TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOSVI-H)

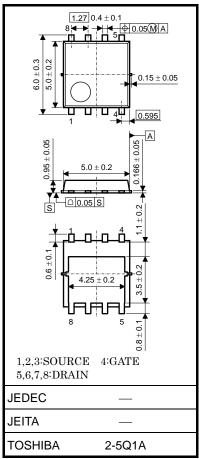
# **TPCA8036-H**

High-Efficiency DC-DC Converter Applications Notebook PC Applications Portable Equipment Applications

- Small footprint due to a small and thin package
- High-speed switching
- Small gate charge: QSW = 13 nC (typ.)
- Low drain-source ON-resistance: RDS (ON) =  $2.8 \text{ m}\Omega$  (typ.)
- High forward transfer admittance:  $|Y_{fs}| = 113 \text{ S (typ.)}$
- Low leakage current:  $I_{DSS} = 10 \mu A \text{ (max) (V}_{DS} = 30 \text{ V)}$
- Enhancement mode:  $V_{th} = 1.3 \text{ to } 2.3 \text{ V (VDS} = 10 \text{ V, ID} = 0.5 \text{ mA)}$

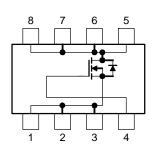
### **Absolute Maximum Ratings (Ta = 25°C)**

| Characte                | eristic                                                                                             | Symbol           | Rating     | Unit |  |
|-------------------------|-----------------------------------------------------------------------------------------------------|------------------|------------|------|--|
| Drain-source voltage    |                                                                                                     | $V_{DSS}$        | 30         | V    |  |
| Drain-gate voltage (R   | $GS = 20 \text{ k}\Omega$                                                                           | $V_{DGR}$        | 30         | V    |  |
| Gate-source voltage     |                                                                                                     | $V_{GSS}$        | ±20        | V    |  |
| Drain current           | DC (Note 1)                                                                                         | ΙD               | 38         | Α    |  |
| Drain current           | Pulsed (Note 1)         I <sub>DP</sub> 114           esipation (Tc=25°C)         P <sub>D</sub> 45 | 114              | , ,        |      |  |
| Drain power dissipation | on (Tc=25°C)                                                                                        | $P_{D}$          | 45         | W    |  |
| Drain power dissipation | on $(t = 10 s)$<br>(Note 2a)                                                                        | $P_{D}$          | 2.8        | W    |  |
| Drain power dissipation | on $(t = 10 s)$<br>(Note 2b)                                                                        | P <sub>D</sub>   | 1.6        | W    |  |
| Single-pulse avalanch   | ne energy<br>(Note 3)                                                                               | E <sub>AS</sub>  | 188        | mJ   |  |
| Avalanche current       |                                                                                                     | I <sub>AR</sub>  | 38         | Α    |  |
| Repetitive avalanche    | energy<br>c = 25°C) (Note 4)                                                                        | E <sub>AR</sub>  | 0.18       | mJ   |  |
| Channel temperature     |                                                                                                     | T <sub>ch</sub>  | 150        | °C   |  |
| Storage temperature     | range                                                                                               | T <sub>stg</sub> | -55 to 150 | °C   |  |


Note: For Notes 1 to 4, refer to the next page.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the

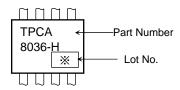
reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).


This transistor is an electrostatic-sensitive device. Handle with care.





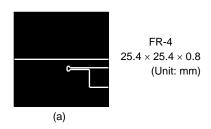
Weight: 0.069 g (typ.)

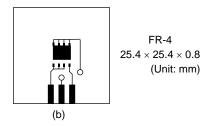

#### **Circuit Configuration**



#### **Thermal Characteristics**

| Characteristic                                                         | Symbol                 | Max  | Unit |
|------------------------------------------------------------------------|------------------------|------|------|
| Thermal resistance, channel to case (Tc=25°C)                          | R <sub>th (ch-c)</sub> | 2.78 | °C/W |
| Thermal resistance, channel to ambient $(t=10 \; s) \eqno(Note \; 2a)$ | R <sub>th (ch-a)</sub> | 44.6 | °C/W |
| Thermal resistance, channel to ambient (t = 10 s) (Note 2b)            | R <sub>th (ch-a)</sub> | 78.1 | °C/W |

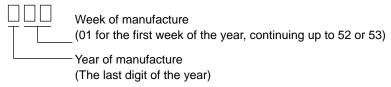

### Marking (Note 5)




Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: (a) Device mounted on a glass-epoxy board (a)

(b) Device mounted on a glass-epoxy board (b)






Note 3:  $V_{DD} = 24~V,~T_{ch} = 25^{\circ}C$  (initial), L = 100  $\mu H,~R_G = 25~\Omega,~I_{AR} = 38~A$ 

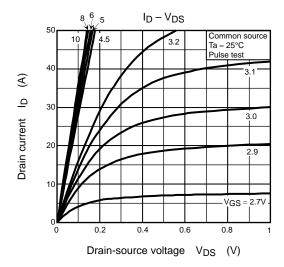
Note 4: Repetitive rating: pulse width limited by maximum channel temperature

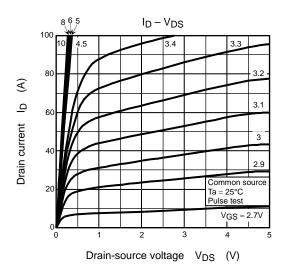
Note 5: \* Weekly code: (Three digits)

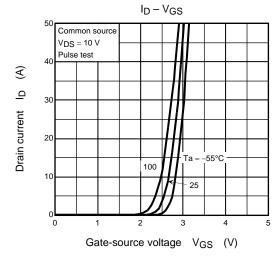


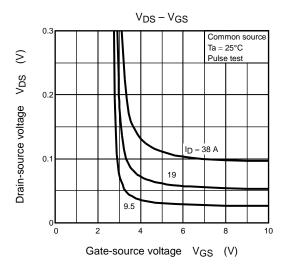
2

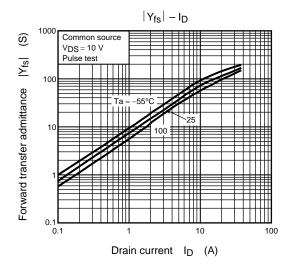


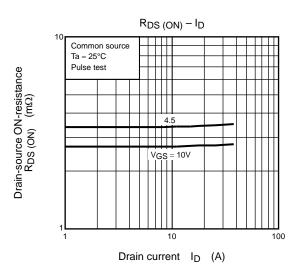

# **Electrical Characteristics (Ta = 25°C)**


| Ch                             | aracteristic   | Symbol           | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min | Тур.   | Max                   | Unit |
|--------------------------------|----------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-----------------------|------|
| Gate leakage cur               | rent           | I <sub>GSS</sub> | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _   | _      | ±100                  | nA   |
| Drain cutoff curre             | ent            | I <sub>DSS</sub> | V <sub>DS</sub> = 30 V, V <sub>GS</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | _      | 10                    | μА   |
| Droin course bro               | akdawa valtaga | V (BR) DSS       | $I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | — ±100 | V                     |      |
| Drain-source breakdown voltage |                | V (BR) DSX       | $I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15  | _      | _                     | V    |
| Gate threshold vo              | oltage         | V <sub>th</sub>  | $V_{DS} = 10 \text{ V}, I_{D} = 0.5 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3 | _      | 2.3                   | V    |
| Droin course ON                | rociatanos     | P== (==)         | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 19 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _   | 3.4    | 4.8                   | 0    |
| Drain-source ON-resistance     |                | KDS (ON)         | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 19 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   | 2.8    | 4.2                   | mΩ   |
| Forward transfer               | admittance     | Y <sub>fs</sub>  | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 19 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57  | 113    | _                     | S    |
| Input capacitance              | e              | C <sub>iss</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _   | 3500   | 4600                  |      |
| Reverse transfer capacitance   |                | C <sub>rss</sub> | V <sub>DS</sub> = 10 V, V <sub>GS</sub> = 0 V, f = 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _   | 230    | 370                   | pF   |
| Output capacitance             |                | C <sub>oss</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _   | 690    | _                     |      |
| Gate resistance                |                | rg               | V <sub>DS</sub> = 10 V, V <sub>GS</sub> = 0 V, f = 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _   | 1.0    | 1.5                   | Ω    |
|                                | Rise time      | t <sub>r</sub>   | $\begin{array}{c} V_{(BR)DSS} & I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V} \\ V_{(BR)DSX} & I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V} \\ V_{th} & V_{DS} = 10 \text{ V}, I_D = 0.5 \text{ mA} \\ I_{DS}(ON) & V_{GS} = 4.5 \text{ V}, I_D = 19 \text{ A} \\ V_{GS} = 10 \text{ V}, I_D = 19 \text{ A} \\ V_{GS} = 10 \text{ V}, I_D = 19 \text{ A} \\ V_{DS} = 10 \text{ V}, I_D = 19 \text{ A} \\ V_{DS} = 10 \text{ V}, I_D = 19 \text{ A} \\ V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz} \\ V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz} \\ V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz} \\ V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz} \\ V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz} \\ V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz} \\ V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz} \\ V_{DS} = 10 \text{ V}, V_{GS} = 10 \text{ V}, f = 1 \text{ MHz} \\ V_{DS} \approx 15 \text{ V} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DS} \approx 10 \text{ V}, V_{DS} \approx 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A} \\ V_{DD} \approx 24 \text{ V}, V_{DD} \approx 24 \text{ V},$ | _   | 4.7    | _                     |      |
| Cuitabina tima                 | Turn-on time   | t <sub>on</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]   |        |                       |      |
| Switching time                 | Fall time      | t <sub>f</sub>   | 27.7.4 W W W W W W W W W W W W W W W W W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _   | 7.7    |                       | ns   |
|                                | Turn-off time  | t <sub>off</sub> | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _   | 48     | _                     |      |
| Total gate charge              | )              | 0                | $V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 50     | _                     |      |
| (gate-source plus              | gate-drain)    | $Q_{g}$          | V <sub>DD</sub> ≈ 24 V, V <sub>GS</sub> = 5 V, I <sub>D</sub> = 38 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 26     | _                     |      |
| Gate-source charge 1           |                | Q <sub>gs1</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _   | 11     | _                     | nC   |
| Gate-drain ("Miller") charge   |                | Q <sub>gd</sub>  | $V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 38 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _   | 7.8    | _                     |      |
| Gate switch char               | ge             | Q <sub>SW</sub>  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _   | 13     | 26 —<br>11 —<br>7.8 — |      |

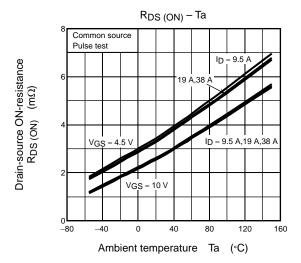

## **Source-Drain Ratings and Characteristics (Ta = 25°C)**

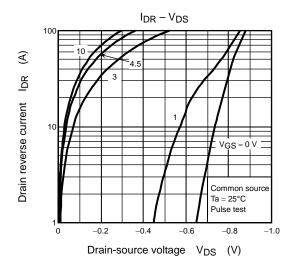

| Characteristic          |       | Symbol   | Test Condition   | Min                                           | Тур. | Max | Unit |   |
|-------------------------|-------|----------|------------------|-----------------------------------------------|------|-----|------|---|
| Drain reverse current   | Pulse | (Note 1) | I <sub>DRP</sub> | _                                             | _    | _   | 114  | Α |
| Forward voltage (diode) |       |          | V <sub>DSF</sub> | $I_{DR} = 38 \text{ A}, V_{GS} = 0 \text{ V}$ |      | _   | -1.2 | V |

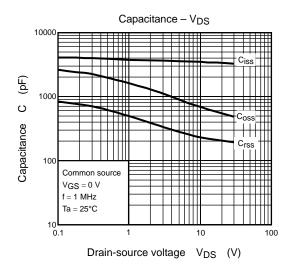

3 2008-08-18

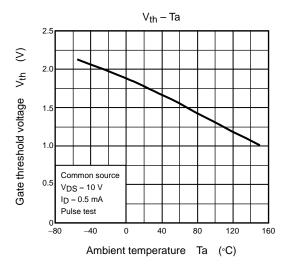


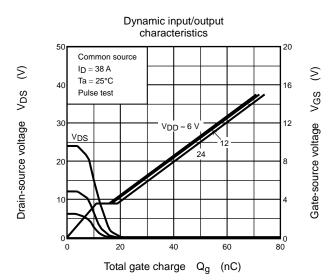


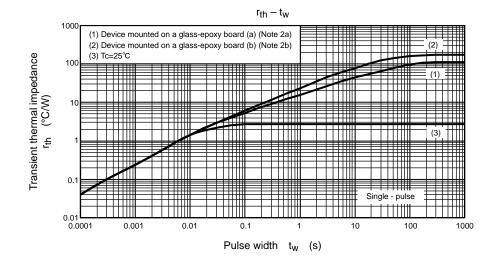



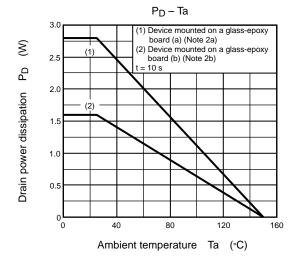



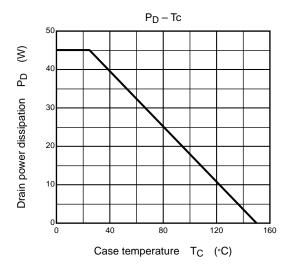



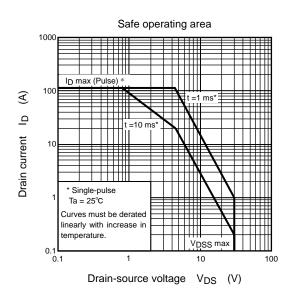


4






5 2008-08-18









6 2008-08-18

#### **RESTRICTIONS ON PRODUCT USE**

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application that Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
  FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
  WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
  LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
  LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
  SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
  FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
  limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
  technology products (mass destruction weapons). Product and related software and technology may be controlled under the
  Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product
  or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
   Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.