Switched Low Noise Amplifier

Features

- High Gain State:
-Gain: 16 dB , Noise Figure: 1.6 dB
-Input IP3: +3 dBm (@2.7V, 25 mA)
- Low Gain State:
-Insertion Loss: 5 dB , Input IP3: +24 dBm
- Single Supply: +2.7 to +5 VDC
- Low Cost MSOP-8 Plastic Package
- Adjustable current: 10 to 30 mA with external resistor

Description

M/A-COM's AM55-0016 is a high dynamic range, switchable low noise amplifier in a low cost, MSOP 8-lead, surface mount, plastic package. The design utilizes a patented switching technique to provide a low insertion loss, high input IP_{3} bypass state in parallel with the high gain, low noise state.

The LNA employs external input matching to obtain optimum noise figure performance and operating frequency flexibility. The AM55-0016 also features flexible biasing to control the current consumption vs. dynamic range trade-off. It's current can be controlled over a range of 10 mA to 30 mA with an external resistor.

Typical applications include receiver front ends in cellular band CDMA handsets. It is also useful as a switched gain block, buffer or driver in portable cellular systems.

The AM55-0016 is fabricated using a low-cost 0.5micron gate length GaAs MESFET process. The process features full passivation for increased performance and reliability.

Ordering Information ${ }^{1}$

Part Number	Package
AM55-0016	MSOP-8 Lead Plastic Package
AM55-0016TR	Forward Tape and Reel
AM55-0016SMB	Sample Test Board

[^0]
Functional Block Diagram

Pin Configuration

Pin No.	Pin Name	Description
1	VDD1	Stage 1 Supply Voltage
2	IN	RF Input
3	VS1	Stage 1 Source
4	GND	RF and DC Ground
5	VS2	Stage 2 Source
6	OUT	RF Output
7	VDD2	Stage 2 Supply Voltage
8	VCTL	Switch Control Voltage

Absolute Maximum Ratings ${ }^{2,3,4}$

Parameter	Absolute Maximum
V_{DD}	+6 VDC
Input Power	0 dBm
Current	30 mA
Channel Temperature ${ }^{4}$	$+150^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

2. Exceeding any one or combination of these limits may cause permanent damage to this device.
3. M/A-COM does not recommend sustained operation near these survivability limits.
4. Typical thermal resistance $\left(\theta_{\mathrm{j}}\right)=+99^{\circ} \mathrm{C} / \mathrm{W}$.
[^1][^2]Switched Low Noise Amplifier
$800-1000 \mathrm{MHz}$
Rev. V4
Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~F}=881 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-\mathbf{3 0} \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{DD}}=10 \mathrm{~mA}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
HIGH GAIN STATE, Voltage control $=2.7$ volts					
Gain		dB	-	16	-
Noise Figure		dB	-	1.6	1.8
Input IP3	$\begin{aligned} & I_{D D}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \\ & I_{D D}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \end{aligned}$	dBm dBm	-	$\begin{aligned} & -2 \\ & +3 \end{aligned}$	-
Input VSWR / Output VSWR		-	-	2.0:1	
Reverse Isolation		dB	-	32	-
LOW GAIN STATE, Voltage control $\mathbf{~} \mathbf{0}$ volts					
Insertion Loss	$1_{\text {DD }}=100 \mu \mathrm{~A}$	dB	-	5	-
Input IP3		dBm	-	+24	-
Input VSWR		-	-	2.3:1	-
Output VSWR		-	-	2.0:1	-

Evaluation PCB + RF Connector Losses

Port Reference	Approximate RF Loss
RF IN	$0.15 \mathrm{~dB} @ 900 \mathrm{MHz}$
RF OUT	$0.15 \mathrm{~dB} @ 900 \mathrm{MHz}$

The DC connector on the Designer's Kit PCB allows convenient DC line access. This is accomplished by one or more of the following methods:

1. A mating female multi-pin connector (Newark Electronics Stock \# 46F-4658, not included).
2. Wires soldered to the necessary pins (not included).
3. Clip leads (not included).

Handling Procedures

Please observe the following precautions to avoid damage.

Static Sensitivity

Evaluation Board

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

[^3]- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit wW.macomtech.com for additional data sheets and product information. M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Recommended PCB Configuration

External Circuitry

Cross Section View

The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinues between 50Ω lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of $0.008^{\prime \prime}(0.2 \mathrm{~mm})$ yielding a 50Ω line width of $0.015^{\prime \prime}$ (0.38 mm). The recommended metallization thickness is 1 ounce copper.

External Circuitry Parts List ${ }^{5}$

Part	Value	Purpose
C1, C2	1000 pF	Source Bypass
C3, C4	47 pF	By-Pass
C5, C6, C7	10 nF	By-Pass
L1	22 nH	Tuning
RBIAS	See note 6	Source Bias Resistor
U1	UMH9N	Dual Bipolar Transistor

5. All external circuitry parts are readily available, low cost surface mount components (0.040 inches $\times 0.020$ inches or 0.060 inches x 0.030 inches).
6. RBIAS is chosen to set the desired current,

$$
\begin{array}{ll}
\text { For: } & \mathrm{I}_{\mathrm{DD}} \sim 10 \mathrm{~mA}, \mathrm{R} 1=75 \text { ohms; } \\
& \mathrm{I}_{\mathrm{DD}} \sim 20 \mathrm{~mA}, \mathrm{R} 1=25 \text { ohms } \\
& \mathrm{I}_{\mathrm{DD}} \sim 30 \mathrm{~mA}, \mathrm{R} 1=9 \text { ohms }
\end{array}
$$

Designer's Kit AM55-0016SMB

The AM55-0016SMB Designer's Kit allows for immediate evaluation of M/A-COM's AM55-0016. The Designer's Kit includes an AM55-0016, an evaluation board and a floppy disk containing typical performance data and a DXF file of the recommended PCB layout. The evaluation board consists of the recommended external surface mount circuitry, RF connectors and a DC multi-pin connector, all mounted to a multi-layer FR-4 PCB. The AM55-0016SMB evaluation PCB is illustrated below with all functional ports labeled.

Typical Performance Curves

High Gain Mode: Gain vs. Current

High Gain Mode: Input IP3 vs. Current

High Gain: Gain and Output Power vs. Input Power

High Gain Mode: Noise Figure vs. Current

High Gain Mode: IIP3 vs. Current and Voltage

Low Gain Mode: Insertion Loss and Input IP3

[^4]- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

Typical Performance Curves (continued)

Input Return Loss

High Gain Mode: Gain vs. Temperature

Output Return Loss

High Gain Mode: Noise Figure vs. Temperature

Low Gain Mode: Insertion Loss vs. Temperature

Switched Low Noise Amplifier

MSOP-8 ${ }^{\dagger}$

\dagger Meets JEDEC moisture sensitivity level 1 requirements.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are
typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.
Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit wW.macomtech.com for additional data sheets and product information.

[^0]: 1. Reference Application Note M513 for reel size information.
[^1]: ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

[^2]: - North America Tel: 800.366.2266 / Fax: 978.366.2266
 - Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 - Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

 Visit www.macomtech.com for additional data sheets and product information.
 M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

[^3]: ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

[^4]: ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

