buffer with a pull-up/pull-down resistor or a crystal oscillator buffer is used.

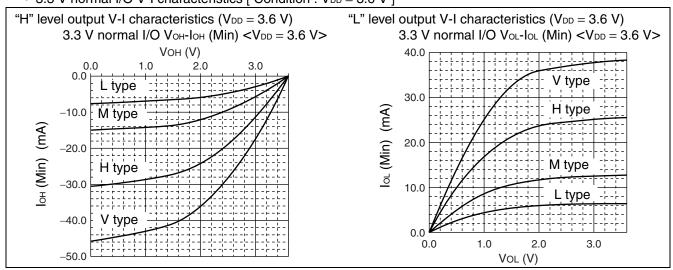
^{*2:} Refer to "(2) 2.5 V" in ■ V-I CHARACTERISTICS.


^{*3:} Refer to "(3) 1.8 V" in ■ V-I CHARACTERISTICS".

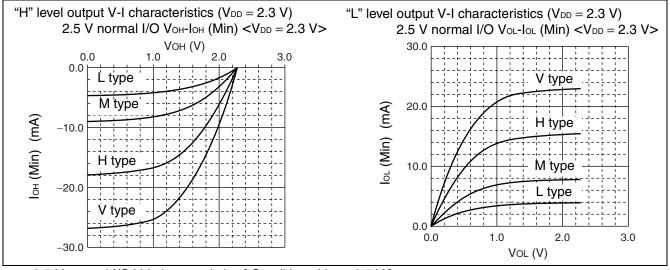
^{*4:} Refer to "(4) 1.5 V" in ■ V-I CHARACTERISTICS.


■ V-I CHARACTERISTICS

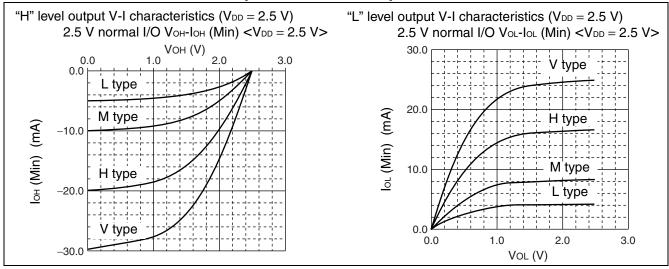
(1) 3.3 V


• 3.3 V normal I/O V-I characteristics [Condition : VDD = 3.0 V]

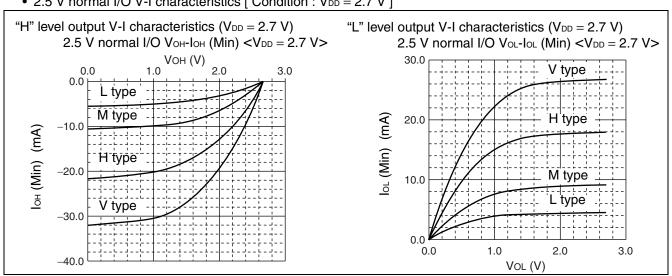
• 3.3 V normal I/O V-I characteristics [Condition : $V_{DD} = 3.3 \text{ V}$]



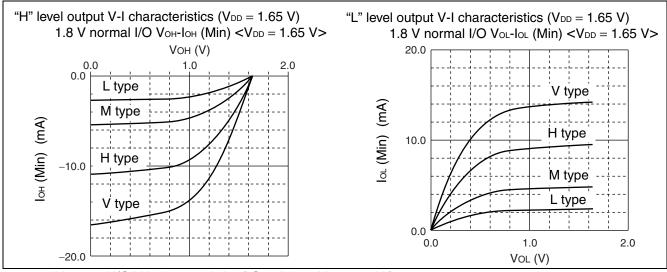
• 3.3 V normal I/O V-I characteristics [Condition : VDD = 3.6 V]



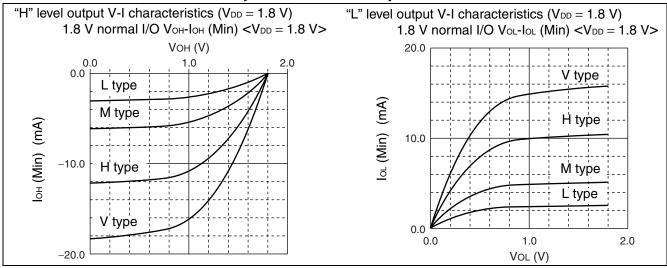
(2) 2.5 V


2.5 V normal I/O V-I characteristics [Condition : VDD = 2.3 V]

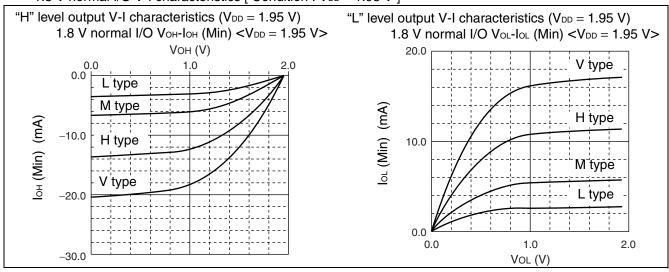
• 2.5 V normal I/O V-I characteristics [Condition : V_{DD} = 2.5 V



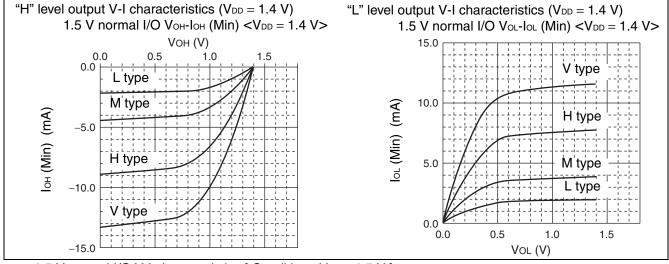
• 2.5 V normal I/O V-I characteristics [Condition : V_{DD} = 2.7 V



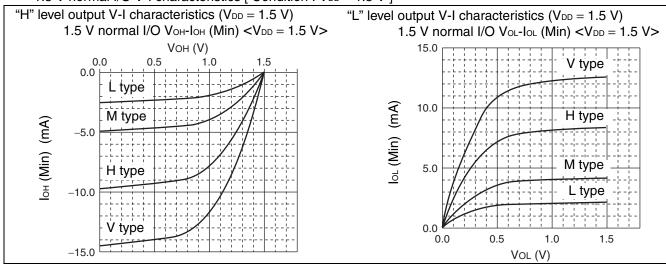
(3) 1.8 V


• 1.8 V normal I/O V-I characteristics [Condition : VDD = 1.65 V]

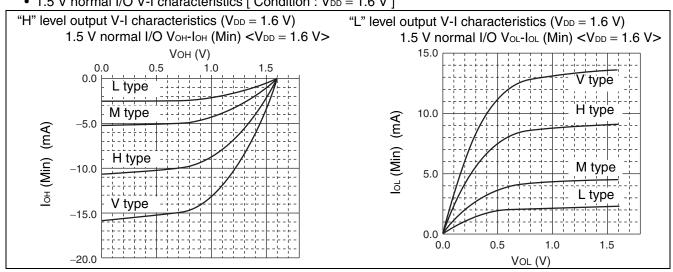
• 1.8 V normal I/O V-I characteristics [Condition : VDD = 1.8 V]



• 1.8 V normal I/O V-I characteristics [Condition : VDD = 1.95 V]



(4) 1.5 V


• 1.5 V normal I/O V-I characteristics [Condition : V_{DD} = 1.4 V]

• 1.5 V normal I/O V-I characteristics [Condition : VDD = 1.5 V]

• 1.5 V normal I/O V-I characteristics [Condition : VDD = 1.6 V]

■ AC CHARACTERISTICS

(VDD = 1.8 V \pm 0.15 V, Vss = 0 V, Tj = -40 °C to +125 °C)

Parameter	Symbol		Value		Unit
raiailletei	Syllibol	Min	Тур	Max	Unit ns
Delay time	tpd*1	typ*2 × tmin*3	typ*2 × ttyp*3	typ*2 × tmax*3	ns

^{*1 :} Delay time = propagation delay time, enable time, disable time

^{*3:} Measurement condition

Measurement condition	tmin	ttyp	tmax
$V_{DD} = 2.5 V \pm 0.2 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_{j} = -40 \text{ °C to } +125 \text{ °C}$	0.60	1.00	1.64
$V_{DD} = 1.8V \pm 0.15 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_{j} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	0.84	1.57	2.84
$V_{DD} = 1.5 V \pm 0.1 \ V, \ V_{SS} = 0 \ V, \ T_j = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$	1.14	2.22	4.09

Note: tpd Max is calculated according to the maximum junction temperature (T_i).

■ INPUT/OUTPUT CAPACITANCE

 $(f = 1 \text{ MHz}, V_{DD} = V_{I} = 0 \text{ V}, T_{I} = +25 ^{\circ}\text{C})$

Parameter	Symbol	Value	Unit
Input pin	Cin	Max 16	pF
Output pin	Соит	Max 16	pF
Input/output capacitance	Cı/o	Max 16	pF

■ DESIGN METHOD

Linking a floor plan tool and a logic synthesis tool enables automatic circuit optimization using floor plan information. In addition, CDDM (Clock Driven Design Method) clock tree synthesis tools using floor plan information is also available. Using floor plan information at a pre-layout stage prevents major problems with setup and hold timings which can occur after layout. Using a hierarchical layout method to support larger-scale circuit design considerably shortens the overall design cycle time.

^{*2: &}quot;typ" is calculated from the cell specification.

■ THE NUMBER OF GATES USED AND PACKAGES

1. Counting the number of the gates used

Evaluation of the basic cell count used has revealed some problems including the circuit complexities, difference of the utilization depending on the circuit design scheme (whether it is designed with the logic synthesis) or being unable to achieve the minimum layout with the logically synthesized circuit.

To cope with those problems, Fujitsu developed the AREA as a criteria where the circuit size and the layout feasibility is determined. The AREA is a basic cell conceived from the viewpoint of congestion of the wiring; it has been calculated from the actual basic cell count and pin count in units of BC.

Estimate method for the frame include the conventional one by the basic cell count and the one by the AREA for more detailed estimate.

Hard macro basic cell count and AREA count for unit cell, I/O buffer cell or compiled cell are listed in the respective cell characteristic table.

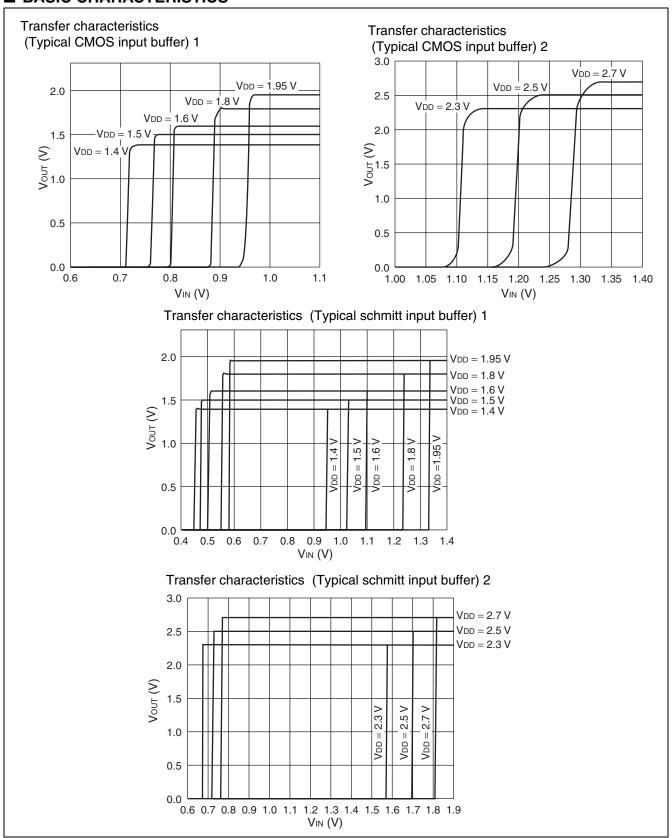
2. Packages

The table below lists the package types available and the reference number of gates used.

Consult Fujitsu for the combination of each package and the availability.

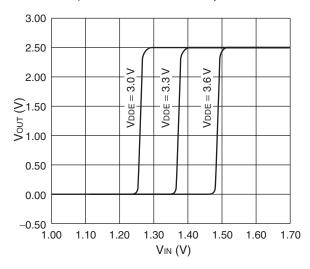
CE77 (V-FRAME)

1	ckage & Count	l Pitch	0k 1000k 2000k 3000k 4000k 5000k 6000k 7000k 8000k~
SQFP	176 208 240	0.5 0.5 0.5	— 274k ——— 803k ——— 965k
HQFP	208 240 256 304	0.5 0.5 0.4 0.5	
P B G A	256	1.27	618k

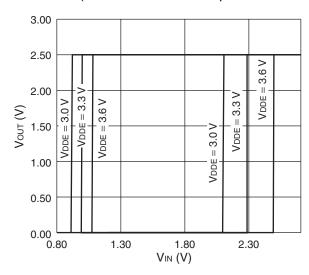

Note: The packages that can be used depend on the circuit configuration. For details, contact Fujitsu.

CE77 (T-FRAME)

	ckage & Count	Pin Pitch (mm)	0k 500k 1000k 1500k 2000k 2500k 3000k 3500k 4000k 4500k 5000k 5500k
L Q F P	144 176 208 256	0.5 0.5 0.5 0.4	
H Q F P	208 240 256 304	0.5 0.5 0.4 0.5	
F B G A	144 176 224 228	0.8 0.8 0.8 0.75	——————————————————————————————————————
P B A	256 352 420	1.27 1.27 1.27	


Note: The packages that can be used depend on the circuit configuration. For details, contact Fujitsu.

■ BASIC CHARACTERISTICS



(Continued)

Transfer characteristics (3.3 V normal schmitt input buffer $V_{DDI} = 2.5 \text{ V}$)

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.