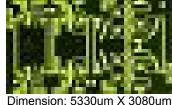


EMP216


FEATURES

- 6 18 GHz Operating Frequency Range
- 33 dBm Output Power at 1dB Compression
- 20.0 dB Typical Small Signal Gain

APPLICATIONS

- Point-to-point and point-to-multipoint radio
- Military Radar Systems
- Test systems

6 - 18 GHz 2 Watt Power Amplifier MMIC

Dimension: 5330um X 3080un Thickness: 85um ± 15um

Caution! ESD sensitive device.

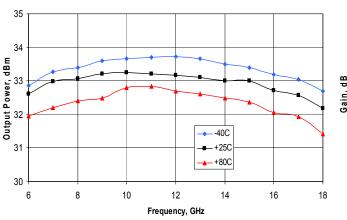
		, ,		/	
SYMBOL	PARAMETER/TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
F	Operating Frequency Range	6		18	GHz
P _{1dB}	Output Power at 1dB Gain Compression	31	33		dBm
G _{ss}	Small Signal Gain	17	20		dB
${f G}_{\Delta}$	Small Signal Gain Flatness		±1.2		dB
ID _{1dB}	Supply current at 1dB Gain Compression		1400		mA
PAE	Power Added Efficiency at 1dB Gain Compression		20		%
OIMD3	Output 3 rd Order Intermodulation Distortion @∆f=10MHz, Each Tone Pout 21.5dBm		-43.0		dBc
Input RL	Input Return Loss 6GHz – 8GHz		-8	-5	dB
	8GHz – 18GHz		-12	-8	dB
Output RL	Output Return Loss		-15	-10	dB
I _{DSS}	Saturated Drain Current $V_{DD}=3V, V_{GG}=0V$		2500		mA
R _{TH}	Thermal Resistance (Au-Sn Eutectic Attach)		5.5		°C/W

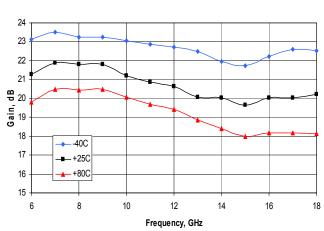
ELECTRICAL CHARACTERISTICS ($T_a = 25^{\circ}C$, 50 ohm, $V_{DD}=8V$, $I_{DQ}=1250$ mA)

ABSOLUTE MAXIMUM RATINGS FOR CONTINUOUS OPERATION¹

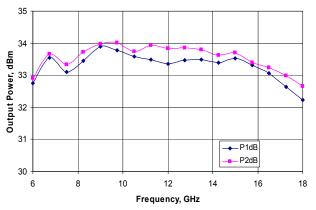
SYMBOL	CHARACTERISTIC	VALUE	
V _{DS}	Drain to Source Voltage	8V	
V_{GS}	Gate to Source Voltage	- 4V	
I _{DD}	Drain Current	ldss	
I _{GSF}	Forward Gate Current	70 mA	
P _{IN}	Input Power	@ 3dB compression	
Т _{СН}	Channel Temperature	175°C	
T _{STG}	Storage Temperature	-65/175°C	
PT	Total Power Dissipation	22W	

1. Operating the device beyond any of the above rating may result in permanent damage.

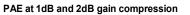

EMP216 6 - 18 GHz 2 Watt Power Amplifier MMIC

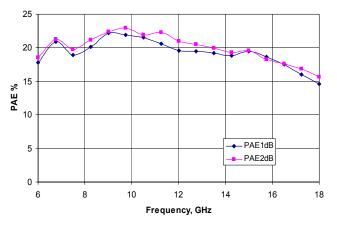

Gain over Temperature

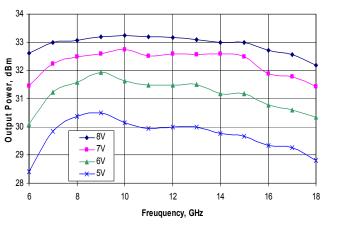
Typical Performance Characteristics

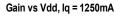

All data measured at 8V, $I_{\text{DQ}}\text{=}1250\text{mA}$ bias, 25°C unless otherwise noted.

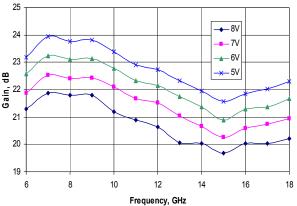
Output Power at 1dB gain compression over temperature

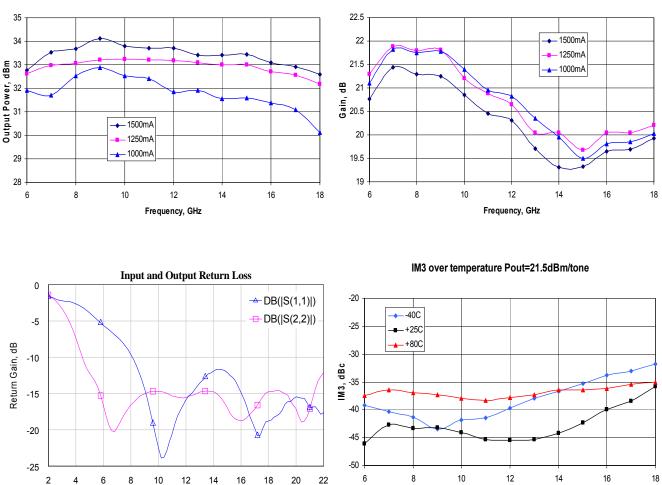





Output Power at 1dB and 2dB gain compression




Output Power at 1dB gain compression vs Vdd, Iq = 1250mA



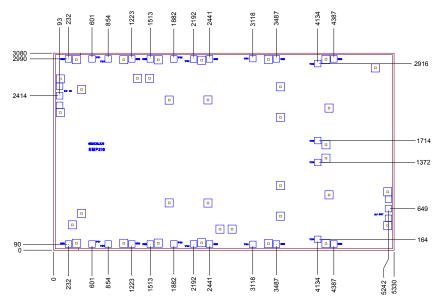
Specifications are subject to change without notice. Excelics Semiconductor, Inc. 310 De Guigne Drive, Sunnyvale, CA 94085 Phone: 408-737-1711 Fax: 408-737-1868 Web: <u>www.excelics.com</u>

EMP216 6 - 18 GHz 2 Watt Power Amplifier MMIC

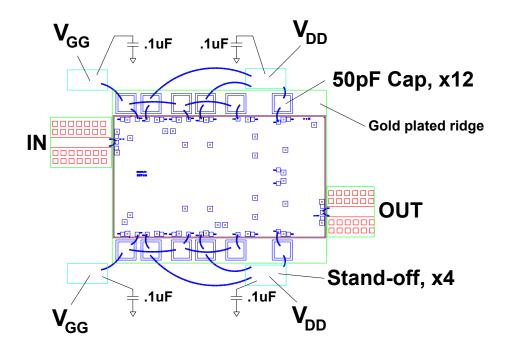
Output Power at 1dB Gain Compression vs Iq, Vdd=8V

Frequency (GHz)

Gain vs Iq, Vdd = 8V


Frequency, GHz

EMP216


6 - 18 GHz 2 Watt Power Amplifier MMIC

Outline Drawing

Dimensions in microns. Bond pad size 100um x 100um. Thickness: 85um \pm 15um

Assembly Drawing

6 - 18 GHz 2 Watt Power Amplifier MMIC

Application Hints

Biasing

The EMP216 requires a negative bias voltage applied to V_{GG} and positive bias voltage applied to V_{DD} . Power supplies must be sequenced to apply V_{GG} first, then V_{DD} . When removing power, V_{DD} must be turned off first, then V_{GG} . V_{GG} will draw very little current under small signal RF conditions, but as output power approaches the 1dB compression point, the V_{GG} input will draw current up to several milliamps. The V_{GG} supply must be capable of both sinking and sourcing this current.

Assembly

Recommended method of die attachment is AuSn eutectic. Wire bonding should be thermocompression bonding with no ultrasonics.

To obtain full performance, RF input and output bond wires should be as short as possible. Wire length should be 7 mils maximum, with at least two wires per pad. Mounting the EMP216 on a "ridge" or pedestal is recommended to align the top surface of the MMIC to the interfacing substrate and minimize bond wire length.

ESD warning

The EMP216 is susceptible to damage from ESD and should only be handled in an ESD safe work station environment.

Military and Hi-Rel screening

Contact factory for military and hi-rel grades.

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC.

AS HERE IN:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.