11-MD118A

Version	: A.004
Issue Date	: 2007-08-07
File Name	: SP-MD118A-A.004.doc
Total Page	: 20

8-BIT DAC VCM Driver with I²C Interface

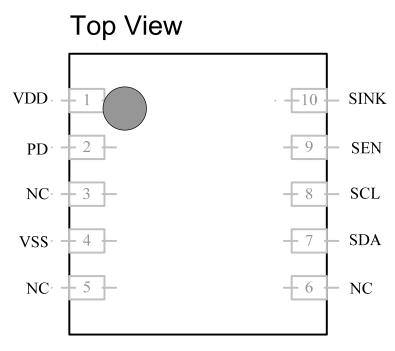
新竹市展業一路9號7樓之1 SILICON TOUCH TECHNOLOGY INC. 9-4F-3, Prosperity Rd I, Science-Based Industrial Park Hsinchu, Taiwan, R.O.C. Tel : 886-3-5727171 Fax : 886-3-5727390

11-MD118A

8-Bit DAC VCM Driver with I²C Interface

General Specifications

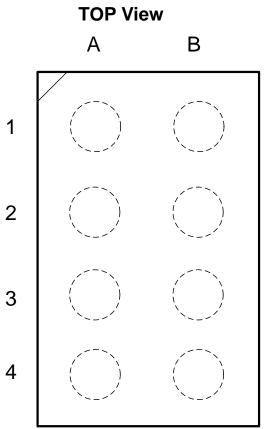
The 11-MD118A is a VCM driver IC with I²C interface control that is capable of programmable output current sinking. It has a built-in internal voltage reference and operates in a wide supply voltage range from 2.4V to 5.5V. The DAC is controlled by a 2-wire I²C serial interface which operates in I²C fast mode (400 kHz). The 11-MD118A is designed for applications like image stabilization, auto-focus, and optical zoom in camera phones, digital still cameras, and other portable module devices.


Features and Benefits

- Programmable output current sinking
- I²C serial interface
- 8-BIT DAC resolution
- 2.4V 5.5V power supply
- Low voltage control for digital pin (PD, SDA, SCL)
- Power down operation
- Power on reset
- Constant current control
- Ultra small package: WLCSP1(0.84*1.84*0.5 mm), WLCSP2(1.0*2.0*0.45 mm) and DFN10 (3*3*0.8 mm)

Pin Assignment

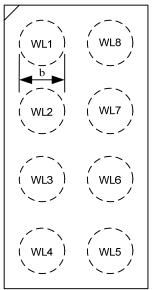
Pin Assignment of DFN10 (3*3*0.8mm)


Pin Descriptions

Pin NO.	Pin Name	Description
1	VDD	Power Supply Pin
2	PD	Digital Input: Power Down Mode(Low power down, High operation)
3	NC	
4	VSS	Ground Pin
5	NC	
6	NC	
7	SDA	I ² C Interface Data
8	SCL	I ² C Interface Data
9	SEN	Analog Output : Programmable FSR Current Sinking
10	SINK	Analog Output : Output Current Sink

1. The l^2C slave 7-bit address of 11-MD118A is <u>0001-1xx</u>.

Pin Assignment of WLCSP1 (0.84*1.84*0.5mm)



Pin NO.	Pin Name	Description
A1	SEN	Analog Output : Programmable FSR Current Sinking
A2	PD	Digital Input: Power Down Mode(Logic 'L': power down)
A3	SDA	I ² C Interface Data
A4	SCL	I ² C Interface Data
B4	VSS	Ground Pin
B3	VSS	Ground Pin
B2	SINK	Analog Output : Output Current Sink
B1	VDD	IC Power Pin

Pin Assignment of WLCSP2 (1.0*2.0*0.45mm)

TOP View

Pin NO.	Pin Name	Description
WL1	SEN	Analog Output : Programmable FSR Current Sinking
WL2	PD	Digital Input: Power Down Mode(Logic 'L': power down)
WL3	SDA	I ² C Interface Data
WL4	SCL	I ² C Interface Data
WL5	VSS	Ground Pin
WL6	VSS	Ground Pin
WL7	VDD	Power Supply Pin
WL8	SINK	Analog Output : Output Current Sink

Absolute Maximum Ratings

Unless otherwise noted, $T_A{=}~25^\circ\!\mathrm{C}$

Characteristic	Symbol	Rating	Unit
Supply Voltage	V _{DD}	5.5	V
Input Voltage	V _{IN}	V _{DD} +0.4	V
Maximum Output Current	I _{OUT}	130	mA
Operating Temperature Range	T _{OPR}	-40 ~ 125	°C
Storage Temperature Range	T _{STG}	-65 ~ 150	°C

Electrical Characteristic

Unless otherwise noted, T_A= 25 $^\circ \! \rm C$, V_DD = 2.8 V and VCM loading = 28.5 $\! \Omega$

Item	Sym.	Condition		Limit		Unit
	Oynn.	Condition	Min.	Тур.	Max.	Onic
Power Supply						
Supply Voltage	V_{DD}		2.4	2.8	5.5	V
Supply Current	I _{PD}	PD = L (Power down mode)	-	-	±0.5	uA
(I _{DD})	I _{DD}	PD = H (Operation mode)	-	3.5	4	mA
PD, SDA, SCL digital co	ontrol p	in				
Input Voltage "H"	V _{IH}	-	$0.6^{*}V_{DD}$	-	V _{DD} +0.4	V
Input Voltage "L"	VIL	-	-0.4	-	$0.2^{*}V_{DD}$	V
Parameters						
Resolution				8		Bits
INL				±0.8	±1	LSB
DNL				±0.8	±1	LSB
Zero Code Error	I _{OS}	@ $R_{SEN} = 3.3 \Omega$		5	7	mA
Full Scale Voltage	V_{FSR}	Voltage on the SEN Pin	360	380	400	mV
Least Significant Bit	LSB	@ R _{SEN} = 3.3 Ω	0.42	0.44	0.46	mA
		VDD = 2.8V, CL=1 μF ,				
Output Current Settling Time	t _s	@ R _{SEN} = 3.3 Ω, VCM(28.5Ω , $460 \mu H$)		120	200	μS
Saturation Voltage	V _{SAT}	I _{OUT} = 120 mA	-	0.1	0.15	V

Block Diagram

(DFN10)

Terminology

Resolution

The DAC resolution is defined by the number of distinct analog levels corresponding to the

number of bits it uses.

N-bit resolution $\rightarrow 2^{N}$ distinct analog levels

Differential Nonlinearity (DNL) error

The variation in analog step sizes away from 1 LSB by any two adjacent codes. Usually,

gain and offset errors have been removed.

Integral Nonlinearity (INL)

It is the deviation of actual transfer response from a straight line. Usually, INL error is

referred to as the maximum INL error.

Zero-Code Error

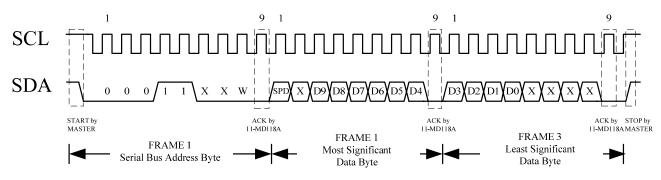
Zero-Code error is the output error as the bits '0000-0000-00' are loaded into DAC register.

Full Scale Voltage

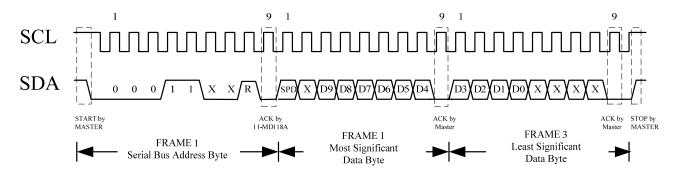
Full scale voltage is the maximum output voltage of the I²C DAC (**SEN** pin) as the bits

'1111-1111-00' are loaded into 11-MD118A.

Sink Current


Sink Current is the input current driven by the power MOS embedded in the 11-MD118A.

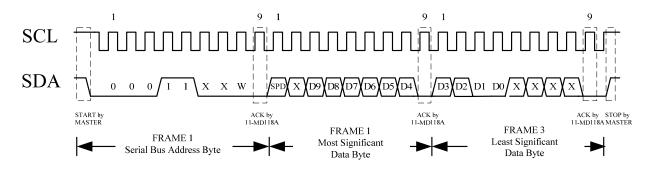
Data Format


11-MD118A Write Mode

When in the write mode, data is written to the 11-MD118A and shifted step-by-step into the 16-bit input register. When all data has been loaded in and master signal receives a STOP condition, the loaded data in the input register is transferred to the DAC.

11-MD118A Read Mode

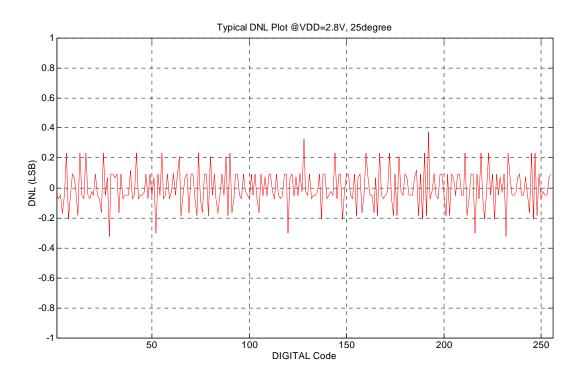
When 11-MD118A is in the write mode, data is read back from IC to master in the same bit order.

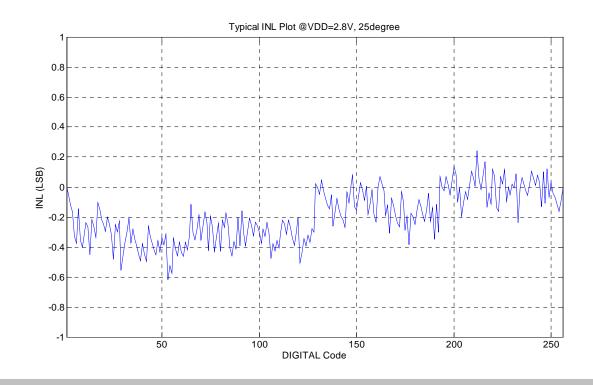

<u>Table</u>

	MSB						LSB									
Serial Data Bits	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Input Register	R15	R14	R13	R12	R11	R10	R09	R08	R07	R06	R05	R04	R03	R02	R01	R00
Function	SPD	Х	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Х	Х	Х	Х

 SPD (Soft Power Down, 2nd standby mode): L is for IC active, and H just reset the DAC registers (D9~D0 -> 0) without shutdown analog cells for fast rising speed of output constant current. Regarding to all kinds of IC operation situations please refers to following table.

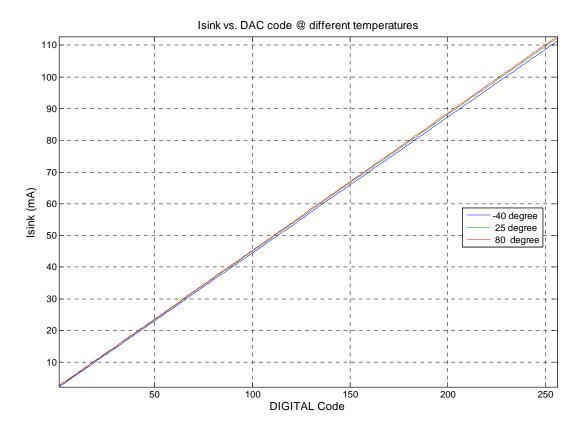
PD	SPD	IC status
L	-	Power down
Н	L	IC Active
	Н	Soft power down


- X denotes "Don't care/Unused".
- D(n), n = 2~9, are for 8-bit DAC data programming while D1 and D0 are forced to logic 0 assignment in order to guarantee 8-bit DAC resolution. The diagram shows the example of write mode.

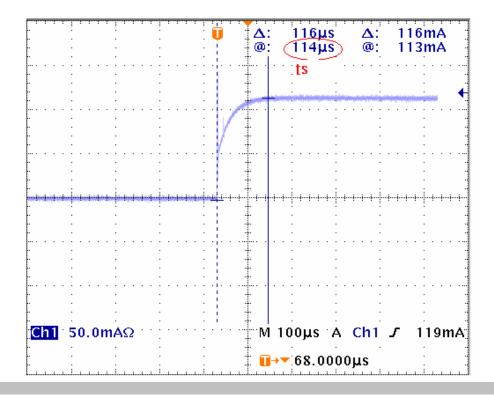


Performance Characteristic

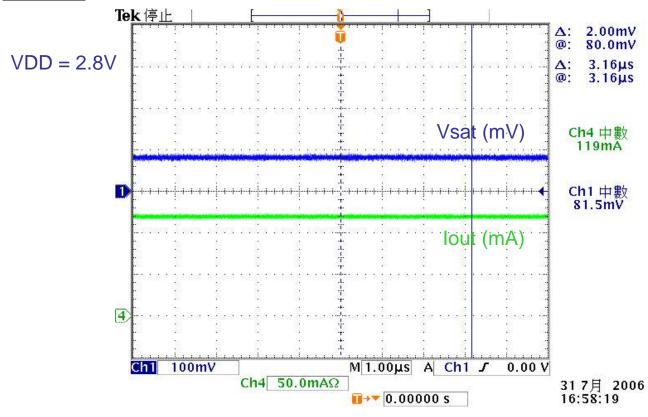
1. Typical DNL Plot

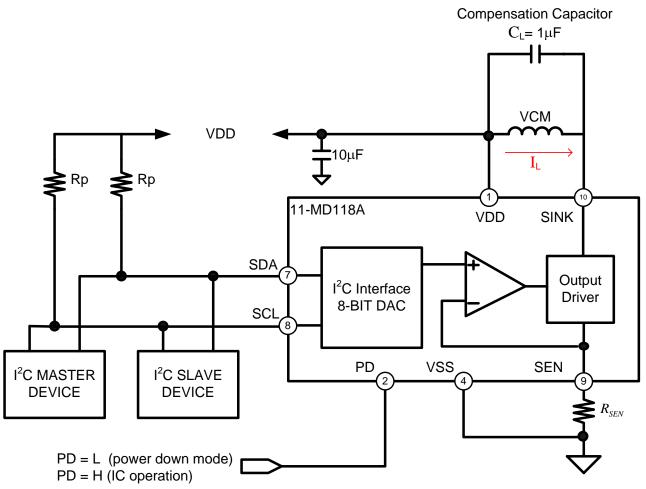


2. Typical INL Plot



3. Output Sink Current Plot


4. Maximum Settling Time (Which is current of SINK, I_{SINK}, from 0 to maximum constant current)


5. Saturation voltage (I_{SINK}@120mA)

<u>11-MD118A</u>

Application Circuit

The Least Significant Bit (LSB) driving current of Voice Coil Actuator is determined by R_{SEN} .

For example, R_{SEN} = 3.3 Ω .

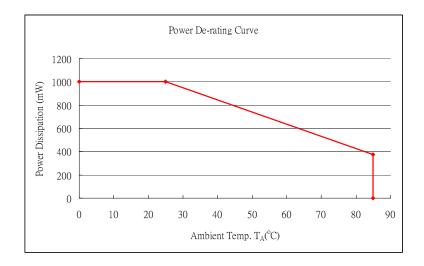
The Full Scale Voltage (V_{FSR}) of **SEN** is 365mV and the Zero Code Error (I_{OS}) is 5mA. The LSB driving current of Voice Coil Actuator is

 $LSB = \frac{V_{\text{FSR}} - V_{\text{OS}}}{255 * R_{\text{SEN}}} = \frac{365 \text{mV} - 5 \text{mA*3.3}}{255 * 3.3} \cong \ 414 \ \mu\text{A}$

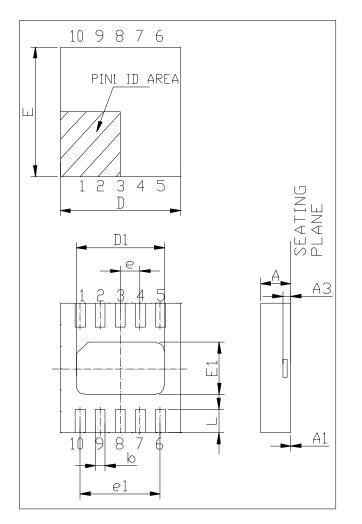
If input digital code is 0111-1111-00 (D9~D2 can be programmable, and D1~D0 are forced to logic 0).

The driving current of Voice Coil Actuator $(I_{\mbox{\tiny L}})$ is

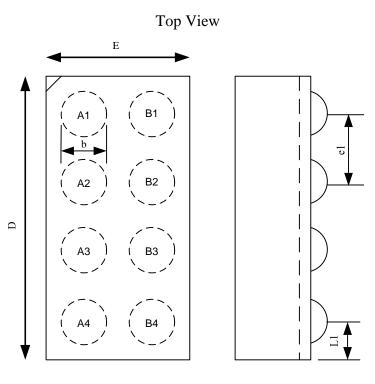
$$I_L = I_{OS} + code * LSB = 5mA + 127 * 414uA \cong 57.6mA$$

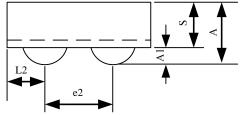

Application Notes

- The 11-MD118A is a constant current control IC for application in Auto-Focus. The supply voltage range VDD of 11-MD118A is from 2.4V to 5.5V. The input range of digital control pin PD, and digital I/O pins SCL and SDA, are defined such that logic "H" is from 0.6*VDD to VDD+0.4V and logic "L" is from –0.4V to 0.2*VDD.
- The PD pin is the enable pin of 11-MD118A. Logic high level (PD = H) is for IC operation. On the other hand, its logic low level (PD = L) puts the chip into power down mode for power saving. It is recommended to keep PD at low level (PD = L) before operation to reach the maximum efficiency of power saving, especially for applications in portable devices.
- In order to ensure the stability of output current, a compensation capacitance C_L is suggested to be placed across the two terminals of VCM. The suggested value of C_L is about 1uF and could be fine tuned for different VCM. The idea is to use frequency response compensation to ensure stability when VCM is operating.
- In order to guarantee 8-bit DAC resolution, DAC data, D1 and D0 are set to logic 0 only. There are 8-bit DAC data, D9~D2, are used for VCM constant current control via the two I²C serial data lines, SCL and SDA. If all 10 bits are used for DAC programming in an attempt to reach 10-bit DAC resolution, the DNL might get larger than 1 LSB due to glitch effect. In order to guarantee output current monotonically increases as the DAC code increases, it is suggested to utilize only 8-bit data programming to reach a better performance.
- The exposed paddle on the 11-MD118A should be soldered to ground to ensure the optimal thermal dissipation performance.


IC packaging(WLCSP2) Power Dissipation

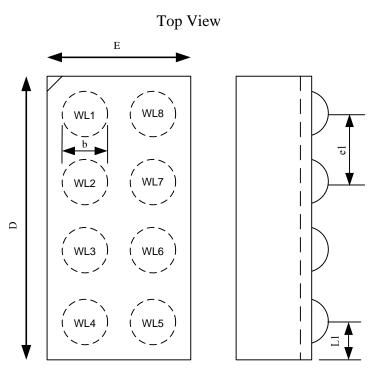
The power consumption of IC varies widely with supply voltage, output current, and actuator loading. It is important to ensure the application does not exceed the allowable power dissipation of the IC package. The recommended Power De-rating Curve, power dissipation versus ambient temperature is depicted as follows. The work is done under JEDEC51-9.

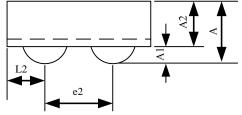

Package Specification (DFN-10)



SYMBOL		DIMENSION (mm)			DIMENSION (mil)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
A	0.70	0.75	0.80	28	30	32	
A1	0.00	0.02	0.05	0	0.8	2	
A3		0.203 REF		8 REF			
b	0.18	0.25	0.30	7	10	12	
D	2.90	3.00	3.10	114	118	122	
D1	2.10	2.20	2.30	83	87	91	
E	2.90	3.00	3.10	114	118	122	
E1	1.10	1.20	1.30	86	87	91	
L	0.45	0.55	0.65	18	22	26	
е		0.50 BASIC			20 BASIC		
e1		2.00 BASIC			79 BASIC		

Package Specifications (WLCSP1) (size: 0.84*1.84*0.5 mm)





SYMBOL	DIMENSION (mm)				
	MIN.	NOM.	MAX.		
A	0.445	0.50	0.555		
A1	0.17	0.2	0.23		
S	0.275	0.300	0.325		
b	0.24	0.26	0.28		
D	1.79	1.84	1.89		
E	0.789	0.839	0.889		
e1		0.4			
e2		0.4			
L1	0.295	0.320	0.345		
L2	0.195	0.220	0.245		

Package Specifications (WLCSP2) (size: 1.0*2.0*0.45 mm)

SYMBOL	DIMENSION (mm)					
	MIN.	NOM.	MAX.			
A	0.40	0.45	0.50			
A1	0.08	0.10	0.12			
A2	0.32	0.35	0.38			
b	0.26	0.28	0.30			
D	1.95	2.00	2.05			
E	0.95	1.00	1.05			
e1	0.48	0.50	0.52			
e2	0.48	0.50	0.52			
L1	0.22	0.25	0.28			
L2	0.22	0.25	0.28			

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.