

♦ Structure Silicon monolithic integrated circuit

♦ Product Series Lens control LSI
♦ Type BU24024GU
♦ Applications Digital still cameras

♦ Functions
• Driver (1–5 channels) : Voltage control type H-bridge(Adaptable to STM 2 systems)

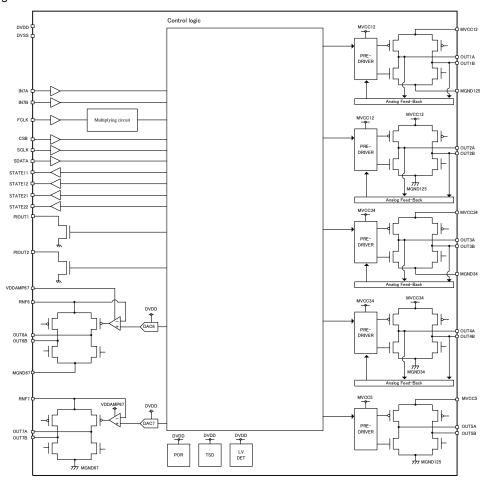
•Driver (6,7 channels) : Current control type H-bridge

•PI driving circuit (2 channels)

♦ Absolute maximum ratings (Ta = 25°C)

Absolute maximum ratings (ra = 1	20 0)				
Parameter	Symbol	Limits	Unit	Remark	
Power supply voltage	DVDD	-0.3~4.5	٧		
	MVCC	−0.3 ~ 7.0	V		
Input voltage	VIN	−0.3∼DVDD+0.3	٧		
Input/output current *1	IIN	±400	mA	MVCC12, MVCC34, RNF6 and RNF7 pin	
		±600	mA	MVCC5 pin	
		+50	mA	by PIOUT pin	
Storage temperature range	TSTG	−55 ~ 125	°C		
Operating temperature range	TOPE	−20 ~ 85	°C		
Permissible dissipation *2	PD	1200	mW		

^{*1} Please do not exceed PD.


♦ Operating conditions (Ta=25°C)

Parameter	Symbol	Limits	Unit	Remark
Digital power supply voltage	DVDD	2.7~3.6	>	DVDD≦MVCC
Driver power supply voltage	MVCC	2.7~5.5	V	
Clock operating frequency	FCLK	1~27.5	MHz	Reference clock

^{*2} To use this product at a temperature higher than $Ta=25^{\circ}C$, reduce 12mW per 1°C (At mounting ROHM's standard board: 50mm x 58mm x 1.75 mm / glass epoxy board) This product is not designed for anti-radiation applications.

♦Block Diagram

♦Pin functions

В6

D6

E6

E1

C1

OUT1B

OUT2A

OUT2B

MVCC34

MGND34

VFIII functions									
Land Matrix No.	Pin name	Power supply	Function	Land Matrix No.	Pin name	Power supply	Function		
D5	DVDD	-	Digital power supply	F1	OUT3A	MVCC34	3-channel driver A output		
B4	DVSS	-	Digital ground	D1	OUT3B	MVCC34	3-channel driver B output		
C5	FCLK	DVDD	FCLK logic input	B1	OUT4A	MVCC34	4-channel driver A output		
D4	CSB	DVDD	CSB logic input	A1, B2(*)	OUT4B	MVCC34	4-channel driver B output		
D3	SCLK	DVDD	SCLK logic input	A3	MVCC5	-	5-channel driver power supply		
В3	SDATA	DVDD	SDATA logic input	A2	OUT5A	MVCC5	5-channel driver A output		
F3	IN7A	DVDD	IN7A logic input	A4	OUT5B	MVCC5	5-channel driver B output		
E4	IN7B	DVDD	IN7B logic input	F4	VDDAMP67	-	Power supply of 6-7channel current driver control		
E3	STATE11	DVDD	STATE11 logic output	F5, G6(*)	RNF6	-	6-channel driver power supply		
E2	STATE12	DVDD	STATE12 logic output	G4	MGND67	-	6-7channel driver ground		
D2	STATE21	DVDD	STATE21 logic output	G5	OUT6A	RNF6	6-channel driver A output		
C2	STATE22	DVDD	STATE22 logic output	F6	OUT6B	RNF6	6-channel driver B output		
C4	PIOUT1	DVDD	PI driving output1	F2, G1(*)	RNF7	-	7-channel driver power supply		
E5	PIOUT2	DVDD	PI driving output2	G3	OUT7A	RNF7	7-channel driver A output		
C6	MVCC12	-	1-2channel driver power supply	G2	OUT7B	RNF7	7-channel driver B output		
A5	MGND125	-	1-2, 5channel driver ground						
A6, B5(*)	OUT1A	MVCC12	1-channel drive A output						

³⁻⁴channel driver ground (*)It is not possible to use corner pin only.(Corner pins are A1, A6, G1 and G6.) Please short A1-B2, A6-B5, F2-G1, F5-G6 or use B2, B5, F2, F5 only.

MVCC12

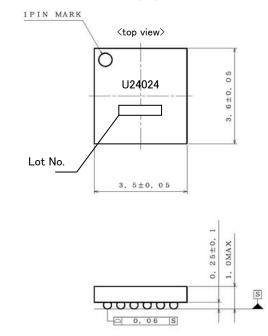
MVCC12

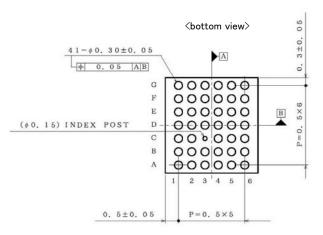
MVCC12

1-channel drive B output

2-channel drive A output

2-channel drive B output


3-4channel driver power supply



♦Pin assignment diagram (bottom view)

MGND 67 OUT 7B OUT 7A OUT 6A RNF7 RNF6 G OUT 3A VDD AMP67 OUT 6B F RNF7 IN7A RNF6 STATE 12 STATE 11 PIOUT 2 OUT 2B MVCC 34 Ε IN7B STATE 21 OUT 2A OUT 3B D SCLK CSB DVDD MVCC 12 STATE 22 PIOUT 1 MGND 34 FCLK С OUT 1A OUT 1B OUT 4B В SDATA DVSS OUT 5A OUT 5B MGND 125 OUT 1A Α 2 3 4 5 6

♦ Outline dimensions/Marking figure

VCSP85H3 (UNIT: mm)

Drawing No:EX902-5036

\Diamond Cautions on use

(1) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you expect that any voltage or temperature could be exceeding the absolute maximum ratings, take physical safety measures such as fuses to prevent any conditions exceeding the absolute maximum ratings from being applied to the LSI.

(2) GND potential

Maintain the GND pin at the minimum voltage even under any operating conditions.

Actually check to be sure that none of the pins have voltage lower than that of GND pin, including transient phenomena.

(3) Thermal design

With consideration given to the permissible dissipation under actual use conditions, perform thermal design so that adequate margins will be provided.

(4) Short circuit between pins and malfunctions

To mount the LSI on a board, pay utmost attention to the orientation and displacement of the LSI. Faulty mounting to apply a voltage to the LSI may cause damage to the LSI. Furthermore, the LSI may also be damaged if any foreign matters enter between pins, between pin and power supply, or between pin and GND of the LSI.

(5) Operation in strong magnetic field

Make a thorough evaluation on use of the LSI in a strong magnetic field. Not doing so may malfunction the LSI.

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/