FEATURES

Low RDS ${ }_{\text {on }}$ of $65 \mathrm{~m} \Omega$ @ 1.8 V
Low input voltage range: 1.1 V to 3.6 V
>1 A continuous operating current @ $85^{\circ} \mathrm{C}$
Built-in level shift for control logic that can be operated by
1.2 V logic

Low $10 \mu \mathrm{~A}$ (maximum) ground current @ 3.6 V
Low $1 \mu \mathrm{~A}$ (typical) ground current @ 1.8 V
Low $4 \mu \mathrm{~A}$ (maximum) reverse current @ 3.6 V
Reverse current blocking
Ultralow shutdown current: <0.7 $\mu \mathrm{A}$
Ultrasmall $1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}$, 4-ball, 0.5 mm pitch WLCSP

APPLICATIONS

Mobile phones

Digital cameras and audio devices
Portable and battery-powered equipment

TYPICAL APPLICATIONS CIRCUIT

Figure 1.

GENERAL DESCRIPTION

The ADP195 is a high-side load switch designed for operation between 1.1 V to 3.6 V and protected against reverse current flow from output to input. This load switch provides power domain isolation helping extended power domain isolation. The device contains a low on-resistance, P-channel MOSFET that supports over 500 mA of continuous current and minimizes power loss. The low $10 \mu \mathrm{~A}$ of quiescent current and ultralow shutdown current make the ADP195 ideal for battery-operated portable equipment. The built-in level shifter for enable logic makes the ADP195 compatible with many processors and GPIO controllers.
In addition to operating performance, the ADP195 occupies minimal printed circuit board (PCB) space with an area of less than $1.0 \mathrm{~mm}^{2}$ and a height of 0.60 mm .

It is available in an ultrasmall $1 \mathrm{~mm} \times 1 \mathrm{~mm}, 4$-ball, 0.5 mm pitch WLCSP.

Rev. 0

ADP195

TABLE OF CONTENTS

REVISION HISTORY

3/10—Revision 0: Initial Version
Typical Performance Characteristics 6
Theory of Operation 9
Applications Information 10
Ground Current 10
Enable Feature 10
Timing 11
Outline Dimensions. 12
Ordering Guide 12

Pin Configuration and Function Descriptions............................ 5

SPECIFICATIONS

$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=\mathrm{V}_{\text {IN }}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

| Parameter | Symbol | Conditions | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- | Unit

TIMING DIAGRAM

Figure 2. Timing Diagram

ADP195

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
VIN to GND	-0.3 V to +4.0 V
VOUT to GND	-0.3 V to V IN
EN to GND	-0.3 V to +4.0 V
Continuous Drain Current	
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\pm 2 \mathrm{~A}$
$\mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	$\pm 1.1 \mathrm{~A}$
Continuous Diode Current	-50 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Soldering Conditions	JEDEC J-STD-020

Table 3. Typical $\Psi_{\text {IB }}$ Values

Package	$\boldsymbol{\Psi}_{\text {Jв }}$	Unit
4-Ball WLCSP	58.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
A1	VIN	Input Voltage.
A2	VOUT	Output Voltage.
B1	EN	Enable Input. Drive EN high to turn on the switch and drive EN low to turn off the switch.
B2	GND	Ground.

ADP195

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\text {IN }}, \mathrm{C}_{\text {IN }}=\mathrm{Cout}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 4. RDSon vs. Temperature

Figure 5. RDSon vs. Input Voltage (VIN)

Figure 6. Voltage Drop vs. Load Current

Figure 7. Typical Rise Time and Inrush Current, $V_{\text {IN }}=3.6 \mathrm{~V}$, No Load

Figure 8. Typical Rise Time and Inrush Current, $V_{I N}=3.6 \mathrm{~V}$, Load $=200 \mathrm{~mA}$

Figure 9. Typical Rise Time and Inrush Current $V_{\text {IN }}=1.2 \mathrm{~V}$, No Load

Figure 10. Typical Rise Time and Inrush Current, $V_{\text {IN }}=1.2 \mathrm{~V}$, Load $=200 \mathrm{~mA}$

Figure 11. Ground Current vs. Temperature

Figure 12. Ground Current vs. Input Voltage (VIN)

Figure 13. Shutdown Current vs. Temperature

Figure 14. Reverse Input Shutdown Current vs. Temperature

Figure 15. Reverse Output Shutdown Current vs. Temperature

ADP195

Figure 16. Reverse Shutdown Current vs. Temperature

ADP195

THEORY OF OPERATION

Figure 17. Functional Block Diagram

The ADP195 is a high-side PMOS load switch. It is designed for supply operation between 1.1 V to 3.6 V . The PMOS load switch is designed for low on resistance, $65 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$ and supports greater than 1 A of continuous current. It is a low quiescent current device with a nominal $4 \mathrm{M} \Omega$ pull-down resistor on its enable pin (EN). The packaging is a space-saving $1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}, 4$-ball WLCSP.

ADP195

APPLICATIONS INFORMATION

GROUND CURRENT

The major source for ground current in the ADP195 is an internal $4 \mathrm{M} \Omega$ pull-down on the enable pin. Figure 18 shows the typical ground current when $\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}$ and varies from 1.2 V to 3.6 V .

Figure 18. Ground Current vs. Load Current
As shown in Figure 19, an increase in quiescent current can occur when $\mathrm{V}_{\mathrm{EN}} \neq \mathrm{V}_{\text {IN }}$. This is caused by the CMOS logic nature of the level shift circuitry as it translates an V_{EN} signal $\geq 1.2 \mathrm{~V}$ to a logic high. This increase is a function of the $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{EN}}$ delta.

Figure 19. Typical Ground Current when $V_{E N} \neq V_{I N}$

ENABLE FEATURE

The ADP195 uses the EN pin to enable and disable the VOUT pin under normal operating conditions. As shown in Figure 20, when a rising voltage on V_{EN} crosses the active threshold, Vout turns on. When a falling voltage on $\mathrm{V}_{\text {EN }}$ crosses the inactive threshold, Vout turns off.

Figure 20. Typical EN Operation
As shown in Figure 20, the EN pin has hysteresis built in. This prevents on/off oscillations that can occur due to noise on the EN pin as it passes through the threshold points.

The EN pin active/inactive thresholds derive from the $\mathrm{V}_{\text {IN }}$ voltage; therefore, these thresholds vary with the changing input voltage. Figure 21 shows the typical EN active/inactive thresholds when the input voltage varies from 1.2 V to 3.6 V .

Figure 21. Typical EN Thresholds vs. Input Voltage (VIN)

TIMING

Turn-on delay is defined as the delta between the time that V_{EN} reaches $>1.2 \mathrm{~V}$ until Vout rises to $\sim 10 \%$ of its final value. The ADP195 includes circuitry to have typical 5μ s turn-on delay at $3.6 \mathrm{~V}_{\mathrm{IN}}$ to limit the $\mathrm{V}_{\text {IN }}$ inrush current. As shown in Figure 22, the turn-on delay is dependent on the input voltage.

Figure 22. Typical Turn-On Delay Time with Varying Input Voltage
The rise time is defined as the delta between the time from 10% to 90% of Vout reaching its final value. It is dependent on the RC time constant where $\mathrm{C}=$ load capacitance ($\mathrm{C}_{\text {LOAD }}$) and $\mathrm{R}=\mathrm{RDS}_{\text {ON }} \| \mathrm{R}_{\text {LOAD. }}$. Because $\mathrm{RDS}_{\text {ON }}$ is usually smaller than $\mathrm{R}_{\text {LOAD }}$, an adequate approximation for RC is $\mathrm{RDS}_{\text {ON }} \times \mathrm{C}_{\text {LOAD }}$. An input or load capacitor is not needed for the ADP195; however, capacitors can be used to suppress noise on the board. If significant load capacitance is connected, inrush current is a concern.

Figure 23. Typical Rise Time and Inrush Current, $C_{L O A D}=1 \mu F, V_{I N}=1.8 \mathrm{~V}$, No Load

Figure 24. Typical Rise Time and Inrush Current, $C_{\text {LOAD }}=1 \mu F, V_{I N}=1.8 \mathrm{~V}$, Load $=200 \mathrm{~mA}$
The turn-off time is defined as the delta between the time from 90% to 10% of Vout reaching its final value. It is also dependent on the RC time constant.

Figure 25. Typical Turn-Off Time

ADP195

OUTLINE DIMENSIONS

产
$\stackrel{\text { b }}{\ddagger}$
Figure 26. 4-Ball Wafer Level Chip Scale Package [WLCSP] (CB-4-4)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADP195ACBZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4-Ball Wafer Level Chip Scale Package [WLCSP]	CB-4-4	5 Y

${ }^{1} Z=$ RoHS Compliant Part.

