BYV36B

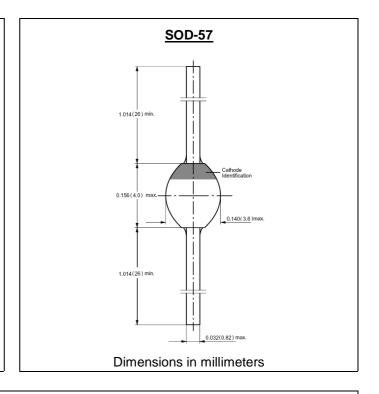
SINTERED GLASS JUNCTION FAST AVALANCHE RECTIFIER

VOLTAGE: 400V CURRENT: 1.6A

FEATURE

Glass passivated
High maximum operating temperature
Low leakage current
Excellent stability
Guaranteed avalanche energy absorption capability

MECHANICAL DATA


Case: SOD-57 sintered glass case

Terminal: Plated axial leads solderable per

MIL-STD 202E, method 208C

Polarity: color band denotes cathode end

Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

	SYMBOL	BYV36B	units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	400	V
Maximum RMS Voltage	V_{RMS}	280	V
Maximum DC blocking Voltage	V_{DC}	400	V
Reverse Breakdown Voltage at IR =0. 1mA	$V_{(BR)R}$	500min	V
Maximum Average Forward Rectified Current at Ttp=60°C, lead length=10mm	I _{F(AV)}	1.6	А
Peak Forward Surge Current at t=10ms half sinewave	I _{FSM}	30	А
Maximum Forward Voltage at rated Forward Current and 25°C $I_F = 1.0A$	V_{F}	1.35	V
Maximum DC Reverse Current $Tj = 25^{\circ}C$ at rated DC blocking voltage $Tj = 165^{\circ}C$	I _R	5.0 150	μA μA
Maximum Reverse Recovery Time (Note 1)	Trr	100	nS
Non Repetitive Reverse Avalanche Energy at L=120Mh	E _R	10	mJ
Typical Diode Capacitance at f=1MHz,V _R =0V	Cd	45	pF
Typical Thermal Resistance (Note 2)	R _{th(ja)}	100	K/W
Storage and Operating Junction Temperature	Tstg, Tj	-65 to +175	$^{\circ}\!\mathbb{C}$

Note:

- 1. Reverse Recovery Condition $I_F = 0.5A$, $I_R = 1.0A$, $I_{RR} = 0.25A$
- 2. Device mounted on an epoxy-glass printed-circuit boars, 1.5mm thick; thickness of Cu-layer ≥40 μ m

Rev.A1 www.gulfsemi.com

RATINGS AND CHARACTERISTIC CURVES BYV36B

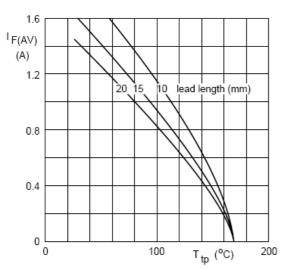


Fig.1 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).

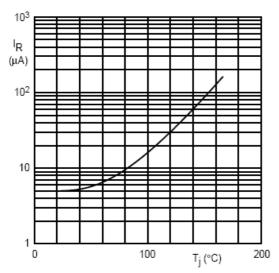


Fig.3 Reverse current as a function of junction temperature; maximum values.

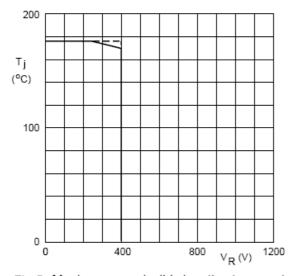
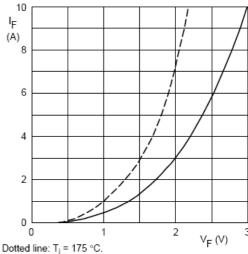



Fig.5 Maximum permissible junction temperature as a function of reverse voltage.

Dotted line: $T_j = 175 \,^{\circ}\text{C}$ Solid line: $T_j = 25 \,^{\circ}\text{C}$.

Fig. 2 Forward current as a function of forward voltage; maximum values.

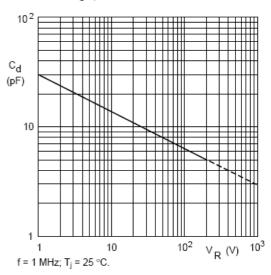


Fig.4 Diode capacitance as a function of reverse voltage, typical values.

Rev.A1 www.gulfsemi.com