

Access PIN-TIA Receivers for 155 Mb/s and 622 Mb/s

EDR 51xx Series

Applications

- Single mode 155 Mb/s (EDR 512x) and 622 Mb/s (EDR 515x) ATM receivers
- Campus network backbone
 - Add/drop multiplexers
 - Digital loop carriers
 - Digital crossconnects
 - Optical networking
- Enterprise network backbone

Key Features

- Electro-optical
- InGaAs PIN photodiode with silicon transimpedance amplifier
- Operate on single supply

EDR 512x (5 V)

EDR 515x (3.3 V or 5 V)

- Three standard pin-out configurations

EDR 51xB - single-ended output

EDR 51xC - single-ended output with photodiode access

EDR 51xD - differential output

- Cost effective in receiver designs where sensitivity is limited by the post-amplifier
- Shielded pre-amplifier makes it immune to crosstalk with transmitter or to other EMI
- -40 to +85°C operating range
- Packaging
- Integrated 4-pin coaxial package
- Connector receptacle (panel or PCB mount) and fiber pigtailed versions
- Case grounded versions

The EDR 51xx Series incorporates a 75 μ m InGaAs PIN photodetector coupled with a low cost BiCMOS transimpedance amplifier (TIA) designed to operate at 155 Mb/s (EDR 512x) or 622 Mb/s (EDR 515x). The PIN transduces optical power into current with high efficiency. The TIA converts the current signal into a voltage signal with a very low input noise current contribution. The EDR 512x TIA also integrates an automatic gain control (AGC) circuit which decreases the light to voltage conversion factor when the average incident optical power is relatively high.

The EDR 51xx Series are assembled in rugged coaxial packages. They are available with a connector receptacle or as a single mode fiber pigtail. Standard choices for connector receptacles are LC, SC and FC. In addition, the EDR 51xx Series are available in several standard pin-out configurations. The EDR 51xB is the simplest configuration and provides a single ended output. The EDR 51xC provides access to the photodiode current for those customers who need to design an alarm circuit. The EDR 51xD provides a differential output for higher gain performance without sacrifice to sensitivity and bandwidth.

Typical Applications

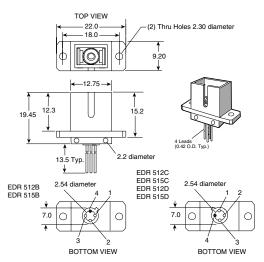
The EDR 51xx Series are designed for many applications, including single mode 155 Mb/s (EDR 512x) and 622 Mb/s (EDR 515x) ATM receivers. The EDR 51xx Series exceed Long Reach OC-3 (EDR 512x) and OC-12 (EDR 515x) SONET receiver specifications and are ideal for transceiver designs or board level discrete designs. Applications include receivers for digital cross connects, digital loop carriers, add/drop multiplexers, optical network units and switches and routers for LAN and WAN backbones.

External Circuitry

When designing the EDR 51xx Series into an optical receiver, standard high speed printed circuit board design practices should be observed. For example, bypassing of the power supply is recommended so as to reduce noise that appears at the output of the PIN-TIA.

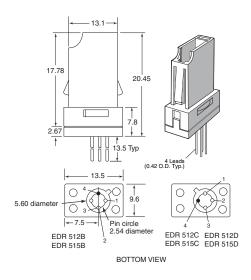
If signal traces are relatively long, use impedance matching techniques to maximize power transfer from the PIN-TIA to its load: for microstrip design, assume 70 ohms (EDR 512x) and 60 ohms (EDR 515x) as the output impedance for the PIN-TIA. Note as well that the output of the PIN-TIA is DC-coupled. Since most applications require AC-coupled stages, a high-Q RF chip capacitor should be placed on the output of the module. To eliminate oscillations, the PIN-TIA should be mounted on a circuit board with a large, low impedance ground plane. All the PIN-TIA leads should be made as short as possible in order to reduce excess inductances. As a general rule, receiver bandwidth requirements need only be greater than about 1/3 of the bit rate at which they are intended to operate. A receiver for a 155 Mb/s system must have a bandwidth greater than 110 MHz. A receiver for a 622 Mb/s system must have a bandwidth greater than 415 MHz. On the other hand, any frequency component above 110 MHz for 155 Mb/s systems or above 415 MHz for 622 Mb/s systems contributes excess noise to the output. The excess noise needlessly reduces the sensitivity of the receiver. The receiver designer may therefore improve the PIN-TIA sensitivity by placing a low pass noise filter on the output.

Performance Highlights

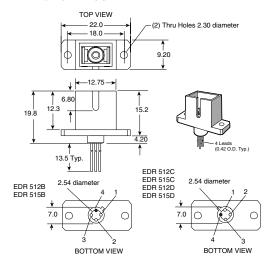

The EDR 51x Series offer a sensitivity of better than -36 dBm (EDR 512x) or -30 dBm (EDR 515x) with appropriate filtering and a minimum overload of 0 dBm (EDR 512x) or -7 dBm (EDR 515x). This large dynamic range makes these products ideal for both long and short range applications. A time constant of 4 milliseconds makes the AGC circuit of the EDR 512x models very stable, even during reception of the longest streams of high or low logic levels. The EDR 51x Series operate over -40 to +85°C.

The EDR 51x Series provide significant benefits over hybrid designs and 14-pin receivers. Integration of the TIA with the PIN detector onto the TO-46 header reduces parasitic capacitances and lead inductances. The TO-52 cap hermetically seals the hybrid and provides EMI shielding especially from the transmitter circuit. These advantages improve sensitivity over designs that place the amplifier outside the capsule and away from the detector. The EDR 51x Series, which have four pins, are advantageous over 14-pin receivers because they require less board space and fewer electrical connections. In addition, the EDR 51xx Series operate from a single power supply, even in the pin-out configuration which provides photodiode current monitoring. The smaller form factor and the need for a single power supply make the EDR 51x Series a less expensive, high performance alternative to other kinds of optical receivers.

Dimensions Diagram

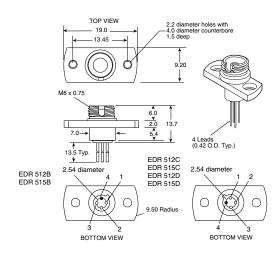

(Specifications in mm unless otherwise noted.)

EDR 51xx RSC-DM

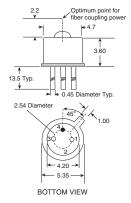


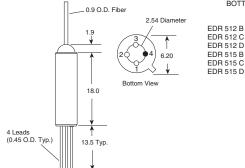
Note: Critical dimensions meet NTT specifications. Other dimensions subject to revision.

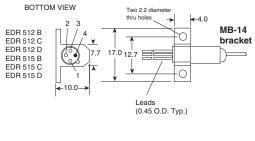
EDR 51xx RLC



EDR 51xx RSC-FM

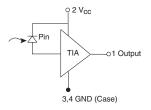

Note: Critical dimensions meet NTT specifications. Other dimensions subject to revision.

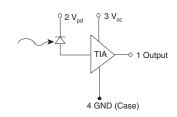

EDR 51xx RFC2



EDR 51xx TL

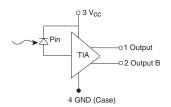
EDR 51xx FJS with Bracket Option





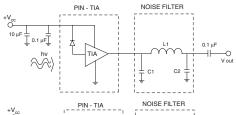
Electrical Schematics

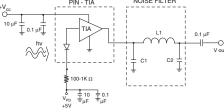
EDR 512B, EDR 515B



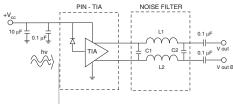
EDR 512C, EDR 515C

Access to photodiode current is provided.


EDR 512D, EDR 515D


Differential output is provided.

Typical Low Pass Noise Filter Design for 155 Mb/s and 622 Mb/s


EDR 512B, EDR 515B

EDR 512C, EDR 515C

EDR 512D, EDR 515D

Model	L1	L2	C1	C2	
EDD 512D	150 II		27 - F	27E	
EDR 512B	150 nH	-	27 pF	27 pF	
EDR 512C	150 nH	-	27 pF	27 pF	
EDR 512D	120 nH	120 nH	18 pF	18 pF	
EDR 515B	33 nH	-	10 pF	10 pF	
EDR 515C	33 nH	-	10 pF	10 pF	
EDR 515D	30 nH	30 nH	5.6 pF	5.6 pF	

5

EDR 512x Specifications

(Vcc = +5 V, TA = 25 °C, RL = 50 Ω (AC coupled), λ = 1300 nm. All specifications without connector.)

	EDR 512B	EDR 512C	EDR 512D
Minimum	15 V/mW	15 V/mW	25 V/mW
Typical	20 V/mW	20 V/mW	35 V/mW
Minimum	110 MHz	110 MHz	110 MHz
Typical	200 MHz	200 MHz	200 MHz
Typical	-38.0 dBm	-38.0 dBm	-38.5 dBm
Maximum	-36.0 dBm	-36.0 dBm	-36.5 dBm
Minimum	0 dBm	0 dBm	0 dBm
Typical	2 dBm	2 dBm	2 dBm
Typical	70 Ω	70 Ω	70 Ω
Typical	400 mV _{pk-pk}	400 mVpk-pk	800 mV _{pk-pk}
Typical	4000 μs	4000 μs	4000 μs
Typical	2 μW	2 μW	2 μW
	Typical Minimum Typical Typical Maximum Minimum Typical Typical Typical Typical Typical	Minimum 15 V/mW Typical 20 V/mW Minimum 110 MHz Typical 200 MHz Typical -38.0 dBm Maximum -36.0 dBm Minimum 0 dBm Typical 2 dBm Typical 70 Ω Typical 400 mV _{pk-pk} Typical 4000 μs	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

^{1.} Measured at 100 MHz.

EDR 515x Specifications

(Vcc = +3.3 V,TA = 25 °C, R_L = 50 Ω (AC coupled), λ = 1300 nm. All specifications without connector.)

Parameter		EDR 515B	EDR 515C	EDR 515D
Gain¹	Minimum	1.7 V/mW	1.7 V/mW	3.0 V/mW
	Typical	2.2 V/mW	2.2 V/mW	4.0 V/mW
Bandwidth	Minimum	415 MHz	415 MHz	415 MHz
	Typical	500 MHz	500 MHz	500 MHz
Sensitivity ²	Typical	-31.5 dBm	-31.5 dBm	-32.5 dBm
•	Maximum	-30.0 dBm	-30.0 dBm	-31.0 dBm
Overload	Minimum	-7.0 dBm	-7.0 dBm	-7.0 dBm
	Maximum	-4.0 dBm	-4.0 dBm	-4.0 dBm
Output resistance	Minimum	45 Ω	45 Ω	45 Ω
	Typical	60Ω	60Ω	60Ω
	Maximum	75Ω	75Ω	75Ω
Maximum output voltage	Maximum	500 mV _{pk-pk}	500 mV _{pk-pk}	950 mV _{pk-pk}

^{1.} Measured at 300 MHz.

^{2.} BER of 1E-10, 120 MHz noise filter.

^{2.} BER of 1E-10, 415 MHz noise filter.

EDR 512x DC Electrical Characteristics and Maximum Ratings

Parameter	Minimum	Typical	Maximum
Supply voltage (Vcc)	4.5 V	5.0 V	5.5 V
Output offset voltage	2.9 V	3.2 V	3.5 V
Diff. output offset voltage ¹	-	80 mV	-
Supply current (Icc)	-	25 mA	50 mA
Dark current ²	-	-	1 nA
Optical input power	-	-	5.0 mW
Operating temperature	-40 °C	-	85 °C
Storage temperature	-40 °C	-	85 °C
Photodiode voltage (V _{pd}) ²	2 V	-	25 V

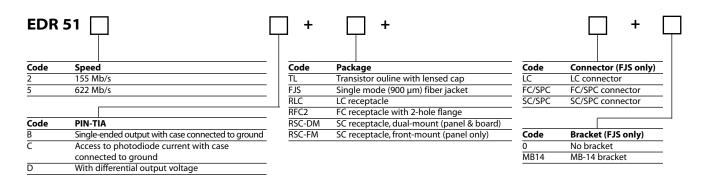
^{1.} Applies to EDR 512D only.

EDR 515x DC Electrical Characteristics and Maximum Ratings

Parameter	Minimum	Typical	Maximum
Supply voltage (Vcc)	3.0 V	3.3/5.0 V	5.25 V
Output offset voltage	-	2.0/3.7 V	-
Diff. output offset voltage ¹	-	7.0 mV	-
Supply current (Icc)	12 mA	25/35 mA	50 mA
Dark current ²	-	-	1.0 nA
Optical input power	-	-	5.0 mW
Operating temperature	-40 °C	-	85 °C
Storage temperature	-40 °C	-	85 °C
Photodiode voltage (V _{pd}) ²	2 V	-	25 V

^{1.} Applies to EDR 515D only.

^{2.} Applies to EDR 512C only.


^{2.} Applies to EDR 515C only.

Ordering Information	

For more information on this or other products and their availability, please contact your local JDSU account manager or JDSU directly at 1-800-498-JDSU (5378) in North America and +800-5378-JDSU worldwide or via e-mail at customer.service@jdsu.com.

Sample: EDR 512C FJS LC

Precautions for Use	

ESD protection is imperative. Use of grounding straps, anti-static mats, and other standard ESD protective equipment is required when handling or testing an InGaAs PIN or any other junction photodiode. Fiber pigtails should be handled with less than 10 N pull and with bending radius greater than 1 inch. Soldering temperature of the leads should not exceed 260 °C for more than 10 seconds.

All statements, technical information and recommendations related to the products herein are based upon information believed to be reliable or accurate. However, the accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application. JDSU reserves the right to change at any time without notice the design, specifications, function, fit or form of its products described herein, including withdrawal at any time of a product offered for sale herein. JDSU makes no representations that the products herein are free from any intellectual property claims of others. Please contact JDSU for more information. JDSU and the JDSU logo are trademarks of JDS Uniphase Corporation. Other trademarks are the property of their respective holders. ©2006 JDS Uniphase Corporation. All rights reserved. 30137554 Rev. 001 06/06 EDR51XX.DS.CC.AE

NORTH AMERICA: 800 498-JDSU (5378) WORLDWIDE: +800 5378-JDSU WEBSITE: www.jdsu.com