

0.5Ω LOW VOLTAGE, QUAD SPDT ANALOG SWITCH

Description

The IDTAS3699A quad single-pole/double-throw (SPDT) analog switch operates from a single +1.65 V to +4.3 V supply and responds to TTL control input levels. Additional features include fast switching speed and break-before-make delay time. This product is available in $3 \times 3 \mathrm{~mm}$ and $2.5 \times 2.5 \mathrm{~mm} 16-\mathrm{pin}$ QFN packages.

Applications

- Speaker headset switching
- MP3 players
- Battery-operated equipment
- Audio and video signal routing
- PCMCIA cards
- Cellular phones
- Modems

Features

- High Speed:
- $\mathrm{t}_{\mathrm{PD}}=0.3 \mathrm{~ns}$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- $\mathrm{t}_{\mathrm{PD}}=0.4 \mathrm{~ns}$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- Low "ON" resistance VIN $=0 \mathrm{~V}$:
- Ron $=0.5 \Omega$ (max. $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- RoN $=0.7 \Omega$ (max. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- Ron $=1.5 \Omega$ (max. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) at $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$
- Wide operating voltage range:
- $\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=1.65 \mathrm{~V}$ to 4.3 V single supply
- 4.3 V tolerant and 1.8 V compatible threshold on digital control input at $\mathrm{V}_{\mathrm{CC}}=2.3$ to 3 V
- Latch-up performance exceeds 300 mA (JESD 17)
- Available in $3 \times 3 \mathrm{~mm}$ and $2.5 \times 2.5 \mathrm{~mm} 16$-pin QFN packages

Block Diagram

Pin Assignment

Truth Table

IN1	IN2	ON Switches
L	-	NC1-COM1, NC2-COM2
H	-	NO1-COM1, NO2-COM2
-	L	NC3-COM3, NC4-COM4
-	H	NO3-COM3, NO4-COM4

Pin Descriptions

Pin Numbers	Pin Names	Pin Description
$3,7,11,15$	NO1 - NO4	Analog switch normally open.
$1,5,9,13$	NC1 - NC4	Analog switch normally closed.
$4,8,12,16$	COM1 - COM4	Analog switch common to terminal.
2,10	IN1, IN2	Digital control input.
14	VCC	Positive supply voltage input.
6	GND	Ground.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDTAS3699A. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. All voltages referenced to ground.

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 4.6	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IC}}$	DC Control Input Voltage	-0.5 to 4.6	mA
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	
$\mathrm{I}_{\mathrm{IKC}}$	DC Input Diode Current on control pin $\left(\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}\right)$	-50	mA
I_{IK}	DC Input Diode Current $\left(\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}\right)$	± 50	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 300	mA
I_{OP}	DC Output Current Peak (pulse at 1 ms, 10% duty cycle $)$	± 500	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 100	mA
P_{D}	Power Dissipation at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}($ Note 1$)$	1120	mW
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature $(10 \mathrm{sec})$	300	${ }^{\circ} \mathrm{C}$

Note 1: Derate above $70^{\circ} \mathrm{C}$: by $18.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		1.65 to 4.3	V
V_{1}	Input Voltage		0 to V_{CC}	V
$\mathrm{V}_{\text {IC }}$	Control Input Voltage		0 to 4.3	V
V_{O}	Output Voltage		0 to V_{CC}	V
T_{OP}	Operating Temperature		-55 to 125	${ }^{\circ} \mathrm{C}$
dt/dv	Input Rise and Fall Time Control Input	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V	0 to 20	ns/V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 4.3 V	0 to 10	

DC Electrical Characteristics

Unless stated otherwise, $\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{tr}=\mathrm{tf} \leq 5 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions		Value					Unit
				$\mathrm{T}_{\text {A }}$			0 to $70^{\circ} \mathrm{C}$		
		$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$		Min.	Typ.	Max.	Min	Max	
HIGH Level Input Voltage	V_{IH}	1.65-1.95		$0.65 \mathrm{~V}_{\text {CC }}$			$0.65 \mathrm{~V}_{\text {CC }}$		V
		2.3-2.5		1.0			1.2		
		2.7-3		1.1			1.3		
		3.3		1.1			1.4		
		3.6		1.2			1.5		
		4.3		1.2			1.6		
LOW Level Input Voltage	$\mathrm{V}_{\text {IL }}$	1.65-1.95				0.25		0.25	V
		2.3-2.5				0.25		0.25	
		2.7-3				0.25		0.25	
		3.3				0.3		0.3	
		3.6				0.3		0.3	
		4.3				0.4		0.4	
Switch ON Resistance	R_{ON}	4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{NC}}=\mathrm{I}_{\mathrm{NO}}=100 \mathrm{~mA} \end{aligned}$		0.35	0.45		0.5	Ω
		3			0.4	0.5		0.6	
		2.7			0.4	0.5		0.6	
		2.3			0.45	0.7		0.8	
		1.8			0.55	1.5		2	
		1.65			0.65	1.5		2	
On-Resistance Match between channels ${ }^{(1)}$	$\triangle \mathrm{R}_{\mathrm{ON}}$		$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}} @ \mathrm{R}_{\mathrm{ON}} \operatorname{Max} \\ & \mathrm{I}_{\mathrm{NC}}=\mathrm{I}_{\mathrm{NO}}=100 \mathrm{~mA} \end{aligned}$		0.06				Ω
On Resistance Flatness ${ }^{(2)}$	$\mathrm{R}_{\text {FLAT }}$	4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{NC}}=\mathrm{I}_{\mathrm{NO}}=100 \mathrm{~mA} \end{aligned}$		0.15	0.2		0.2	Ω
		3			0.15	0.2		0.2	
		2.7			0.15	0.2		0.2	
		2.3			0.2	0.25		0.25	
		0.65			0.3	0.35		0.35	
OFF State Leakage Current (COM, NO, NR)	$\mathrm{I}_{\text {OFF }}$	4.3	$\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=0.3 \mathrm{~V}$ to 4 V			± 20		± 100	nA
Input Leakage Current	1 IN	0-4.3	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 4.3V			± 0.1		± 1	$\mu \mathrm{A}$
Quiescent Supply Current	I_{CC}	1.65-4.3	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 0.05		± 0.2	$\mu \mathrm{A}$

Notes:

1. $\triangle R_{O N}=R_{O N(M A X)}-R_{O N(M I N)}$.
2. Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal ranges.

AC Electrical Characteristics

Unless stated otherwise, $\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{tr}=\mathrm{tf} \leq 5 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions		Value					Unit
				$\mathrm{T}_{\text {A }}$			0 to $70^{\circ} \mathrm{C}$		
		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$		Min.	Typ.	Max.	Min	Max	
Propagation Delay	$\mathrm{t}_{\text {PLL, }} \mathrm{tPHL}$	1.65-1.95			0.45				ns
		2.3-2.7			0.4				
		3-3.3			0.3				
		3.6-4.3			0.3				
Turn-ON Time	ton	1.65-1.95	$\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=0.8 \mathrm{~V}$		120				ns
		2.3-2.7	$\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V}$		45	55		65	
		3-3.3			42	55		65	
		3.6-4.3			40	55		65	
Turn-OFF Time	$\mathrm{t}_{\text {OFF }}$	1.65-1.95	$\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=0.8 \mathrm{~V}$		22				ns
		2.3-2.7	$\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V}$		18	30		40	
		3-3.3			16	30		40	
		3.6-4.3			15	30		40	
Break-Before-Make Delay	t_{D}	1.65-1.95	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V} \end{aligned}$	10	80				ns
		2.3-2.7		10	60				
		3-3.3		10	55				
		3.6-4.3		10	50				
Charge Injection	Q	1.65-1.95	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$		50				ns
		2.3-2.7			40				
		3-3.3			35				
		3.6-4.3			35				

Analog Switch Characteristics

Unless stated otherwise, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions		Value					Unit
				$\mathrm{T}_{\text {A }}$			0 to $70{ }^{\circ} \mathrm{C}$		
		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$		Min.	Typ.	Max.	Min	Max	
OFF Isolation	OIRR	1.65-4.3	$\begin{aligned} & V_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{f}=100 \mathrm{kHZ} \end{aligned}$		-64				dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	1.65-4.3	$\begin{aligned} & V_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{f}=100 \mathrm{kHZ} \end{aligned}$		-54				dB
Total Harmonic Distortion	THD	2.3-4.3	$\begin{array}{\|l\|} \hline R_{L}=600 \Omega \\ V_{I N}=2 V_{P P} \\ f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ \hline \end{array}$		0.03				\%
-3dB Bandwidth	BW	1.65-4.3	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		50				MHz
Control Pin Input Capacitance	$\mathrm{C}_{\text {IN }}$				5				pF
Sn Port Capacitance	C_{NC}, C_{NO}	3.3	$\mathrm{f}=1 \mathrm{MHz}$		30				pF
D Port Capacitance (when switch is enabled)	$\mathrm{C}_{\text {COM }}$	3.3			84				

Test Circuits and Timing Diagrams

Overvoltage Protection Using Two External Blocking Diodes

Switching Time

DEFINITIONS:
$a=$ Includas fixture and stray capecitance.
Break-Before-Make Interval

Charge Injection

On-Loss, Off-Isolation, and Crosstalk

Marking Diagram

Notes:

1. YYWW is the last two digits of the year and week that the part was assembled.
2. "G" after the two-letter package code designates RoHS compliant package.
3. Bottom marking: country of origin if not USA.

Package Outline and Package Dimensions (16-pin 2.5x2.5mm QFN)

Package dimensions are kept current with JEDEC Publication No. 95

Package Outline and Package Dimensions (16-pin 3x3mm QFN)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
IDTAS3699ANDG	see page 9	Tubes	$2.5 \times 2.5 \mathrm{~mm} 16-\mathrm{pin}$ QFN	0 to $+70^{\circ} \mathrm{C}$
IDTAS3699ANDG8		Tape and Reel	$2.5 \times 2.5 \mathrm{~mm} 16-\mathrm{pin}$ QFN	0 to $+70^{\circ} \mathrm{C}$
IDTAS3699ANLG		Tubes	$3 \times 3 \mathrm{~mm} 16-\mathrm{pin}$ QFN	0 to $+70^{\circ} \mathrm{C}$
IDTAS3699ANLG8		Tape and Reel	$3 \times 3 \mathrm{~mm} 16-\mathrm{pin}$ QFN	0 to $+70^{\circ} \mathrm{C}$

Parts ordered with a " G " after the two-letter package code are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Originator	Date	Description of Change
A		$12 / 13 / 07$	redesign of the AS3699 to accommodate TTL input Levels to reduce operating power.

For Sales
800-345-7015
408-284-8200
Fax: 408-284-2775

For Tech Support
www.idt.com/go/clockhelp

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

